XTab: Cross-table Pretraining for Tabular Transformers

Bingzhao Zhu^{12*} Xingjian Shi^{3†} Nick Erickson⁴ Mu Li^{3†} George Karypis⁴ Mahsa Shoaran¹

Abstract

The success of self-supervised learning in computer vision and natural language processing has motivated pretraining methods on tabular data. However, most existing tabular self-supervised learning models fail to leverage information across multiple data tables and cannot generalize to new tables. In this work, we introduce XTab, a framework for cross-table pretraining of tabular transformers on datasets from various domains. We address the challenge of inconsistent column types and quantities among tables by utilizing independent featurizers and using federated learning to pretrain the shared component. Tested on 84 tabular prediction tasks from the OpenML-AutoML Benchmark (AMLB), we show that (1) XTab consistently boosts the generalizability, learning speed, and performance of multiple tabular transformers, (2) by pretraining FT-Transformer via XTab, we achieve superior performance than other state-of-the-art tabular deep learning models on various tasks such as regression, binary, and multiclass classification.

1. Introduction

With the increasing number of datasets represented as tables with rows and columns, tabular machine learning makes the foundation of many real-world applications. While deep learning has achieved tremendous success in the fields of computer vision (CV) (He et al., 2022; Liu et al., 2021) and natural language processing (NLP) (Devlin et al., 2018; Vaswani et al., 2017), tabular deep learning models are not used as commonly as tree-based models (Grinsztajn et al., 2022; Gijsbers et al., 2022). The primary challenge of tabular deep learning is the diversity of tabular tasks. Unlike text, which can be standardized as a sequence of tokens, tables are highly data-specific. Tabular data can vary in the number and types of columns. This makes it difficult for tabular deep learning models to transfer the knowledge learned from one table to another, leading to poor generalization abilities. Therefore, self-supervised learning for tabular data (He et al., 2022; Devlin et al., 2018), particularly one that is able to bootstrap the learning on new tables, is still an open problem.

There is an ongoing effort in migrating self-supervised pretraining techniques from CV (Chen et al., 2020) and NLP (Devlin et al., 2018) to tabular tasks. With self-supervised pretraining, tabular deep models have demonstrated improved performance (Ucar et al., 2021; Bahri et al., 2021; Majmundar et al., 2022). However, existing methods generally pretrain the tabular model on data from the same domain as the downstream task. As a result, the data-specific models cannot generalize to new tables.

Another direction of deep tabular learning aims to leverage Transformers, which drives the recent progress in NLP (Vaswani et al., 2017) and CV (Dosovitskiy et al., 2020) for tabular tasks. Inspired by the success of the attention mechanism, Transformers were adapted to tabular data (Gorishniy et al., 2021; Somepalli et al., 2021; Wu et al., 2021; Wang & Sun, 2022) and demonstrated strong performance (Grinsztajn et al., 2022). The core idea of tabular transformers is to consider the table columns as tokens, similar to words in a sentence. Therefore, tabular transformers can process tables with variable numbers of columns, thus making transferable learning (Wang & Sun, 2022) feasible.

In this paper, we present *XTab*, a general framework for *cross-table pretraining of tabular transformers*. To resolve the issue that tables may vary in the number and types of columns, XTab decomposed the tabular transformers to two components: data-specific featurization and projection layers that capture the characteristics of each table, and a cross-table-shared block that stores the common knowledge. On a diverse collection of data tables, XTab trains these data-specific blocks and the shared block jointly via federated learning (Collins et al., 2022). Once pretrained, XTab can bootstrap the learning process on a new table by initializing the shared block with pretrained weights. To verify our design, we conducted extensive experiments on AutoML Benchmark (AMLB) (Gijsbers et al., 2022). Our results

^{*}Work done as an intern at Amazon Web Services. [†]Work done while being at Amazon Web Services. ¹EPFL, Lausanne, Switzerland ²Cornell University, Ithaca, USA ³Boson AI, USA ⁴Amazon Web Services, USA. Correspondence to: Bingzhao Zhu <bz323@cornell.edu>.

Proceedings of the 40th International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by the author(s).

show that transformers pretrained and initialized with XTab consistently outperform transformers with random initialization. By pretraining FT-Transformer (Gorishniy et al., 2021) with XTab, we outperform the state-of-the-art tabular deep learning models.

The contributions of the paper are summarized as follows:

- XTab offers a framework to account for cross-table variations and enable cross-table knowledge transfer.
- Given the large diversity of tabular datasets, we propose to pretrain on tabular datasets with federated learning. This allows us to perform distributed pretraining across a large collection of tables.
- To the best of our knowledge, we are the first to show that cross-table pretraining can boost the learning speed and performance on new tables. This is different from table understanding tasks (Yin et al., 2020), the focus of which is to extract the semantical information from tables.

2. Related work

Tabular self-supervised learning. Inspired by the success of pretraining in CV and NLP, previous papers studied tabular self-supervised learning (Yoon et al., 2020; Ucar et al., 2021; Somepalli et al., 2021; Bahri et al., 2021; Majmundar et al., 2022; Rubachev et al., 2022; Wang & Sun, 2022). Among those works, Yoon et al. (2020); Ucar et al. (2021) proposed an auto-encoder framework with a pretext task to reconstruct the missing part of a table. Bahri et al. (2021) used contrastive learning as the pretraining objective and extended the SimCLR framework (Chen et al., 2020) to tabular tasks. Rubachev et al. (2022); Wang & Sun (2022) further incorporated the label columns of tabular tasks in pretraining and proposed "target-aware" objectives leading to higher performance. As existing approaches only pretrain on one (Bahri et al., 2021; Ucar et al., 2021) or a few relevant tables (Wang & Sun, 2022), the pretrained tabular model lacks generalizability. XTab alleviates this issue by pretraining on a large number of tables.

Tabular transformers. Transformer models are gaining popularity in the realm of deep learning for tabular data. For example, FT-Transformer has demonstrated superior performance on tabular classification/regression tasks (Gorishniy et al., 2021). Saint introduces the row-wise attention and captures the inter-sample interactions using transformer (Somepalli et al., 2021). Fastformer proposes to use additive attention on tabular tasks, which is a lightweight attention mechanism with linear complexity to the length of input sequences (Wu et al., 2021). TransTab features transfer learning in tabular tasks using transformers (Wang & Sun, 2022) and also supports the cross-table transfer. Our approach is different from TransTab in that TransTab has limited ability in generalizing to tables from new domains, while XTab is able to generalize to new domains.

Cross-table transfer learning. Pretrained vision and text models can be adapted to a wide range of tasks (Bommasani et al., 2021). One reason is that the sentences and images share general representations across various tasks. As for tabular learning, one may question if there is shared knowledge across tables as two different tables can have totally different numbers of columns and the associated semantic meanings. We argue that different tables share a similar prior given the recent success of zero-shot hyperparameter optimization (HPO) in AutoML (Winkelmolen et al., 2020), which learns a general hyperparameter configuration applicable to a wide range of tabular tasks. Unlike pretrained models in NLP (Devlin et al., 2018), XTab does not attempt to learn a universal tokenizer for all tables, as the meaning and context of each table varies. Instead, we aim to learn a weight initialization that is generalizable to various downstream tasks. Concurrent to our work, tabular prior-data fitted networks (TabPFN) (Hollmann et al., 2022) learns a prior model on synthetic tabular data and demonstrated promising results on small numerical tabular classification tasks with ≤ 1000 samples. Different from TabPFN, the inference complexity of XTab is irrelevant to the number of training samples. Thus, XTab also works for large tables.

3. Methods

Previous works have proposed various pretraining methods for tabular learning (Bahri et al., 2021; Ucar et al., 2021; Rubachev et al., 2022; Somepalli et al., 2021). However, existing pretrained models are still domain-specific since they were pretrained on the training set of each individual tabular prediction task. As a result, existing pretrained models lack generalizability and fail to cover downstream tasks on other types of tables. Here, we propose XTab to pretrain transformer models using the information from multiple tables. With cross-table pretraining, XTab aims to learn the shareable knowledge that can boost the performance for various downstream regression and classification tasks.

3.1. Model structure

The model structure of XTab is described in Figure 1. During the pretraining phase, we sample mini-batches of rows from different tables (one batch per table). The featurizers are data-specific and convert each column of the table to a token embedding. An additional [CLS] token is appended during this step for supervised prediction or contrastive self-supervised pretraining (Wang & Sun, 2022). A transformer-based backbone is shared across all tabular datasets to process token embeddings with variable sequence lengths. The output of the shared backbone is further processed by projection heads to (1) reconstruct the original table from a corrupted view; (2) identify the positive/negative pairs of samples as in contrastive learning; or (3) predict the values in the label column predefined by each table. The projection heads are not shared across tables

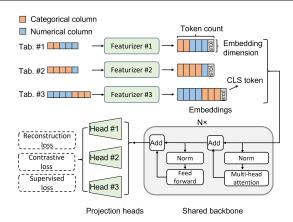


Figure 1. The model structure of XTab. XTab is pretrained on multiple tabular tasks (Tab. #1, #2, #3). Samples from different tables are featurized and fed into a transformer model with N blocks. The output of the transformer is further processed by projection heads to derive the pretraining losses. Featurizers and projection heads are data-specific since tables may have different input/output dimensions. The transformer backbone is shared across all pretraining tables to capture the general knowledge.

since they are specific to each dataset and the pretraining objectives. Among all pretraining losses, reconstruction loss and contrastive loss do not require information from the label column, whereas supervised losses use the groundtruth data in the label columns of each table. Using groundtruth information during the pretraining phase is referred to as "target-aware pretraining" (Rubachev et al., 2022; Wang & Sun, 2022) or "pre-finetuning" (Aghajanyan et al., 2021) in previous works.

A key challenge in cross-table pretraining lies in the variations of input tables. Previous works on transferable tabular learning either require tables to come from similar domains (Levin et al., 2022) or use additional information (e.g., column names) to identify the shared knowledge across tables. XTab is designed to be applicable to previously unseen tables with no assumption on the domain or column name format. To this end, XTab contains model blocks that carry the data-specific information (green blocks in Figure 1), as well as the shared backbone that stores the common knowledge (grey blocks in Figure 1). Once pretrained, only a shared backbone is kept for all downstream tasks. For each downstream task, featurizers and projection heads are randomly initialized and the entire model is finetuned on the downstream training data until a stopping criterion is met.

3.1.1. FEATURIZERS

The featurizers convert a sample to feature embeddings $E \in \mathbb{R}^{c \times d}$. Here, *c* denotes the number of columns and *d* is the embedding dimension. Each row of a table is considered as an input sample, and each column is a token. The embedding of [CLS] token is appended to the feature embedding for prediction stack[*E*, [CLS]] $\in \mathbb{R}^{c+1 \times d}$. In this work, we

limit our discussion to tables with numerical and categorical columns. Text cells are treated as categorical attributes. Our tokenizer is similar to Gorishniy et al. (2021). For numerical features, we multiply the numerical value x_k at the k-th column with a trainable vector $W_k \in \mathbb{R}^d$ and add a bias term b_k . For categorical columns, XTab learns an embedding matrix $\in \mathbb{R}^{N_{cat} \times d}$ as a lookup table, where N_{cat} is the total number of categories of the dataset. During the forward pass, we retrieve the categorical feature embeddings from the embedding matrix.

XTab allows tables to have different numbers of columns and arbitrary column types. Featurizers are data-specific to handle various types and numbers of columns in the input.

3.1.2. BACKBONES

As the shared component across multiple pretraining datasets, transformers can handle input sequences with variable lengths. Therefore, it is possible to pretrain a tabular transformer that can be applied to all tabular datasets. Compared with other deep learning architectures like multi-layer perceptron (MLP), transformers are favorable for cross-table knowledge transfer since they can handle variable input sequences (Wang & Sun, 2022). As long as the backbone can process input sequences of variable lengths, XTab is flexible on the exact implementation. In this work, we present three backbone variants:

FT-Transformer: Feature Tokenizer Transformer (FT-Transformer) is a simple yet well-performing transformer model for tabular prediction tasks (Gorishniy et al., 2021). The transformer module in FT-Transformer consists of a Multi-Head Self-Attention (MHSA) block and a Feed Forward block (Vaswani et al., 2017). Recent work has found FT-Transformers to beat other deep learning methods on tabular data (Grinsztajn et al., 2022).

