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Abstract

Conformal prediction (CP) is an attractive theoretical framework for estimating the un-
certainties of any predictive algorithms as its methodology is general and systematic with
few assumptions. CP methods can be abstracted into building blocks that can be deployed
on any type of data, model, or task. In this work, we contribute to the wide diffusion
of the CP framework by developing the library MAPIE1 that implements such principles
and can address seamlessly different tasks (e.g. classification, regression, time-series) and
in different settings (split and cross-conformal). All these concepts are under a common
umbrella with an emphasis on readability, transparency, and reliability, hence supporting
the principles of trustworthy AI. An original feature of MAPIE is to offer the possibil-
ity of designing tailored-made non-conformity scores in particular p-normalized residual
non-conformal scores that can be defined to account for asymmetric errors. We show
theoretically the marginal coverage guarantee in several settings. We highlight through
applications the interest of choosing different non-conformity scores for tabular data when
considering local coverage.

Keywords: conformal prediction, uncertainty quantification, open-source library, non-
conformity score, homoscedasticity, heteroscedasticity

1. Introduction

Quantifying the uncertainties of ML model predictions is of crucial importance for devel-
oping and deploying reliable artificial intelligence (AI) systems. Uncertainty quantification
(UQ) involves all the stakeholders who develop and use AI models. First, UQ allows the
designers of AI systems to better understand the predictive power of their model and assess
the validity of the model predictions on new data points. Second, UQ allows AI opera-
tors, such as business stakeholders, to optimize the risk management when making business
decisions based on AI system predictions. Third, UQ helps AI regulators to assess the com-
pliance of the AI system with the regulation in force. Fourth, UQ allows the AI systems to
be more transparent and trustworthy for people impacted by the decisions made from AI.

1. https://github.com/scikit-learn-contrib/MAPIE/
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There is therefore a strong need for libraries of uncertainty quantification that respect
three fundamental pillars. First, implemented methods have to be model and use case
agnostic in order to address all relevant use cases tackled in industry, such as natural
language processing, time series, or computer vision, using state-of-the-art ML models, like
neural networks or gradient boosting models. Second, methods must have strong theoretical
guarantees at least on the marginal coverage (and possibly on the conditional coverage) of
the estimated uncertainties with as little assumption on the data or the model as possible.
This ensures AI system designers, operators, and regulators to be confident about the
predictions provided by the models. Third, libraries need to be open-source and respect
state-of-the-art programming standards to develop trustworthy AI systems.

Resampling or undersampling methods have been used for a few decades to estimate
the robustness of predictions (Quenouille, 1956; Efron, 1979). Among other, bootstrap is
probably the most commonly used methods since it is easy to implement and allow the user
to easily obtain confidence intervals associated with the predictions. However, the standard
jackknife technique suffers from instabilities in some cases and can be unusable on practical
use cases when the number of training data samples is high.

Although modern resampling techniques have been implemented in recent R packages
(Tibshirani, 2022), they are only recently implemented in Python and remain outside the
standard scikit-learn framework (Pedregosa et al., 2011). Some scikit-learn regressors allow
the users to estimate confidence intervals associated with the model predictions but they are
either simple regressors, such as the Bayesian Ridge model, or based on quantile regression
for gradient boosting. IBM’s UQ360 (Ghosh et al., 2021) and nonconformist (Linusson,
2022) libraries are noteworthy as they aim at incorporating several complementary UQ
methods. More recently, Fortuna library (Detommaso et al., 2023) provides calibration and
conformal methods following the model of the MAPIE library.

Since 2021, we are developing the MAPIE (Model Agnostic Prediction Interval Esti-
mator) library in order to address the three aforementioned pillars (Taquet et al., 2022)2.
MAPIE is an open-source Python library hosted on scikit-learn-contrib. It follows the
scikit-learn guidelines; the only technical requirement is to have a scikit-learn API and
accepts base scikit-learn-compatible estimators. Importantly, MAPIE implements confor-
mal prediction methods for regression and classification settings and is therefore model
and use case agnostic. Conformal prediction methods allow MAPIE to have mathematical
guarantees on the marginal coverages on the prediction intervals.

In this paper, we provide an overview of the MAPIE library, the theoretical framework,
and the practical implementation of conformal prediction methods through a wide variety
of applications ranging from regression to classification. In particular, we show theoreti-
cal guarantees for cross-conformal methods based on more general non-conformity scores
build upon the work of Foygel Barber et al. (2021). Section 2 presents a overview of con-
formal prediction methods including those implemented in MAPIE. Section 3 is devoted
to extending the marginal coverage to a larger number of non-conformity scores. Section
4 presents those that have been implemented in MAPIE. Section 5 describes MAPIE in
practice by listing the main input parameters and how to use them. Section 6 presents
illustrative examples. Section 7 concludes with our perspectives.

2. The current work is an extension of the DFUQ workshop paper (ICML) with significant and original
new materials.
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2. A general framework of conformal predictions

One of the important contributions of MAPIE is to implement the state-of-the-art con-
formal prediction methods for regression and classification settings which makes it model
agnostic. Before describing these methods, we briefly present the mathematical framework
of conformal prediction.

Let assume that you have a training dataset (X,Y ) = {(x1, y1), . . . , (xn, yn)} under
an unknown distribution PX,Y with data-exchangeability assumption. We assume that
Y = µ(X) + ϵ where µ is the predictor that is classically estimated by ML models, and
ϵi ∼ PY |X is the noise. For any risk level α ∈ (0; 1), we aim at constructing a prediction

interval or a prediction set Ĉn,α(Xn+1) for a new observation (Xn+1, Yn+1) such that:

1− α ≤ P{Yn+1 ∈ Ĉn,α(Xn+1)} ≤ 1− α+
1

n+ 1
(1)

In words, for a typical risk level α of 10%, we want to construct prediction sets that
contain the true target value for almost exactly 90% of the new test data points under the
assumption of exchangeability. This property is known as marginal coverage.

