
Proceedings of Machine Learning Research 204:1–14, 2023 Conformal and Probabilistic Prediction and Applications

Mondrian Predictive Systems for Censored Data

Henrik Boström bostromh@kth.se

KTH Royal Institute of Technology, Sweden

Henrik Linusson henrik@ekkono.ai

Ekkono Solutions AB, Sweden

KTH Royal Institute of Technology, Sweden

Anders Vesterberg anders.vesterberg@scania.com

Scania CV AB, Sweden

Editor: Harris Papadopoulos, Khuong An Nguyen, Henrik Boström and Lars Carlsson

Abstract

Conformal predictive systems output predictions in the form of well-calibrated cumu-
lative distribution functions (conformal predictive distributions). In this paper, we apply
conformal predictive systems to the problem of time-to-event prediction, where the confor-
mal predictive distribution for a test object may be used to obtain the expected time until
an event occurs, as well as p-values for an event to take place earlier (or later) than some
specified time points. Specifically, we target right-censored time-to-event prediction tasks,
i.e., situations in which the true time-to-event for a particular training example may be
unknown due to observation of the example ending before any event occurs. By leveraging
the Kaplan-Meier estimator, we develop a procedure for constructing Mondrian predic-
tive systems that are able to produce well-calibrated cumulative distribution functions for
right-censored time-to-event prediction tasks. We show that the proposed procedure is
guaranteed to produce conservatively valid predictive distributions, and provide empirical
support using simulated censoring on benchmark data. The proposed approach is con-
trasted with established techniques for survival analysis, including random survival forests
and censored quantile regression forests, using both synthetic and non-synthetic censoring.

Keywords: Conformal predictive systems, Mondrian predictive systems, right-censored
data, time-to-event prediction, survival analysis

1. Introduction

In contrast to conformal regressors (Vovk et al., 2005; Papadopoulos et al., 2011; Lei et al.,
2018; Boström and Johansson, 2020), that for a test object output a prediction interval
which will include the true target label with some specified probability (confidence level),
conformal predictive systems (Vovk et al., 2020; Boström et al., 2021; Vovk, 2022) output
a cumulative distribution function for the target label. Conformal predictive systems are
clearly more general than conformal regressors in that they allow for extracting multiple
prediction intervals for different confidence levels as well as one-sided intervals. The latter
is important when we want to guarantee (at some level of confidence) that the target does
not exceed (or is less than) a certain threshold value. One-sided intervals also allow for
calibrating the predictions of the underlying model, e.g., by extracting medians from the
cumulative distribution functions. A central property of conformal predictive systems is that
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they output cumulative distribution functions that are well-calibrated, i.e., the p-values for
the true targets are uniformly distributed. From a practical viewpoint, the predictions
should also be efficient, e.g., extracted intervals should be as tight as possible.

An area of application in which predicting with confidence is particularly important
is time-to-event (TTE) prediction, i.e., forecasting when an event of interest, e.g., vehicle
breakdown, will occur. Having access to a well-calibrated probability for the event to occur
within a certain time frame allows for decision-making based on cost-benefit calculations,
e.g., balancing the cost of undertaking early maintenance against the cost of a failure on the
road. In case we have obtained a sample of data from some fixed but unknown underlying
distribution, for which the true time-to-event is known, conformal predictive systems can be
readily applied. However, in many cases, the events may not (yet) have occurred for all of
the examples, which means that the time-to-event is not always known, e.g., breakdown may
have occurred only for some but not all vehicles in a fleet. Quick fixes include removing
examples for which the event has not occurred or adjusting such examples by imputing
target values, in both cases violating the assumption that the examples are sampled IID.
Hence, after applying such fixes, the conformal predictive systems are no longer guaranteed
to output well-calibrated cumulative distributions for the true targets.