Fastfromer: Conventional Transformer-like architectures have a quadratic complexity to the length of input sequence (Vaswani et al., 2017), making them inefficient for tables with large numbers of columns. Fastfromer is an efficient transformer architecture which uses additive attention in place of MHSA (Wu et al., 2021). With additive attention, Fastformer only considers the interaction between each token and the global representation, achieving a linear complexity.

Saint-v: Saint has introduced the row-wise attention in addition to the column-wise attention of FT-Transformer and Fastformer (Somepalli et al., 2021). The original implementation of Saint is sensitive to the sequence length and can not handle variable-column tables (Somepalli et al., 2021). We present a variation of Saint (Saint-v) to fit into our cross-table pretraining setting. Saint-v consists of both column- and row-wise attention blocks, and the detailed model structure is depicted in Appendix G.

3.1.3. PROJECTION HEADS AND OBJECTIVES

There exist various pretraining objectives for tabular prediction tasks (Rubachev et al., 2022; Majmundar et al., 2022; Bahri et al., 2021; Ucar et al., 2021; Wang & Sun, 2022; Yoon et al., 2020). Among them, table reconstruction and contrastive learning are the most popular and effective objectives for tabular tasks. In addition to the self-supervised pretraining objectives, we also tested the pre-finetuning setting using supervised loss.

Reconstruction loss: Reconstruction loss is a selfsupervised training objective shown to be effective on various tabular tasks (Rubachev et al., 2022; Majmundar et al., 2022). The reconstruction objective aims to recover the original sample x from a corrupted view of the sample \tilde{x} . The reconstruction projection head takes the representation of \tilde{x} as input, and generates an estimate of the original input \hat{x} . The reconstruction loss is calculated by comparing xand \hat{x} . Specifically, we use Cross-Entropy loss to measure the reconstruction error of categorical columns and Mean Squared Error (MSE) for numerical columns.

Contrastive loss: Similar to the reconstruction objective, we also generate \tilde{x} as a corrupted sample. x and its corresponding corruption \tilde{x} are considered as a positive pair of samples, whereas x and other samples in the batch form negative sample pairs. In general, contrastive loss aims to minimize the distance between positive pairs of samples and maximize the distance for negative pairs. Following Bahri et al. (2021); Chen et al. (2020), we used InfoNCE loss for contrastive cross-table pretraining. The contrastive projection heads are similar to those used in SimCLR (Chen et al., 2020), mapping the representations to the space where we apply the contrastive loss.

Supervised loss: In addition to reconstruction and contrastive losses that do not require labels in pretraining, one can directly pretrain a model using the supervised objective. With supervised losses, the projection head aims to predict the values under a certain field (or column), as predefined by each dataset. The supervised prediction tasks included regression and classification.

In XTab, the projection heads are data-specific. Different pretraining datasets do not need to share common objectives. For example, we can simultaneously pretrain XTab on both regression and classification tasks, or a mixture of reconstruction and contrastive losses. The diversity of pretraining objectives ensures that the shared backbone is widely adaptable to various downstream tables.

3.2. Federated pretraining

XTab introduces data-specific featurizers and projection heads (green blocks in Figure 1) to account for the variations across table columns and pretraining objectives. During pretraining, both the time and space complexity increase linearly as we include more tabular datasets. As a result, it is challenging to quickly pretrain XTab using a single machine on a large collection of tabular tasks. To alleviate this issue, we fit XTab into the federated learning framework (McMahan et al., 2017). With the federated setting, XTab involves only marginal overhead in wall-clock time with more pretraining tasks. Federated learning makes it feasible to pretrain XTab on a cluster of commercially available GPUs (NVIDIA T4 GPUs, 16GB memory).

We use the Federated Averaging (FedAvg) algorithm to pretrain XTab (McMahan et al., 2017; Li et al., 2019). We have a central server and multiple clients. Each client only hosts one dataset. Therefore, we can distribute the data-specific components of XTab across clients such that each client stores one featurizer, one projection head, and the shared transformer. During pretraining, each client calculates the gradient using the local dataset:

$$w_{k,i+1} \leftarrow w_{k,i} - \alpha \nabla \ell_k, \tag{1}$$

where k denotes the client (or table) index and i shows the current iteration. α is the learning rate and $\ell^{(k)}$ is the loss function. w represents the trainable parameters which contains two components: $w^{(S)}$ for the shareable modules across all pretraining tasks, and $w^{(NS)}$ for the non-shareable parts ($w = \text{stack}[w^{(NS)}, w^{(S)}]$). All clients operate synchronously during pretraining with the same learning rate and batch size.

The central server is responsible for aggregating the local gradients from clients. FedAvg allows clients to make multiple local updates before an aggregation step is made on the central server. Let N denote the number of local updates per aggregation. The central server performs:

$$w_{i+N}^{(S)} \leftarrow w_i^{(S)} + \sum_{k=1}^{K} (w_{k,i+N}^{(S)} - w_i^{(S)}).$$
 (2)

The aggregation is only performed on the shared weights. The term $w_{k,i+N}^{(S)} - w_i^{(S)}$ is the gradient learned by client k since the last weight aggregation. The central server simply accumulates the gradients from all clients. Such unitary scalarization was recently shown to perform well in multi-task learning (Kurin et al., 2022).

After the aggregation update (i.e., Equation 2), all clients download $w_{i+N}^{(S)}$ from the central server, and apply the weights to the transformer backbone $w_{k,i+N} = \text{stack}[w_{k,i+N}^{(NS)}, w_{i+N}^{(S)}]$. Therefore, we force all clients to train on a shared backbone with data-specific featurizers and projection heads.

The number of local steps N is a key parameter to control communication efficiency. With N = 1, FedAvg corresponds to the distributed version of stochastic gradient descent (SGD). With N > 1, multiple local updates are performed between model aggregation steps at the server, thereby reducing the communication cost between the central server and clients. Unless otherwise specified, we choose N = 5 throughout the paper. The ablation study on N is shown in Figure 9 of the Appendix.

Federated learning was originally proposed as a privacypreserving approach to learning from distributed data. The collaboration of multiple clients to train a single shared model makes a good fit with our goal of cross-table pretraining. In this work, XTab leverages the distributed nature of federated learning to scale with a large number of pretraining tasks.

4. Experiments

We evaluate the performance of XTab on supervised tabular learning tasks, including binary and multiclass classification and regression. We tested on the following pretraining settings:

- XTab with various pretraining objectives, including reconstruction loss, contrastive loss, and supervised loss.
- XTab with various transformer backbones, including FT-Transformer, Fastformer, and Saint-v.
- XTab with the transformer backbone partially- or fullypretrained from other tasks.
- XTab with different numbers of pretraining tasks.

During finetuning, we randomly initialize a new featurizer and projection head for each downstream task. All downstream tasks use the pretrained transformer backbone. We finetune all the model components using the training set of each downstream task. We included two different finetuning settings:

- Light finetuning: finetune XTab for a fixed number of epochs (3 epochs).
- Heavy finetuning: finetune XTab with an early stopping patience of 3 epochs. The maximum number of epochs is set to infinity in this case.

For all finetuning settings, we retrieve the best model checkpoint based on validation scores, and use it to report the performance on the test data. The baseline models share the same model architecture and finetuning configurations as XTab, but with randomly initialized parameters instead of using the pretrained backbones. We find that XTab generally outperforms the baseline models in all scenarios and beats other deep learning models on tabular tasks. Ablation study on the number of pretraining datasets is in Appendix D.

4.1. Datasets

We use the public OpenML-AutoML Benchmark (AMLB: openml.github.io/automlbenchmark/) (Gijsbers et al., 2022) for pretraining and evaluation. AMLB

is a recently proposed benchmark for automated machine learning, consisting of 104 tabular tasks (71 classification and 33 regression). We included the details of each dataset in Table 13 in the Appendix. Out of the 104 tabular datasets, we used 52 datasets for pretraining and the remaining 52 tasks for finetuning and evaluation. We split the pretraining and finetuning datasets by the alphabetical order of the task names (Table 13 in the Appendix).

Data split: For all downstream (or finetuning) tasks, AMLB reserves 10% of the tabular data for testing. Over the remaining data, we randomly partition 87.5% (7/8) into the training set and use 12.5% (1/8) for validation. We repeated 5 trials with different test folds for all tabular datasets. All methods use the same split within the same trial.

Data pre-processing: Following Bahri et al. (2021); Somepalli et al. (2021); Wang & Sun (2022), we limit the discussion to tables with numerical and categorical columns. Each Category is represented by a distinct integer to index the embedding in the lookup table of the categorical featurizer (see Section 3.1.1 for details). We normalized the numerical features by subtracting the mean and dividing them by the standard deviation. For regression tasks, we also apply the Standardization to the labels. The normalization parameters are calculated using the training set only to avoid information leakage. Missing entries are filled with the mean values of numerical columns, or treated as an additional category for categorical columns.

Table corruption: Self-supervised learning objectives, including both contrastive and reconstruction losses, require a corrupted view of the input sample. In this work, we follow Bahri et al. (2021); Rubachev et al. (2022) to randomly resample features and construct a corrupted sample. Specifically, we randomly select a fraction of features at each row of the table. Those features are corrupted by resampling from the empirical marginal distribution of the column. For all datasets, the corruption ratio was set to 60% as suggested in Bahri et al. (2021). In other words, for each sample *x* and its corrupted view \tilde{x} , 60% of entries are resampled whereas 40% of features remain unchanged.

4.2. Experimental setup

We used a federated pretraining setting as detailed in Section 3.2. Both pretraining and finetuning were performed on a cloud cluster of NVIDIA T4 GPUs (16 GB memory). We used about 30 thousand GPU hours for all experiments.

Model configuration and training: Our default model configuration of transformer variants is the same as Gorishniy et al. (2021), with 3 transformer blocks, a feature embedding size of 192 and 8 attention heads. The feed forward networks (Figure 1) have two layers with the same size as the embedding. We apply a dropout ratio of 20% to attention layers and 10% for feed forward networks. We use

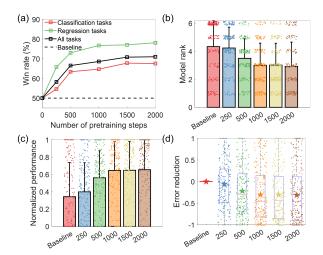


Figure 2. Tabular prediction performance of XTab using various evaluation criteria under the light finetuning setting. (a) The win rate of the pretrained transformer with respect to baseline. (b) The average rank of the models. (c) The normalized prediction performance. (d) The average error reduction rate compared to baseline. Each dot indicates a trial of the downstream task (5 trials per dataset). The error bars show standard deviations in (b) and (c). As the backbone is pretrained for more steps, we observe an increase in all evaluation criteria.

ReGLU (Shazeer, 2020) as the activation function and layer normalization (Ba et al., 2016) in the feed forward layers. The projection heads are ReLU networks with 2 layers and a hidden dimension of 192. All model components use *Kaiming* initialization (He et al., 2015) with the bias terms fixed at zeros.

The batch size is fixed at 128 for both pretraining and finetuning. Both stages use AdamW as the optimizer, with a learning rate of 1e-4. Following Gorishniy et al. (2021); Rubachev et al. (2022), we also apply a weight decay of 1e-5 to all components excluding featurizers, [CLS] tokens, layer normalization and bias terms.

Evaluation metrics: We choose the evaluation metrics as suggested by AMLB (Gijsbers et al., 2022). We use root mean-squared error (RMSE) for regression tasks, area under the receiver operating characteristic curve (AUC) for binary classification, and log loss for multi-class classification. The same evaluation metrics are applied to validation sets for early stopping. The efficacy of the pretrained transformer backbones is estimated by the downstream performance.