To achieve this objective, MAPIE proposes two different approaches depending on
whether one wants to calibrate an existing model or to use resampling methods to esti-
mate the prediction set. We will present them starting with the split-conformal prediction
method, then focusing on the cross-conformal prediction methods. Finally, we consider the
case where the exchangeability assumption is not respected.

2.1. Split-conformal prediction methods

If one wants to calibrate an existing model, the split-conformal prediction methods, also
known as inductive conformal prediction, is the best approach to achieve marginal coverage
(Papadopoulos et al., 2002; Lei et al., 2018). The construction of the conformal predictions
can be divided into two steps, first the training of the model, then the computation of
the non-conformity scores on the calibration data to compute the predictions sets. The
methodology is described in Algorithm 1.

Split-conformal prediction is an attractive technique due to its computational efficiency,
requiring the model to be fitted only once. This last point is very important when it
comes to calibrating very large artificial neural networks for which the learning cost is not
negligible. One would prefer to use a pre-trained model and apply a split-conformal predic-
tion methodology. However, it incurs a statistical efficiency trade-off since it necessitates
splitting the data into training and calibration datasets. Another way to avoid giving up
on statistical efficiency would be to consider cross-conformal prediction which avoids data
splitting by using resampling methods.

2.2. Cross-conformal prediction methods

Cross conformal prediction methods are relevant solutions that use a reasonable number of
model fits, while using all data for both model fitting and calibration thanks to resampling
methods. They therefore benefit from a compromise between statistical and computational
efficiency. The general methodology is similar to that of the split-conformal prediction, but
with some subtleties as described in Algorithm 2.
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Algorithm 1: Split Conformal Prediction Method

• Let assume you have a model µ̂ trained on Dm = {(X1, Y1), ..., (Xm, Ym)} and a
calibration dataset Dn = {(X1, Y1), ..., (Xn, Yn)} composed of data which have not
been used during the training.

• Choose a non-conformity score function s(x, y) that quantifies how well an observation
x conforms with a target y. The higher the value, the more atypical the point.

• Compute the non-conformity scores on the calibration dataset Dn.

• Estimate q̂n,α the ⌈(n+1)(1−α)⌉
n quantile of the empirical non-conformity scores distri-

bution {s1 = s(X1, Y1), . . . , sn = s(Xn, Yn)} associated with the risk level α.

• Construct prediction intervals or prediction sets Ĉn,α(Xn+1) for new test points Xn+1

based on this quantile as follows: Ĉn,α(Xn+1) = {y : s(Xn+1, y) ≤ q̂n,α}

MAPIE has three state-of-the-art conformal prediction methods such as Jackknife+,
CV+ and Jackknife+-after-bootstrap. Here, we propose to briefly examine these differ-
ent state-of-the-art conformal prediction methods (we refer the reader to consult the Ap-
pendix A for more theoretical details).

Jackknife+ Presented by Foygel Barber et al. (2021), the Jackknife+ method is based on
the standard Jackknife, which constructs a set of leave-one-out models. Unlike the standard
Jackknife method which returns a prediction interval centered around the prediction of
the model trained on the entire dataset, the so-called Jackknife+ method also uses the
predictions from all leave-one-out models on the new test point to take the variability of
the predictive function into account.

CV+ In order to reduce the computational cost, one can adopt a cross-validation ap-
proach instead of a leave-one-out approach, with the so-called CV+ method. As pointed
out by Foygel Barber et al. (2021), Jackknife+ can be considered as a special case of CV+
with K = n. In practice, this method results in slightly wider prediction intervals and
is therefore likely more conservative, but gives a reasonable compromise for large datasets
when the Jackknife+ method is unfeasible.

Algorithm 2: Cross Conformal Prediction Method

• Let assume you have a dataset Dn = {(X1, Y1), ..., (Xn, Yn)} for both the training and
calibration steps.

• With respect to the chosen resampling method, fit the predictive models on the train-
ing subset and compute the non-conformity scores on the calibration subset.

4



Uncertainty Estimation with Conformal Prediction via the MAPIE library

Jackknife+-after-bootstrap An alternative way to reduce the computational cost is to
adopt a bootstrap approach instead of cross-validation, called the Jackknife+-after-bootstrap
method, offered by Kim et al. (2020). The latter can be considered as an alternative case
of CV+ where the resampling step is performed with replacement. It seems that this
method results in wider prediction intervals (the uncertainty is higher than CV+) because
the models’ prediction spread is higher.

2.3. Conformal methods without data-exchangeability assumption

The methods implemented in MAPIE assume that data are exchangeable. This hypothesis
is hardly reasonable for dynamical time series, thus requiring a specific method. The method
implemented in MAPIE is based on the algorithm Ensemble Batch Prediction Intervals
(EnbPI) (Xu and Xie, 2020). In this method, the assumption on data exchangeability is
replaced with assumptions on the residuals of the estimators (errors process and estimations
quality). Moreover, the coverage guaranty is not absolutely but approximately valid up to
these assumptions validity. The corresponding algorithm is very closed to Jackknife+-after-
bootstrap. It is notably based on bootstrapping (with a block bootstrap that suits to time
series). Furthermore, the non-conformity scores are updated during the prediction process.
So they can dynamically take into account, for example, an increase in the variance of the
residuals or a model deterioration.

3. Extension of the marginal coverage guarantee to a larger number of
non-conformity score functions

The original contribution of this paper that we have implemented inMAPIE is an extension
of the marginal coverage guarantee to a larger number of non-conformity scores. Indeed, for
the regression task, the computation of the non-conformity score was limited to the residuals.
We extend this property to a larger number of non-conformity scores by introducing the
concepts of perturbed prediction function and signed loss score function.

