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Abstract
Sequential VAEs have been successfully
considered for many high-dimensional time
series modelling problems, with many variant
models relying on discrete-time mechanisms
such as recurrent neural networks (RNNs). On
the other hand, continuous-time methods have
recently gained attraction, especially in the
context of irregularly-sampled time series, where
they can better handle the data than discrete-time
methods. One such class are Gaussian process
variational autoencoders (GPVAEs), where the
VAE prior is set as a Gaussian process (GP).
However, a major limitation of GPVAEs is that
it inherits the cubic computational cost as GPs,
making it unattractive to practioners. In this
work, we leverage the equivalent discrete state
space representation of Markovian GPs to enable
linear time GPVAE training via Kalman filtering
and smoothing. For our model, Markovian
GPVAE (MGPVAE), we show on a variety of
high-dimensional temporal and spatiotemporal
tasks that our method performs favourably
compared to existing approaches whilst being
computationally highly scalable.

1. Introduction
Modelling multivariate time series data has extensive
applications in e.g., video and audio generation (Li & Mandt,
2018; Goel et al., 2022), climate data analysis (Ravuri
et al., 2021) and finance (Sims, 1980). Among existing
deep generative models for time series, a popular class
of model is sequential variational auto-encoders (VAEs)
(Chung et al., 2015; Fraccaro et al., 2017; Fortuin et al.,
2020), which extend VAEs (Kingma & Welling, 2014) to
sequential data. Originally proposed for image generation,
a VAE is a latent variable model which encodes data via an
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Figure 1: Illustration of the MGPVAE model. (Top) The
state posterior qϕ(s1:T ) is parameterised by encoder outputs
and computed using filtering and smoothing. (Bottom) At
prediction time, posterior predictive distributions can be
calculated at any t.

encoder to a low-dimensional latent space and then decodes
via a decoder to reconstruct the original data. To extend
VAEs to sequential data, the latent space must also include
temporal information (it is also technically possible to place
temporal dynamics on the decoders (Chen et al., 2017), but
for our work we focus on the latent variable dynamics).
Sequential VAEs accomplish this by modelling the latent
variables as a multivariate time series, where many existing
approaches define a state-space model which governs the
latent dynamics. These state-space model-based sequential
VAE approaches can be classified into two subgroups:

• Discrete-time: The first approach relies on building a
discrete-time state-space model for the latent variables.
The transition distribution is often parameterised by a
recurrent neural network (RNN) such as Long Short-
Term Memory (LSTM; Hochreiter & Schmidhuber
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(1997)) or Gated Recurrent Units (GRU; Cho et al.
(2014)). Notable methods include the Variational
Recurrent Neural Network (VRNN; Chung et al. (2015))
and Kalman VAE (KVAE; Fraccaro et al. (2017)).
However, these approaches may suffer from training
issues, such as vanishing gradients (Pascanu et al., 2013),
and may struggle with irregularly-sampled time series
data (Rubanova et al., 2019).

• Continuous-time: The second approach involves
continuous-time representations, where the latent space
is modelled using a continuous-time dynamic model.
A notable class of such methods are neural differential
equations (Chen et al., 2018; Rubanova et al., 2019;
Li et al., 2020; Kidger, 2022), which model the latent
variables using a system of differential equations,
described by its initial conditions, drift and diffusion.
As remarked in Li et al. (2020), one can construct a
neural stochastic differential equation (neuralSDE) that
can be interpreted as an infinite-dimensional noise VAE.
However, although these models can flexibly handle
irregularly-sampled data, they also require numerical
solvers to solve the underlying latent processes, which
may cause training difficulties (Park et al., 2021),
memory issues (Chen et al., 2018; Li et al., 2020) and
slow computation times. Similarly, but combining linear
SDEs with Kalman filtering, Continuous Recurrent
Units (CRU; Schirmer et al. (2022)) is a RNN that is also
able to model continuous data. Finally, in the context
of audio generation, S4-related models (Gu et al., 2021;
Goel et al., 2022) also rely on continuous state spaces
and have been shown to perform strongly.

Another line of continuous-time approaches, related to
neuralSDEs, that treat the latent multivariate time series as
a random function of time, and model the random function
as a tractable stochastic process, are Gaussian Process
Variational Autoencoders (GPVAEs; Casale et al. (2018);
Pearce (2020); Fortuin et al. (2020); Ashman et al. (2020);
Jazbec et al. (2021)) which model the latent variables using
Gaussian processes (GPs) (Rasmussen, 2003). As compared
with dynamic model-based approaches which focus on
modelling the latent variable transitions (reflecting local
properties mainly), the GP model for the latent variables
describes, in a better way, the global properties of the time
series if a suitable stationary kernel is chosen, such as
smoothness and periodicity. Therefore GPVAEs may be
better suited for e.g., climate time series data which clearly
exhibits periodic behaviour. Unfortunately GPVAEs are
not directly applicable to long sequences as they suffer
from O(T 3) computational cost, therefore approximations
need to be made. Indeed, Ashman et al. (2020); Fortuin
et al. (2020); Jazbec et al. (2021) proposed variational
approximations based on sparse Gaussian processes (Titsias,
2009; Hensman et al., 2013; 2015) or recognition networks

(Fortuin et al., 2020) to improve the scalability of GPVAEs.

In this work we propose Markovian GPVAEs (MGPVAEs)
to bridge state-space model-based and stochastic process
based approaches of sequential VAEs, aiming to achieve the
best in both worlds. Our approach is inspired by the key fact
that, when the GP is over time, a large class of GPs can be
written as a linear SDE (Särkkä & Solin, 2019), for which
there exists exact and unique solutions (Øksendal, 2003). As
a result, there exists an equivalent discrete linear state space
representation of GPs. Therefore the dynamic model for
the latent variables has both discrete and continuous-time
representations. This brings the following key advantages
to the latent dynamic model of MGPVAE:

• The continuous-time representation allows the
incorporation of inductive biases via the GP kernel
design (e.g., smoothness, periodic and monotonic
trends), to achieve better prediction results and training
efficiency. It also enables modelling irregularly sampled
time series data.

• The equivalent discrete-time representation, which is
linear, enables Kalman filtering and smoothing (Särkkä
& Solin, 2019; Adam et al., 2020; Chang et al., 2020;
Wilkinson et al., 2020; 2021; Hamelijnck et al., 2021)
that computes the posterior distributions in O(T ) time.
As the observed data is assumed to come from non-linear
transformations of the latent variables, we further apply
site-based approximations (Chang et al., 2020) for the
non-linear likelihood terms to enable analytic solutions
for the filtering and smoothing procedures.

In our experiments, We study much longer datasets (T ≈
100) compared to many previous GPVAE and discrete-time
works, which are only are of the magnitude of T ≈ 10. We
include a range of datasets that describe different properties
of MGPVAE compared to existing approaches:

• We deliver competitive performance compared to many
existing methods on corrupt and irregularly-sampled
video and robot action data at a fraction of the cost of
many existing models.

• We extend our work to spatiotemporal climate data,
where none of the discrete-time sequential VAEs are
suited for modelling. We show that it outperforms
traditional GP and existing sparse GPVAE models in
terms of both predictive performance and speed.

2. Background
Consider building generative models for high-dimensional
time series (e.g., video data). Here an observed sequence
of length T is denoted as Yt1 . . . ,YtT ∈ RDy , where
ti represents the timestamp of the ith observation in the
sequence. Note that in general ti ̸= i for irregularly
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sampled time series. As the proposed MGPVAE has both
discrete state-space model based and stochastic process
based formulations, below we introduce these two types
of sequential VAEs and the key relevant techniques.

Sequential VAEs with state-space models: Consider
ti = i w.l.o.g., and assume each of the latent states in
Z1:T = (z11:T , . . . , z

L
1:T ) ∈ RT×L has L latent dimensions.

Then the generative model is defined as

p(Y1:T ,Z1:T ) = p(Z1:T )

T∏
t=1

p(Yt|Zt), (1)

where we choose p(Yt|Zt) = N (Yt;φ(Zt), σ
2I) to be a

multivariate Gaussian distribution, and φ : RL → RDy

is decoder network that transforms the latent state to the
Gaussian mean. The prior p(Z1:T ) is defined by the
transition probabilities, e.g., p(Z1:T ) =

∏T
t=1 p(Zt|Z<t).

Training is done by maximising the variational lower bound
L (Ranganath et al., 2014):

log p(Y1:T ) ≥
∑T

t=1 Eq(Z1:T )[log p(Yt|Zt)]

− KL(q(Z1:T |Y1:T )||p(Z1:T )) := L, (2)

where q(Z1:T |Y1:T ) is the approximate posterior
parameterised by an encoder network. Often this q
distribution is defined by mean-field approximation
over time, i.e., q(Z1:T |Y1:T ) =

∏T
t=1 q(Zt|Yt),

or by using transition probabilities as well, e.g.,
q(Z1:T |Y1:T ) =

∏T
t=1 q(Zt|Zt−1,Y≤t). Below we

also write q(Z1:T ) = q(Z1:T |Y1:T ) to simplify notation.

Gaussian Process Variational Autoencoders: A
Gaussian process is a stochastic process denoted by
Z ∼ GP(0, k), where k : R × R → R is the kernel or
covariance function that specifies the similarity between
two time stamps. This allows us to explicitly enforce
inductive biases or global behaviour. For instance, if Yt

is a periodic system, then we may use a periodic kernel
k or a longer initial kernel lengthscale to incorporate this
knowledge in the model; if the underlying process is
smooth, then a kernel can also be chosen so that it induces
smooth functions (Kanagawa et al., 2018).

GPVAEs (Casale et al., 2018; Pearce, 2020; Fortuin et al.,
2020; Ashman et al., 2020; Jazbec et al., 2021) define
the decoder network φ and the conditional distribution
p(Yt|Zt) in the same way as presented above. However,
instead of using transition probabilities, a GPVAE places
a multi-output GP prior on the latent variables {Zt}:
Zt ∼ GP(0,k), where one can choose the kernel of the
multi-output GP to be k = I ⊗ k, i.e., the output GPs
across dimensions share the same kernel k. However,
each dimension may also be induced with separate kernels

k1, . . . , kL, which we adopt in this work, giving block
diagonal kernel matrices.