4.3. Comparison with baseline transformers

Cross-table pretraining improves downstream task performance. As shown in Figure 2, we compare the downstream prediction performance of FT-Transformer before (baseline) and after cross-table pretraining. Reconstruction objective is used for pretraining and all downstream tasks are finetuned for 3 epochs (light finetuning). We checkpoint the pretrained backbone after a certain number of pretraining

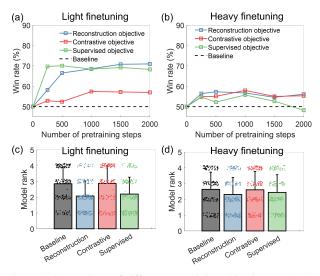


Figure 3. Comparison of different pretraining objectives under the light (\mathbf{a}, \mathbf{c}) and heavy (\mathbf{b}, \mathbf{d}) finetuning settings. We show the win rate of XTab with different objectives with (\mathbf{a}) light and (\mathbf{b}) heavy finetuning settings. We also compared the performance of pretraining objectives in terms of the model rank with (\mathbf{c}) light and (\mathbf{d}) heavy finetuning. We observe a consistent improvement of XTab compared to baseline models with all objectives. The reconstruction pretraining objective achieves the best performance, with 71.0% win rate under light finetuning and 56.1% for heavy finetuning at 2000 pretraining steps.

steps and finetune downstream tasks from various checkpoints (250/500/1000/1500/2000). In Figure 2(a), we show the win rate of the pretrained transformer on all downstream tasks with respect to baseline. Both classification and regression tasks benefit from our proposed cross-table pretraining. As the backbone is pretrained for more steps, we observe an increase in the win rate. We also calculate the rank of the model for each downstream task (Figure 2(b)). Model rank is an integer from 1 to 6, with a lower number indicating better performance. Equal values are assigned a rank that is the average of the ranks of those values. The rank of the model improves with XTab pretraining. To further validate the advantage of XTab over transformers without cross-table pretraining, we further look into the normalized prediction performance and error reduction rate (Figure 2(c, d)). We min-max normalize the prediction performance of all models, such that the worst model receives a score of 0 and the best model receives 1. Similarly, errors are also normalized to the best and worst models. Negative numbers indicate a model with lower error (1 - AUC scores for)binary classification) or loss (log loss for multiclass classification and RMSE for regression) than baseline. The mean error (or loss) is indicated by the stars. FT-Transformers pretrained with XTab on average obtain higher normalized performance and reduced error compared to traditional random initialization.

XTab with different pretraining objectives and finetun-

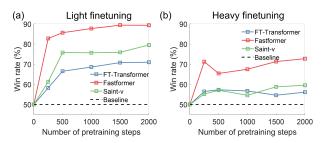


Figure 4. XTab with transformer variants including FT-Transformer, Fastformer, and Saint-v. We use different transformer models as the shared backbone in XTab. We calculate the win rate of the pretrained backbone over randomly initialized transformers. (a) shows the results for light finetuning and (b) represents heavy finetuning. FT-Transformer, Fastformer, and Saint-v all benefit from our proposed cross-table pretraining, achieving >50% win rate in all experiments.

ing settings. We extensively test XTab with various pretraining objectives and finetuning settings. Figure 3 summarizes the downstream performance using reconstruction, contrastive and supervised objectives as described in Section 3.1.3. We use FT-Transformer as the backbone. Figure 3(a, b) plot the win rate of XTab under the light and heavy finetuning settings, respectively. We finetune on all downstream tasks for 3 epochs with light finetuning, and use an early stopping patience of 3 for heavy finetuning. We observe a consistent improvement of XTab over the baseline with no cross-table pretraining. The advantage of XTab is more significant in the light finetuning setting compared to heavy finetuning. For example, XTab with the reconstruction objective achieves a 71.0% win rate with light finetuning, but only 56.1% with heavy finetuning. The difference is caused by catastrophic forgetting of deep models (Ramasesh et al., 2021; Kaushik et al., 2021). As tabular transformers are relatively small (<1M parameters for the FT-Transformer backbone), they are more vulnerable to catastrophic forgetting during the finetuning phase. It is possible to alleviate this issue with additional techniques (Ramasesh et al., 2021; Kaushik et al., 2021), but this is outside the scope of the paper. Figure 3(c, d) compare different objectives by ranking the models with light and heavy finetuning. All approaches are pretrained for 2000 steps. Each dot in Figure 3(c, d) represents a trial of downstream experiments (5 trials per dataset) and error bars indicate the standard deviations across trials. The advantage of crosstable pretraining is shown by a win rate >50% and a model rank value lower than the baseline. A more detailed comparison involving the normalized performance and error reduction rate is presented in Appendix A. We conclude that XTab consistently enhances the downstream performance of tabular transformers across multiple pretraining objectives and finetuning settings. Among all pretraining objectives tested, reconstruction loss performs better than contrastive or supervised losses.

XTab is applicable to various types of transformers.

XTab offers a framework to pretrain the shared model components across tabular tasks. Therefore, the choice of transformer backbone is flexible, as long as the model can process tables with variable columns. In Figure 4, we plug three transformer variants into XTab including FT-Transformer, Fastformer, and Saint-v. The explanation of transformer backbones can be found in Section 3.1.2. We pretrain all transformers using reconstruction objective, and finetune on the downstream tasks with the light and heavy settings, Figure 4(a, b). We show that XTab is applicable to various types of transformers and all models benefit from the proposed cross-table pretraining, achieving a higher win rate compared to the baseline.

Additional experimental results are presented in the Appendix. In Appendix B, we pretrain on different components of transformers to identify the shareable components in XTab. In Appendix C, we look into the downstream performance with only a portion of the training set used for finetuning. In Appendix D, we compare XTab backbone pretrained on different numbers of tasks and find that more pretraining tasks lead to improved performance. In Appendix E, we study the federated pretraining setting by changing the number of local updates per global aggregation (i.e., N), and find that larger N leads to reduced downstream performance.

4.4. Performance compared to traditional baselines

To compare the performance of XTab and various tabular models, we run experiments on the full AutoML Benchmark (Gijsbers et al., 2022). We split the benchmark into 2 folds, each consisting of 52 tabular datasets. We pretrain on fold #1 and evaluate the downstream performance on fold #2 and vice versa. We pretrain XTab with the FT-Transformer backbone using reconstruction loss. 20 datasets are excluded since they could not fit into the GPU memory (16 GB, see Table 13 in the Appendix for details). We report the performance on the remaining 84 tasks. In addition to XTab, we include the following methods:

Tree-based models: Tree-based models provide strong performance on tabular tasks (Grinsztajn et al., 2022). We include Random Forest (RF) and gradient-boosted tree variants: XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and CatBoost (Dorogush et al., 2018). **Neural networks:** We include the AutoGluon neural networks implemented on top of PyTorch (Erickson et al., 2020) and the FastAI tabular model (Howard & Gugger, 2020). **Transformers:** We include the FT-Transformer which is a direct counterpart of XTab without pretraining. The finetuning settings of FTT/XTab include light (FTT-I/XTab-I) and heavy (FTT-h/XTab-h) finetuning as described above. We further introduce FTT-best/XTab-best, which incorporates an early-stopping patience of 20 and model soup of the top 3 checkpoints (Wortsman et al., 2022) to achieve better

Table 1. Comparison of tabular prediction performance with default model configuration and hyperparameter optimization (HPO). Mean training time and model rank (\pm standard deviation) are calculated across 84 datasets from AutoML Benchmark. We perform 5 independent trials for each task. XTab outperforms its counterpart FTT in all scenarios thanks to cross-table pretraining, whereas CatBoost is the overall best model. The best overall method (CatBoost) and the best deep learning approach (XTabbest) are highlighted in **bold**.

	Methods	Time (s)	Rank
	RF	66.8^{\dagger}	7.14 ± 3.81
	XGBoost	43.1 [†]	5.06 ± 3.08
ы	LightGBM	23.9†	5.23 ± 3.25
Default hyperparameter	CatBoost	322.8 [†]	$\textbf{2.98} \pm \textbf{2.66}$
araı	FastAI	89.6	7.24 ± 3.44
berp	NN	188.8	7.40 ± 3.43
hyp	TransTab-sl*	539.7	11.04 ± 2.75
ault	TransTab-cl*	312.0	10.79 ± 3.00
Defi	FTT-1	189.2	10.19 ± 2.43
Γ	XTab-1	189.8	9.21 ± 2.57
	FTT-h	532.5	7.29 ± 2.20
	XTab-h	506.3	6.93 ± 2.09
	FTT-best	810.9	4.94 ± 2.25
	XTab-best	755.9	$\textbf{4.39} \pm \textbf{2.36}$
	RF	1084.4 [†]	5.00 ± 2.40
	XGBoost	862.3 [†]	3.69 ± 2.45
	LightGBM	285.0^{\dagger}	4.40 ± 1.93
РО	CatBoost	1529.3 [†]	$\textbf{3.25} \pm \textbf{2.10}$
Η	FastAI	549.7	5.24 ± 2.38
	NN	1163.5	5.32 ± 2.20
	FTT	2221.1	4.58 ± 2.08
	XTab	2335.3	$\textbf{4.51} \pm \textbf{2.00}$

[†] CPU training time.

* Only evaluated on classification tasks.

performance. TransTab is included for comparison on classification tasks (regression not enabled yet with TransTab) under the supervised learning (TransTab-sl) and contrastive learning (TransTab-cl) settings (Wang & Sun, 2022). Please refer to Appendix I.3 for how the TransTab ranks are calculated, and Table 12 for results on classification tasks only.

Table 1 shows the performance of models with the default hyperparameters and hyperparameter optimization (HPO). With the default hyperparameter, we pretrain XTab for 2000 rounds, whereas the number of pretraining rounds is tuned under the HPO setting. We use the AutoGluon default hyperparameters for tree-based models as they outperform the official defaults to give a strong baseline (Erickson et al., 2020). CatBoost is the state-of-the-art model on tabular tasks, which agrees with the recent finding in Grinsztajn et al. (2022). With cross-table pretraining, XTab improves the performance over FTT under light (FTT-I/XTab-I) and heavy (FTT-h/XTab-h) finetuning. Using more finetuning time, XTab-best achieves second place in the benchmark and beats other deep learning models. The success of XTab using the default configuration ensures that the pretrained backbone is widely applicable to tabular tasks, without the need for case-by-case tuning.

With HPO, we randomly search for data-specific hyperparameters on the validation performance. The detailed search space of each model is in Appendix I. We allow a maximum number of 100 HPO trials within a 1-hour time budget. Table 1 shows that gradient-boosted trees (i.e., XGBoost, LightGBM, CatBoost) achieve higher ranking with HPO, since they are generally faster to train. The search space is also smaller for tree models as they have fewer meaningful hyperparameters and well-known highly performant search spaces. The ranks are calculated separately for default hyperparameters and HPO and are not comparable across the two settings. The advantage of XTab over FTT increases as we allocate less training time for downstream tasks (XTab-l \leftarrow XTab-h \leftarrow XTab-best \leftarrow XTab with HPO). Therefore, one should use pretrained foundation models instead of randomly initialized weights for tabular transformers, especially with a tight training budget.

5. Conclusion

In this paper, we present XTab to improve the performance of deep tabular models. XTab pretrains tabular transformers with a diverse collection of data tables, and can improve the tabular prediction performance of an unseen table from arbitrary domains. XTab handles the cross-table variations by separating the models into data-specific and shared components, and encourages the shared components to learn general knowledge for tabular prediction. We also propose to combine self-supervised pretraining with federated learning to improve pretraining efficiency, where client-side nodes perform table reconstruction tasks followed by backbone averaging updates at the server. Our results suggest that finetuning from the pretrained transformer is superior to training tabular transformers from scratch. One limitation of XTab is that it still falls behind CatBoost. This motivates future works on bridging the gap between pretrained tabular deep learning models and tree models. Another interesting direction is to combine XTab with language/vision foundation models for improving multimodal learning.

Software and Data

The AutoML Benchmark (AMLB) is publicly available at openml.github.io/automlbenchmark. The code and sample pretrained checkpoints are attached to https://github.com/BingzhaoZhu/XTab.

References

- Aghajanyan, A., Gupta, A., Shrivastava, A., Chen, X., Zettlemoyer, L., and Gupta, S. Muppet: Massive multitask representations with pre-finetuning. *arXiv preprint arXiv:2101.11038*, 2021.
- Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.
- Bahri, D., Jiang, H., Tay, Y., and Metzler, D. Scarf: Selfsupervised contrastive learning using random feature corruption. arXiv preprint arXiv:2106.15147, 2021.
- Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., et al. On the opportunities and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.
- Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016.
- Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PMLR, 2020.
- Collins, L., Hassani, H., Mokhtari, A., and Shakkottai, S. Fedavg with fine tuning: Local updates lead to representation learning. arXiv preprint arXiv:2205.13692, 2022.
- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- Dorogush, A. V., Ershov, V., and Gulin, A. Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363, 2018.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
- Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. Autogluon-tabular: Robust and accurate automl for structured data. *arXiv preprint arXiv:2003.06505*, 2020.
- Gijsbers, P., Bueno, M. L., Coors, S., LeDell, E., Poirier, S., Thomas, J., Bischl, B., and Vanschoren, J. Amlb: an automl benchmark. arXiv preprint arXiv:2207.12560, 2022.