3.1. Marginal coverage with signed loss score functions

We consider as a signed loss score function f(ŷ, y), where ŷ = µ̂(x), any function that eval-
uate the positive non-conformity score (when ŷ is above y) or the negative non-conformity
score (when ŷ is below y). We assume that it is monotonically increasing on ŷ and mono-
tonically decreasing on y. In words, a target y is so considered atypical for a reference ŷ if
its absolute score value is high. The perturbed prediction function g(ŝ, ŷ) is the reciprocal
function that reconstructs the target y given the reference ŷ and the signed loss score ŝ such
that:

y = g(ŝ, ŷ) = g(f(ŷ, y), ŷ) or ŝ = f(ŷ, y) = f(ŷ, g(ŝ, ŷ)) (2)
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This formalisation allows us to define the prediction intervals Ĉn,α(Xn+1) for new test
points Xn+1 for which we have predicted the target µ̂(Xn+1) as follows:

Ĉn,α(Xn+1) = {y : q̂−n,α ≤ f(µ̂(Xn+1), y) ≤ q̂+n,α}
= {y : g(q̂−n,α, µ̂(Xn+1)) ≤ y ≤ g(q̂+n,α, µ̂(Xn+1)}
= {y : ŷ−n,α(Xn+1) ≤ y ≤ ŷ+n,α(Xn+1)}

(3)

where ŷ+n,α(Xn+1) and ŷ−n,α(Xn+1) are respectively the lower and upper bound of the
prediction interval with a risk level α. They can be reconstructed with the non-conformity
score quantiles q̂+n,α and q̂−n,α according to the perturbed prediction function g and µ̂(Xn+1).

We show that, for any conformal prediction method that satisfies marginal coverage
with residual non-conformity scores, this property holds for any signed loss score function
that can be reconstructed with a perturbed prediction function.

Theorem 1 (Global marginal coverage guarantee) We state that, for any signed
loss score function f(ŷ, y) monotonically increasing on ŷ and monotonically decreasing on
y (the higher the absolute value, the more atypical the point), for any conformal prediction
methods in Table 3.1, the prediction interval satisfies the marginal coverage:

P{Yn+1 ∈ Ĉn,α(Xn+1)} ≳ 1− α

We provide a comprehensive proof of several conformal prediction methods in Ap-
pendix C and summarize the main claims in Table 3.1.

Method Theoretical coverage Training cost Evaluation cost

Näıve No guarantee 1 ntest

Split ≥ 1− α 1 ntest

Jackknife No guarantee n ntest

Jackknife+ ≥ 1− 2α n n× ntest

Jackknife-minmax ≥ 1− α n n× ntest

CV No guarantee K ntest

CV+ ≥ 1− 2α K K × ntest

CV-minmax ≥ 1− α K K × ntest

Jackknife-aB+ ≥ 1− 2α K K × ntest

Jackknife-aB-minmax ≥ 1− α K K × ntest

Table 1: Theoretical marginal coverage and reminder of the training cost and the evalu-
ation cost for conformal prediction methods (Foygel Barber et al., 2021). These
properties remain valid for any signed loss score, as shown in Theorem 1. α is the
risk level, n and ntest the number of train and test data and K the number of fold
used in cross-validation and bootstrap.
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4. Implementation of state-of-the-art CP methods in MAPIE

4.1. Non-conformity scores for regression

Based on the previous statement, we have so far provided two non-conformity score functions
for the regression in MAPIE: the standard absolute residual non-conformity score and the
p-normalized residual non-conformity score.

Absolute residual non-conformity score As commonly used, the absolute residual
non-conformity score function is the standard metric for estimating the non-conformity
between a target y and a prediction µ̂(x) based on their difference:

s(x, y) = |y − µ̂(x)| =⇒
{

f(µ̂(x), y) = y − µ̂(x) = ŝ
g(ŝ, µ̂(x)) = µ̂(x) + ŝ

(4)

Normalized residual non-conformity score of degree p In order to take into account
the order of magnitude of the prediction in the uncertainty estimation, the p-normalized
residual non-conformity score function has been proposed based on scaling the absolute
residual nonconformity score to the prediction:

∀p ∈ R, sp(x, y) =

∣∣∣∣y − µ̂(x)

µ̂(x)p/2

∣∣∣∣ =⇒

{
f(µ̂(x), y) = y−µ̂(x)

µ̂(x)p/2
= ŝ

g(ŝ, µ̂(x)) = µ̂(x) + ŝµ̂(x)p/2
(5)

This process generates prediction intervals that are wider or narrower depending on the
order of magnitude of the prediction and thus provides an adaptive conformal prediction in
the target space as follows:

Ĉn,α(Xn+1) = {y : µ̂(Xn+1) + q̂−n,αµ̂(Xn+1)
p/2 ≤ y ≤ µ̂(Xn+1) + q̂+n,αµ̂(Xn+1)

p/2} (6)

For the following, we can notice that for p = 0, the p-normalized residual non-conformity
score is equivalent to the absolute score. Moreover, for p = 1, the residual is normalized by√
µ̂(x) and by µ̂(x) for p = 2.

4.2. When heteroscedasticity occurs in regression

In MAPIE, one of the objectives is to manage the heteroscedasticity of the data in order
to estimate relevant prediction intervals for each observation:

• When using the standard absolute residual non-conformity score, the width of predic-
tion intervals does not vary locally since, for any observation x, it depends only on a
constant quantile q̂n,α(x) = q̂n,α and fails to undertake heteroscedastic noise.

• Assuming that the heteroscedastic noise depends on the prediction, choosing a p-
normalized residual non-conformity score allows us to vary the width of the prediction
intervals such that q̂±n,α(x) = q±n,α × µ̂(x)p/2, thus allowing us to adapt them to the
order of magnitude of the prediction.

