
Proceedings of Machine Learning Research 204:1–11, 2023 Conformal and Probabilistic Prediction with Applications

Market Implied Conformal Volatility Intervals

Alejandro Canete acanete@uchicago.edu

Data Science Institute, University of Chicago, Chicago, IL, USA

Editor: Harris Papadopoulos, Khuong An Nguyen, Henrik Boström and Lars Carlsson

Abstract

Volatility is a fundamental input for pricing and risk management of financial instruments.
In the following work we propose an algorithm to estimate the market implied uncertainty
of future realized volatility. Our method interprets the market implied volatility as a
point prediction of future realized volatility and applies online conformal prediction to
estimate the uncertainty of this prediction. We analyze rolling coverage and width of
several nonconformity scores over 15 years of daily data. The results suggest that conformal
prediction can be used to infer market implied prediction intervals for realized volatility.
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1. Introduction

Volatility as a measure of uncertainty and variability of the returns of financial assets is an
active area of resarch in financial mathematics and econometrics (McAleer and Medeiros,
2008; Poon and Granger, 2003; Bhowmik and Wang, 2020), and a foundational concept for
practitioners (Bennett and Gil, 2012; Sebastian and Taylor, 2022). One common way to
model financial returns has the form:

dPt
Pt

= µt + σtdBt, (1)

where Pt is the price of the asset at time t, µt represents the drift, Bt is a standard Brownian
motion and σt is the instantaneous volatility, which is unobservable. The historical volatility
(Ederington and Guan, 2006) can be estimated given an historical sample of returns.

The realized volatility is a class of estimators that use intraday data (McAleer and
Medeiros, 2008; Gatheral and Oomen, 2010) or a small sample of daily data (Sebastian and
Taylor, 2022) to infer the instantaneous volatility of a particular trading day.

Forecasting future historical volatility is fundamental for practitioners since the pricing
of expected risk exposure is done in a forward looking way (Bennett and Gil, 2012). The
forecast of one day ahead realized volatility is particularly relevant now that the volume
share of options that expire on the same day has grown from less than 5% in 2016 to more
than 40% by the end of 2022 (Brogaard et al., 2023; Beckmeyer et al., 2023).

The implied volatility, is the input volatility that matches the Black-Scholes theoretical
price of a European financial option with its market counterpart (Hagan et al., 2002; Ste-
fanica and Radoičić, 2017; Gatheral, 2011). The relationship between implied volatility and
realized volatility has been studied from different angles and approaches (Christensen and
Prabhala, 1998; Liang et al., 2020; Gatheral, 2008). In this study we use conformal pre-
diction (Vovk et al., 2005; Fontana et al., 2023; Angelopoulos and Bates, 2021) as another
approach to study its relationship.
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2. Methodology

The proposed approach builds online one day ahead realized volatility prediction intervals
based on the previous day’s implied volatility. Proxies for realized and implied volatility were
used. Normalizers based on historical statistics and implied by the market were evaluated
within a conformal forecasting setting.

2.1. Volatility Proxies

Following the approach in (Aı̈t-Sahalia and Kimmel, 2007) we use the VIX volatility index
(Whaley, 2009) as a proxy for the implied volatility σ:

σt ∼ V IXt, (2)

we use the SPDR S&P 500 Exchange-Traded Fund (SPY ETF) as a proxy for the S&P
500 index (Guo et al., 2021), and we use the Garman-Klass Yang-Zhang extension formula
(Fa ldziński and Osińska, 2016), with N = 1, as a proxy of the realized volatility for a single
day:
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where Ot, Ht, Lt, Ct are the open, highest, lowest and close market prices for a given trading
day t.

2.2. Base Prediction Model

The VIX is considered a biased (and inefficient) estimator of future volatility (Bennett and
Gil, 2012) so as in (Christensen and Prabhala, 1998) we build a simple point forecast based
on VIX:

ĥt+1 = ft(VIXt) = at−1VIXt + bt−1, (4)

where at−1 and bt−1 are updated on-line using exponential moving average regression as in
(Loveless et al., 2013).