- Gorishniy, Y., Rubachev, I., Khrulkov, V., and Babenko, A. Revisiting deep learning models for tabular data. Advances in Neural Information Processing Systems, 34: 18932–18943, 2021.
- Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do treebased models still outperform deep learning on typical tabular data? In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2022.
- He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *Proceedings of the IEEE international conference on computer vision*, pp. 1026–1034, 2015.
- He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.
- Hollmann, N., Müller, S., Eggensperger, K., and Hutter, F. Tabpfn: A transformer that solves small tabular classification problems in a second. *arXiv preprint arXiv:2207.01848*, 2022.
- Howard, J. and Gugger, S. Fastai: a layered api for deep learning. *Information*, 11(2):108, 2020.
- Kaushik, P., Gain, A., Kortylewski, A., and Yuille, A. Understanding catastrophic forgetting and remembering in continual learning with optimal relevance mapping. arXiv preprint arXiv:2102.11343, 2021.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural information processing systems*, 30, 2017.
- Kurin, V., De Palma, A., Kostrikov, I., Whiteson, S., and Kumar, M. P. In defense of the unitary scalarization for deep multi-task learning. *arXiv preprint arXiv:2201.04122*, 2022.
- Levin, R., Cherepanova, V., Schwarzschild, A., Bansal, A., Bruss, C. B., Goldstein, T., Wilson, A. G., and Goldblum, M. Transfer learning with deep tabular models. *arXiv* preprint arXiv:2206.15306, 2022.
- Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. On the convergence of fedavg on non-iid data. *arXiv preprint arXiv:1907.02189*, 2019.
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 10012–10022, 2021.

- Majmundar, K., Goyal, S., Netrapalli, P., and Jain, P. Met: Masked encoding for tabular data. *arXiv preprint arXiv:2206.08564*, 2022.
- McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR, 2017.
- Ramasesh, V. V., Lewkowycz, A., and Dyer, E. Effect of scale on catastrophic forgetting in neural networks. In *International Conference on Learning Representations*, 2021.
- Rubachev, I., Alekberov, A., Gorishniy, Y., and Babenko, A. Revisiting pretraining objectives for tabular deep learning. *arXiv preprint arXiv:2207.03208*, 2022.
- Shazeer, N. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.
- Somepalli, G., Goldblum, M., Schwarzschild, A., Bruss, C. B., and Goldstein, T. Saint: Improved neural networks for tabular data via row attention and contrastive pretraining. arXiv preprint arXiv:2106.01342, 2021.
- Ucar, T., Hajiramezanali, E., and Edwards, L. Subtab: Subsetting features of tabular data for self-supervised representation learning. *Advances in Neural Information Processing Systems*, 34:18853–18865, 2021.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention is all you need. *Advances in neural information* processing systems, 30, 2017.
- Wang, Z. and Sun, J. Transtab: Learning transferable tabular transformers across tables. *arXiv preprint arXiv:2205.09328*, 2022.
- Winkelmolen, F., Ivkin, N., Bozkurt, H. F., and Karnin, Z. Practical and sample efficient zero-shot hpo. arXiv preprint arXiv:2007.13382, 2020.
- Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R., Gontijo-Lopes, R., Morcos, A. S., Namkoong, H., Farhadi, A., Carmon, Y., Kornblith, S., et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In *International Conference on Machine Learning*, pp. 23965–23998. PMLR, 2022.
- Wu, C., Wu, F., Qi, T., Huang, Y., and Xie, X. Fastformer: Additive attention can be all you need. arXiv preprint arXiv:2108.09084, 2021.
- Yin, P., Neubig, G., Yih, W.-t., and Riedel, S. TaBERT: Pretraining for joint understanding of textual and tabular data. arXiv preprint arXiv:2005.08314, 2020.

Yoon, J., Zhang, Y., Jordon, J., and van der Schaar, M. Vime: Extending the success of self-and semi-supervised learning to tabular domain. *Advances in Neural Information Processing Systems*, 33:11033–11043, 2020.

A. XTab performance with various pretraining/finetuning settings

Here, we extensively present the performance of XTab with reconstruction, contrastive, and supervised pretraining objectives, under light and heavy finetuning. Downstream performance is compared in terms of win rate, model rank, normalized performance, and error reduction rate in Figure 5.

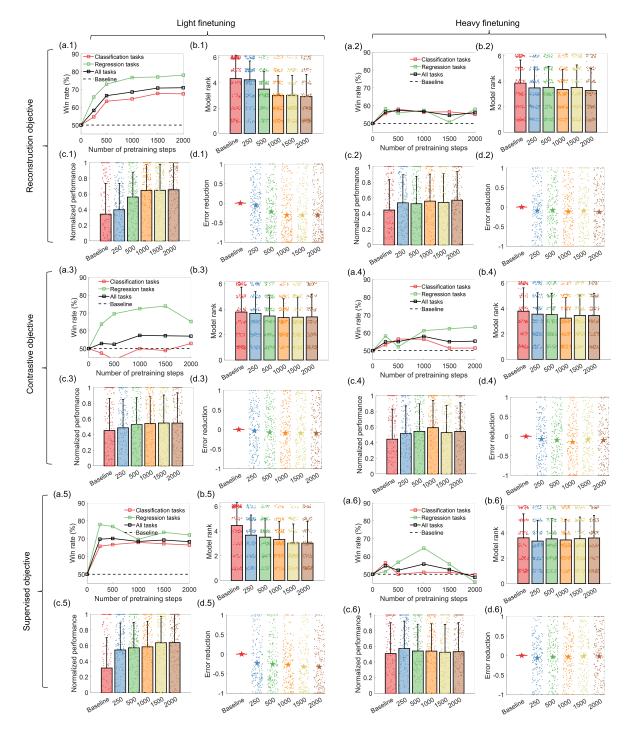


Figure 5. The figure is similar to Figure 2 in the main paper, but contains more pretraining/finetuning configurations. See the caption and explanation there for more details.

B. Identifying the shareable components in XTab

In XTab, we separate a model into data-specific components (e.g., featurizers and projection heads) and shareable components (Transformer blocks). Only the shareable components are pretrained and contain general knowledge of tabular learning. Therefore, identifying the shareable (or pretrainable) components is critical to the success of cross-table pretraining. In Figure 6, we run an experiment to pretrain on different FT-Transformer components with the supervised objective. For example, pretraining tasks may share only the first Transformer block and the later two blocks are marked as data-specific. We also let the pretraining tasks share all Transformer blocks, [CLS] token, and all blocks with [CLS] token. As expected, pretraining on the [CLS] token does not lead to improved downstream performance, since [CLS] token is directly related to downstream prediction and thereby highly data-specific. From Figure 6, we find that it is most beneficial to pretrain on all Transformer blocks without the [CLS] token. Featurizers and projection heads are not shareable since the input/output spaces can be different across tasks.

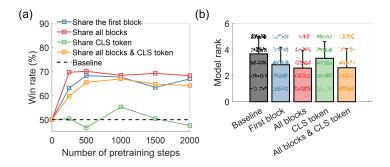


Figure 6. Comparison of XTab with various pretrained components in FT-Transformer. We run this study to understand which component carries general knowledge of tabular tasks and benefits from cross-table pretraining. Several settings are tested, sharing the first block of Transformer, all blocks, [CLS] token, all blocks with [CLS] token, or no component (baseline). Performance is compared in terms of (a) win rate and (b) model rank with light finetuning. Pretraining on the Transformer blocks leads to improved performance, whereas sharing the data-specific [CLS] token is hardly beneficial.

C. Finetuning on subsampled datasets

In addition to light and heavy finetuning, we further tune the pretrained backbone using datasets of different sizes. The backbone is a FT-Transformer model pretrained with the reconstruction objective. We subsampled the training sets of downstream tasks (i.e., finetuning set) by 25%, 50%, and 75%. The finetuning is performed on the reduced datasets to simulate the cases where training data is insufficient. Figure 7 shows the downstream performance with (a) light and (b) heavy finetuning.

All settings in Figure 7 show a clear improvement over the baseline. However, the advantage of XTab does not become more significant with reduced finetuning data. This is partially due to the fact that sufficient finetuning data is still needed to train featurizers and projection heads from scratch. For the same reason, XTab is not compatible with zero-shot learning.

D. Tuning the size of pretraining set

The pretrained backbone is expected to host general knowledge that is shared across multiple pretraining tasks. We use different numbers of tabular tasks to pretrain the FT-Transformer using the reconstruction objective. Figure 8 compares the backbone pretrained on 1 task (Adult income, OpenML task id 359983), 18 tasks, and 52 tasks (selected by the alphabetical order of the task names) with light finetuning. Figure 8(a) shows the win rate and Figure 8(b) compares the model rank. Figure 8 indicates that XTab benefits from more pretraining tasks. With many tables involved in cross-table pretraining, XTab can better learn the general knowledge which benefits the downstream performance.

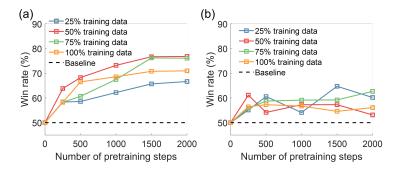


Figure 7. Downstream prediction performance with different sizes of finetuning set. We subsample the rows of tables (i.e., samples) used for finetuning to a fraction of 25%, 50%, 75%, and 100% (no subsampling). The comparison is performed with (**a**) light and (**b**) heavy finetuning.

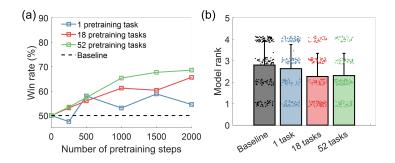


Figure 8. Comparison of XTab pretrained on different numbers of tabular tasks. We pretrain the FT-Transformer backbone using 1 task, 18 tasks and 52 tasks. We compare the downstream prediction performance using (**a**) win rate and (**b**) model rank of different approaches. As we use more tasks for pretraining, we observe an improvement in downstream performance.

E. Tuning parameters of federated pretraining

XTab uses federated learning to account for a large number of pretraining tasks. We have several clients which perform optimization locally for one task, and a central server that aggregates the gradients from all client nodes. We tune the hyperparameter N in FedAvg (see Section 3.2), which indicates the number of local optimization steps between the aggregation steps at the server. We pretrained FT-Transformers with the reconstruction objective and various choices of N. Figure 9 compares the downstream performance with N = 1, 5, and 10. We notice that the downstream performance decreases as N takes larger numbers. As N increases, there is less communication overhead between the central server and clients. Therefore, we can use N to control the trade-off between the communication cost of federated pretraining and the downstream performance.

F. Comparison to pretraining without external tasks

Without external tasks, models are simply pretrained on the downstream training set. Indeed, this is a key difference between XTab and existing tabular pretraining models. SubTab (Ucar et al., 2021), SCARF (Bahri et al., 2021) and SAINT (Somepalli et al., 2021) all use the downstream data for both pretraining and finetuning. Here, we run the experiments to compare XTab against models pretrained without external tasks. We used the "heavy" setting and reconstruction loss. The model details are described as follows:

- w/o external task: random initialization \rightarrow pretrain on downstream task \rightarrow finetune on downstream task.
- baseline: random initialization \rightarrow finetune on downstream task
- w/ external tasks (XTab): XTab initialization (using external tables) → pretrain on downstream task → finetune on downstream task

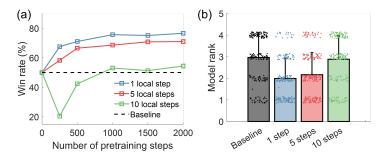


Figure 9. Comparison of federated pretraining settings in XTab. We test FedAvg with different values of N, which represents the number of local optimization steps per global aggregation. We compare the downstream prediction performance in terms of (**a**) win rate and (**b**) model rank. Both figures suggest that the downstream performance decreases with more local steps in FedAvg.

Here, "w/o external task" is pretrained using the downstream training set. Comparing "w/o external task" and "w/ external task", the only difference lies in whether we use the XTab-pretrained transformer as initialization, which can indicate the importance of leveraging cross-table information. "Baseline" model does not use pretraining.

Table 2. Comparison to pretraining without external tasks.

	w/o external task	baseline	w/ external tasks
win rate (against w/o external task)	50%	35.2%	55.7%

From Table 2, we learn that "w/ external task" has a win rate of 55.7% over "w/ external task". Pretraining methods generally outperform baseline. This comparison helps illustrate the benefits of XTab in leveraging information across tasks.