Even if the event times are not known for all cases, we still often have access to the
latest known time point before which an event has not (yet) occurred, e.g., the most recent
time point at which communication with a vehicle in a fleet occurred. In such cases, each
example can be represented by three components; the object x, a time point y, and an
indicator e of whether an event occurred at the time point (e = 1) or if this is the latest
known time point at which an event has not yet occurred, i.e., the time point represents
a right-censored value (e = 0). This is the standard scenario within the area of survival
analysis (Klein and Moeschberger, 2003), for which many different algorithms have been
proposed over the years, including the Kaplan-Meier estimator (Kaplan and Meier, 1958),
the Cox model (Cox, 1972), Random Survival Forests (Ishwaran et al., 2008) and more
recently, Censored Quantile Regression Forests (Li and Bradic, 2020). These techniques
often come with asymptotic guarantees under various assumptions, the most common being
that there for each object x exists an actual event time e and an independent censoring
time c, such that y = t and e = 1, if c ≥ t, and y = c and e = 0, otherwise. To the best
of our knowledge, the techniques have, however, not been shown to produce well-calibrated
distributions from finite samples.

In this work, we propose a modification of conformal predictive systems to produce
well-calibrated predictions also for right-censored data, i.e., the p-value for the true event
time is uniformly distributed. This modification is obtained through generating Mondrian
predictive systems (Boström et al., 2021; Vovk, 2022), where the predictive distribution
output for each category is formed using a Kaplan-Meier estimator.

In the next section, we describe the approach to constructing Mondrian predictive sys-
tems from right-censored data and present a theoretical analysis showing the validity of
the approach. In Section 3, we empirically investigate the validity by considering a dataset
for which censoring has been introduced synthetically and also compare the performance
of the new approach to the standard Kaplan-Meier estimator, Random Survival Forests
and Censored Quantile Regression Forests. The methods are also evaluated on the original
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dataset, i.e., with non-synthetic censoring. Finally, in Section 4, we summarize the main
findings of this study and outline directions for future work.

2. Generating Conformal Predictive Systems from Censored Data

In this section, we describe our proposed method for generating predictive distributions by
combining the conformal predictive system procedure with the Kaplan-Meier estimator. In
Section 2.2, we provide a theoretical analysis of the proposed procedure, showing that we
expect it to generate valid, i.e., well-calibrated, predictive distributions for test objects with
unknown labels.

2.1. The proposed approach

Our approach for constructing a conformal predictive system for censored data is, at its
core, based on the split conformal predictive system introduced by Vovk et al. (2020);
specifically, we rely on the Mondrian version of split conformal predictive systems described
by Boström et al. (2021). For a detailed explanation of ordinary split conformal predictive
systems unsuitable for censored training data, we refer the reader to these earlier works.

To create a Mondrian split conformal predictive system that takes into account cen-
soring, we first assume that we are given two sets of information: a set of historical data
Z ⊂ Z, which contains an arbitrary number of observations for which the true target value
y is censored; and, a map e : Z → {0, 1} such that e(zi) = 1 exactly when zi ∈ Z is
an event, i.e., a non-censored observation. Given these two sets, we construct a Mondrian
conformal predictive system as follows:

1. The data set Z is divided into two disjoint subsets: a proper training set Zt and
a calibration set Zc, such that |Zc| = q. We denote Zc = {(x1, y1) , . . . , (xq, yq)}.
Analogously, we divide e into et and ec.

2. A predictive regression model h is trained on the proper training set Zt. It is worth
noting that this stage can voluntarily be restricted to the subset

{
zi ∈ Zt : e(zi) = 1

}
(or any other subset of Zt) without loss of validity.

3. The predictive model h is applied to the calibration set Zc, giving a set of predictions
Ŷ c = {ŷi = h(xi) : (xi, yi) ∈ Zc}. Without loss of generality, we can reorder the
elements of Ŷ meaning that ∀ŷa, ŷa+1 ∈ Ŷ c : ŷa ≤ ya+1. We analogously reorder ec to
maintain congruence with Ŷ c.