2.3. Data

We will be working with daily end-of-day data from https://finance.yahoo.com/ for the
VIX values and SPY prices and with daily end-of-day data from https://www.cboe.com/

for values of the SKEW and VVIX indices (Hung et al., 2022). The full sample consist of
4223 days starting on 2006/03/15 and ending on 2023/03/17.

2.4. Online Conformal Prediction Approach

We will be using the ACI framework of (Gibbs and Candes, 2021) with some ideas from
(Barber et al., 2022) to build a prediction interval Ct(α) for trading day t. We will assume
the trader has a target level of coverage α ∈ (0, 1), such that ht belongs to Ĉαt at least
100(1 − α)% of the time. The ACI framework continuosly adjusts αt (and thus how the
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empirical quantile is computed) to account for distributional drift so that in the long run
the algorithm can attain the target coverage. The proposed framework entails making the
following decisions:

Decision 1 Choose a one day ahead realized volatility prediction ĥt−1 and a mea-
sure of uncertainty ut−1 ∈ R+ that can be known before the market
opens, then define a normalized nonconformity score based on this
measure of uncertainty, st = S(ĥt−1, ht, ut−1). This is motivated by
the fact that volatility clusters in time and thus non-conformity score
normalized by an uncertainty measure (coming directly from the mar-
ket) should make the conditional coverage level closer to the target
one. This was corroborated by our experiments.

Decision 2 Choose a weighting scheme to define an historical sample of scores
St = {(wτ , sτ )}tτ=1, then choose a method to build a prediction interval
based on the weighted empirical quantiles of the historical normalized
nonconformity scores. Weighted samples allow the trader to encode
prior beliefs of the relative frequency of certain market conditions.

Decision 3 Choose a coverage loss lt = L(ht, Ĉt(αt−1), α) and a learning rate γ.
Once the realized volatility is known (after the market closes), update
the target confidence rate as: αt := αt−1+γlt. This is the ACI update
step. This provides the coverage guarantees of the proposed approach.

Since volatility is non negative, we used a normalized nonconformity score in log space

st =
| log(ht)− log(ĥt−1)|

ut−1
. (5)

Similarly as proposed in (Barber et al., 2022) we use weighted quantiles. We use an expo-
nentially decayinig weighting scheme by making:

wi := (1− k)t−i, ∀i ≤ t, (6)

This way we give more importance to recent history while still retaining (in the sample and
thus in the quantiles) tail events that happened a relatively long time ago (e.g. the pasts
financial crisis). We define the prediction intervals as:

Ĉt(αt−1) = exp

{
log ft−1 (VIXt−1)±Q1−αt−1/2

(∑t−1
i=1 wiδsi∑t−1
i=1 wi

)
ut

}
, (7)

Where Qτ (·) denotes the τ -quantile of its argument, and δa denotes the point mass at a.
Once the realized volatility ht is revealed, (once the market closes), we update αt using

the ACI update step by making lt := α−errt, where errt := I
{
ht ∈ Ĉt(αt−1)

}
and I {X} ∈

{0, 1} is the indicator function.
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3. Experiments

We evaluate the following non conformity scores defined by the uncertainty measure ut used
to normalize the base non conformity score.

BASE No normalization, i.e. ut = 1.

VIX The VIX index measures the market’s expectations of future volatility
and was used in a similar way in (Gibbs and Candes, 2021).

VVIX The VVIX index measures of the volatility of the VIX (Park, 2015).

SKEW The SKEW index measures the potential downside risk in financial
markets (Bevilacqua and Tunaru, 2021).

STD-VIX The empirical exponentially weighted standard deviation of VIX.

STD-RV The empirical exponentially weighted standard deviation of the realized
volatility (ht).

For details on how VIX, VVIX and SKEW are defined and use in practice please refer
to https://www.cboe.com/indices/.

Similarly, as in (Bhatnagar et al., 2023), for all experiments we report 100 times the
average of:

Width {widtht = maxCt(αt−1)−minCt(αt−1)},

Coverage
{

1− 1
252

∑t
τ=t−251 errτ : t > 252

}
,

Error
{

max[t−251,t]

∣∣α− 1
252

∑t
τ=t−251 errτ

∣∣ : t > 252
}

,

All exponential memory parameters (for weights, the exponetial regression and exponen-
tial standard deviation of VIX) were set at 125 days (i.e., k = 2.0/(125 + 1))) the learning
parameter γ was set equal to 0.2.