• In the case where the heteroscedastic noise depends on the observation, we provide
more methods for estimating better interval widths as the Conformalized Quantile
Regression (Romano et al., 2019). It uses quantile regressors q̂n,α(x) with different
quantile values to estimate the prediction bounds and the residuals of these methods
is used to create the guaranteed coverage value.
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It is important to specify that the choice of the non-conformity score depends on the
nature of the noise and thus on the use case. An upstream study allows to know which
method is the most relevant to manage the heteroscedasticity of the data. In particular for
the p-normalized residual non-conformity score, the choice of the degree p can be motivated
by an analysis of the distribution of the residuals or by a preference to better cover the
upper or lower target values. We will illustrate this point in the Section 5.

4.3. Conformalized Quantile Regression (CQR)

This last method has newly been implemented in MAPIE following the published paper
by Romano et al. (2019). This method aims to tackle the issue of conformal predictions
with heteroscedastic data. A homoscedastic dataset can be described by variance that is
uniform, therefore leading to prediction intervals of the same size, and this is one of the
main drawbacks of the previously mentioned methods when using absolute residual non-
conformity scores.

CQR is a method that makes use of quantile regression techniques (it is important to
note that it is outside the scope of the Algorithm 1 and it has a dedicated Algorithm 3). It
requires fitting three quantile regressions at different quantile levels; for a coverage of (1−α),
we need to fit at: [α/2, 1−(α/2), 0.5]. In a non-conformal setting, the intuition would be that
of [lower bound, upper bound, point prediction], thereby already creating confidence intervals
for the predictions. Whereas in the previous methods of conformal methods we would create
a non-conformity scores using the absolute value of residuals from the point prediction, for
CQR, the non-conformity scores are defined by the maximum value between the difference
of the lower and upper bound fitted quantiles with the calibration point.

Algorithm 3: Conformalized Quantile Regression

Require: µ: quantile regression model , X: independent variable, y: dependent variable
and α: such that the target coverage is (1− α)

Ensure: µ̂(Xn+1): fitted model with point prediction, q̂+n,α{Ri}: the interval for the pre-
diction.

1: Split X into a training, calibration and test dataset.
2: Fit µ on the training set at the following three quantile levels: [α/2, 1−(α/2), 0.5] which

we will respectively call [µ̂low, µ̂high, µ̂pred]
3: Make predictions for µ̂low, µ̂high on the calibration set and calculate Ri = max{µ̂low −

Yi, Yi − µ̂high}. Note that Ri has the length of the calibration set, n.

4: Return Ĉcqr
n,α(Xn+1) = [µ̂low(Xn+1)− q̂n,α{Ri}, µ̂high(Xn+1) + q̂n,α{Ri}]

Alternatives to this method have been explored, by changing the way to calculate the
Ri. As shown in the paper by Sesia and Candès (2020), these methods do not improve the
original CQR method and they even suggest that it is better to optimize the training of
the algorithm rather than spending time trying to improve the conformal method. That
being said, Sousa et al. (2022) suggests a slightly different methodology to allow for more
adaptiveness of the CQR by clustering theX and adding a different quantile value depending
on which cluster it belongs to. Note that, as shown by Romano et al. (2019), the CQR
statistically guarantees P (Yn+1 ∈ Ĉn(Xn+1)) ≥ 1− α.
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4.4. Non-conformity scores for classification

To complete this overview of the methods implemented in MAPIE, four methods for multi-
class classification UQ have been proposed so far: LABEL (Sadinlem et al., 2019), Adaptive
Prediction Sets (Romano et al., 2020), Top-K (Angelopoulos et al., 2020) and RAPS (An-
gelopoulos et al., 2020). The difference between these methods is the way the non-conformity
scores are computed (we refer the reader to consult the Appendix B for more theoretical
details).

LABEL In the LABEL method proposed by Sadinlem et al. (2019), the non-conformity
score is defined as follows. For each point i of the calibration set:

si(Xi, Yi) = 1− µ̂(Xi)Yi (7)

This simple approach allows us to construct prediction sets coming with a theoretical
guarantee on the marginal coverage. However, although this method generally results in
small prediction sets, it tends to produce empty ones when the model is uncertain, for
example at the border between two classes.

APS The so-called Adaptive Prediction Set (APS) method overcomes the problem en-
countered by the LABEL method through the construction of prediction sets which are by
definition non-empty (Romano et al., 2020; Angelopoulos et al., 2020). The non-conformity
scores are computed by summing the ranked scores of each label, from the higher to the
lower until reaching the true label of the observation:

si(Xi, Yi) =
k∑

j=1

µ̂(Xi)πj where πk = Yi and µ̂(Xi)π1 > ... > µ̂(Xi)πk
> ... > µ̂(Xi)πK

(8)

Top-K Introduced by Angelopoulos et al. (2020), the specificity of the Top-K method is
that it will give the same prediction set size for all observations. The non-conformity score
is the rank of the true label, with scores ranked from higher to lower:

si(Xi, Yi) = k where πk = Yi and µ̂(Xi)π1 > ... > µ̂(Xi)πk
> ... > µ̂(Xi)πK (9)

Finally, it should be noted that MAPIE includes split and cross-conformal strategies
for the LABEL and APS methods, but only the split-conformal one for Top-K.

RAPS The RAPS method which stands for Regularized Adaptive Prediction Set, is an
improvement made by Angelopoulos et al. (2020). This regularization is able to overcome
the very large prediction sets given by the APS method.

Intuitively, the goal of this method is to penalize the prediction sets whose sizes are
greater than the optimal prediction set size. The level of this regularization is controlled by
a hyper-parameter λ. The non-conformity scores are computed by summing the regularized
ranked scores of each label, from the higher to the lower until reaching the true label of the
observation.

9
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5. MAPIE in practice

The MAPIE library offers the choice between several CP methods: two base classes in
Python, called MapieRegressor for estimating prediction intervals, MapieClassifier for
estimating prediction sets, then inherited classes called MapieQuantileRegressor for CQR
and called MapieTimeSeriesRegressor for EnbPI. In addition, the MAPIE offers several
non-conformity scores and allows to create new non-conformity scores according to Theo-
rem 1. At the time, MAPIE works with only non-conformity measures defined by means
of such function. Figure 1 presents the typical commands needed for quantifying the uncer-
tainties. As the MAPIE base classes are inherited from scikit-learn BaseEstimator classes,
the API is very intuitive to anyone familiar with scikit-learn and follows a initialization-fit-
predict process.