4. Ŷ c is divided into p << q equal-depth bins Ŷ c
κ1
, . . . , Ŷ c

κp
, where p is a user-specified

parameter. When p ∤ q, we let each of the first q mod p bins contain one addi-
tional element. It should be noted that order is preserved through this binning,
such that ∀ŷa ∈ Ŷ c

κn
: ∀ŷb ∈ Ŷ c

κn+1
: ŷa ≤ ŷb. The greatest elements τ1, . . . , τp−1 =

max(Ŷ c
κ1
), . . . ,max(Ŷ c

κp−1
) give the threshold values that determine the bin widths.

The set K = {κ1, . . . , κp} is the Mondrian category space, and we let the map
C : Z → K be the Mondrian categorization function that maps each object zi ∈ Z to
its appropriate category (bin) κm determined by the prediction h(xi) and the thresh-
old values τ1, . . . , τp−1.
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5. For each category κn, we use the Kaplan-Meier estimator to compute a survival func-
tion Sκn

Sκn(t) =

t∏
k=0

1−
∣∣{yj ∈ Y c

κn
: e(zj) = 1 ∧ yj = yk

}∣∣∣∣{yj ∈ Y c
κn

: yj ≥ yk
}∣∣+ 1

, (1)

where ∀yj ∈ Y c
κn

: yj > y0. Note that we are constructing the survival function over

the set of true labels Y c
κn

rather than the predicted labels Ŷ c
κn
. Here, the role of the

predicted labels Ŷ c
κn

is merely to determine the membership of the category κn.

When deciding the output for a test object xq+1, we first obtain the prediction ŷq+1 =
h(xq+1) and use that prediction to obtain the appropriate category κl = C(zq+1). Finally
the survival function Sκl

is output as the survival function of xq+1.

2.2. Theoretical analysis

As with any conformal prediction procedure, validity of a conformal predictive system means
that the p-values for the true target labels are uniformly distributed. Generally, such p-
values are computed based on a so-called nonconformity measure that is usually represented
by an error function on the predictions made by h. For conformal predictive systems, the
following nonconformity measure is a common choice:

αi =
yi − h(xi)

σi
, (2)

where σi is an estimate of the quality (difficulty) of the prediction.

Using this nonconformity measure, we can obtain a set of nonconformity scores for the

calibration set, i.e., A =
{

yj−h(xj)
σj

: (xj , yj) ∈ Zc
}

= {α1, . . . , αq}. Given a test object

xq+1, we can postulate a label ỹ, compute a nonconformity score αỹ
q+1 and finally compute

a p-value for the postulated label by:

pỹq+1 =

∣∣∣{αj ∈ A : αj > αỹ
q+1

}∣∣∣+ θ
∣∣∣{αj ∈ A : αj = αỹ

q+1

}∣∣∣+ 1

q + 1
, (3)

where θ ∼ U [0, 1] is used to uniformly randomly break ties. Importantly, pỹq+1 ∼ U [0, 1]

whenever ỹ = yq+1, allowing for an exact false rejection rate when pỹq+1 is used to reject the
hypothesized label ỹ.

In our construction of a Mondrian predictive system for censored data, the nonconfor-
mity measure is implicit. For each Mondrian category, we (again, implicitly) let h(xi) = 0
and σi = 1 for any xi, which means that the nonconformity measure becomes

αi = yi . (4)

We let h(xi) and σi be constant in order to avoid violating the assumption made by the
Kaplan-Meier estimator, i.e., the modeled survival-time variable (here α) and the censoring
time are generated independently. If we place no constraints on h and σ, then αi may no
longer be independent of the censoring time, even if independence holds with respect to yi.
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To see this, consider a model h that has been fitted using data with right-censored labels,
i.e., the labels are either true event times or censoring times. Due to the right-censoring,
true event times are less frequently observed for instances with low censoring times, and
consequently the model can be expected to more frequently underestimate the true target for
such instances. Hence, the residuals (yi−h(xi)) can in such a case be expected to correlate
with the censoring time. If the model on the other hand is trained using non-censored data
only, the absolute residuals for the true targets for censored data can be expected to be
larger, again leading to a possible correlation between the size of the residuals and censoring
time. However, even if a model is found such that the residuals indeed are independent of
the censoring time, there may still be a correlation between the latter and the difficulty
estimate, again leading to the assumption of independence being violated. Keeping both
h(xi) and σi constant is a rather crude way of avoiding the problem, at some obvious cost
of flexibility. We will later discuss relaxing these constraints.