Table 1 contains the metrics of the experiments with α = 0.1, while Table 2 contains
the metrics of the experiments with α = 0.2. The mean absolute error (MAE) across all
experiments was 5.107. The coverage is not materially different across different scores. The
BASE, SKEW and VVIX scores have the lowest error around 1 point, while the VIX, STD-
VIX and STD-H have materially higher errors (1.5X to 2.0X). Similarly the width of BASE,
SKEW and VVIX is at most half the width of the other evaluated scores. The score that
performs the best across width, coverage and error is the one based on SKEW, an example
of how the prediction intervals looked like during the first half of 2020 are presented in
Figure 1. All of the experiments were also conducted with a simple base forecasting model
based on the previous day’s realized volatility (ĥt = ft−1 (ht−1)). All of the metrics were
virtually the same, with the exception of MAE, wich was slightly higher at 5.68.

We believe that SKEW outperformed the other evaluated normalizers because it cap-
tures downside risk premimum (Bevilacqua and Tunaru, 2021), and thus the tails of the
normalized non-conformity scores population would be thinner and thus the finite sample
empirical estimates of the quantiles would be more accurate. This was partly corroborated
by the fact that the excess kurtosis of the normalized non-conformity scores was the lowest
for the ones normalized via SKEW. This needs further investigation.
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Table 1: Results using ĥt = ft−1(VIXt−1) and α = 0.1

Score Width Coverage Error

BASE 29.993 89.853 1.224
SKEW 29.570 89.870 1.095
VVIX 31.077 89.824 1.285
VIX 77.093 89.643 2.073
STD-VIX 2224.840 89.338 2.329
STD-H 338.144 89.604 2.040

Table 2: Results using ĥt = ft−1(VIXt−1) and α = 0.2

Score Width Coverage Error

BASE 22.187 79.811 1.340
SKEW 22.024 79.813 1.314
VVIX 23.168 79.775 1.484
VIX 28.538 79.586 2.035
STD-VIX 50.139 79.554 2.093
STD-H 73.859 79.643 1.992
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Figure 1: Prediction intervals with α = 0.2 during the first half of 2020
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3.1. Competitive Base Prediction Models

We rerun the experiments using the nonconformity score based on SKEW, but with two
competitive base forecasters (both of them based on historical returns), NoVaS (Chen and
Politis, 2020) and HAR (Clements and Preve, 2021). Note that for both of these approaches
outperformance over GARCH(1,1) has been reported in several works (Chen and Politis,
2020; Vortelinos, 2017). We also evaluate a HAR model with VIX added as a factor, we will
refer to this approach as HAR-VIX. For completeness, we also evaluated a NoVaS approach
that uses VIX (for the studentization), we will refer to this approach as NoVaS-VIX. Details
of these methods are found in appendix A. The results for α = 0.1 and α = 0.2 are presented
in Tables 3 and 4, respectively. The MAE for HAR was 5.32, while the MAE for NoVaS
was 6.04, and the MAE for HAR-VIX was 5.224. Across all of these models the coverage
and error are fairly consistent and not materially different. HAR-VIX is the model with
the smallest width among all of the evaluated approaches.

Table 3: Competitive base prediction models using SKEW based nonconformity score and
α = 0.1

Model Width Coverage Error

HAR 28.248 89.708 1.405
HAR-VIX 26.053 89.849 1.281
NoVaS 32.012 89.797 1.489
NoVaS-VIX 45.813 89.718 1.600

Table 4: Competitive base prediction models using SKEW based nonconformity score and
α = 0.2

Model Width Coverage Error

HAR 21.626 79.740 1.354
HAR-VIX 20.181 79.759 1.316
NoVaS 23.814 79.619 1.591
NoVaS-VIX 35.345 79.766 1.569

4. Related Work

In (Chen and Politis, 2020) a fully non-parametric realized volatility prediction interval
method is proposed. The base forecaster is NoVaS (Politis and Thomakos, 2013) which has a
fully online setting version and the prediction intervals are built using sequential bootstrap.
The coverage of the intervals or the effect of other market measures of uncertainty (like
SKEW and VVIX) are not covered.
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The conditional realized volatility forecasting capability of VVIX and SKEW were stud-
ied in (Hung et al., 2022) in a parametric setting concluding that VVIX was informative
while SKEW was not. Coverage of prediction intervals were also analyzed in the context of
parametric VaR models.