Again we use the variational lower-bound (Eq. (2) when
ti = i) as the training objective, but with a different
approximate posterior q. Some examples include GPVAE
(Pearce, 2020; Fortuin et al., 2020)

q(Z1:T ) =
∏L

l=1 N(Zl
1:T ; Ỹ

l
1:T , Ṽ

l
1:T ),

where (Ỹl
t, Ṽ

l
t)

L
l=1 = (µl

ϕ(Yt),Σ
l
ϕ(Yt))

L
l=1 = ϕ(Yt) are

outputs of the encoder network ϕ. This corresponds to a
mean-field approximation over latent dimensions instead of
time. To avoid direct parameterisation of the full covariance
matrix Σl

ϕ(Y1:T ) ∈ RT×T which can be expensive for
long sequences, Fortuin et al. (2020) proposed a banded
parameterisation of the precision matrix (Blei & Lafferty,
2006; Bamler & Mandt, 2017), reducing both the time and
memory complexity to O(T ). However, this choice makes
it more difficult to work with irregularly-sampled data and
previous works only focused on corrupt video frames.

Another more flexible option is to use sparse GP
approximations with inducing points (Jazbec et al., 2021):

q(Z1:T ) =
∏L

l=1 p(Z
l
1:T |Gl

m)q(Gl
m),

q(Gl
m) = N(Gl

m|ml
m,Al

m),

Sl = Kl
mm +Kl

mT diag(Ṽl
1:T )

−1Kl
Tm,

ml
m = Kl

mm(Sl)−1Kl
mT diag(Ṽl

1:T )
−1Ỹl

1:T ,

Al
m = Kl

mm(Sl)−1Kl
mm,

where p(Zl
1:T |Gl

m) is the standard multivariate Gaussian
conditional distribution and [Kl

mT ]ij := kl(Ui, j) with i =
1, . . . ,m and j = 1, . . . , T , and [Kl

mm]ij := kl(Ui,Uj)
with i, j = 1, . . . ,m, for pre-determined inducing time
locations U = [U1, . . . ,Um]⊺. However, the time
complexity scales with O(m3 +m2T ), where in practice
to attain good performance m = O(log T ) (Burt et al.,
2019), and therefore the complexity increases massively
when dealing with longer time series.

Markovian Gaussian Processes: Interestingly, the
banded parameterisation coincides with the structure of
the Markovian GP state space st. w.l.o.g. suppose Zt is
one-dimensional in this subsection, then with a conjugate
likelihood (e.g. linear Gaussian) p(Yt|Zt) and a Markovian
kernel k (Särkkä & Solin, 2019), we can write the GP
regression problem as an Itô SDE of latent dimension d

dst = Fstdt+ LdBt, Zt = Hst,

Yt|Zt ∼ p(Yt|Zt), (3)

where F ∈ Rd×d,L ∈ Rd×e,H ∈ R1×d are the feedback,
noise effect and emission matrices, respectively, and Bt
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is an e-dimensional (correlated) Brownian motion with
diffusion Qc. s0 ∼ N (0,P∞), where P∞ is the stationary
state covariance, which satisfies the Lyapunov equation
(Solin, 2016). The state is typically the d derivatives
st = (Zt,Z

(1)
t , . . . ,Z

(d−1)
t )⊺ with the subsequent emission

matrix H = (1, 0, . . . , 0).

The linear SDE in Eq. (3) admits a unique closed form
solution, allowing the recursive updates of sti+1

given sti :

sti+1
= Ai,i+1sti + qi, qi ∼ N (0,Qi,i+1),

Zti = Hsti , Yti |Zti ∼ p(Yti |Zti) (4)

with Ai,i+1 = e∆iF, where ∆i = ti+1 − ti,

Qi,i+1 =
∫∆i+t0
t0

e(∆i+t0−τ)FLQcL
⊺[e(∆i+t0−τ)F]⊺dτ.

Note that the Qi,i+1 can be easily obtained in closed form.
See Appendix A for a detailed explanation. For conjugate
likelihood p(Yt|Zt) ≡ p(Yt|st), we can use the recursive
Kalman filtering and smoothing equations (also known as
the forward-backward equations) to obtain the posterior
distribution (Särkkä & Solin, 2019) p(st|Y1:T ) with
O(Td3) complexity. The corresponding filter prediction,
filtering and smoothing equations are:

p(st+1|Y1:t) =
∫
p(st+1|st)p(st|Y1:t)dst, (5)

p(st|Y1:t) =
1
ℓt
p(Yt|st)p(st|Y1:t−1),

p(st|Y1:T ) = p(st|Y1:t)
∫ p(st+1|st)p(st+1|Y1:T )

p(st+1|Y1:t)
dst+1,

where ℓt =
∫
p(Yt|st)p(st|Y1:t−1)dst is tractable as the

integrand is a product of Gaussians. If p(Yt|st) is non-
conjugate (e.g. a Poisson distribution), then the posterior
cannot be obtained analytically.

The size of d depends on the kernel. For example, the
Matern-3/2 kernel yields d = 2, since the GP sample
paths lie in an RKHS that is norm equivalent to a space
of functions with 1 derivative (Kanagawa et al., 2018). The
periodic or quasi-periodic kernels (Solin & Särkkä, 2014)
may yield larger d’s. However, in comparison to sparse
Gaussian process approximations in Ashman et al. (2020);
Jazbec et al. (2021) that have complexity O(m3 +m2T ),
where m is the number of inducing points, d does not depend
on T (unlike sparse GPs (Burt et al., 2019) that depend on
O(logD T ), where D is the time variable dimension) and
thus does not need to grow as T increases.

3. Markovian Gaussian Process Variational
Autoencoders

In this section, we propose Markovian GPVAEs
(MGPVAEs) and a corresponding variational inference
scheme for model learning.

3.1. Model

Let L be the dimensionality of the latent variables and kl

be the kernel for the lth channel with state dimension dl.
Then we have a total state space dimension of

∑L
l=1 dl.

Let φ : RL → RDy be the decoder network. Then the
generative model, under the linear SDE form of Markovian
GP in the latent space, is (with Zt = (Z1

t , . . . ,Z
L
t )

⊺)

dslt = Flsltdt+ LldBl
t, Zl

t = Hlslt, l = 1, . . . , L

Yt|Zt ∼ p(Yt|Zt) ≡ p(Yt|φ(Zt)), (6)

which equivalently becomes the linear discrete state space
model with nonlinear likelihood

slti+1
= Al

i,i+1s
l
ti + ql

i, ql
i ∼ N (0,Ql

i,i+1),

Zl
t = Hlslt, Yt|Zt ∼ p(Yt|Zt) ≡ p(Yt|φ(Zt)). (7)

Note that the transformation Zl
t = Hlslt is deterministic,

and the stochasticity arises from the st variables.

3.2. Variational inference

Suppose q(s) is the approximate posterior over s :=
s1:T ∈ RT×Ld. Then minimising KL(q(s)||p(s|Y))
is equivalent to maximising the lower bound L :=∑T

t=1 Eq(st) log p(Yt|φ(Zt))− KL(q(s)||p(s)). Note that
since Zt is a linear transformation or reparameterisation of
st, the KL-divergence is between the posterior and prior
distributions of st. We wish to compute q(s) in linear time
using Kalman filtering and smoothing. However, due to the
presence of a nonlinear decoder network φ in the likelihood,
it is no longer possible to obtain the exact posterior p(s|Y)
due to non-conjugacy. However, if we approximate the
likelihood p(Yt|φ(Zt)) with Gaussian sites, as is done in
Pearce (2020); Ashman et al. (2020); Jazbec et al. (2021);
Chang et al. (2020), Kalman filtering and smoothing can be
performed as conjugacy is reintroduced in the filtering and
smoothing equations.

We propose the Gaussian-site approximation

q(s) ∝ p(s)
∏L

l=1

∏T
t=1 N(Ỹl

t|Hlslt, Ṽ
l
t),

where Ỹl
t ∈ R and Ṽl

t ∈ R for l = 1, . . . , L. Instead
of optimising Ỹt and Ṽt as free-form parameters using
conjugate-computation variational inference (Khan & Lin,
2017), we encode them using outputs of an encoder network
ϕ i.e. (Ỹl

t, Ṽ
l
t)

L
l=1 = ϕ(Yt). In addition, we approximate

the potentially high-dimensional data likelihood using
a likelihood comprising of low-dimensional state space
variables.
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Then with straightforward computations,

KL(q(s)||p(s)) = Eq(s) log
q(s)
p(s)

= Eq(s) log
p(s)

∏L
l=1

∏T
t=1 N(Ỹl

t|H
lslt,Ṽ

l
t)

p(s)
∫
p(s)

∏L
l=1

∏T
t=1 N(Ỹl

t|Hlslt,Ṽ
l
t)ds

= Eq(s)

∑l
l=1

∑T
t=1 logN(Ỹl

t|Hlslt, Ṽ
l
t)

− logEp(s)

∏T
t=1

∏L
l=1 N(Ỹl

t|Hlslt, Ṽ
l
t).

The ELBO (2) thus becomes

L = logEp(s)

[
T∏

t=1

L∏
l=1

N(Ỹl
t|Hlslt, Ṽ

l
t)

]
︸ ︷︷ ︸

E3

+

T∑
t=1

Eq(st)

[
log p(Yt|φ(Zt))︸ ︷︷ ︸

E2

−
L∑

l=1

logN(Ỹl
t|Hlslt, Ṽ

l
t)︸ ︷︷ ︸

E1

]
.

(E1) q(st) can be obtained using the Kalman smoothing
distributions and can be computed in linear time (see the
Kalman filtering and smoothing equations in Appendix 1).
The reason is because q(s) is constructed by replacing
the likelihood in Eq. (4) with Gaussian sites, making it
possible to analytically evaluate the filtering and smoothing
equations (5). Therefore using the same calculations as
Chang et al. (2020); Hamelijnck et al. (2021), the first term
in the ELBO can be computed analytically:

Eq(st)[E1] = − 1
2 log |2πṼ

l
t| − 1

2 (Ỹ
l
t)

⊺(Ṽl
t)

−1Ỹl
t

+ (Ỹl
t)

⊺Hlml,s
t − 1

2 [Tr((Ṽl)−1HlPl,s
t (Hl)⊺)]

+ (ml,s
t )⊺(Hl)⊺Hlml,s

t ,

where ml,s
t and Pl,s

t are the smoothing mean and
covariances respectively at time t.