Further, we somewhat loosen the requirement on the generated p-values, requiring them
to allow for conservative rather than exact false rejection rates. In effect, this means that we
expect to generate p-values p̄ỹq+1 such that p̄ỹq+1 ≥ pỹq+1. In an ordinary conformal predictive
system, this behavior can be enforced by simply not breaking ties, i.e.,

p̄ỹq+1 =

∣∣∣{αj ∈ A : αj ≥ αỹ
q+1

}∣∣∣+ 1

q + 1
. (5)

Our main goal, then, is to illustrate how we are able to transform this conservative p-
value generating method into a still-valid procedure that uses the Kaplan-Meier estimator.
Specifically, we show that the p-values generated by our proposed procedure are bounded
from below by a process generating uniformly distributed p-values, resulting in conservative
validity. As a first step, we simply flip the sign of the comparison in the numerator and
restate the p-value generating function as

p̄ỹq+1 = 1−

∣∣∣{αj ∈ A : αj < αỹ
q+1

}∣∣∣
q + 1

. (6)

We note that the numerator becomes the rank of the test object’s nonconformity score αỹ
q+1

given the set of nonconformity scores A+ = A ∪ {αỹ
q+1}, and the quotient represents the

probability P (A ≤ αj). If we ensure that the calibration scores in A are ordered such that
α1, . . . , αn, we can refactor this expression further by first evaluating the probability mass
of each calibration score αk ∈ A and subsequently computing the cumulative probability of
terms with a rank lower than the test object’s nonconformity score. Thus, we can compute
the p-value as

p̄ỹq+1 =

π(αỹ
q+1,A

+)∏
k=0

1− |{αj ∈ A : αj = αk}|
|{αj ∈ A : αj ≥ αk}|+ 1

, (7)

where ∀αj ∈ A : αj > α0 and π(αỹ
q+1, A

+) is the rank of αỹ
q+1 relative to A+. This produces,

for each test object, a p-value identical to that given by Equation (6). It is worth noting that
the numerator of the fraction is always at least 1 and, in the case where all calibration scores
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are unique, the numerator is always exactly 1. Finally, in order to obtain the Kaplan-Meier
estimator, we simply adjust the numerator of the fraction as

p̄ỹq+1 =

π(αỹ
q+1,A

+)∏
k=0

1− |{αj ∈ A : e(zj) = 1 ∧ αj = αk}|
|{αj ∈ A : αj ≥ αk}|+ 1

, (8)

where, again, ∀αj ∈ A : αj > α0 and π(αỹ
q+1, A

+) is the rank of αỹ
q+1. Put in terms

commonly used to describe the Kaplan-Meier estimator, the numerator is the number of
(non-censored) events that occur at time k and the denominator is the number of objects
at risk at time k.

Comparing Equations (7) and (8), we note that the latter is bounded from below by the
former; since {αj ∈ A : e(zj) = 1} ⊆ A, the quotient in Equation (8) is smaller than that
in Equation (7), resulting in the multiplied terms, and the final p-value, being larger. Since
the computed p-values can only grow, thus reducing the (true and false) rejection rate, a
conformal predictive system based on a Kaplan-Meier estimator constructed in this way
should be considered conservatively valid.

3. Empirical investigation

In this section, we empirically investigate the predictive distributions output by the pro-
posed adaptation of Mondrian predictive systems as well as by a selection of approaches for
survival analysis; the standard Kaplan-Meier estimator, random survival forests, and cen-
sored quantile regression forests. We first describe the experimental setup and then present
the experimental results.