G. Implementation of Saint-v

In Figure 10, we show the difference between the original Saint implementation (Somepalli et al., 2021) and our proposed variation, Saint-v, to fit into cross-table pretraining. Saint and Saint-v both have a row attention layer to account for the cross-sample interaction. The main difference between Saint and Saint-v lies in the reshaping operation. Saint increases the size of token embeddings by a factor equal to the sequence length. The number of trainable parameters in Saint is dependent on the token count (Somepalli et al., 2021), making it infeasible for cross-table training. Saint-v transposes the first (batch) and second (number of tokens) dimensions of the input, without altering the dimension of token embeddings. Therefore, Saint-v can be used to process tables with variable columns.

H. Visualization of pretrained weights

To understand the impact of cross-table pretraining on Transformer parameters, we visualize the weight distribution before and after pretraining (Figure 11). Here, we ignore the layer normalization and bias terms. Before pretraining, Transformer weights are initialized with *Kaiming* uniform distribution (He et al., 2015). The weight distribution converges to a normal distribution with increased pretraining steps.

I. Benchmark configurations

I.1. Tree-based models

As tree-based models are known to achieve state-of-the-art performance on tabular tasks (Grinsztajn et al., 2022), we include popular tree ensemble methods in the benchmark such as XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Dorogush et al., 2018), and Random Forest. Tables 3, 4, 5, and 6 include the default hyperparameters used for tree-based models and the search space of HPO. We use the default hyperparameters, early stopping strategy, and feature preprocessing logic implemented in AutoGluon 0.5.3 release for each of these models (Erickson et al., 2020), which achieves state-of-the-art performance on AutoML Benchmark (Gijsbers et al., 2022). The HPO search space is kept the same as

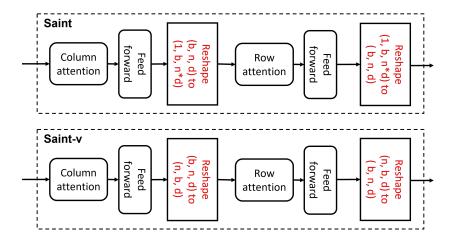


Figure 10. Model structure of Saint and Saint-v. The difference lies in the reshaping operation. Here, b refers to batch size, n is the length of the sequence, and d is the dimension of embedding. The parameter count of Saint is dependent on the number of table columns (i.e., n), whereas Saint-v is applicable to all tables with the same structure.

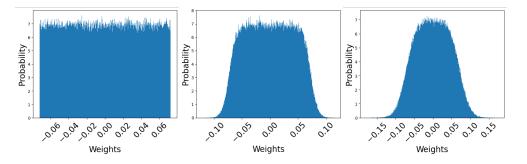


Figure 11. Parameters of FT-Transformer before cross-table pretraining (left), 50 steps after cross-table pretraining (middle), and 500 steps after pretraining (right). The model weights are initialized using a *Kaiming* uniform distribution. With XTab pretraining, the weights converge to a normal distribution.

Hollmann et al. (2022).

For gradient-boosted trees (i.e., XGBoost, LightGBM, CatBoost), we apply early stopping to determine the optimal number of boosting rounds (early_stopping_rounds = adaptive). Specifically, we use the an early stopping patience of 300 if the training table has less than 10k rows. The patience is reduced by a factor of num_rows/10k if the row count goes beyond 10k. A minimal early stopping patience of 20 is set to all tables regardless of the table size.

For Random Forest, we use max_features to indicate the number of features to consider when making a split. Here max_features = auto means max_features=sqrt(n_features) where n_features denotes the column count of the training table.

I.2. Neural network and FastAI

We use the tabular neural network from AutoGluon which is implemented on top of PyTorch (Erickson et al., 2020). We use ReLU activation between layers. The default hyperparameters and search space of HPO are listed in Table 7.

We also include the FastAI tabular model in this benchmark, which is essentially a neural network that automatically configures the embedding sizes of input features (Howard & Gugger, 2020). We use the AutoGluon implementation and default hyperparameters/HPO search spaces suggested by AutoGluon. Detailed configurations of FastAI tabular model is listed in Table 8.

Parameter	Default	HPO search space
learning_rate	0.1	UniformLog[exp(-7), 1]
max_depth	6	UniformInt[1, 10]
subsample	1	Uniform[0.2, 1]
colsample_bytree	1	Uniform[0.2, 1]
colsample_bylevel	1	Uniform[0.2, 1]
min_child_weight	1	UniformLog[exp(-16), exp(5)]
reg_alpha	0	UniformLog[exp(-16), exp(2)]
reg_lambda	1	UniformLog[exp(-16), exp(2)]
gamma	0	UniformLog[exp(-16), exp(2)]
n_estimators	10000	UniformInt[100, 4000]
booster	gbtree	gbtree
early_stopping_rounds	adaptive*	adaptive

Table 3. XGBoost hyperparameter space.

* The early_stopping_rounds depends on the size of data with a minimal patience of 20 and maximal patience of 300 rounds.

Table 4. LighGBM hyperparameter space.

Parameter	Default	HPO search space
num_leaves	31	UniformInt[5, 50]
max_depth	inf	UniformInt[3, 20]
learning_rate	0.05	UniformLog[exp(-3), 1]
n_estimators	10000	UniformInt[50, 2000]
min_child_weight	1e-3	UniformLog[exp(-5), exp(4)]
reg_alpha	0	Categorical[0, 0.1, 1, 2, 5, 7, 10, 50, 100]
reg_lambda	0	Categorical[0, 0.1, 1, 5, 10, 20, 50, 100]
subsample	1	Uniform[0.2, 0.8]
early_stopping_rounds	adaptive*	adaptive

* The early_stopping_rounds depends on the size of data with a minimal patience of 20 and maximal patience of 300 rounds.

I.3. TransTab

We use the official implementation of TransTab v0.0.3 (Wang & Sun, 2022). Since regression tasks are not yet supported by this version, the model rank and training time in Table 1 are reported only on classification tasks. Specifically, we report the rank of TransTab models to all other methods. For example, if we have the AUC scores of model 1 > TransTab > model 2, then model 1 ranks #1, model 2 ranks #2, and TransTab gets a ranking of #1.5. TransTab rank is #0.5 with TransTab > model 1 > model 2, and #2.5 with model 1 > model 2 > TransTab. The inclusion of TransTab in the comparison will not alter the rank of other models, but the rank shows the relative standing of TransTab with respect to other models. Therefore, we can compare the ranking of all methods in Table 1 even without TransTab regression performance. In Table 12, we show the regular ranking of TransTab on classification tasks.

The hyperparameters of TransTab is listed in Table 9. We test both the conventional supervised learning setting (TransTab-sl) and the contrastive learning setting which follows the pretraining-finetuning process (TransTab-cl). We use the target-aware contrastive learning objective as it is shown to perform better than its unsupervised counterpart in Wang & Sun (2022). Hyperparameters are kept as default whenever possible. We use the column type information from AutoML Benchmark to identify numerical and categorical columns. TransTab-cl performs better than TransTab-sl in our benchmark, as shown in Table 1.

Parameter	Default	HPO search space
learning_rate	0.05	UniformLog[exp(-5), 1]
random_strength	1	UniformInt[1, 20]
12_leaf_reg	3	UniformLog[exp(-3), 1]
bagging_temperature	1	Uniform[0, 1]
leaf_estimation_iterations	1	UniformInt[1, 20]
iterations	10000	UniformInt[100, 4000]
early_stopping_rounds	adaptive*	adaptive

Table 5. CatBoost hyperparameter space.

* The early_stopping_rounds depends on the size of data with a minimal patience of 20 and maximal patience of 300 rounds.

Table 6. Random forest hyperparameter space.

Parameter	Default	HPO search space
n_estimators	300	UniformInt[10, 1000]
max_features	auto	Categorical[auto, 0.5, 0.25]
max_leaf_nodes	inf	UniformInt[100, 4000]

I.4. FT-Transformer

Table 10 summarize the general hyperparameters of FT-Transformer. We include three configurations of FT-Transformer in the benchmark:

FTT-1: FT-Transformer with light training. FT-Transformer is trained for maximum 3 epochs. We save the model after each epoch and retrieve the best checkpoint based on the validation performance.

FTT-h: FT-Transformer with heavy training. FT-Transformer is trained with an early stopping patience of 3. We save the model after each epoch and retrieve the best checkpoint based on the validation performance.

FTT-best: FT-Transformer for the best performance. FT-Transformer is trained with an early stopping patience of 20. We save the model after each 0.5 epoch (i.e., val_check_interval = 0.5 in Table 10). At the end of training, we retrieve the best 3 checkpoints based on the validation performance (i.e., top_k = 3 in Table 10). The checkpoints are averaged using model soup for improved prediction performance (Wortsman et al., 2022).

From FTT-1 \rightarrow FTT-best, we achieve better tabular prediction performance with increased training time.

I.5. XTab

XTab uses exactly the same structure as FT-Transformer, but with pretrained parameters to initialize the model. Similar to FTT-I/FTT-h/FTT-best, we have XTab-I/XTab-h/XTab-best that follow the same finetuning configurations. We pretrain XTab with the reconstruction loss and FT-Transformer as the backbone. N = 1 is used for federated pretraining since it achieves the best performance in Figure 9. With default hyperparameters, we pretrain the backbone for 2000 rounds, and the number of pretraining iterations is considered as a hyperparameter in HPO. Table 11 summarizes the details of XTab.

J. Dataset statistics

Table 13 shows the statistics of all datasets from the AutoML Benchmark (Gijsbers et al., 2022), including the task name, type, and table dimensions. We equally split the benchmark into 2 folds for pretraining and downstream evaluation. Therefore, there is minimal overlap between pretraining tasks and downstream tasks. The success of XTab in this setting demonstrates the ability of learning general knowledge across all downstream tasks.

Parameter	Default	HPO search space
num_epochs	300	300
early_stop_patience	20	20
learning_rate	3e-4	UniformLog[1e-4, 0.1]
weight_decay	1e-6	UniformLog[1e-12, 0.1]
num_layers	4	Categorical[2, 3, 4]
hidden_size	128	Categorical[128, 256, 512]

Table 7. Neural network hyperparameter space.

Table 8.	FastAI hyperparame	ter space.
----------	--------------------	------------

Parameter	Default	HPO search space
num_epochs	30	Uniform[5, 30]
early_stop_patience	20	20
learning_rate	1e-2	UniformLog[5e-5, 0.1]
weight_decay	1e-6	UniformLog[1e-12, 0.1]
layers*	none	Categorical[none, (200, 100), (200), (500), (1000), (500, 200), (50, 25), (1000, 500), (200, 100, 50), (500, 200, 100), (1000, 500, 200)]

* This indicates both the layer count and hidden dimension at each layer.

K. Raw prediction performance

Here, we present the raw prediction performance on AutoML Benchmark in Table K, 15 and 16. Please refer to Table 1 for the aggregated comparison. 20 datasets are excluded from the benchmark since they fail to fit into the 16 GB GPU memory. We report the performance on the remaining 84 downstream tasks. All experiments are repeated for 5 trials and we report the average performance.

Parameter	supervised learning	contrastive pretraining
num_partition		4
overlap_ratio		0.5
max_pretrain_epochs		50
pretrain_batch_size		128
pretrain_learning_rate		1e-4
max_epochs	50	50
batch_size	238	128
learning_rate	1e-4	1e-4
num_layers	2	2
hidden_dim	128	128
patience	5	5
num_attention_heads	8	8

Table 9. TransTab hyperparameter for the base and pretraining settings.

Table 10. FT-Transformer hyperparameter space.

Parameter	Default	HPO search space
num_epochs	inf	inf
early_stop_patience	20	20
num_blocks	3	3
hidden_size	192	192
num_attention_heads	8	8
batch_size	128	Categorical[128, 32, 8, 1]
val_check_interval	1 or 0.5	Categorical[0.5, 1]
top_k	1 or 3	Categorical[1, 3, 5]

Table 11. XTab hyperparameter space.

Parameter	Default	HPO search space		
All default parameters and search spaces from FT-Transformer				
N_FedAvg	1	1		
pretrain_objective	reconstruction	reconstruction		
num_pretrain_rounds	2000	Categorical[0, 250, 1000, 2000]		

Table 12. This table is similar to Table 1, but compares the tabular models on 48 classification tasks. Since TransTab v0.0.3 does not supports regression tasks, we include this table for classification tasks only.