(E2) is intractable but we can estimate it using Monte Carlo
with K samples st,j ∼ q(st), and thus samples Zt,j =
(H1s1t,j , . . . ,H

LsLt,j)
⊺:

Eq(st) log p(Yt|φ(Zt)) ≈ 1
K

∑K
j=1 log p(Yt|φ(Zt,j)).

(E3) is the log partition function of q(s), which is
also the log marginal likelihood of the approximate
model

∑L
l=1 log p(Ỹ

l). Note that the latent channels are
independent of each other, allowing us to sum over the
log marginal likelihood over each channel. We can further
decompose each term of the sum into

log p(Ỹl) = log p(Ỹl
1)

∏T
t=2 p(Ỹ

l
t|Ỹl

1:t−1)

=
∑T

t=1 logEp(slt|Ỹl
1:t−1)

N(Ỹl
t;H

lslt, Ṽ
l
t),

where p(slt|Ỹl
1:t−1) is the predictive filter distribution

obtained with Kalman filtering. Fortunately, log p(Ỹl) can
be computed during the filtering stage (see Algorithm 1
for a full breakdown of Kalman filtering and smoothing).
In addition, a graphical representation of the Markovian
GPVAE is in Figure 1.

3.3. Spatiotemporal Modelling

Spatiotemporal modelling is an important task with many
real world applications (Cressie, 2015). Traditional
methods such as kriging, or Gaussian process regression,
incurs cubic computational costs and are even more
costly and difficult when multiple variables need to be
modelled jointly. GPVAEs may ameliorate this issue by
effectively simplifying the task via an encoder-decoder
model and has been proven to be effective in Ashman et al.
(2020). Following section 4.2 of Hamelijnck et al. (2021),
given a separable spatiotemporal kernel k(r, t, r′, t′) =
kr(r, r

′)kt(t, t
′), it is straightforward to extend MGPVAE

to model spatiotemporal data, which will be make it a highly
scalable spatiotemporal model. We consider the model:

Z(r, t) ∼ GP(0, k),Y(r, t)|Z(r, t) ∼ p(Y(r, t)|φ(Z(r, t))),

where for classical kriging (Cressie, 2015), φ is the identity
map and Z(r, t) is of the same dimensionality as Y(r, t).

For convenience of notation, we avoid introducing
subscripts l and only write down 1 latent dimension with k.
Suppose we have Ns spatial coordinates observed over time,
denoted by the spatial matrix R ∈ RNr×Dx , it is possible
to rewrite the GP regression model by stacking the states
for each spatial location on top of each other to get:

sti+1
= Ai,i+1sti + qi, qi ∼ N (0,Qi,i+1),

Yt|Zt ∼ p(Yt|φ(Zt)), (8)

where st = [st(r1), . . . , st(rNs
)]⊺, Zt = [Lr

RR ⊗ Ht]sti
and Ai,i+1 = INr ⊗ At

i,i+1, Qi,i+1 = INr ⊗ Qt
i,i+1,

Kr
RR = Lr

RR(Lr
RR)⊺, where superscripts t and r

indicate the temporal state space and spatial kernel matrices
respectively. The graphical model for MGPVAE is shown
in Figure 2, demonstrating how the states for each spatial
location are independently filtered and smoothed over
time, and then spatially mixed by the emission matrix.
Lastly, we approximate the likelihood with a mean-field
amortised approximation

∏T
t=1 N(Ỹt|[Lr

RR ⊗Ht]st, Ṽt),
where Ỹt, Ṽt ∈ RNx . See Appendix A.3 for further details.

3.4. Computational Complexity and Storage

Computational Complexity: For simplicity let us assume
that each channel has the same kernel but is modelled
independently. Then the computational complexity of
MGPVAE is O(Ld3T ). For GPVAE, it is also O(Ld3T );
for SVGPVAE, O(L(Tm2 +m3)) with m inducing points.
For KVAE, VRNN and CRU, the complexity is O(LT ), but
there may be large big-O constants due to the RNN network
sizes. For neuralODEs and neuralSDEs, the complexity
is linear with respect to the number of discretisation steps,
which can potentially be much larger than T .

For spatiotemporal modelling, the computational
complexity for MGPVAE will be O(Ld3TN3

r ) in this case,
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Figure 2: Graphical model of the separable spatiotemporal
MGPVAE model. The temporal dynamics of the states st(r)
at each location r are independently handled. At each time
step t, these states are spatially mixed to produce Zt, which
is then transformed by a non-linear mapping to Yt.

but can be further lowered to O(Ld3T (Nrm
2 + m3)) if

we sparsify the spatial domain by using M spatial inducing
points. For SVGPVAE, it is O(L(TNrm

2 +m3)) with m
inducing points over space and time.

Storage: The storage requirements for MGPVAE and
SVGPVAE are O(Td2) and O(Tm+m2) respectively. For
larger T , m needs to be larger and hence m ≫ d2 in many
cases (e.g. d2 = 4 for the Matern-3/2 kernel).

4. Related Work
GPVAEs have been explored for time series modelling
in Fortuin et al. (2020); Ashman et al. (2020). In our
work, we experiment with the state-of-the-art GPVAEs of
Fortuin et al. (2020) and SVGPVAE (Jazbec et al., 2021),
and explore a wider variety of tasks. Unlike Fortuin et al.
(2020), MGPVAE is capable of tackling both corrupt and
missing frames imputation tasks, as well as spatiotemporal
modelling tasks, with great scalability. Compared to
sparse GPVAEs (Ashman et al., 2020; Jazbec et al., 2021),
MGPVAE does not require inducing points.

NeuralODEs (Chen et al., 2018; Rubanova et al., 2019)
and neuralSDEs (Li et al., 2020) are also continuous-
time models that can tackle the same tasks as MGPVAE.
However, they depend heavily on the time discretisation,
how well the initial conditions are learned and the
expressiveness of the drift and diffusion functions. In
our work, we experiment with neuralODEs, which have
previously been used for similar missing frames imputation
tasks, and find that it is the slowest model whithout
achieving good predictive performance.

Many discrete-time and continuous-time models, such as
VRNN (Chung et al., 2015), KVAE (Fraccaro et al., 2017)
and latentODE (Rubanova et al., 2019), are only designed
to model temporal, but not spatiotemporal, data. On the
other hand, classical multioutput GPs can only handle lower-

dimensional spatiotemporal datasets as there cannot be any
dimensionality reduction to a latent space, whereas GPVAE
enables the encoder-decoder networks to learn meaningful
low-dimensional representations for high-dimensional data.
SVGPVAE is able to handle spatiotemporal data, but has
the disadvantage of being less efficient than MGPVAE due
to the use of inducing points over space and time jointly.

Chang et al. (2020); Hamelijnck et al. (2021) considered
modelling non-conjugate likelihoods with Gaussian
approximations, which would allow for Kalman filtering
and smoothing operations. We adopt this strategy to
allow flexible decoder choices with non-linear mapping,
where a key difference is that the encoder helps us
construct a low-dimensional approximation to the likelihood
function, which allows us to work with Kalman filtering and
smoothing in the lower-dimensional latent space.

5. Experiments
We present 3 sets of experiments: rotating MNIST, Mujoco
action data and spatiotemporal data modelling. We
benchmark MGPVAE against a variety of continuous and
discrete time models, such as GPVAE (Fortuin et al., 2020),
SVGPVAE (Jazbec et al., 2021), KVAE (Fraccaro et al.,
2017), VRNN (Chung et al., 2015), LatentODE (Rubanova
et al., 2019), CRU (Schirmer et al. (2022); only report
RMSE as it was not originally conceived as a generative
model) and sparse variational multioutput GP (MOGP).
We evaluate the performances using both test negative log-
likelihood (NLL) and root mean squared error (RMSE). We
implemented each model across different libraries (JAX,
PyTorch and TensorFlow) due to varying suitabilities and
tried our best to optimise each implementation for fairness
of comparison. All wall-clock time computations are done
on NVIDIA RTX-3090 GPUs with 24576MiB RAM. See
further experimental details and results in Appendix B.

5.1. Rotating MNIST

In this experiment, we produce sequences of MNIST frames
in which the digits are rotated with a periodic length of 50,
over T = 100 frames. We tackle 2 imputation tasks for:
corrupted frames where the frame pixels are randomly set to
0, and missing frames where frames are randomly dropped
out of each sequence. Each task has 4000 /1000 train/test
sequences respectively. The underlying dynamics are simple
(rotation) which may favour models with stronger inductive
biases, such as GPVAE and MGPVAE. To test this, for
both models, we use Matern-3/2 kernels with lengthscales
initialised at 40 (fixed for GPVAE according to Fortuin et al.
(2020)).

Corrupt frames imputation: This is a task that highly
suits standard RNN-based models such as VRNN and
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Figure 3: (Left) Corrupt frames imputation results for an unseen sequence of 5’s. (Right) Missing frames imputation results
for an unseen sequence of 9’s. Missing frames are red frames.

Table 1: Test NLL and RMSE for both the corrupt (Cor) and missing frames (Mis) imputation tasks.
Model NLL-Cor (↓) RMSE-Cor (↓) Time-Cor (s/epoch ↓) NLL-Mis (↓) RMSE-Mis (↓) Time-Mis (s/epoch ↓)
VRNN 9898± 162.0 0.1768± 0.001563 63.51 16240± 2090 0.1796± 0.008002 103.6
KVAE 12500± 83.13 0.2025± 0.0006077 139.2 10730± 1232 0.1582± 0.008688 149.0

GPVAE 9026± 48.70 0.1340± 0.0004529 48.93 NA NA NA
MGPVAE 8556± 69.66 0.1468± 0.0006738 50.45 8925± 53.40 0.1508± 0.0005190 59.43

KVAE, since the frames are observed at regular time
steps. Even so, we see from Table 1 that both
GPVAE and MGPVAE perform significantly better than
VRNN and KVAE in both NLL and RMSE, validating
our hypothesis of inductive biases helping the learning
dynamics. Furthermore, we observe that the RMSE for
MGPVAE is worse than GPVAE, although it has a slightly
better NLL. However, the left panel of Figure 3 shows that
the images generated do not visually differ significantly,
which implies that the model performance is comparable.