Figure 1: Description of the Python commands needed for estimating prediction intervals
and prediction sets with MapieRegressor and MapieClassifier, respectively.

After initializing the base scikit-learn-compatible base model, one needs to initialize the
desired MAPIE class with three main arguments that define the strategy for uncertainty
quantification:

• the "cv" argument defines the train / calibration set splitting strategy for training
the model and calibrating the non-conformity scores. It can be "prefit" in the
split-conformal case where the base model is already fitted on a given training set
while the calibration set given to MAPIE is used directly for calibrating the non-
conformity scores. For cross-conformal methods, one can simply define an integer
that sets the number of splits and MAPIE will call internally the corresponding
BaseCrossValidator object, such as LeaveOneOut and KFold for the Jackknife or
CV strategies, respectively.

• the "method" argument controls the strategy for constructing the prediction intervals
or prediction sets. For regression tasks, one can choose among "base", "plus", or
"minmax". For example, method="plus" together with cv=KFold(5) defines the CV+
method with 5 folds. For classification, one can choose "score" for the LABEL
method from Sadinlem et al. (2019), "cumulated score" for the Adaptive Prediction
Set (APS) method by Romano et al. (2020), and "top k" for the Top-K method by
Angelopoulos et al. (2020).
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• the "conformity score" argument defines the non-conformity score used for con-
structing the prediction intervals only for regression tasks (for classification tasks, the
"method" argument constrains the non-conformity score to use). One can choose any
instance that inherits the class ConformityScore like AbsoluteConformityScore for
the standard absolute residual non-conformity score or GammaConformityScore for
the gamma non-conformity score.

Methods that deviate from these standard cases (i.e. training and test exchangeable
datasets sampled from similar distribution) need to be implemented in other classes by
inheriting from MapieRegressor or MapieClassifier as base classes. For instance, the
EnbPI method (Xu and Xie, 2020) or Conformalized Quantile method (Romano et al.,
2019) are implemented in MapieTimeSeriesRegressor and MapieQuantileRegressor re-
spectively. They both inherit from the base class MapieRegressor. This process allows
anyone to suggest an implementation of a new conformal prediction method through a ded-
icated pull request that follows the MAPIE guidelines without modifying the base classes.

6. MAPIE by example

Here we propose to show how we can use MAPIE in practice for different purposes. First,
we will illustrate in regression tasks how the non-conformity score can impact the width
of the prediction intervals and the local coverage. Finally, we present two simple examples
of uncertainty quantification on time series and computer vision settings using MAPIE.
Notebooks for more examples can be found in the GitHub repository3.

6.1. MAPIE for regression with non-conformity score functions

We illustrate uncertainty quantification on regression and analyze the impact of the non-
conformity score on the width of the prediction intervals and on the local coverage score.
Since the distribution of the residuals has an impact on the width of the prediction intervals
and thus conditions the choice of the p-normalized residuals non-conformity scores, we
propose to analyze their behavior on different datasets:

• the first one is a toy dataset with homoscedastic noise D1 = {(Xi, Yi)}1≤i≤n that
is generated based on a linear model as follows: X ∼ U([0, 100]m) and Y = βTX +σϵ
with β ∈ Rm, ϵ ∼ N (0, 1) and σ ∈ R+ (m = 10 is the number of attributes). In other
words, the noise is independent of the observation and the target. In this setting, the
p-normalized non-conformity score with p = 0 should be the best a priori.

• the second one is a toy dataset with heteroscedastic noise D2 = {(Xi, Yi)}1≤i≤n

that is generated based on a linear model with target-dependent noise as follows:
X ∼ U([0, 100]m) and Z = βTX + ϵ1 with β ∈ Rm, ϵ1 ∼ N (0, 1), then Y = Z(1 + ϵ2)
with ϵ2 ∼ N (0, 1). In words, the larger the target, the greater the noise. In this
setting, the p-normalized non-conformity score with p = 2 should be the best a priori
because the quantile will be at the prediction scale: q̂±n,α(x) ∝ µ̂(x).

3. Link to access the MAPIE repository: https://github.com/scikit-learn-contrib/MAPIE
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• the last one is the house price dataset4 that consists of predicting the final price
of a home using 79 explanatory variables describing (almost) all aspects of residential
housing in Ames, Iowa. For the sake of simplicity, we have kept only 5 of the 79
variables, such as the type of dwelling involved in the sale, the lot size in square feet,
the size of garage in square feet, the rate of the overall material and finish of the house
and the rate of the the overall condition of the house.

We performed a linear regression on these datasets. Concerning the MAPIE model
used for these regression tasks, the base ML model is a standard linear regression of
scikit-learn library (by defining estimator=LinearRegression) which we encapsulate in
the MapieRegressor class. We propose to test different cross-conformal method named
CV+ (via the method=’plus’ and cv=’10’ parameters) with different p-normalized non-
conformity scores (p = 0 that is equivalent to the absolute residual non-conformity score
and p = 2) and compare them with the CQR split-conformal method. For all experiments,
we choose a risk level α = 0.1.

Figure 2: Comparison on the house prise dataset of the coverage of the cross-conformal
method (CV+) with two different normalized residual non-conformity scores of
degree p = 0 and p = 2 and the CQR method. The based model is a linear
regression and the risk level is fixed at α = 0.1. In rows: 1) predicted target vs.
actual target, 2) width of the prediction interval vs. actual target, and 3) local
coverage score vs. target quantile.