	Methods	Time (s)	Rank				
	RF	11.39	7.58 ± 4.19				
	XGBoost	11.90	5.10 ± 3.41				
er	LightGBM	8.62	5.58 ± 3.54				
nete	CatBoost	229.36	$\textbf{3.02} \pm \textbf{2.87}$				
Default hyperparameter	FastAI	27.01	7.27 ± 3.79				
erp	NN	73.64	6.96 ± 3.66				
hyp	TransTab-sl	342.49	12.33 ± 2.68				
ault	TransTab-cl	331.98	11.60 ± 3.13				
Defi	FTT-1	74.91	10.94 ± 2.54				
Ι	XTab-1	74.48	10.06 ± 2.88				
	FTT-h	309.64	7.23 ± 2.17				
	XTab-h	291.19	7.35 ± 1.92				
	FTT-best	544.77	5.33 ± 2.43				
	XTab-best	472.35	$\textbf{4.63} \pm \textbf{2.28}$				

Table 13. Dataset statistics of AutoML Benchmark. We split the benchmark into 2 folds. We use fold 1 to pretrain XTab and fold 2 to evaluate downstream performance, and vice versa. 20 out of the 104 datasets failed during our experiments. They are marked with symbols and excluded from the comparison.

name	num_rows	num_columns	task_type		name	num_rows	num_columns	task_ty
APSFailure	76000	171	binary		dna	3186	181	multic
Airlines_DepDelay_10M	1000000	10	regression		elevators	16599	19	regress
Allstate_Claims_Severity	188318	131	regression		eucalyptus	736	20	multic
Amazon_employee_access	32769	10	binary		fabert*	8237	801	multic
Australian	690	15	binary		first-order-theorem-proving	6118	52	multic
Bioresponse*	3751	1777	binary		gina*	3153	971	binary
Brazilian_houses	10692	13	regression		guillermo*	20000	4297	binar
Buzzinsocialmedia_Twitter	583250	78	regression		helena	65196	28	multi
Click_prediction_small	39948	12	binary		house_16H	22784	17	regre
Diabetes130US	101766	50	multiclass		house_prices_nominal	1460	80	regre
Fashion-MNIST*	70000	785	multiclass		house_sales	21613	22	regre
GesturePhaseSegmentationProcessed	9873	33	multiclass		jannis	83733	55	multi
Higgs	1000000	29	binary		jasmine	2984	145	binar
Internet-Advertisements*	3279	1559	binary		jungle_chess_2pcs_raw_endgame_complete	44819	7	multi
KDDCup09-Upselling*	50000	14892	binary		kc1	2109	22	binar
KDDCup09_appetency	50000	231	binary		kick	72983	33	binar
KDDCup99 [†]	4898431	42	multiclass		kr-vs-kp	3196	37	binar
MIP-2016-regression	1090	145	regression		madeline	3140	260	binar
Mercedes_Benz_Greener_Manufacturing	4209	377	regression		mfeat-factors	2000	217	multi
MiniBooNE	130064	51	binary		micro-mass*	571	1301	multi
Moneyball	1232	15	regression		nomao	34465	119	binar
OnlineNewsPopularity	39644	60	regression		numerai28_6	96320	22	binar
PhishingWebsites	11055	31	binary		nyc-taxi-green-dec-2016	581835	19	regre
QSAR-TID-10980*	5766	1026	regression		okcupid-stem	50789	20	multi
QSAR-TID-10580 QSAR-TID-11*	5742	1026	regression		ozone-level-8hr	2534	73	binar
	3742 4440	1020	0	Fold 2		1458	38	
SAT11-HAND-runtime-regression Santander_transaction_value*	4440	4992	regression	plo	pc4	5832	309	binar
Satellite		4992 37	regression	Ľ,	philippine			binar
	5100	37 101	binary .		phoneme	5404	6 49	binar
Yolanda	400000	9	regression		pol	15000		regre
abalone	4177	·	regression		porto-seguro	595212	58	binar
ada	4147	49	binary		qsar-biodeg	1055	42	binar
adult	48842	15	binary		quake	2178	4	regre
airlines	539383	8	binary		riccardo*	20000	4297	binar
albert	425240	79	binary		robert*	10000	7201	multi
amazon-commerce-reviews*	1500	10001	multiclass		segment	2310	20	multi
arcene*	100	10001	binary		sensory	576	12	regre
bank-marketing	45211	17	binary		sf-police-incidents	2215023	9	binar
black_friday	166821	10	regression		shuttle	58000	10	multi
blood-transfusion-service-center	748	5	binary		socmob	1156	6	regre
boston	506	14	regression		space_ga	3107	7	regre
car	1728	7	multiclass		steel-plates-fault	1941	28	multi
christine*	5418	1637	binary		sylvine	5124	21	binar
churn	5000	21	binary		tecator	240	125	regre
cmc	1473	10	multiclass		topo_2_1	8885	267	regre
cnae-9*	1080	857	multiclass		us_crime	1994	127	regre
colleges	7063	45	regression		vehicle	846	19	multi
connect-4	67557	43	multiclass		volkert	58310	181	multi
covertype	581012	55	multiclass		wilt	4839	6	binar
credit-g	1000	21	binary		wine-quality-white	4898	12	multi
diamonds	53940	10	regression		wine_quality wine	6497	12	regre
dilbert*	10000	2001	multiclass		yeast	1484	9	multi
dionis ^{††}	416188	61	multiclass		yprop_4_1	8885	252	regre

* Out of memory error for FT-Transformers and XTab with a batch size of 128.
† Timeout error for FT-Transformers and XTab with a 1-hour training time budget.
†† Out of memory error for Random Forest.

Table 14. Raw prediction performance on AutoML Benchmark of the following models: Random Forest (RF), XGBoost, LightGBM, CatBoost, tabular neural network from AutoGluon (NN), FastAI tabular model, and TransTab with contrastive pretraining (TransTab-cl). All models use the default hyperparameters as specified in Appendix I. We use AUC scores as the evaluation metric for binary classification (\uparrow), log loss for multicloass classification (\downarrow) and RMSE for regression tasks (\downarrow). Regression tasks are not supported by TransTab v0.0.3 by the time this experiment was conducted. Zoom in for better view.

name	task type	metrics	RF	XGB	LGBM	CAT	FastAI	NN	TransTab-cl
APSFailure	binary	AUC	0.9901	0.9917	0.992	0.9932	0.9803	0.9901	0.9815
Amazon_employee_access	binary	AUC	0.8534	0.8416	0.8541	0.8989	0.8315	0.8289	0.7606
Australian	binary	AUC	0.9328	0.9237	0.9273	0.9396	0.9314	0.9284	0.8825
Click_prediction_small	binary	AUC AUC	0.6593 0.815	0.7012 0.8321	0.6968 0.8337	0.7067 0.8364	0.6539 0.8454	0.6876 0.8438	0.6583 0.6864
Higgs	binary		0.815	0.8321 0.826	0.8337	0.8364 0.8404	0.8454 0.729	0.8438	
KDDCup09_appetency MiniBooNE	binary binary	AUC AUC	0.774 0.9807	0.826 0.9857	0.7967	0.8404 0.9862	0.729 0.9418	0.8042	NaN 0.8047
PhishingWebsites		AUC	0.9807	0.9857	0.9856	0.9862	0.9418	0.9868	0.8047
Satellite	binary binary	AUC	0.9955	0.9907	0.997	0.9901	0.9903	0.9939	0.8215
ada	binary	AUC	0.9096	0.9239	0.9342	0.9725	0.9903	0.9943	0.9852
adult	binary	AUC	0.9098	0.9239	0.9206	0.9278	0.9003	0.9124	0.9223
airlines	binary	AUC	0.721	0.7283	0.9280	0.7279	0.7204	0.7172	0.7096
albert	binary	AUC	0.7362	0.7285	0.725	0.7279	0.7204	0.7499	NaN
bank-marketing	binary	AUC	0.9313	0.9364	0.9372	0.9387	0.9369	0.9323	0.9172
blood-transfusion-service-center	binary	AUC	0.7245	0.7437	0.7445	0.758	0.7726	0.7449	0.772
churn	binary	AUC	0.9088	0.9203	0.92	0.9198	0.92	0.9018	0.8081
credit-g	binary	AUC	0.7882	0.743	0.7421	0.76	0.7394	0.7441	0.7649
jasmine	binary	AUC	0.8879	0.8671	0.8703	0.8831	0.8482	0.8501	0.8089
kc1	binary	AUC	0.8207	0.8063	0.7952	0.8116	0.7973	0.8012	0.7912
kick	binary	AUC	0.7626	0.7822	0.7684	0.7864	0.7674	0.765	0.6943
kr-vs-kp	binary	AUC	0.9994	0.9995	0.9997	0.9998	0.9996	0.9996	0.6036
madeline	binary	AUC	0.8725	0.9199	0.9233	0.9319	0.6327	0.674	0.5966
nomao	binary	AUC	0.9944	0.9961	0.9962	0.9963	0.9918	0.9918	0.9868
numerai28_6	binary	AUC	0.5153	0.5221	0.5265	0.5296	0.5289	0.5255	0.5287
ozone-level-8hr	binary	AUC	0.9324	0.9234	0.923	0.9344	0.905	0.9361	0.9072
pc4	binary	AUC	0.9377	0.9478	0.9507	0.9519	0.9302	0.9429	0.872
philippine	binary	AUC	0.8428	0.8532	0.8637	0.8523	0.7817	0.7781	0.7996
phoneme	binary	AUC	0.9596	0.952	0.952	0.9533	0.9326	0.9399	0.8254
porto-seguro	binary	AUC	0.6095	0.6378	0.6285	0.6391	0.6338	0.6292	NaN
qsar-biodeg	binary	AUC	0.917	0.9206	0.9199	0.9304	0.9209	0.9258	0.9087
sf-police-incidents	binary	AUC	0.6885	0.6766	0.6784	0.7186	0.6051	0.6307	NaN
sylvine	binary	AUC	0.9828	0.9844	0.9843	0.9868	0.976	0.9717	0.965
wilt	binary	AUC	0.9869	0.9885	0.9837	0.988	0.9919	0.9725	0.9138
Diabetes130US	multiclass	log loss	0.8555	0.8421	0.8563	0.836	0.8703	0.8746	0.8744
GesturePhaseSegmentationProcessed	multiclass	log loss	0.8676	0.8567	0.8513	0.8033	1.0617	1.039	1.3868
car	multiclass	log loss	0.0374	0.0186	0.0308	0.0564	0.3106	0.0286	0.5011
cmc	multiclass	log loss	0.9991	0.9313	0.9329	0.9118	0.9393	0.9132	1.0093
connect-4	multiclass	log loss	0.4858	0.3408	0.3324	0.3681	0.3319	0.3552	0.8451
covertype	multiclass	log loss	0.1763	0.0861	0.0924	0.1492	0.1988	0.1452	NaN
dna	multiclass	log loss	1.1122	0.115	0.1124	0.1135	0.187	0.1764	1.0137
eucalyptus	multiclass	log loss	0.7148	0.797	0.7823	0.7099	0.6963	0.6883	0.8627
first-order-theorem-proving	multiclass	log loss	1.1789	1.1005	1.0987 2.7992	1.0826	1.2193	1.233	1.589
helena	multiclass	log loss	3.0947	2.6571		2.5489	2.5741	2.5421	6.2857
jannis	multiclass	log loss	0.7196 0.4116	0.6838 0.2099	0.6868 0.2219	0.6771 0.259	0.6752 0.2342	0.6921 0.1286	0.7557 0.2116
jungle_chess_2pcs_raw_endgame_complete	multiclass	log loss						0.1286	5.391
mfeat-factors okcupid-stem	multiclass multiclass	log loss log loss	0.1217 0.5976	0.1646 0.57	0.1523 0.5722	0.1053 0.564	0.1069 0.5819	0.1023	0.5824
segment	multiclass		0.0797	0.0666	0.0702	0.0514	0.0962	0.0875	0.3558
shuttle	multiclass	log loss log loss	0.0008	0.0005	0.0702	0.0005	0.0902	0.0026	NaN
steel-plates-fault	multiclass	log loss	0.5332	0.4905	0.4978	0.4777	0.6685	0.5894	0.7929
vehicle	multiclass	log loss	0.3352	0.4905	0.5178	0.5026	0.3725	0.3798	1.1012
volkert	multiclass	log loss	0.9342	0.834	0.8418	0.7931	0.822	0.909	1.2693
wine-quality-white	multiclass	log loss	0.8196	0.8556	0.8822	0.8486	0.9746	0.9719	1.2884
veast	multiclass	log loss	1.112	1.0567	1.1105	1.0051	1.0918	1.0397	1.2425
Airlines_DepDelay_10M	regression	RMSE	28.9112	28.6239	28.5986	28.6857	28,7381	30.1015	NaN
Allstate_Claims_Severity	regression	RMSE	1965.848	1908.768	1900.444	1868.448	2003.79	2014.408	NaN
Brazilian_houses	regression	RMSE	5002.8084	4451.8282	10291.733	6976.8256	20174.666	4011.5132	NaN
Buzzinsocialmedia_Twitter	regression	RMSE	179.2258	239.4952	208.6456	256.8753	220.5236	214.1682	NaN
MIP-2016-regression	regression	RMSE	764.5954	799.144	773.5334	1326.5238	5581.654	23970.42	NaN
Mercedes_Benz_Greener_Manufacturing	regression	RMSE	9.3286	8.7689	8.813	8.614	9.5226	8.7805	NaN
Moneyball	regression	RMSE	24.8672	23.5196	23.823	22.809	21.9525	23.4829	NaN
OnlineNewsPopularity	regression	RMSE	11843.722	11673.084	11420.656	11383.204	11399.604	11502.598	NaN
SAT11-HAND-runtime-regression	regression	RMSE	1148.728	1089.708	964.2244	1116.356	1086.366	1309.33	NaN
Yolanda	regression	RMSE	9.1417	8.7697	8.6998	8.6813	8.5693	8.8721	NaN
abalone	regression	RMSE	2.1384	2.2099	2.2091	2.1944	2.1211	2.1677	NaN
black_friday	regression	RMSE	3663.638	3459.81	3452.612	3462.058	3592.534	3717.344	NaN
boston	regression	RMSE	3.2711	3.159	3.3991	2.6787	4.1064	3.2801	NaN
colleges	regression	RMSE	0.1456	0.1422	0.1398	0.1401	0.1571	0.1569	NaN
diamonds	regression	RMSE	545.0098	540.029	525.7748	514.932	599.311	627.6254	NaN
elevators	regression	RMSE	0.0027	0.0021	0.0021	0.002	0.0022	0.002	NaN
house_16H	regression	RMSE	30202.46	28623.1	28700.92	28230.98	29523.65	28660.04	NaN
house_prices_nominal	regression	RMSE	26002.08	24473.34	25573.2667	21413.3	24193.24	25424.98	NaN
house_sales	regression	RMSE	122271.4	114646.5	109766	105759.42	113428.4	143064	NaN
nyc-taxi-green-dec-2016	regression	RMSE	1.6163	1.8043	1.6599	1.6454	1.7925	1.8583	NaN
pol	regression	RMSE	4.9681	4.8782	4.4412	4.3646	3.7933	49.9791	NaN
quake	regression	RMSE	0.1924	0.1869	0.1851	0.1833	0.1853	0.1862	NaN
sensory	regression	RMSE	0.6857	0.7267	0.6847	0.6834	0.7237	0.7533	NaN
socmob	regression	RMSE	17.5107	13.9014	12.431	11.673	14.7385	14.4491	NaN
space_ga	regression	RMSE	0.1099	0.1049	0.1017	0.1014	0.1013	0.1016	NaN
tecator	regression	RMSE	1.3789	1.2681	1.914	1.831	1.756	1.6347	NaN
topo_2_1	regression	RMSE	0.0302	0.0305	0.03	0.03	0.0306	0.0324	NaN
	regression	RMSE	0.1391	0.1399	0.134	0.1347	0.1424	0.141	NaN
us_crime									
wine_quality yprop_4_1	regression regression	RMSE RMSE	0.6089 0.0297	0.6211 0.03	0.6227 0.0299	0.6186 0.0298	0.6767 0.0311	0.712 0.0344	NaN NaN