Missing frames imputation: Rubanova et al. (2019)
showed that RNN-based models fail in imputing irregularly
sampled time-series, as they struggle to correctly update the
hidden states at time steps of unobserved frames. This is
confirmed by our results in Table 1: MGPVAE outperforms
both VRNN and KVAE in terms of NLL and RMSE.1

In the right panel of Figure 3, we illustrate the posterior
mean imputations, and again VRNN fails. These results are
expected since VRNN implements filtering (only includes
past observations), while MGPVAE and KVAE include a
smoothing step (includes both past and future observations).

5.2. Mujoco Action Data

The Mujoco dataset is a physical simulation dataset
generated using the Deepmind Control Suite
(Tunyasuvunakool et al., 2020). We obtained the
Hopper generation code from Rubanova et al. (2019), which
outputs 14 dimensions sequences, and for all models we use
15-dimensional latent dimensions (according to Rubanova
et al. (2019)). We modify the task so that we only train on
the observed time steps, whereas in Rubanova et al. (2019)
the models have access to data at all the time steps. This
makes the task harder as the model has less information to
work with during training. We have 2 settings (1) 1280/400
train-test split with length T = 100 and (2) 320/100 for
length T = 1000. Compared to rotating MNIST, the

1We omit GPVAE here as the implementation by Fortuin et al.
(2020) cannot efficiently handle missing frames in batches. See
Appendix B.

underlying nonlinear dynamics are more complex, and each
dimension can behave differently. For both SVGPVAE and
MGPVAE, we use Matern-3/2 kernels.

Results: We see from Table 2 that the performance of
VRNN, KVAE, latentODE and CRU are significantly worse
than GP-based models, and overall both SVGPVAE and
MGPVAE achieve the best NLL and RMSE. This is because
missing data imputation is a difficult task for the discrete-
time RNN-based models. On the other hand, latentODE
significantly underperforms, possibly due to the ELBO
being computed only over the observed time steps, making
it more difficult to fit the model than the original task in
Rubanova et al. (2019). Figure 4 confirms the results; indeed
the non-GP models struggle to simultaneously fit the data
and estimate uncertainty well. Additional results can be
found in Appendix B.2.

In terms of time complexity, VRNN, KVAE, latentODE and
CRU are comparable to each other as shown in Figure 5.
The time and memory complexities for SVGPVAE is
dependent on the number of inducing points (see section 3.4)
and there is a trade-off between model expressiveness
and inducing points. For longer sequences, such as for
T = 1000, we would have to choose more inducing
points to gain comparable performance to MGPVAE.
We see that with only 20 inducing points, although the
wall-clock time is faster than MGPVAE, SVGPVAE-20
underperforms MGPVAE; with 40 inducing points, although
the performance and time complexities are comparable to
MGPVAE, it also has maxed-out the memory on our GPU.
In comparison, MGPVAE does not require any inducing
points and is the most time-efficient model.

5.3. Spatiotemporal Climate Data

We obtained climate data, including temperature and
precipitation, from ERA5 using Google Earth Engine
API (Gorelick et al., 2017). The task is to condition on
observed data {Y(r, t)}r,t (temperature and air pressure),
and predict on unknown spatial locations {Y(r∗, t)}r∗,t
for all time steps. Here we focus on GP-based models
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Figure 4: 95% posterior credible intervals for unseen mujoco sequences in its 6,7 and 8th dimensions with T = 1000. The
red dots show observed data. Note that some predictions are not showing as they fall outside the limits.
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Figure 5: Wallclock times for each model in the Mujoco
experiment.

Table 2: Imputation results for the Mujoco tasks.
Model NLL (T = 100) (↓) RMSE (T = 100) (↓) NLL (T = 1000) (↓) RMSE (T = 1000) (↓)
CRU - 0.1343± 0.009169 - 0.1353± 0.008574

VRNN −385.2± 25.59 0.1774± 0.002499 −2877± 450.8 0.1844± 0.004053
KVAE −8.353± 25.6 0.1828± 0.004587 −262.4± 1141 0.1761± 0.01751

LatentODE 124± 11.99 0.06599± 0.0007146 240.6± 38.62 0.07749± 0.001119
SVGPVAE-20 −2438± 111 0.02841± 0.003288 −18020± 282.6 0.0538± 0.0007901
SVGPVAE-40 −2468± 106.4 0.02566± 0.002945 −21290± 136.8 0.04237± 0.000295
SVGPVAE-60 −2290± 53.69 0.03014± 0.001579 - -
SVGPVAE-80 −2312± 67.76 0.0287± 0.001866 - -

MGPVAE −2292± 18.02 0.03068± 0.0006991 −21610± 233.7 0.04156± 0.0007136

since they, unlike RNN-based models, can flexibly handle
spatiotemporal data by combining spatial and temporal
kernels to efficiently model correlated structures. In
particular, for GPVAE models we use a separable kernel
k(r, t, r′, t) = kr(r, r

′)kt(t, t
′) for each latent channel

and the spatial kernel kr is shared across channels. We
also consider Gaussian process prediction which is also
known as kriging in spatial statistics (Cressie, 2015). Sparse
approximation is needed for scalability for the MOGP
baseline due to computational feasibility. We emphasise
that the dimensionality of this problem, which is 8, is high
relative to traditional spatiotemporal modelling problems
(Cressie, 2015).

Results: We report the corresponding quantitative results
in Table 3 and visualise the prediction results at an
unseen spatial location in Figure 6. We observe that
MOGP underfits and overestimates the uncertainty, which is
expected as traditional GP regression models struggle to fit a
complicated multi-dimensional time series with non-warped
GPs (without decoder network). In comparison, the encoder-
decoder networks allow GPVAEs to learn simpler dynamics,
resulting in better performance. The conclusions are similar
when we fix the time steps and plot the corresponding
posterior mean over space in Figure 7, where GPVAE
models better predict the spatial patterns.

SVGPVAE underperforms MGPVAE even when pushing
the number of inducing points to the memory limit of our
hardware (500). Interestingly, SVGPVAE underestimates
the uncertainty more as we increase the number of latent
channels to 8, as can also be seen from the large negative
log-likelihood per dim (NLPD) values. It is unclear why
this occurs, though this could be related to an imbalance in
the regularisation effect with the KL divergence. We note
that MGPVAE does not suffer from the same issue.

SVGPVAE results can be improved if having well-placed
and sufficiently-many inducing points, but this also means
SVGPVAE is memory inefficient when compared with
MGPVAE. For the spatiotemporal modelling task, a
significantly larger number of inducing points is required
and thus further illustrates the drawbacks of SVGPVAE for
spatiotemporal modelling. Similarly for computational time,
MGPVAE is faster than the other models with more inducing
points, but slower than the ones with less of inducing points
(which also perform worse).
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Figure 6: 95% posterior credible intervals for climate variables at an unseen spatial location.
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Figure 7: Posterior means over space for climate variables over 5 time steps.

Table 3: ERA5 prediction results.
Model NLPD (↓) RMSE (↓) Time (s/epoch ↓)

MOGP-100 10.38± 0.1783 1119± 21.29 0.1220
MOGP-1000 10.38± 0.1784 1119± 21.13 0.6001

SVGPVAE-4-100 16.40± 1.531 434.04± 11.40 0.05987
SVGPVAE-4-500 8.222± 0.9483 388.8± 9.347 0.7046
SVGPVAE-8-100 1376± 473.0 392.2± 18.08 0.08675
SVGPVAE-8-500 2613± 540.6 313.9± 21.42 1.344

MGPVAE-4 2.454± 0.1149 402.1± 15.24 0.45876
MGPVAE-8 −0.3070± 0.1021 352.7± 24.86 0.5128

6. Conclusion and Discussion
We propose MGPVAE, a GPVAE model using Markovian
Gaussian processes that uses Kalman filtering and
smoothing with linear time complexity. This is achieved by
approximating the non-Gaussian likelihoods using Gaussian
sites. Compared to Fortuin et al. (2020), which also achieves
linear time complexity by using an approximate covariance
structure, our model leaves the original Gaussian process
covariance structure intact, and additionally work with
both irregularly-sampled time series and spatiotemporal
data. Experiments on video, Mujoco action and climate
modelling tasks show that our method is both competitive
and scalable, compared to modern discrete and continuous-
time models. Future work can explore the use of
parallel filtering (Särkkä & García-Fernández, 2020), other
nonlinear filtering approaches (Kamthe et al., 2022) and
forecasting applications.

Limitations: MGPVAE requires the use of kernels that
admit a Markovian decomposition, and therefore kernels

such that the squared exponential kernel will not be
permissible (Särkkä & Solin, 2019) without additional
approximations. However, we argue that most commonly
used kernels are indeed Markovian, which should be
sufficient for most applications. In addition, we need to use
Gaussian site approximations for the likelihood, in order to
allow for Kalman filtering and smoothing. This may lower
the approximation accuracy, though in our experiments we
see that MGPVAE still performs strongly.

7. Acknowledgements
We would like to especially thank Wenlin Chen for his
valuable help with code and experiments during the revision
period, especially implementing a more optimised version
of SVGPVAE with functorch (Horace He, 2021) compared
to the original TensorFlow implementation of Jazbec et al.
(2021). HZ was supported by the EPSRC Centre for
Doctoral Training in Modern Statistics and Statistical
Machine Learning (EP/S023151/1) and the Department
of Mathematics of Imperial College London. HZ was
supported by Cervest Limited. We would also like to
thank Andy Thomas for his endless support with using the
NVIDIA4, Forrest and NVIDIA6 GPU Compute Servers.

9



Markovian Gaussian Process Variational Autoencoders

References
Adam, V., Eleftheriadis, S., Artemev, A., Durrande, N.,

and Hensman, J. Doubly sparse variational Gaussian
processes. In International Conference on Artificial
Intelligence and Statistics, pp. 2874–2884. PMLR, 2020.

Ashman, M., So, J., Tebbutt, W., Fortuin, V., Pearce, M.,
and Turner, R. E. Sparse Gaussian process variational
autoencoders. arXiv preprint arXiv:2010.10177, 2020.