3.1. Experimental setup

In order to investigate whether the predictive distributions are well-calibrated or not, we
need to have access to the true target labels, which by definition, is not the case for real-
world censored data. We opt for using a real-world dataset and introducing censoring
synthetically to allow for such an investigation. The learning algorithms will have access
to the true target labels only for non-censored data during training as usual but will be
requested to provide p-values for the true target labels for the test set. In principle, any
regression dataset could be used for this purpose, but we will here consider a publicly
available survival dataset concerning the relationship between serum free light chain (FLC)
and mortality.1

The FLC dataset consists of 7874 instances and the following eight features, which
will be used for predicting time-to-event (time to death); age, sex, the calendar year in
which a blood sample was obtained, kappa portion of the FLC, lambda portion of the FLC,
the FLC group for the subject, serum creatinine, and if the subject had been diagnosed
with monoclonal gammopathy. Missing values for the creatinine level have been replaced
by the mean of the non-missing values. Days from enrollment will here be used as the

1. For details about the origin of the dataset, see https://stat.ethz.ch/R-manual/R-devel/library/

survival/html/flchain.html. For this study, the dataset was obtained via the Python package SurvSet
(Drysdale, 2022).
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target, independently of whether the event took place or not, and synthetic censoring times
are obtained by randomly permuting these targets, resulting in approximately half of the
observations being censored, i.e., the target is less than the censoring time.

It should be stressed that for the purpose of this investigation, the original censored
data cannot be directly used, as it will not allow for determining if the p-values for true
target labels are uniformly distributed or not. In the original dataset, we only have access
to the true labels for a subset of the test instances, and since this subset cannot be assumed
to be randomly selected, we should not expect the p-values to be uniformly distributed
for this group. The experiment will provide an illustration that the p-values for the true
labels may indeed be distributed differently for the censored and non-censored observations,
respectively.

We will also investigate a scenario where we want to make time-to-event predictions
with confidence; we request each model to provide a time point, such that an event will not
occur before that with high probability. This could be relevant in situations where we need
to take some action before an adverse event occurs, e.g., undertake maintenance before a
machine breaks. We will consider three confidence levels; 90%, 95% and 99%, respectively,
and we report the mean and median time points as well as the error rates, i.e., the relative
frequency of events occurring before the output time point. Ideally, a model should output
as late time points as possible, e.g., to not constrain a scheduler or request components to
be changed earlier than necessary, while at the same time making sure that the error rate
does not exceed what is allowed by the specified confidence level.

In addition to presenting results from data with synthetic censoring, we will also report
results for the original (non-synthetic) censored labels, i.e., where only the event or the
censoring time is known for each instance, according to what is indicated for the original
FLC dataset. As discussed above, there is no point in investigating the distribution of
p-values in this case, since the true labels are not known for all test instances, but instead,
we compare the models with respect to the ranking performance, as measured by Harrell’s
concordance index (C-index) (Harrell et al., 1982).

In the experiment, the FLC dataset is randomly split into two parts; 75% for training
and 25% for testing.

We will compare the following approaches:

• The Kaplan-Meier estimator (KME) (Kaplan and Meier, 1958); no hyperparameters

• Random Survival Forests (RSF)2 (Ishwaran et al., 2008); default settings for all hy-
perparameters except for n_estimators = 500

• Censored Quantile Regression Forests (QRF)3 (Li and Bradic, 2020); default settings
for the individual regression trees, n_estimators = 500 and k = 200 (no. of neigh-
bors)

• The proposed approach, employing Conformal Predictive Systems (CPS)4; the un-
derlying model is a RandomForestRegressor generated with default settings for all

2. As implemented in the Python package sksurv (Pölsterl, 2020).
3. Using a re-implementation of quantile regression forests (Meinshausen and Ridgeway, 2006) using

DecisionTreeRegressor of the Python package sklearn (Pedregosa et al., 2011).
4. Implemented using the Python package crepes (Boström, 2022).
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a) Kaplan-Meier Estimator b) Random Survival Forest

c) Quantile Regression Forest d) Conformal Predictive System

Figure 1: Cumulative distributions for 50 test instances

hyperparameters except for n_estimators = 500, the training set is randomly split
into a proper training set and a calibration set of equal size, Mondrian categories are
formed by binning predictions for the calibration set into 25 bins.