Table 15. Raw prediction performance on AutoML Benchmark of the following models: FT-Transformer with light finetuning (FTT-l), XTab with light finetuning (XTab-l), FT-Transformer with heavy finetuning (FTT-h), XTab with heavy finetuning (XTab-h), FT-Transformer with model soup (FTT-best), and XTab with model soup (XTab-best). All models use the default hyperparameters as specified in Appendix I. We use AUC scores as the evaluation metric for binary classification (\uparrow), log loss for multicloass classification (\downarrow) and RMSE for regression tasks (\downarrow). Zoom in for better view.

ame	task type	metrics	FTT-1	XTab-l	FTT-h	XTab-h	FTT-best	XTab-be
APSFailure Amazon_employee_access	binary binary	AUC AUC	0.9889 0.7221	0.9896 0.7454	0.988 0.7894	0.9868 0.7877	0.9859 0.7952	0.9873 0.7941
Australian	binary	AUC	0.7221	0.7434	0.7894	0.921	0.7932	0.7941
Click_prediction_small	binary	AUC	0.6711	0.9229	0.6767	0.6752	0.6755	0.921
liggs	binary	AUC	0.8311	0.8327	0.8451	0.8447	0.8473	0.8475
KDDCup09_appetency	binary	AUC	0.8178	0.8205	0.8144	0.8192	0.8152	0.8251
MiniBooNE	binary	AUC	0.9664	0.9663	0.9778	0.9758	0.9825	0.9813
PhishingWebsites	binary	AUC	0.9871	0.9879	0.9936	0.9936	0.996	0.9957
Satellite	binary	AUC	0.979	0.981	0.9784	0.9822	0.9928	0.9854
uda	binary	AUC	0.9058	0.9109	0.9148	0.9169	0.9202	0.9194
dult	binary	AUC	0.9142	0.9153	0.9148	0.9148	0.916	0.9161
airlines	binary	AUC	0.7064	0.7082	0.7136	0.7132	0.7153	0.7151
lbert	binary	AUC	0.7478	0.7507	0.7552	0.7551	0.7562	0.7561
bank-marketing	binary	AUC	0.9283	0.9342	0.9382	0.9376	0.9403	0.939
blood-transfusion-service-center	binary	AUC	0.7636	0.7582	0.7615	0.7498	0.7625	0.751
hurn	binary	AUC	0.888	0.8794	0.9127	0.9044	0.9157	0.916
credit-g	binary	AUC	0.7448	0.7299	0.7587	0.7485	0.7442	0.747
asmine	binary	AUC	0.8399	0.8449	0.8556	0.8595	0.8614	0.8692
c1	binary	AUC	0.7998	0.7915	0.7998	0.7939	0.8001	0.8035
tick	binary	AUC	0.7717	0.774	0.7752	0.7739	0.7766	0.7771
ar-vs-kp	binary	AUC	0.9773	0.9892	0.9984	0.9991	0.9993	0.9998
nadeline	binary	AUC	0.5902	0.6034	0.708	0.8393	0.8548	0.8869
iomao	binary	AUC	0.9882	0.9902	0.9919	0.9928	0.9933	0.9937
umerai28_6	binary	AUC	0.5293	0.5298	0.5287	0.5284	0.5261	0.5283
zone-level-8hr	binary	AUC	0.8803	0.906	0.9322	0.9299	0.9273	0.9329
nc4	binary	AUC	0.8688	0.8868	0.9383	0.9451	0.9438	0.9451
bhilippine	binary	AUC	0.757	0.7765	0.7988	0.8158	0.823	0.8315
bhoneme	binary	AUC	0.8968	0.9136	0.9165	0.9256	0.9468	0.9432
porto-seguro	binary	AUC	0.636	0.6364	0.6351	0.6351	0.6368	0.6373
lsar-biodeg	binary	AUC	0.8861	0.8773	0.9113	0.9087	0.9181	0.9189
sf-police-incidents	binary	AUC	0.6131	0.6129	0.6048	0.6037	0.6068	0.607
sylvine	binary	AUC	0.9669	0.971	0.981	0.98	0.9817	0.9861
wilt	binary	AUC	0.989	0.992	0.9893	0.988	0.9903	0.9888
Diabetes130US	multiclass	log loss	0.8575	0.8538	0.8468	0.8472	0.8426	0.8455
GesturePhaseSegmentationProcessed	multiclass	log loss	1.2019	1.1886	1.0364	1.0555	0.9685	1.0197
car	multiclass	log loss	0.3607	0.355	0.0616	0.0611	0.0023	0.0004
eme	multiclass	log loss	0.9795	0.9688	0.9735	0.9362	0.9591	0.9398
connect-4	multiclass	log loss	0.5482	0.4899	0.3592	0.353	0.3383	0.3332
covertype	multiclass	log loss	0.2743	0.266	0.1463	0.146	0.1333	0.1332
lna .	multiclass	log loss	0.8681	0.3408	0.1761	0.1337	0.1429	0.1292
eucalyptus	multiclass	log loss	1.0905	1.2154	0.7786	0.7435	0.7387	0.7056
irst-order-theorem-proving	multiclass	log loss	1.4326	1.3986	1.269	1.2362	1.2199	1.1937
nelena	multiclass	log loss	2.8484	2.8462	2.5574	2.5552	2.5496	2.5399
annis	multiclass	log loss	0.7123	0.7015	0.6689	0.672	0.6655	0.6646
ungle_chess_2pcs_raw_endgame_complete	multiclass	log loss	0.2817	0.2781	0.022	0.0202	0.0107	0.0106
nfeat-factors	multiclass	log loss	1.6934	1.5505	0.1439	0.1352	0.1227	0.114
okcupid-stem	multiclass multiclass	log loss	0.5723	0.5717	0.5715	0.5746	0.5694	0.5701 0.0788
segment shuttle	multiclass	log loss	0.555	0.2007	0.0022	0.0023	0.0772	0.0017
steel-plates-fault	multiclass	log loss	0.9308	0.0021	0.5837	0.5857	0.5649	0.5424
vehicle	multiclass	log loss log loss	0.9308	1.0895	0.5857 0.4769	0.5857 0.4469	0.5649	0.3424 0.405
volkert	multiclass	log loss	1.1074	1.0895	0.4709	0.4409	0.4323	0.405
			1.1074	1.0797	1.0143	0.8105	0.7847	0.8046
vine-quality-white	multiclass	log loss						
veast Airling: DopDalay, 10M	multiclass	log loss RMSE	1.2193 28.7656	1.226 28.7608	1.0339 28.7771	1.0373 28.7766	1.0156 28.7682	1.016 28.8381
Airlines_DepDelay_10M Allstate_Claims_Severity	regression	RMSE	28.7656 1916.358	28.7608 1907.124	28.7771 1902.972	28.7766	28.7682	28.8381 1881.71
Alistate_Claims_Severity Brazilian_houses	regression	RMSE	1916.358 9132.3466	1907.124	1902.972 8243.249	1897.556 8453.9666	1885.78 8132.8652	1881.71
Brazinan_nouses Buzzinsocialmedia_Twitter	regression	RMSE	206.7792	208.0826	8243.249	8453.9666	8132.8652 160.4322	8729.30
MIP-2016-regression	regression regression	RMSE	206.7792	208.0826	4605.84	1890.9452	1052.837	882.356
MIP-2016-regression Mercedes_Benz_Greener_Manufacturing	regression	RMSE	20528.74	25255.92 9.3503	4605.84 8.9875	8.8223	8.688	8.6548
Moneyball	regression	RMSE	32.4144	9.5505 29.7766	23.2309	22.5419	21.7374	21.8931
OnlineNewsPopularity	regression	RMSE	11361.304	11360.136	11365.064	11347.134	11353.516	11346.5
SAT11-HAND-runtime-regression	regression	RMSE	1751.088	1584.554	1602.846	1276.914	1060.4908	1040.66
folanda	regression	RMSE	8.8256	8.7725	8.7038	8.6963	8.6265	8.6506
Ibalone	regression	RMSE	2.272	2.18	2.2423	2.1597	2.1565	2.1381
black_friday	regression	RMSE	3536.97	3530.13	3522.2775	3523.254	3500.544	3497.50
poston	regression	RMSE	6.7548	6.5448	3.9548	3.8535	3.7662	2.9211
colleges	regression	RMSE	0.1587	0.1557	0.1555	0.1504	0.1456	0.1466
liamonds	regression	RMSE	575.2152	557.6404	558,863	560,7662	519.0348	520.126
levators	regression	RMSE	0.0021	0.002	0.002	0.002	0.0019	0.0019
nouse_16H	regression	RMSE	33217.86	31728.76	30478.9	31508.2	28847.02	29216.0
nouse_prices_nominal	regression	RMSE	42374.86	35212.56	26234.8	23914.88	22393.1	29210.0
nouse_sales		RMSE	42574.80	126072.8	117748	117384.8	110948.4	112808
nyc-taxi-green-dec-2016	regression regression	RMSE	1.8388	1.8233	11//48	11/384.8	1.7446	1.6899
pol	regression	RMSE	8.8125	5.7178	2.9935	3.078	2.1899	2.1846
juake	regression	RMSE	0.1843	0.1834	0.1833	0.1835	0.1836	2.1846
luake	0	RMSE	0.1843	0.1834 0.7556	0.1855 0.7498	0.1835	0.1836	0.1851
	regression							
ocmob	regression	RMSE RMSE	20.9773 0.1257	19.2464 0.1215	19.1815 0.1126	19.192 0.1103	19.0985 0.1034	19.1424 0.1018
pace_ga	regression		0.1257 12.8959	0.1215		0.1103 5.4309	0.1034	0.1018
ecator opo_2_1	regression	RMSE RMSE	12.8959 0.0306	12.7553 0.0304	6.5291 0.0304	5.4309 0.0303	2.7824 0.0302	1.6988 0.0301
opo_2_1 is_crime	regression	RMSE	0.0306	0.0304 0.1471	0.0304 0.1386	0.0303	0.0302	0.0301
	regression	RMSE						
wine_quality	regression	RMSE	0.7117	0.7066	0.7021	0.701	0.6812	0.6801