4. Link to access the dataset: https://www.openml.org/search?type=data&status=active&id=42165
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(a) Homoscedasticity toy dataset

(b) Heteroscedasticity toy dataset

Figure 3: Comparison of the coverage of the cross-conformal method (CV+) with two dif-
ferent normalized residual non-conformity scores of degree p = 0 and p = 2 and
the CQR method. The risk level is fixed at α = 0.1. In rows: (1) predicted target
vs. actual target, (2) width of the prediction interval vs. actual target, and (3)
local coverage score vs. target quantile.
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Figure 4: Distribution via boxplot of the width of prediction intervals (in $) on the house
price dataset. split is for split-conformal prediction method, CV+ for cross-
conformal prediction method and CQR for Conformalized Quantile Regression.

The results obtained are presented in Figure 3(a) for the homoscedastic toy dataset,
Figure 3(b) for the heteroscedastic toy dataset and Figure 2 for the house price dataset.
Our findings show that the method with absolute residual non-conformal score produces
prediction intervals with constant width on homoscedastic dataset, while the method with
normalized residual non-conformal score produces prediction intervals whose width increases
with the prediction. Furthermore, the latter method favors wide intervals for large values,
resulting in too much coverage, and narrow intervals for small values, resulting in too little
coverage, while the former guarantees coverage on each quantile bin. On heteroscedastic
dataset, the situation is reversed, where the second method achieves good local coverage
while the first one does not.

In the case of the house price dataset, we observed that the first and second methods
failed to provide accurate prediction intervals for small and large values, respectively. In
complement to this observation, we provide in Figure 4 the distribution of the width of
prediction intervals to see their variability. However, the CQR method was able to strike a
balance between both areas and guarantee local coverage (Figure 2). It is important to note
that while the CQR method can manage both heteroscedastic and homoscedastic noise, it
is not directly connected to the prediction function µ̂ and therefore requires the re-training
or change of the existing model.

In summary, MAPIE is easy-to-use with a wide choice of combinations to produce
systematic prediction intervals with marginal coverage guarantee in regression. Our analysis
highlights that the choice of the p-normalized non-conformity score depends on the problem
and requires an analysis of the distribution of residuals. Additionally, the expert may prefer
to over-cover either small or large values of the target, depending on their specific needs.
For instance, in the context of estimating house prices, experts may accept not sufficiently
covering small estimates but prefer to ensure that the true estimation falls within the
prediction interval for large targets.
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Figure 5: Predictions obtained by MapieTimeSeriesRegressor without (top) and with
(bottom) partial update of residuals for computing prediction intervals from a
Random Forest regressor as based model trained on the Australian electricity
dataset.

6.2. MAPIE for Time series

We illustrate the EnbPI algorithm with MapieTimeSeriesRegressor on the Victoria elec-
tricity demand dataset with an artificial change point on the test set. The Victoria elec-
tricity demand dataset consists in the hourly demand of electricity in the Victoria state in
Australia between January 1st and February 23rd of 2014. The test set is the last week,
and the remaining weeks are included in the training set. We added a sudden decrease
of the electricity demand of 2 GW on February 22 to simulate a change point in the test
set. The explanatory variables are the lags of the demand up to 5 previous hours and the
temperature. The base ML model is a Random Forest whose hyperparameters are opti-
mized through chronological cross-validation. We then use this tuned Random Forest as
the base model for the EnbPI method, using 100 block bootstrap resamplings and with a
block length of 48 hours. We sequentially estimate the prediction interval on the electricity
demand one step ahead.

Figure 5 compares the estimated prediction intervals without and with update of the
residuals, that is a key point of the EnbPI method. The training data do not contain a
change point, hence the base model cannot anticipate it. Without update of the residuals,
the prediction intervals are built upon the distribution of the residuals of the training set.
Therefore they do not cover the true observations after the change point, leading to a sudden
decrease of the coverage. However, the partial update of the residuals allows the method
to capture the increase of uncertainties of the model predictions. One can notice that the
uncertainty’s explosion happens about one day late. This is because enough new residuals
are needed to change the quantiles obtained from the residuals distribution.
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Figure 6: Comparison of the number of empty prediction sets, marginal coverages and av-
erage prediction set sizes for the different classification methods implemented in
MapieClassifier.

6.3. MAPIE for image classification

We illustrate uncertainty quantification on image classification with the famous CIFAR10
dataset which consists in images belonging to 10 classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship and truck.

As mentioned before, MAPIE is a ”scikit-learn compatible” library, meaning that
the base classifier must include the classes , trained attributes and the fit, train,
predict, predict proba, sklearn is fitted methods in order to be accepted by
MapieClassifier. Hence, for computer vision settings, one can create a wrapper around
a deep learning model object (or any other non-scikit-learn compatible ML model) to be
digested by MapieClassifier. An example of such a wrapper can be found in the CIFAR10
notebook of the MAPIE repository5.

After training a small convolutional neural network on the CIFAR10 dataset, we used
this wrapper to fit MAPIE on a calibration set and create prediction sets on a test set.
Figure 6 compares the different aforedescribed methods implemented in MAPIE with a
naive one which directly includes all the labels such that their sum is just above the target
coverage level.

As expected, the naive method has a coverage which is below the target coverage for
α values higher than 0.6: this is because output scores of the model do not represent
probabilities. Thus, even by adding the labels, there are no guarantees that the coverage
will be achieved. Other methods, on the other hand, all achieve the required coverage
regardless the α value because they calibrate the scores with a dataset not seen by the
model during training.

Even though the methods all achieve the required coverages, the averaged sizes of their
prediction sets are quite different, especially at low α values. As discussed in the pre-
vious section, the score method achieves the lowest averaged size for all target cover-
ages compared to the cumulated score and top k methods. However, the score method

5. Link to access the notebook: https://github.com/scikit-learn-contrib/MAPIE/blob/master/

notebooks/classification/Cifar10.ipynb
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may also result in empty prediction sets. This situation arises in uncertain cases where
the predicted scores of all labels do not reach the target quantile. On the second hand,
the cumulated score, by definition, always includes at least one label, the one whose
cumulated score is higher than the quantile, but induces over-estimated marginal cov-
erages for low α values. To force the marginal coverage to stay close to the target one,
one can choose the random cumulated score which includes randomly the last label. The
major drawback of the latter method is that it creates empty prediction sets which indicate
low uncertainties, unlike the score method.