Bamler, R. and Mandt, S. Dynamic word embeddings. In
International conference on Machine learning, pp. 380–
389. PMLR, 2017.

Blei, D. M. and Lafferty, J. D. Dynamic topic models.
In Proceedings of the 23rd international conference on
Machine learning, pp. 113–120, 2006.

Burt, D., Rasmussen, C. E., and Van Der Wilk, M. Rates
of convergence for sparse variational gaussian process
regression. In International Conference on Machine
Learning, pp. 862–871. PMLR, 2019.

Casale, F. P., Dalca, A., Saglietti, L., Listgarten, J., and
Fusi, N. Gaussian process prior variational autoencoders.
Advances in neural information processing systems, 31,
2018.

Chang, P. E., Wilkinson, W. J., Khan, M. E., and Solin, A.
Fast variational learning in state-space Gaussian process
models. In 2020 IEEE 30th International Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1–6.
IEEE, 2020.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal,
P., Schulman, J., Sutskever, I., and Abbeel, P. Variational
lossy autoencoder. ICLR, 2017.

Cho, K., van Merriënboer, B., Bahdanau, D., and
Bengio, Y. On the properties of neural machine
translation: Encoder–decoder approaches. In Proceedings
of SSST-8, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation, pp. 103–111, Doha,
Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/W14-4012. URL https:
//aclanthology.org/W14-4012.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville,
A. C., and Bengio, Y. A recurrent latent variable model
for sequential data. Advances in neural information
processing systems, 28, 2015.

Cressie, N. Statistics for spatial data. John Wiley & Sons,
2015.

Developers, O. Objax, 2020. URL https://github.
com/google/objax.

Evans, L. C. An introduction to stochastic differential
equations version 1.2. Lecture Notes, UC Berkeley, 2006.

Fortuin, V., Baranchuk, D., Rätsch, G., and Mandt, S.
Gp-vae: Deep probabilistic time series imputation. In
International conference on artificial intelligence and
statistics, pp. 1651–1661. PMLR, 2020.

Fraccaro, M., Kamronn, S., Paquet, U., and Winther,
O. A disentangled recognition and nonlinear dynamics
model for unsupervised learning. Advances in neural
information processing systems, 30, 2017.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s
raw! audio generation with state-space models. In
International Conference on Machine Learning, pp. 7616–
7633. PMLR, 2022.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko,
S., Thau, D., and Moore, R. Google earth engine:
Planetary-scale geospatial analysis for everyone. Remote
Sensing of Environment, 2017. doi: 10.1016/j.rse.2017.06.
031. URL https://doi.org/10.1016/j.rse.
2017.06.031.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021.

Hamelijnck, O., Wilkinson, W., Loppi, N., Solin, A., and
Damoulas, T. Spatio-temporal variational Gaussian
processes. Advances in Neural Information Processing
Systems, 34, 2021.

Hensman, J., Fusi, N., and Lawrence, N. D. Gaussian
processes for big data. UAI, 2013.

Hensman, J., Matthews, A., and Ghahramani, Z. Scalable
variational gaussian process classification. In Artificial
Intelligence and Statistics, pp. 351–360. PMLR, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Horace He, R. Z. functorch: Jax-like composable function
transforms for pytorch. https://github.com/
pytorch/functorch, 2021.

Jazbec, M., Ashman, M., Fortuin, V., Pearce, M., Mandt,
S., and Rätsch, G. Scalable gaussian process variational
autoencoders. In International Conference on Artificial
Intelligence and Statistics, pp. 3511–3519. PMLR, 2021.

Kamthe, S., Takao, S., Mohamed, S., and Deisenroth, M.
Iterative state estimation in non-linear dynamical systems
using approximate expectation propagation. Transactions
on Machine Learning Research, 2022.

10

https://aclanthology.org/W14-4012
https://aclanthology.org/W14-4012
https://github.com/google/objax
https://github.com/google/objax
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://github.com/pytorch/functorch
https://github.com/pytorch/functorch


Markovian Gaussian Process Variational Autoencoders

Kanagawa, M., Hennig, P., Sejdinovic, D., and
Sriperumbudur, B. K. Gaussian Processes and Kernel
Methods: A Review on Connections and Equivalences.
arXiv:1807.02582 [cs, stat], July 2018. URL
http://arxiv.org/abs/1807.02582. arXiv:
1807.02582.

Khan, M. and Lin, W. Conjugate-computation variational
inference: Converting variational inference in non-
conjugate models to inferences in conjugate models. In
Artificial Intelligence and Statistics, pp. 878–887. PMLR,
2017.

Kidger, P. On neural differential equations. PhD Thesis,
2022.

Kingma, D. P. and Welling, M. Auto-Encoding Variational
Bayes. arXiv:1312.6114 [cs, stat], May 2014. URL
http://arxiv.org/abs/1312.6114. arXiv:
1312.6114.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR,
2019.

Li, X., Wong, T.-K. L., Chen, R. T., and Duvenaud, D.
Scalable gradients for stochastic differential equations.
In International Conference on Artificial Intelligence and
Statistics, pp. 3870–3882. PMLR, 2020.

Li, Y. and Mandt, S. Disentangled sequential autoencoder.
ICML, 2018.

Lin, Z. and Yin, F. Towards flexibility and interpretability
of gaussian process state-space model. arXiv preprint
arXiv:2301.08843, 2023.

Maroñas, J. and Hernández-Lobato, D. Efficient
transformed gaussian processes for non-stationary
dependent multi-class classification. arXiv preprint
arXiv:2205.15008, 2022.

Matthews, A. G. d. G., Van Der Wilk, M., Nickson, T., Fujii,
K., Boukouvalas, A., León-Villagrá, P., Ghahramani, Z.,
and Hensman, J. Gpflow: A gaussian process library
using tensorflow. J. Mach. Learn. Res., 18(40):1–6, 2017.

Park, S., Kim, K., Lee, J., Choo, J., Lee, J., Kim, S., and
Choi, E. Vid-ode: Continuous-time video generation
with neural ordinary differential equation. arXiv preprint
arXiv:2010.08188, pp. online, 2021.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310–1318. PMLR,
2013.

Pearce, M. The gaussian process prior vae for interpretable
latent dynamics from pixels. In Symposium on Advances
in Approximate Bayesian Inference, pp. 1–12. PMLR,
2020.

Ranganath, R., Gerrish, S., and Blei, D. Black box
variational inference. In Artificial intelligence and
statistics, pp. 814–822. PMLR, 2014.

Rasmussen, C. E. Gaussian processes in machine learning.
In Summer school on machine learning, pp. 63–71.
Springer, 2003.

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam,
R., Mirowski, P., Fitzsimons, M., Athanassiadou, M.,
Kashem, S., Madge, S., et al. Skilful precipitation
nowcasting using deep generative models of radar. Nature,
597(7878):672–677, 2021.

Rubanova, Y., Chen, R. T., and Duvenaud, D. K. Latent
ordinary differential equations for irregularly-sampled
time series. Advances in neural information processing
systems, 32, 2019.

Särkkä, S. and García-Fernández, Á. F. Temporal
parallelization of bayesian smoothers. IEEE Transactions
on Automatic Control, 66(1):299–306, 2020.

Särkkä, S. and Solin, A. Applied stochastic differential
equations, volume 10. Cambridge University Press, 2019.

Schirmer, M., Eltayeb, M., Lessmann, S., and Rudolph, M.
Modeling irregular time series with continuous recurrent
units. In International Conference on Machine Learning,
pp. 19388–19405. PMLR, 2022.

Sims, C. A. Macroeconomics and reality. Econometrica:
journal of the Econometric Society, pp. 1–48, 1980.

Solin, A. Stochastic differential equation methods for spatio-
temporal Gaussian process regression. 2016. PhD Thesis:
Aalto University.

Solin, A. and Särkkä, S. Explicit link between periodic
covariance functions and state space models. In AISTATS,
2014.

Taylor, S. J. and Letham, B. Forecasting at scale. The
American Statistician, 72(1):37–45, 2018.

Tebbutt, W., Solin, A., and Turner, R. E. Combining
pseudo-point and state space approximations for sum-
separable Gaussian processes. In Uncertainty in Artificial
Intelligence, pp. 1607–1617. PMLR, 2021.

Titsias, M. Variational learning of inducing variables in
sparse gaussian processes. In Artificial intelligence and
statistics, pp. 567–574. PMLR, 2009.

11

http://arxiv.org/abs/1807.02582
http://arxiv.org/abs/1312.6114


Markovian Gaussian Process Variational Autoencoders

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. dmcontrol: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020. ISSN 2665-9638.
doi: https://doi.org/10.1016/j.simpa.2020.100022.
URL https://www.sciencedirect.com/
science/article/pii/S2665963820300099.

Wilkinson, W., Chang, P., Andersen, M., and Solin,
A. State Space Expectation Propagation: Efficient
Inference Schemes for Temporal Gaussian Processes.
In III, H. D. and Singh, A. (eds.), Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 10270–10281. PMLR, July
2020. URL https://proceedings.mlr.press/
v119/wilkinson20a.html.

Wilkinson, W. J., Solin, A., and Adam, V. Sparse
Algorithms for Markovian Gaussian Processes.
arXiv:2103.10710 [cs, stat], June 2021. URL
http://arxiv.org/abs/2103.10710. arXiv:
2103.10710.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets.
Advances in neural information processing systems, 30,
2017.

Øksendal, B. Stochastic differential equations. In Stochastic
differential equations, pp. 65–84. Springer, 2003.

12

https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://proceedings.mlr.press/v119/wilkinson20a.html
https://proceedings.mlr.press/v119/wilkinson20a.html
http://arxiv.org/abs/2103.10710


Markovian Gaussian Process Variational Autoencoders

A. Markovian Gaussian Process Background
In this section, we provide a rigorous treatment of the derivation of the state space Markovian Gaussian process equations as
previously presented in Särkkä & Solin (2019) with stochastic differential equation technicalities from Øksendal (2003);
Evans (2006).

A.1. Stochastic Differential Equations

Definition A.1 (Univariate Brownian Motion; (Øksendal, 2003; Evans, 2006)). Let (Ω,F ,P) be a probability space.
B : [0, T ]× Ω → R is a univariate Brownian motion if:

1. B0 = 0, almost surely.

2. t 7→ B(t, ·) is continuous almost surely.