5. Conclusions and Future Work

In the present work we used the ACI framework (Gibbs and Candes, 2021) with an expo-
nentially decaying weighting scheme (Barber et al., 2022) to build market implied realized
volatility predictive intervals. Several simple (and competitive) base prediction models were
evaluated and several empirical and market based measures of uncertainty were used to de-
fine different nonconformity scores. The ACI framework performs consistently in terms of
coverage regardless of the based predictor used. The discriminant factor across all evaluated
approaches became the average width of the generated intervals. SKEW as an uncertainty
measure within normalized nonconformity scores outperformed (in terms of coverage and
width) the other evaluated measures. For the competitive base predictors used (NoVaS and
HAR) the addition of VIX was always beneficial. Across all of the evaluated approaches
HAR-VIX with SKEW nonconformity score was the highest performer.

5.1. Future Work

A direct comparison with coverage and width in mind of (Politis and Thomakos, 2013) and
(Hung et al., 2022) is outstanding. Rerunning this study with FACI (Gibbs and Candès,
2022) and SAOCP (Bhatnagar et al., 2023) is also outstanding. Including Analysis of the
potential uses of widtht as a factor in certain modeling tasks like in Hung et al. (2022) for
SKEW could open interesting research directions. Replicating the study using a structural
simulation approach like in (Cont and Vuletić, 2022) could help understand the limitations
and scope of the presented approach. Using option prices directly, like in (Taylor et al.,
2010), could potentially allow us to define more targeted nonconformity measures. Finally
using intraday data would allow us to use more sophisticated base predictors like (Moreno-
Pino and Zohren, 2022) and better volatility proxies (Christensen et al., 2010).
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Appendix A. Base Competitive Prediction Models

A.1. NoVaS Methodology

The NoVaS methodology (Politis and Thomakos, 2013) attempts to map a financial return
time series to a sample from a Gaussian stationary series, to achieve this at each step the
method finds the memory m that minimizes the excess kurtosis of studentized returns zt:

zt(m) =
rt

Ft(m)
, for t > m, (8)

where Ft(m) =
√∑m

i=0 air
2
t−i and ai = 1/(m + 1). The empirical kurtosis to minimize is

defined as:

KURTt(z) =
n−1

∑t
i=t−n+1 (zt − z̄)4(

n−1
∑t

i=t−n+1 (zt − z̄)2
)2 , (9)

each day m∗ is chosen as:

m∗
t = argminm|KURTt(zt(m))− 3|, (10)

we use Ft(m
∗
t ) as the volatility forecast for t+ 1. For all experiments we used n = 252. For

NoVaS-VIX we used the following studentization factor:

FVIX
t (m) =

√√√√ m∑
i=0

aift−i(VIXt−i)2, (11)

where ft is defined as in Equation 4.

A.2. HAR Methodology

The Heterogeneus Autoregressive Model (HAR) is a competitive and popular model for
Realized Volatitlity forecasting (Clements and Preve, 2021) defined as:

RVt = β0 + β1RVt−1 + β2RV
(5)
t−1 + β3RV

(22)
t−1 + εt, (12)

where RVt is the realized variance of day t, εt ∼ N (0, η) and,

RV
(j)
t =

1

j

j−1∑
n=0

RVt−n, (13)
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in our experiments we replaced RVt with h2t and the β parameters were estimated by a
rolling one year regression via ordinary least squares (OLS). The HAR-VIX model was
specified by adding the previous day’s VIX as a factor to the original HAR definition as:

RVt = β0 + β1RVt−1 + β2RV
(5)
t−1 + β3RV

(22)
t−1 + β4VIX2

t−1 + εt. (14)
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