3.2. Experimental results

We start out by illustrating the predictive distributions produced by the different ap-
proaches; in Fig. 1, we show the distributions output by each approach for the same 50
random test instances. As can be seen in Fig. 1a, the Kaplan-Meier estimator outputs
the same distribution for all test instances. The shape of the distributions produced by
the censored quantile regression forest, displayed in Fig. 1c, are more similar to the former
than to the distributions output by the random survival forest (Fig. 1b) and the Mondrian
conformal predictive system (Fig. 1d). Note that the latter will only output up to 25 unique
predictive distributions; one for each Mondrian category.

In Fig. 2, histograms for the output p-values for the true target labels for the test
instances are presented. The red dashed line in each plot shows the expected number of
observations in each bin if the p-values are uniformly distributed. The most striking pattern
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a) Kaplan-Meier Estimator b) Random Survival Forest

c) Quantile Regression Forest d) Conformal Predictive System

Figure 2: Distribution of p-values

here is that the p-values output by the random survival forest (Fig. 2b) are clearly not
uniform; far too many low p-values are output. Also, the p-values output by the censored
quantile regression forest (Fig. 2b) exhibit a pattern; the more frequent p-values are located
between 0.4 and 0.6.

Another view of the p-value distributions is given in Fig. 3, where cumulative distri-
butions instead are presented. The red dashed line in each plot again shows what should
be expected from a uniform distribution. It is clear that the p-values output by the ran-
dom survival forest and censored quantile regression forest (Fig. 2b and c, respectively) are
non-uniform. In contrast, when inspecting the graphs in Fig. 2a and d, both the Kaplan-
Meier estimator and the proposed approach appear to be valid, i.e., they produce uniformly
distributed p-values for the true target labels.

To provide more quantitative support for the above conclusions, we applied the Kolmogorov-
Smirnov test to each set of p-values, with the null hypothesis that they come from a uniform
distribution. As can be seen in the last column of Table 1, we can safely reject the null
hypotheses for the random survival forests and censored quantile regression forests (the
corresponding p-values are underlined in the table), while this cannot be done for the two
other approaches, for any reasonable level of confidence.
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a) Kaplan-Meier Estimator b) Random Survival Forest

c) Quantile Regression Forest d) Conformal Predictive System

Figure 3: Cumulative distribution of p-values

Fig. 4 illustrates that a uniform distribution of p-values for the true targets does not nec-
essarily imply that the p-values are uniformly distributed for the censored and non-censored
instances, respectively. In Fig. 4a, the p-values for the true targets of the non-censored
instances are shown for the Kaplan-Meier estimator, indicating that the non-censored in-
stances generally receive lower p-values as compared to the censored test instances (Fig. 4b).

In the second and third columns of Table 1, the training and testing (inference) times
(in seconds) are shown for the different approaches.5 These results indicate that the compu-
tational cost can be quite substantial for the random survival forests even for limited-sized
datasets, in contrast to the other approaches.