name	task_type	metrics	RF	XGB	LGBM	CAT	FastAI	NN	FTT	XTab
APSFailure	binary	AUC	0.9891	0.9929	0.9905	0.9923	0.9825	0.9896	0.9859	0.9875
Amazon_employee_access	binary	AUC	0.8629	0.8526	0.8555	0.8995	0.8535	0.8329	0.7945	0.7929
Australian	binary	AUC	0.9331	0.9382	0.9399	0.9362	0.9272	0.9211	0.9184	0.9132
Click_prediction_small	binary	AUC	0.6976	0.7017	0.6953	0.7105	0.681	0.6964	0.675	0.6757
Higgs	binary	AUC	0.8126	0.8365	0.8345	0.8367	0.8485	0.8435	0.8458	0.8329
KDDCup09_appetency	binary	AUC	0.8186	0.8307	0.8041	0.8367	0.762	0.8168	0.8159	0.8127
MiniBooNE	binary	AUC	0.9813	0.9866	0.9863	0.9865	0.9845	0.9878	0.9823	0.9799
										0.9961
PhishingWebsites	binary	AUC	0.9964	0.997	0.9966	0.9961	0.9965	0.9968	0.9961	
Satellite	binary	AUC	0.9746	0.9443	0.9821	0.9873	0.9935	0.9945	0.9908	0.9879
ada	binary	AUC	0.9227	0.9237	0.9215	0.9247	0.9055	0.9175	0.9197	0.9185
adult	binary	AUC	0.9176	0.9288	0.928	0.929	0.9143	0.9138	0.9154	0.9167
airlines	binary	AUC	0.7252	0.7301	0.7262	0.7266	0.7204	0.7192	0.7154	0.7128
albert		AUC	0.7342	0.7687	0.7758	0.7846	0.7569	0.7653	0.7559	0.7499
	binary									
bank-marketing	binary	AUC	0.9318	0.9364	0.9385	0.9388	0.9367	0.9354	0.9411	0.9405
blood-transfusion-service-center	binary	AUC	0.7273	0.7166	0.7503	0.759	0.7443	0.7227	0.7451	0.7303
churn	binary	AUC	0.907	0.9089	0.9131	0.9194	0.9192	0.9156	0.914	0.9168
credit-g	binary	AUC	0.791	0.7512	0.7498	0.7779	0.7527	0.7458	0.7481	0.743
jasmine	binary	AUC	0.8875	0.875	0.8596	0.873	0.8516	0.8542	0.8606	0.8579
kc1	binary	AUC	0.8163	0.8154	0.7904	0.8069	0.7972	0.7984	0.7979	0.8062
kick	binary	AUC	0.7699	0.7855	0.7708	0.786	0.7771	0.7735	0.7773	0.7775
kr-vs-kp	binary	AUC	0.9998	0.9988	0.9997	0.9997	0.9985	0.9995	0.9989	0.9998
madeline	binary	AUC	0.9275	0.9364	0.9176	0.938	0.7825	0.7752	0.8628	0.8923
nomao	binary	AUC	0.9946	0.9963	0.9961	0.996	0.9928	0.9923	0.9933	0.9937
numerai28_6	binary	AUC	0.5277	0.5243	0.5262	0.5263	0.5282	0.5258	0.5258	0.5266
ozone-level-8hr	binary	AUC	0.9303	0.9231	0.9259	0.9307	0.9256	0.9446	0.9277	0.9293
pc4	binary	AUC	0.9459	0.9366	0.9437	0.9425	0.9415	0.9397	0.9412	0.9433
		AUC	0.8498		0.8487	0.8541	0.7934	0.802	0.8246	0.8324
philippine	binary			0.8627						
phoneme	binary	AUC	0.9604	0.9563	0.9521	0.9573	0.9332	0.9428	0.9539	0.9532
porto-seguro	binary	AUC	0.63	0.6419	0.6345	0.6394	0.6358	0.634	0.6369	0.6362
qsar-biodeg	binary	AUC	0.9162	0.9091	0.9146	0.9031	0.9187	0.9181	0.9196	0.9174
sf-police-incidents	binary	AUC	0.6706	0.686	0.681	0.7158	0.6122	0.6474	0.6068	0.607
	•									
sylvine	binary	AUC	0.9838	0.9863	0.985	0.9866	0.9826	0.9811	0.9846	0.9846
wilt	binary	AUC	0.9877	0.9901	0.991	0.9811	0.9808	0.9898	0.9898	0.9941
Diabetes130US	multiclass	log loss	0.8519	0.8357	0.8499	0.8355	0.8643	0.8665	0.8433	0.8489
GesturePhaseSegmentationProcessed	multiclass	log loss	0.8598	0.8242	0.8328	0.7833	1.0472	0.9798	0.9604	0.9604
	multiclass	log loss	0.0504	0.3288	0.2972	0.0578	0.2856	0.0013	0.0002	0
car										
cmc	multiclass	log loss	0.9074	0.9305	0.9117	0.9237	0.9387	0.9264	0.9519	0.9449
connect-4	multiclass	log loss	0.497	0.3269	0.3218	0.3719	0.3215	0.3373	0.3383	0.3537
covertype	multiclass	log loss	0.1824	0.0889	0.0915	0.109	0.1346	0.1264	0.1373	0.2386
dna	multiclass	log loss	0.1487	0.0989	0.1102	0.1182	0.1484	0.1489	0.1279	0.131
eucalyptus	multiclass	log loss	0.7119	0.7358	0.7493	0.7476	0.7189	0.7247	0.7481	0.7305
first-order-theorem-proving	multiclass	log loss	1.0671	1.0664	1.0849	1.0858	1.2051	1.1899	1.212	1.1831
helena	multiclass	log loss	2.7036	2.5968	2.6022	2.5647	2.5305	2.513	2.5355	2.5407
jannis	multiclass	log loss	0.7072	0.6731	0.6807	0.6764	0.6694	0.6555	0.662	0.6603
jungle_chess_2pcs_raw_endgame_complete	multiclass	log loss	0.3169	0.2299	0.2257	0.2335	0.2097	0.0475	0.012	0.0122
mfeat-factors	multiclass	log loss	0.1636	0.1201	0.1382	0.1114	0.1089	0.0773	0.1099	0.1094
okcupid-stem	multiclass	log loss	0.5902	0.5663	0.5701	0.5637	0.5739	0.5694	0.5688	0.5694
segment	multiclass	log loss	0.0762	0.0718	0.0714	0.067	0.0905	0.0818	0.0812	0.0932
shuttle	multiclass	log loss		0.0004	0.0005	0.0005	0.0077		0.0012	0.0013
			0.0006					0.0028		
steel-plates-fault	multiclass	log loss	0.5287	0.4937	0.4912	0.4834	0.6348	0.5823	0.568	0.5536
vehicle	multiclass	log loss	0.4972	0.4555	0.5123	0.5383	0.3649	0.4504	0.4303	0.4256
volkert	multiclass	log loss	0.9181	0.8078	0.8199	0.7951	0.801	0.8266	0.7847	0.8004
wine-quality-white	multiclass	log loss	0.803	0.793	0.8602	0.8198	0.9771	0.9703	0.9789	0.9708
yeast	multiclass	log loss	1.02	1.0213	1.0999	1.0018	1.054	1.0349	1.0156	1.0155
Airlines_DepDelay_10M	regression	RMSE	28.9108	28.577	28.5797	28.7851	28.7342	30.1429	28.7435	28.809
Allstate_Claims_Severity	regression	RMSE	1939.89	1887.014	1885.37	1866.698	1977.002	1892.888	1885.936	1905.3
Brazilian_houses	regression	RMSE	5285.2022	4488.908	8505.7592	9491.7438	16486.544	3859.9434	8264.7402	8201.4
	0									
Buzzinsocialmedia_Twitter	regression	RMSE	179.265	241.4524	200.1286	229.5252	168.3526	177.9844	162.3476	173.28
MIP-2016-regression	regression	RMSE	765.0452	800.3702	829.5368	823.6524	2377.88	3903.15	871.013	878.17
Mercedes_Benz_Greener_Manufacturing	regression	RMSE	8.9261	8.6234	8.7048	8.6512	9.0556	8.7859	8.6845	8.7014
Moneyball	regression	RMSE	24.4026	23.0216	24.5429	22.8522	22.0157	23.1796	21.5883	21.853
OnlineNewsPopularity	regression	RMSE	11464.464	11364.592	11397.174	11410.652	11378.526	11478.684	11379.368	11365.
SAT11-HAND-runtime-regression	regression	RMSE	1139.12	1067.37	968.7284	1100.046	1079.6472	1166.976	1034.3146	1032.3
Yolanda	regression	RMSE	9.229	8.6079	8.7664	8.701	8.6134	8.7159	8.6318	8.7462
abalone	regression	RMSE	2.1789	2.1927	2.2062	2.2103	2.1402	2.1496	2.1335	2.142
		RMSE	3503.918	3452.056	3452.454	3463.792		3592.846	3500.544	3513.1
black_friday	regression						3573.808			
boston	regression	RMSE	3.3039	3.0809	3.3606	2.945	3.3487	3.4282	3.4638	2.8631
colleges	regression	RMSE	0.1426	0.1381	0.1407	0.1397	0.1537	0.1529	0.147	0.1451
diamonds	regression	RMSE	544.454	534.047	521.6772	517.6136	593.0908	549.5522	520.3338	517.94
elevators	regression	RMSE	0.0027	0.0022	0.0021	0.002	0.0019	0.0019	0.0018	0.0019
house_16H	regression	RMSE	29691.38	28688.28	28892.28	27962.54	30915.52	29078.48	27869.3	29179
house_prices_nominal	regression	RMSE	25655.78	21950.74	22964.88	21954.12	22389.62	23721.84	22199.78	22056.
house_sales	regression	RMSE	121712.2	111883.4	110022.38	107470.58	111026.4	118402	110166.28	10962
nyc-taxi-green-dec-2016		RMSE	1.631	1.7843	1.6683	1.6148	1.5909	1.737	1.7596	1.698
	regression									
pol	regression	RMSE	4.6848	4.6111	4.4196	3.9429	3.6529	3.6789	2.0737	2.0981
quake	regression	RMSE	0.1845	0.1896	0.1872	0.1851	0.1851	0.1825	0.1843	0.1844
sensory	regression	RMSE	0.6731	0.7238	0.6924	0.6966	0.6588	0.7263	0.7803	0.8059
2										
socmob	regression	RMSE	16.2576	12.8328	11.3572	13.45	8.4355	11.0054	19.1915	19.191
	regression	RMSE	0.1096	0.1036	0.1035	0.1028	0.0992	0.0982	0.1031	0.1007
space_ga		RMSE	1.3897	0.9691	1.1218	1.6591	1.7807	1.6622	1.7329	1.2897
	regression									
tecator	regression		0.0202	0.02	0.0201					
tecator topo_2_1	regression	RMSE	0.0302	0.03	0.0301	0.0301	0.0302	0.0306	0.0302	0.0301
tecator			0.0302 0.1379	0.03 0.1343	0.0301 0.1372	0.0301 0.1354	0.0302 0.1391	0.0306	0.0302 0.1351	0.0301
tecator topo_2_1	regression	RMSE								

Table 16. Raw prediction performance on AutoML Benchmark under the HPO setting. All models use the HPO search spaces as specified in Appendix I.