7. Conclusion and future works

We introduced MAPIE, an open-source library for flexible and systematic uncertainty es-
timation with marginal coverage guarantee. Our library is easy-to-use and provides a wide
choice of combinations for both regression and classification tasks. Through our experi-
ments, we have demonstrated that MAPIE can handle different types of data, including
heteroscedastic datasets, while ensuring global coverage for the prediction intervals.

A framework for straightforward implementation of new methods One of the
main strengths of MAPIE is its modular and flexible architecture, which allows straight-
forward implementation of new conformal prediction methods. Our library provides an
easy-to-use API that enables researchers and practitioners to quickly integrate their own
methods into MAPIE for prototyping and production purposes. This makes it possible to
easily compare different methods and choose the most appropriate one for a given problem.

Extension to new conformal prediction paradigms In the landscape of conformal
prediction research, some challenges are not yet addressed but must be managed in the
future. These include adaptive conformal inference (Gibbs and Candes, 2021), co-variate
shift (Tibshirani et al., 2019), multi-target regression through copula-based conformal pre-
diction (Messoudi et al., 2021), binary classification (Vovk et al., 2015) and conformal label
shift (Podkopaev and Ramdas, 2021).

Furthermore, we focus in particular on Risk-controlling Prediction Sets (Bates et al.,
2021) or the Learn-Then-Test (Angelopoulos et al., 2021) frameworks, which have the poten-
tial to improve the performance of prediction intervals in specific applications. We believe
that our library will provide a useful tool for researchers and practitioners working in the
field of conformal prediction, enabling them to easily test and compare different methods
and to develop new ones.
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Appendix A. Details of cross-conformal methods in MAPIE

MAPIE has three state-of-the-art conformal prediction methods (along with their deriva-
tives) for tabular regression : Jackknife+, CV+ and Jackknife+-after-Bootstrap.

Jackknife+ Presented in Foygel Barber et al. (2021), the Jackknife+ method is based
on the standard Jackknife, which constructs a set of leave-one-out models. Estimating the
prediction intervals is carried out in three main steps. First, train n leave-one-out models
(one for each training instance), each leave-one-out model is trained on the entire training
set except the corresponding training point. Second, compute the corresponding conformity
scores (here, the leave-one-out residuals) |Yi − µ̂−i(Xi)|. Third, fit the regression function
µ̂ on the entire training set and construct the prediction intervals from the distribution of
the computed leave-one-out residuals and the desired 1 − α quantile. This method avoids
over-fitting but still does not guarantee the targeted coverage if µ̂ is unstable, for example
when the sample size is close to the number of features (Foygel Barber et al., 2021).

Unlike the standard jackknife method which returns a prediction interval centered
around the prediction of the model trained on the entire dataset, the so-called Jackknife+
method also uses the predictions from all leave-one-out models on the new test point to take
the variability of the regression function into account. The resulting confidence interval can
therefore be summarized as follows

Ĉ jackknife+
n,α (Xn+1) = [q̂−n,α{µ̂−i(Xn+1)−RLOO

i }, q̂+n,α{µ̂−i(Xn+1) +RLOO
i }] (10)

As described in Foygel Barber et al. (2021), this method guarantees a higher stability
with a coverage level of 1− 2α for a target coverage level of 1−α, under the assumption of
independence of the distribution of the data (X,Y ).

CV+ In order to reduce the computational cost, one can adopt a cross-validation ap-
proach instead of a leave-one-out approach, with the so-called CV+ method. Similar to
the Jackknife+ method, estimating the prediction intervals with CV+ is performed in four
main steps. First, split the training set into K disjoint subsets S1, S2, ..., SK of equal size.
Second, regression functions µ̂−Sk

are fitted on the training set with the corresponding kth

fold removed. Third, the corresponding out-of-fold residuals are computed for each ith point
|Yi − µ̂−Sk(i)

(Xi)| where k(i) is the fold containing i. Finally, similar to Jackknife+, the
regression functions µ̂−Sk(i)

(Xi) are used to estimate the prediction intervals.

As for Jackknife+, this method guarantees a coverage level higher than 1−2α for a target
coverage level of 1− α, assuming essentially the independence of the data. As pointed out
by Foygel Barber et al. (2021), Jackknife+ can be considered as a special case of CV+
with K = n. In practice, this method results in slightly wider prediction intervals and
is therefore likely more conservative, but gives a reasonable compromise for large datasets
when the Jackknife+ method is unfeasible.
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Jackknife+-after-bootstrap An alternative way to reduce the computational cost is
to adopt a bootstrap approach instead of cross-validation, called the Jackknife+-after-
bootstrap method, offered by Kim et al. (2020). Similar to CV+, estimating the prediction
intervals with Jackknife+-after-bootstrap is performed in four main steps. First, resample
the training set with replacement (bootstrap) K times, to get the (non disjoint) bootstraps
B1, ..., BK of equal size. Second, fit K regressions functions µ̂Bk

on the bootstraps (Bk),
and compute the predictions on the complementary sets Bc

k. Third, aggregate these pre-
dictions according to a given aggregation function, typically mean or median, and compute
the residuals |Yj −agg(µ̂(BK(j)(Xj)))| are computed for each Xj (with K(j) the bootstraps
not containing Xj). The sets {agg(µ̂K(j)(Xi) + rj} (where j indexes the training set) are
used to estimate the prediction intervals.

As for Jackknife+, this distribution-free method guarantees a coverage level higher than
1− 2α for a target coverage level of 1− α.

Appendix B. Details of the non-conformity scores used for classification
in MAPIE

Three methods for multi-class classification UQ have been implemented in MAPIE so far:
LABEL (Sadinlem et al., 2019), Adaptive Prediction Sets (Romano et al., 2020) and Top-K
(Angelopoulos et al., 2020). The difference between these methods is the way the non-
conformity scores are computed.