The results for time-to-event prediction with confidence are shown in Tables 2a-c. We
can see that although the random survival forest provides the least constraining time points
(indicated with bold font), which is desirable, the error rates are clearly higher than what
is requested (an error rate exceeding the specified rate with more than 10% is indicated
by an underlined value in the tables). The error rates of the other three methods are

5. The experiment was executed on an HP Z-book 15, with an i9-11950H CPU (8 cores) and 32 GiB primary
memory, running Ubuntu 22.04.
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Training time Testing time KS-test

KME 0.00 0.02 7.70e-01
RSF 43.37 4.49 6.95e-174
QRF 1.39 0.82 2.33e-09
CPS 0.56 0.07 3.06e-01

Table 1: Run times (seconds) and p-values from testing uniformity with the KS-test

a) Non-censored instances b) Censored instances

Figure 4: Cumulative distribution of p-values for the Kaplan-Meier Estimator

more reasonable, with both the quantile regression forest and conformal predictive systems
being slightly conservative; they result in slightly fewer errors than allowed. Of the three
approaches with acceptable error rates, CPS is outperforming the other two for all three
confidence levels in terms of the least constraining output time point on average.

We have also investigated using the original (censored) labels for the dataset, with all
other settings, including how the dataset is split into training and test sets, being the same as
in the previous experiment. In Table 3, we show Harrell’s concordance index (the C-index)
for all approaches on the test set. This is a measure of the ranking performance, considering
all comparable pairs in the test set which are correctly ordered with respect to the expected
time-to-event, as estimated by each approach. Since KME predicts the same expected
time-to-event for all instances, the corresponding C-index is no better than random. We
can see that there is a clear order in performance with respect to this metric, with random
survival forests excelling before CPS and QRF. In addition, the table also shows the average
predicted time-to-event for all methods, as well as the computation time for the modified
training and test sets. Most notable here is that the training time for the random survival
forests is substantially reduced, which can be explained by the changed censoring rate;
about 72% of the instances are censored with the original censoring, compared to about
50% for the synthetic censoring.
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Error Mean time point Median time point

KME 0.0153 48.0 48
RSF 0.0390 402.0 186
QRF 0.0039 12.3 5
CPS 0.0094 78.6 14

a) 99% confidence

Error Mean time point Median time point

KME 0.0523 487.0 487
RSF 0.0676 1344.6 1110
QRF 0.0444 510.5 461
CPS 0.0449 710.9 532

b) 95% confidence

Error Mean time point Median time point

KME 0.1027 1195.0 1195
RSF 0.1362 2318.3 2165
QRF 0.0893 1352.8 1370
CPS 0.0977 1621.7 1764

c) 90% confidence

Table 2: Empirical error rates, mean and median time points for three confidence levels

C-index Mean TTE Median TTE Training time Testing time

KME 0.5000 4998.0 4998 0.00 0.00
RSF 0.7234 4554.6 4998 36.58 2.83
QRF 0.5804 4655.4 4715 1.38 0.56
CPS 0.6379 4241.7 4486 0.58 0.05

Table 3: Results for non-synthetic censoring
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4. Concluding remarks

We have presented a procedure for constructing Mondrian predictive systems that are able
to produce well-calibrated cumulative distribution functions for right-censored time-to-event
prediction tasks, by forming a Kaplan-Meier estimator for each Mondrian category. We have
shown that the proposed procedure is guaranteed to produce conservatively valid predictive
distributions, and have also provided empirical support for this using simulated censoring
on benchmark data. The empirical investigation showed that two established techniques
for survival analysis, random survival forests, and censored quantile regression forests, do
not share this property, making the former exceed specified error levels for quantile time-
to-event prediction, and the latter producing overly conservative predictions, in contrast to
the proposed approach.

There are several possible directions for future work. The most obvious and important
direction concerns relaxing the constraints of the proposed approach, i.e., the prediction
and the difficulty estimate within each Mondrian category are set to be constant. These
constraints effectively lead to that the resulting Mondrian predictive system can be de-
fined by a set of Kaplan-Meier estimators. Research in this direction includes investigating
conditions under which an informative difficulty estimate can be employed while still pro-
ducing well-calibrated predictive distributions. Another direction for future research is to
investigate the use of conformal predictive systems in real-world scenarios where censored
data is frequently occurring, e.g., to support maintenance planning based on well-calibrated
predictions of time-to-event.
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