3. For t4 > t3 ≥ t2 > t1, Bt4 −Bt3 ⊥⊥ Bt2 −Bt1 .

4. For any δ > 0, Bt+δ −Bt ∼ N (0, δq), where q the correlation factor.

In a similar manner, we may extend univariate Brownian motions into correlated multi-dimensional forms.

Definition A.2 (Multi-dimensional Brownian Motion). Bt is an e-dimensional (correlated) Brownian motion: each Bk, for
k = 1, . . . , e, is a univariate Brownian motion. We assume that each Bk is correlated, resulting in Bt+δ −Bt ∼ N (0, δQc),
where Qc ∈ Re×e is the spectral density matrix.

Define Ft to be the σ-algebra generated by Bs(·) for s ≤ t. Intuitively, this is the ‘history of information’ up to time t
created by Bs for s ≤ t. Therefore for a stochastic process driven by Bs up to time t, we would like it to be measurable at
all times t, which motivates the next definition of measurability for stochastic processes:

Definition A.3. Let {Ft}t≥0 be an increasing family of σ-algebras generated by Bt i.e. for s < t, Fs ⊂ Ft. Then
v(t, ω) : [0,∞)× Ω → Re is Ft-adapted if v(t, ω) is measurable in Ft for all t ≥ 0.

With the correlated formulation, we can rederive Itô isometry using the same proof as in the uncorrelated case (Øksendal,
2003; Evans, 2006). We use the definition of the multi-dimensional Itô integral in Definition 3.3.1 Øksendal (2003). Let E
be the expectation with respect to P.

Definition A.4 (Multi-dimensional Itô Integral (Øksendal, 2003)). Let Vd×e(S, T ), for d ∈ N and S < T , be a set of
matrix-valued stochastic processes v(t, ω) ∈ Rd×e where each entry vij(t, ω) satisfies:

• (t, ω) → vij(t, ω) is B(R)×F-measurable, where B(R) is the Borel σ-algebra on [0,∞).

• vij(τ, ω) ∈ L2([S, T ]) in expectation i.e. E[
∫ T

S
v2ij(τ, ·)dτ ].

• Let Wt be a univariate Brownian motion. There exists an increasing family of σ-algebras {Ht}t≥0 such that (1) Wt is a
martingale with respect to Ht and (2) vij(t, ω) is Ht-adapted.

Then, we can define the multi-dimensional Itô integral as follows: For all v ∈ Vd×e(S, T ),

∫ T

S

v(τ, ω)dBτ =

∫ T

S

v11(τ, ω) · · · v1e(τ, ω)
...

. . .
...

vd1(τ, ω) · · · vde(τ, ω)


dB1

τ
...

dBe
τ

 ,

where
[ ∫ T

S
v(τ, ω)dBτ

]
i

=
∑e

j=1

∫ T

S
vij(τ, ω)dB

j
τ .

Proposition A.5 (Multi-dimensional Itô Isometry). For F,G ∈ Vd×e (as defined in Øksendal (2003)) and S < T , then

E[
∫ T

S
F(τ, ·)dBτ ][

∫ T

S
G(τ, ·)dBτ ]

⊺ = E
∫ T

S
F(τ, ·)QcG(τ, ·)⊺dτ.

Furthermore, if F and G are deterministic, then for t1, t2 ≥ t0,

E[
∫ t1
t0

F(τ)dBτ ][
∫ t2
t0

G(τ)dBτ ]
⊺ = E

∫min(t1,t2)

t0
F(τ)QcG(τ)⊺dτ.

13
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Proof. Let {ei}ei=1 be the canonical basis in Re. We first show that ik-th component of[
E[
∫ T

S
F(τ, ·)dBτ ][

∫ T

S
G(τ, ·)dBτ ]

⊺

]
∈ Rd×d, for S < T , is equal to

∫ T

S
F⊺

i (τ, ·)Qc[G(τ, ·)]⊺kdτ = E
∫ T

S
e⊺i F

⊺(τ, ·)Qc[G(τ, ·)]⊺kdτ

= e⊺i

[
E
∫ T

S
F⊺(τ, ·)QcG(τ, ·)⊺dτ

]
ek

=

[
E
∫ T

S
F⊺(τ, ·)QcG(τ, ·)⊺dτ

]
ik

,

which would complete the proof. Indeed, the ik-th component is equal to

E
[∑e

j=1

∫ T

S
Fij(τ, ·)dBj

τ

][∑e
l=1

∫ T

S
Gkl(τ, ·)dBl

τ

]
=

[∑e
j,l=1 E

∫ T

S
Fij(τ, ·)dBj

τ

∫ T

S
Gkl(τ, ·)dBl

τ

]
1D Itô Isometry

=

[∑e
j,l=1 E

∫ T

S
Fij(τ, ·)[Qc]jlGkl(τ, ·)dτ

]
=

∑e
j,l=1 E

∫ T

S
Fij(τ, ·)[Qc]jl[G

⊺(τ, ·)]lkdτ

= E
∫ T

S
e⊺i F(τ, ·)Qc[G

⊺(τ, ·)]ekdτ

=

[
E
∫ T

S
F(τ, ·)Qc[G

⊺(τ, ·)]dτ
]
ik

,

as required. Next, if F and G are deterministic and suppose that t1 < t2 without loss of generality, then

E[
∫ t1
t0

F(τ)dBτ ][
∫ t2
t0

G(τ)dBτ ]
⊺ = E[

∫ t1
t0

F(τ)dBτ ][
∫ t1
t0

G(τ)dBτ +������∫ t2
t1

G(τ)dBτ ]
⊺

= E[
∫min(t1,t2)

t0
F(τ)dBτ ][

∫min(t1,t2)

t0
G(τ)dBτ ]

⊺

= E
∫min(t1,t2)

t0
F(τ)QcG

⊺(τ)dBτ ,

where for the first line we used property (iii) of Definition A.1 of Brownian motions in multi-dimensions.

A.2. Markovian Gaussian Processes

A Markovian Gaussian process f ∼ GP(0, k) can be written with an SDE of latent dimension d

ds(t) = Fs(t)dt+ LdBt, f(x) = Hs(t), (9)

where F ∈ Rd×d,L ∈ Rd×e,H ∈ R1×d are the feedback, noise effect and emission matrices, and Bt is an e-dimensional
(correlated) Brownian motion with spectral density matrix Qc. Suppose that s(t0) ∼ N (m0,P0) with the stationary
state mean and covariance. Note that we assume that s(t0) independent of F+

t0 , the σ-algebra generated by Bt − Bs for
t ≥ s ≥ t0, in order to invoke existence and uniquess of SDE solutions (Existence and Uniqueness Theorem, page 90, Evans
(2006)). Thus the linear SDE equation 3 admits a unique closed form solution:

s(t) = e(t−t0)Fs(t0) +
∫ t

t0
e(t−τ)FLdBτ .

We have

m(t) = E[s(t)] = e(t−t0)Fm0,
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since for any f ∈ Vd×e, E[
∫ T

S
f(τ)dBτ ] = 0 (Øksendal, 2003; Evans, 2006). To calculate the covariance, we have

κ(t, t′) = E[s(t)−m(t))(s(t′)−m(t′))⊺]

= e(t−t0)FE[(s(t0)−m0)(s(t0)−m0)
⊺][e(t

′−t0)F]⊺

+ E[
∫ t

t0
e(t−τ)FdBτ ][

∫ t′

t0
e(t

′−τ)FdBτ ′ ]⊺

+

((((((((((((((((((((

E
[
e(t−t0)FL(s(t0)−m0)(

∫ t′

t0
e(t

′−τ)FLdBτ )
⊺

]
(Independence)

+

((((((((((((((((((((((

E
[
(
∫ t

t0
e(t−τ)FLdBτ )(s(t0)−m0)

⊺L⊺[e(t−t0)F]⊺
]

(Independence)

= e(t−t0)FP0[e
(t′−t0)F]⊺ +

∫min(t,t′)

t0
e(t−τ)FLQcL

⊺[e(t
′−τ)F]⊺dτ (Itô Isometry; Proposition A.5),

where we note that
∫ t

t0
e(t−τ)FLdBτ and

∫ t′

t0
e(t

′−τ)FLdBτ are Ft-measurable for Ft ⊂ F+
t0 , and thus independent to

s(t0).

Therefore for all t ∈ {t0, . . . , tT }, if we solve for each ti with initial time ti−1, then s(t) ∼ N (m(t), k(t, t)) with

m(ti+1) = e(ti+1−ti)Fm0

k(ti+1, ti+1) = e(ti+1−ti)FP0[e
(ti+1−ti)F]⊺ +

∫ ti+1

ti
e(ti+1−τ)FLQcL

⊺[e(ti+1−τ)F]⊺dτ.

Denote ∆ti+1
= ti+1 − ti, Ai,i+1 = e(ti+1−ti)F = e∆ti+1

F and Qi,i+1 =∫∆ti+1
+t0

t0 e(∆ti+1
+t0−τ)FLQcL

⊺[e(∆ti+1
+t0−τ)F]⊺dτ . Then we can derive the recursive equations

s(ti+1) = Ai,i+1s(ti) +
∫ ti+1

ti
e(ti+1−τ)FLdBτ

= Ai,i+1s(ti) +
∫∆ti+1

+t0
t0 e∆ti+1

+t0−τLdBτ

= Ai,i+1s(ti) + qi,

where qi ∼ N (0,Qi,i+1).

Types of Kernels: A large number of kernels do allow for the Markovian property to be satisfied. A full list of them could
be found in Solin (2016); Särkkä & Solin (2019). Here, we list 2 common kernels:

• Matern-3/2: The kernel is k(t, t′) = σ2(1 +
√
3d
ρ ) exp(−

√
3d
ρ ), where d = |t− t′|. With λ =

√
3
ℓ :

F =

(
0 1

−λ2 −2λ

)
, m0 = 0, P0 =

(
σ2 0
0 σ2λ2

)
, Qc =

12
√
3σ2

ℓ2 , L =

(
0
1

)
, H =

(
1
0

)
.

• Matern-5/2: The kernel is k(t, t′) = σ2(1 +
√
5d
ρ + 5d2

3ρ2 ) exp(−
√
5d
ρ ), where d = |t− t′|. With λ =

√
5
ℓ and κ = 5σ2

3ℓ2 :

F =

 0 1 0
0 0 1

−λ3 −3λ2 −3λ

 , m0 = 0, P0 =

σ2 0 κ
0 κ 0

−κ 0 25σ2

ℓ4

 , Qc =
400

√
5σ2

3ℓ5 , L =

0
0
1

 , H =

1
0
0

 .

Kalman Filtering and Smoothing: The full Kalman filtering and smoothing algorithm is delineated in Algorithm 1.

A.3. Further details on spatiotemporal MGPVAE

To perform prediction at arbitrary spatiotemporal locations (r∗, t∗), we can use a conditional independence property proven
in Tebbutt et al. (2021) for separable spatiotemporal Markovian GPs that yields the predictive distribution

p(Z(r∗, t∗)|Y) ≈ q(Z(r∗, t∗)) (10)
:=

∫
p(Z(r∗, t∗)|s(R, t∗))q(s(R, t∗)|s(R, t1:T ))ds(R, t∗),
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Algorithm 1 Kalman Filtering and Smoothing

1: Inputs: Variational parameters Ỹ1:T , Ṽ1:T . Initial conditions mf
0 = m0, Pf

0 = P0, transition matrices
{Ai−1,i,Qi−1,i}Ti=1 and emission matrix H.

2: Filtering:
3: for i = 1, . . . , T do
4: Compute predictive filter distribution p(st|Ỹ1:i−1) = N(st|mp

t ,P
p
t ):

mp
ti = Ai−1,im

f
ti−1

Pp
ti = Ai−1,iP

f
ti−1

A⊺
i−1,i +Qi−1,i.

5: Let Λti = HPp
tiH

⊺ + Ṽti . Compute log marginal likelihood:

ℓti = logEp(sti |Ỹ1:i−1)
N(Ỹti ;Hsti , Ṽti) = logN(Ỹti ;Hmp

ti ,Λti)

6: Compute updated filter distribution p(sti |Ỹ1:i) = N(sti |m
f
ti ,P

f
ti):

Wti = Pp
tiH

⊺Λ−1
ti ⇒ mf

ti = mp
ti +Wti(Ỹti −Hmp

ti), Pf
ti = Pp

ti −WtiΛtiW
⊺
ti .

7: end for
8: Smoothing, with initial conditions ms

T = mf
T , Ps

T = mf
T :

9: for i = T − 1, . . . , 1 do
10: Compute the smoothing distribution q(sti) = p(sti |Ỹ1:T ) = N(sti |ms

ti ,P
s
ti) with the RTS smoother:

Gti = Pf
tiAi,i+1[P

p
ti+1

]−1 ⇒ ms
ti = mf

ti +Gti(m
s
ti+1

−mp
ti+1

), Ps
ti = Pf

ti +Gti(P
s
ti+1

−Pp
ti+1

)G⊺
ti

11: end for
12: Return: log marginal likelihood

∑T
t=1 ℓti , marginal posteriors {q(sti)}Ti=1.
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where q(s(R, t1:T )) = N(s(R, t1:T )|m(R, t1:T ), c(R, t1:T )) is the approximate state posterior s(R, t∗) conditioned on
s(R, t1:T ). Given in Tebbutt et al. (2021) and Wilkinson et al. (2021),

p(Z(r∗, t∗)|s(R, t∗)) =N(Z(r∗, t∗)|Br∗s(R, t∗),Cr∗),

where

Br∗ = [Kr
r∗R

(Kr
RR)−1]⊗ [Lr

RR ⊗Ht]

Cr∗ = kt(0, 0)[K
r
r∗r∗ −Kr

r∗R
(Kr

RR)−1Kr
Rr∗

].

Therefore the integral in Equation (10) yields q(Z(r∗, t∗)) = N(Z(r∗, t∗)|Br∗m(t1:T ,R),Br∗c(t1:T,R)B
⊺
r∗ +Cr∗).

B. Additional Experimental and Implementation Details
For the generating modelling tasks of corrupt image (re)-generation, the NLL on an test sequence Y = (Y1, . . . ,Y100) is

log p(Y) = log
∫
p(Y|Z)p(Z)dZ

= log
∫
p(Y|Z) p(Z)

q(Z|Ycorrupt)
q(Z|Ycorrupt)dZ

= log 1
K

∑K
k=1 p(Y|Zk)

p(Zk)
q(Zk|Ycorrupt)

, Zk ∼ q(Z|Ycorrupt), k = 1 . . . ,K

= log 1
K + logsumexpk=1,...,K

[
log p(Y|Zk)− log q(Zk|Y)

p(Zk)

]
. (11)

For the tasks of missing frame imputation, given test sequence Y = (Y1, . . . ,Y100), write Y ≡ (Y,Yc), where Yc are
the unseen frames and Yc are seen frames.

log p(Y) ≡ log p(Yc|Y) + log p(Y).

log p(Y) can be computed by Equation 11 and

log p(Yc|Y) = log
∫
p(Yc|Zc)p(Zc|Y)dZc

= log
∫
p(Yc|Zc)

[ ∫
p(Zc|Z)p(Z|Y)dZ

]
dZc

= log
∫
p(Yc|Zc)

[ ∫
p(Zc|Z) q(Z|Y)︸ ︷︷ ︸

encoder

dZ

︸ ︷︷ ︸
=:q(Zc|Y)≈p(Zc|Y)

]
dZc

≈ log
∫
p(Yc|Zc)q(Zc|Y)dZc

= log 1
K

∑K
k=1 p(Y

c|Zc
k), Zc

k ∼ q(Zc|Y), k = 1 . . . ,K,

= log 1
K + logsumexpk=1,...,K log p(Yc|Zc

k),

q(Zc|Y) can be analytically obtained (e.g. GP posterior distribution). For VRNN/KVAE, q(Zc|Y) would just be determined
by the outputs of the RNN at each time step t = 1, . . . , 100.

For the spatiotemporal modelling task, we compute the negative log predictive distribution (NLPD) at new spatial locations
s∗ /∈ S and temporal locations t ∈ T observed during training, conditioned on observed data D = {Y(s, t)}s∈S,t∈T , which
is

log p(Y(t, s∗)|D) = log
∫
p(Y(t, s∗)|Z(t, s∗))p(Z(t, s∗)|D)dZ(t, s∗)

≈ log
∫
p(Y(t, s∗)|Z(t, s∗))q(Z(t, s∗)|D)dZ(t, s∗)

= log 1
K

∑K
k=1 p(Y(t, s∗)|Zk(t, s∗)), Zk(t, s∗) ∼ q(Z(t, s∗)|D), k = 1, . . . ,K,

= log 1
K + logsumexpk=1,...,K log p(Y(t, s∗)|Zk(t, s∗)).

We hereby provide a derivation of Equation 11 for each model (using the original notation as much as possible).
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MGPVAE:

log p(Y) = log
∫
p(Y|s)p(s)q(s)q(s)ds,

= log
∫
p(Y|s)p(s)

∫
p(Ỹ|Hs,Ṽ)p(s)ds

p(Ỹ|Hs,Ṽ)p(s)
q(s)ds,

≈ log 1
K + log

∑K
k=1 p(Y|s)

∫
p(Ỹ|Hsk,Ṽ)p(sk)ds

p(Ỹ|Hsk,Ṽ)
, sk ∼ q(sk)

= log 1
K + logsumexpk=1,...,K log p(Y|sk)− log p(Ỹ|Hsk, Ṽ) + logEp(s)N(Ỹ|Hs, Ṽ)

KVAE: When encountering a missing frame, the Kalman gain is zero in the Kalman filtering and smoothing operations.
The filter prediction distribution is then used to recompute the A and C matrices, which are finally fed back into the usual
filtering algorithm.

log p(Y) = log
∫ p(Y|a)p(a|Z)p(Z)q(a,Z|Y)

q(a,Z|Y) dadZ,
[
q(a,Z|Y) = q(a|Y)p(Z|a)

]
≈ log

∑
k=1,...K

p(Y|ak)p(ak|Zk)p(Zk)
q(ak|Yk)p(Zk|Yk)

+ log 1
K , (ak,Zk) ∼ q(ak,Zk|Y)

= log 1
K + logsumexpk=1,...,K log p(Y|ak)− log q(ak|Y) + log p(ak|Zk) + log p(Zk)− log p(Zk|ak).

VRNN: When encountering a missing frame, the previous hidden state is fed into prior network and Zt is sampled from
the prior. It is then decoded and the decoded output is then used as a pseudo-datapoint for autoencoding.

log p(Y) = log
∏T

t=1 p(Yt|Y<t)

= log
∫ ∏T

t=1 p(Yt|Y<t,Z≤t)
p(Zt|Y<t,Z<t)
q(Zt|Y≤t,Z<t)

q(Zt|Y≤t,Z<t)dZ,

≈ log 1
K + log

∑K
k=1

∏T
t=1 p(Yt|Y<t,Z

k
≤t)

p(Zk
t |Y<tZ

k
<t)

q(Zk
t |Y≤t,Z

k
<t)

, Zk
1:T ∼ q(Z≤T |Y≤T ) =

∏T
t=1 q(Zt|Y≤t,Z<t)

= log 1
K + logsumexpk=1,...,K

∑T
t=1 log p(Yt|Y<t,Z

k
≤t)− log

q(Zk
t |Y≤tZ

k
<t)

p(Zk
t |Y<t,Zk

<t)

LatentODE: The latentODE places a prior over the initial conditions Z0 ∼ p(Z0) and a posterior via ODERNN
q(Z0|Y1:T ) ≡ q(Z0). Thus the NLL is

log p(Y) = log
∫
p(Y|Z0)

p(Z0)
q(Z0)

q(Z0)dZ

≈ log 1
K + logsumexpk=1,...,K log p(Y|Zk

0)− log
q(Zk

0 )

p(Zk
0 )
, Zk

0 ∼ p(Z0).

GPVAE:

log p(Y) = log
∫
p(Y|Z)p(Z)

q(Z)q(Z)dZ

≈ log 1
K + logsumexpk=1,...,K log p(Y|Zk)− log q(Zk|Y)

p(Zk)
, Zk ∼ q(Zk|Y).

SVGPVAE: We are given that q(Z,Gm) = p(Z|Gm)q(Fm|µ,A), where Gm is the inducing variable and (µ,A) are the
inducing variable mean and covariance.

log p(Y) = log
∫
p(Z,Gm,Y) q(Z,Gm)

q(Z,Gm)dZdGm

= log
∫ p(Y|Z)p(Z|Gm)p(Gm)

p(Z|Gm)q(Gm) p(Z|Gm)q(Gm)dZdGm

= log
∫ p(Y|Z)p(Gm)

q(Gm) p(Z|Gm)q(Gm)dZdGm

≈ 1
P

∑P
p=1 log

1
K + logsumexpk=1,...,K log p(Y|Zp

k)− log
q(Gk

m)
p(Gk

m)
, Gk

m ∼ q(Gm) Zp
k ∼ p(Zk|Gk

m),
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where p(Zk|Gm) is a standard GP conditional distribution:

p(Zk|Gm) ∼ N

(
Zk|KxmK−1

mmGm,Kxx −KxmK−1
mmKmx

)
,

q(Gm) ≡ q(Gm|µ,A) ∼ N

(
Gm|µ,A

)
.

B.1. Video Data

For each of the 4000 train and 1000 test MNIST images, we create a T = 100 length sequence of rotating MNIST images by
applying a clockwise rotation with period t = 50, meaning that the image gets rotated twice. For corrupt video sequences,
we randomly remove 60% of the pixels and replace them with the value 0. For the missing frames imputation task, we
randomly remove 60% of the frames and keep track of the time steps for which the frames are removed.

For each model during training, we used the following configurations (note that we use the standard PyTorch-TensorFlow-
JAX notation for network layers).

• Batch size: 40

• Training epochs: 300

• Number of latent channels: L = 16

• Adam optimizer learning rate: 1e-3

• clipGradNorm(model parameters, 100)

• Encoder structure: Conv(out=32, k=3, strides=2), ReLU(), Conv2D(out=32, k=3, strides=2), ReLU(), Flatten(),
hiddenToVariationalParams(), where hiddenToVariationalParams() depends on the model.

• Decoder structure: Linear(L, 8*8*32), Reshape((8,32,32)), Conv2DTranspose(out=64, k=3, strides=2, padding=same),
ReLU(), Conv2DTranspose(out=32, k=3, strides=2, padding=same), ReLU(), Conv2DTranspose(out=1, k=3, strides=1,
padding=same), Reshape((32, 32, 1)).

• If KVAE or VRNN, we had to applying KL and Adam optimizer step size schedulers in order to make them work,
meaning that they are more intricately optimised than the other models.

• If GPVAE and MGPVAE, initialise the kernel lengthscales with 40 for each latent channel. The kernel hyperparameters
(lengthscales and scales) are subsequently optimised via the ELBO.

• The model at the last training epoch is used for test evaluation.

Remark: We hereby explain why GPVAE (Fortuin et al., 2020) is not practically suited for the missing frames imputation
task. Recall that their approximate posterior is defined as q(z1:T |x1:T ) = N(mj ,Λ

−1
j ), where Λj = B⊺

j Bj and Bj is an
upper triangular band matrix, parameterised by outputs from the encoder. For a batch of sequences with varying lengths
after removing missing frames, Bj and hence Λj will be padded with zeros (assuming we rearrange the orders of the time
points). This is because most mainstream deep learning libraries (e.g. JAX, PyTorch and TensorFlow) all require static
shape arrays/tensors and batch operations can only be done when all the arrays/tensors are of the same shape. However, we
are not aware of any computationally efficient methods to “invert” a batch of Λj’s with varying 0-padding sizes. Whilst it is
still feasible to implement GPVAE for missing data imputation tasks, either the batch size will have to be 1 or we will need
an extra for loop to iterate through each of the sequences in each batch during training. This severely constrains the practical
computational efficiency of GPVAE, rendering it unsuitable as a missing frames imputation model.

Implementation Details: VRNN and KVAE are implemented in PyTorch. GPVAE mostly a non-modified version as the
original TensorFlow implementation in Fortuin et al. (2020). MGPVAE is implemented in JAX using Objax (Developers,
2020). One issue in Objax is that the convolutional operator only supports float32 precision (otherwise the implementation
will be very slow) and therefore we need to manually cast the CNN weights and inputs into float32 (from float64). This is a
slight disadvantage of MGPVAE that hopefully can be resolved in the future through further advances in JAX-based CNN
implementations.

During test time, we used K = 20 latent samples to compute the NLL and RMSE (via the posterior mean). The NLL and
RMSE of the predictive results on the test set are calculated over the entire sequence.
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Figure 8: Additional corrupt frames imputation results.

B.2. Mujoco Action Data

We create missing time steps by randomly dropping out 60% of them.

For each model during training, we used the following configurations (note that we use the standard PyTorch-TensorFlow-Jax
notation for network layers). Note that unlike Rubanova et al. (2019), we do not use a masked autoencoder approach for
training and only use the non-missing time steps to compute the ELBO.

• Batch size: 16

• Training epochs: 1000 if T = 100 and 500 if T = 1000.

• Number of latent channels: L = 15

• Adam optimizer learning rate: 1e-3.

• clipGradNorm(model parameters, 100)

• Encoder structure: Linear(L, 32)-ReLU-Linear(32, L). If latentODE then slightly different but similar due to the
ODE-RNN.

• Decoder structure: Linear(L, 16)-ReLU-Linear(16, 14).

• If KVAE or VRNN, we had to applying KL and Adam optimizer step size schedulers in order to make them work,
meaning that they are more intricately optimised than the other models. LatentODE also used a KL scheduler.

• If SVGPVAE or MGPVAE, initialise the kernel lengthscales with: 5 if T = 100 and 50 if T = 1000. The kernel
hyperparameters (lengthscales and scales) are subsequently optimised via the ELBO.

• SVGPVAE, VRNN, latentODE and MGPVAE we use early stopping with the validation RMSE on 320 if T = 100 else
80 validation sequences (not part of train or test sets). For KVAE and CRU, adding cross-validation is practically too
time consuming and so the model at the last training epoch is used for test evaluation.

Remark: CRU (Schirmer et al., 2022) is capable of modelling continuous data in the form (ti, yi)
N
i=0, but, unlike latentODE,

SVGPVAE or MGPVAE, it is unable to condition on (ti, yi)i and then predict at any time step t ∈ (t0, tN ). Therefore to
train the CRU for our task, we have to treat it the same way as VRNN and KVAE, where we perform Kalman filtering
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Figure 9: Additional missing frames imputation results.

in regular time steps and then mask out the unobserved time steps during training. Furthermore, this model is trained via
maximum likelihood estimation, and so we only report the test RMSE metric.

Implementation Details: VRNN, KVAE, latentODE, SVGPVAE and CRU are implemented in PyTorch. For latentODE
and CRU, they are mostly unmodified, based off the original author’s implementations. We rewrite SVGPVAE using the
more efficient framework of Functorch (Horace He, 2021), which we find to give better implementation efficiency and
performance than the original TensorFlow implementation. MGPVAE is implemented with Objax Developers (2020) within
JAX.

During test time, we use K = 20 latent samples to compute the NLL and RMSE (via the posterior mean). The NLL and
RMSE of the predictive results on the test set are calculated over the entire sequence.
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Figure 10: Additional results figures for unseen Mujoco sequences. Note that some predictions are not showing as they fall
outside the graph limits.
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B.3. Spatiotemporal Data

We download the ECMWF ERA5 data (ECMWF/ERA5/DAILY) from Google Earth Engine API (Gorelick et al., 2017).
The data vectors contain:

• Mean 2m air temperature

• Minimum 2m air temperature

• Maximum 2m air temperature

• Dewpoint 2m air temperature

• Surface pressure

• Mean sea level pressure

• u component of wind 10m

• v component of wind 10m

The spatial locations are represented by [longitude, latitude, elevation]. We index time by 0, 1, . . . , 100.

The model configurations for SVGPVAE and MGPVAE are:

• clipGradNorm(model parameters, 100)

• Encoder structure: Linear(L, 16)-ReLU-Linear(16, L).

• Decoder structure: Linear(L, 16)-ReLU-Linear(16, 14).

• The model at the last training epoch is used for test evaluation.

Implementation Details: MOGP is implemented using GPFlow (Matthews et al., 2017) within TensorFlow. SVGPVAE is
again implemented in PyTorch with Functorch. MGPVAE is implemented with Objax within JAX.

MOGP and SVGPVAE: We stack time and space together in the dataset, and have inducing points over space-time jointly.
During training, we use only 1 latent sample to compute the ELBO for SVGPVAE, a minibatch size of 40 and 200 epochs
over the entire dataset (this gives roughly 20,000 gradient steps). We use an Adam optimizer learning rate of 1e-3. Similary
for MOGP, we train over 20000 epochs of minibatches of size 40.

MGPVAE: We don’t do any minibatching and directly use the entire training dataset, which is of dimension roughly
60-100-8. During training, we compute the ELBO with 20 latent samples and train over 20000 epochs. We use an Adam
optimizer learning rate of 1e-3.

Prediction: We compute the NLL with 20 latent samples over a test set of unseen spatial locations at all time steps.

C. Possible Future Developments
It is possible to extend MGPVAE to incorporate temporal and spatial inducing points, by the virtue of the works of Adam
et al. (2020) and Hamelijnck et al. (2021). The main challenge would be forming the likelihood approximation, which
would have to rely on set encoders such as DeepSets (Zaheer et al., 2017) or Set Transformer (Lee et al., 2019) to output
approximate likelihoods factorised over inducing points (instead of over time points). For temporal data, the main challenge
would be to cluster the time points together for each inducing time location. For spatiotemporal data, the clustering problem
extends to space-time clusters.

The state space may also be enriched via normalising flows (Lin & Yin, 2023; Maroñas & Hernández-Lobato, 2022), which
may additionally enrich the latent dynamics or simplify the learning dynamics. Another approach to enforcing global
properties without GPs would be via a GAM-type model, such as that of Prophet (Taylor & Letham, 2018).
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Figure 11: Additional figures of the results for the ERA5 experiment given fixed spatial locations.
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