LABEL In the LABEL method, the non-conformity score is defined as as one minus the
score of the true label. For each point i of the calibration set:

si(Xi, Yi) = 1− µ̂(Xi)Yi (11)

Once the non-conformity scores s1, ..., sn are estimated for all calibration points, we
compute the (n+ 1) ∗ (1− α)/n quantile q̂ as follows:

q̂ = Quantile

(
s1, ..., sn;

⌈(n+ 1)(1− α)⌉
n

)
(12)

Finally, we construct a prediction set by including all labels with a score higher than
the estimated quantile:

Ĉ(Xtest) = {y : µ̂(Xtest)y ≥ 1− q̂}

This simple approach allows us to construct prediction sets coming with a theoretical
guarantee on the marginal coverage. However, although this method generally results in
small prediction sets, it tends to produce empty ones when the model is uncertain, for
example at the border between two classes.

APS The so-called Adaptive Prediction Set (APS) method overcomes the problem en-
countered by the LABEL method through the construction of prediction sets which are
by definition non-empty. The non-conformity scores are computed by summing the ranked
scores of each label, from the higher to the lower until reaching the true label of the obser-
vation:
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si(Xi, Yi) =
k∑

j=1

µ̂(Xi)πj where πk = Yi and µ̂(Xi)π1 > ... > µ̂(Xi)πk
> ... > µ̂(Xi)πn

The quantile q̂ is then computed the same way as the score method. For the construction
of the prediction sets for a new test point, the same procedure of ranked summing is applied
until reaching the quantile, as described in the following equation:

Ĉ(Xtest) = {π1, ..., πk} where k = inf{k :
k∑

j=1

µ̂(Xtest)πj ≥ q̂}

By default, the label whose cumulative score is above the quantile is included in the pre-
diction set. However, its incorporation can also be chosen randomly based on the difference
between its cumulative score and the quantile so the effective coverage remains close to the
target (marginal) coverage. We refer the reader to Romano et al. (2020) and Angelopoulos
et al. (2020) for more details about this aspect.

Top-K Introduced by Angelopoulos et al. (2020), the specificity of the Top-K method is
that it will give the same prediction set size for all observations. The non-conformity score
is the rank of the true label, with scores ranked from higher to lower. The prediction sets
are build by taking the q̂th higher scores. The procedure is described in equation 13.

si(Xi, Yi) = k where πk = Yi and µ̂(Xi)π1 > ... > µ̂(Xi)πk
> ... > µ̂(Xi)πn

q̂ =

⌈
Quantile

(
s1, ..., sn;

⌈(n+ 1)(1− α)⌉
n

)⌉
(13)

Ĉ(Xtest) = {π1, ..., πq̂}

Finally, it should be noted that MAPIE includes split- and cross-conformal strategies
for the LABEL and APS methods, but only the split-conformal one for Top-K.

RAPS The RAPS method which stands for Regularized Adaptive Prediction Set, is an
improvement made by Angelopoulos et al. (2020). This regularization is able to overcome
the very large prediction sets given by the APS method. The non-conformity scores are
computed by summing the regularized ranked scores of each label, from the higher to the
lower until reaching the true label of the observation:

si(Xi, Yi) =

k∑
j=1

µ̂(Xi)πj + λ(k − kreg)
+ where πk = Yi (14)

Where:

• πi is the label associated to the ith score sorted in descending order.

• (z)+ denotes the positive part of z
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• kreg is the optimal set size (in the sense that if all prediction sets have kreg elements,
then one achieves the desired coverage)

• λ is a regularization to be selected according to a methodology explained hereafter.

The optimization of kreg and λ requires an extra data-splitting (by default, 20% of the
calibration data). To choose kreg, we simply run the Top-K method over this new split.
For the choice of λ, we follow the guidelines of Angelopoulos et al. (2020) and try to find
the value of lambda such that it minimizes the size of the prediction set. A simple grid
search if done on different values of λ (to be consistent with the original paper, we choose
λ ∈ {0.001, 0.01, 0.1, 0.2, 0.5}).

For the construction of the prediction set for a new test point, the following procedure
is applied:

Ĉ(Xtest) = {π1, ..., πk} where k = inf{k :

k∑
j=1

µ̂(Xtest)πj + λ(k − kreg)
+ ≥ q̂} (15)

Intuitively, the goal of the method is to penalize the prediction sets whose sizes are
greater than the optimal prediction set size. The level of this regularization is controlled
by the parameter λ.

Despite that RAPS methods have a relatively small set size, its coverage tends to be
higher than the one required (especially for high values of α, which means a low level of
confidence). Hence, to achieve exact coverage, one can implement randomization concerning
the inclusion of the last label in the prediction set. This randomization is done as follows:

• First: define the V parameter:

Vi = (si(Xi, Yi)− q̂1−α)/ (µ̂(Xi)πk
+ λ1(k > kreg))

• Compare each Vi to U ∼ Unif(0, 1)

• If Vi ≤ U , the last included label is removed, else we keep the prediction set as it is.

Appendix C. Proof of Theorem 1

Non-conformity scores and prediction function

In order to generalize the coverage guarantee to more non-conformity scores (not only the
absolute values of residuals), let’s first define two functions with some properties. The
signed non-conformity score function f defined on E2 (E ⊂ R) and the perturbed prediction
function g defined on F × E (F ⊂ R). Uppercase letters are used to follow the paper
notation Foygel Barber et al. (2021).

23



Cordier Blot Lacombe Morzadec Capitaine Brunel

Non-conformity scores and prediction function

From an observation and a prediction, the function f outputs the conformity score:

f : E2 → F

(Y, Ŷ ) 7→ f(Y, Ŷ )
(16)

It verifies the following properties with Sk(i) being the subset containing datapoint i
(which may be a subset of a single point, for instance in the jackknife method):

∀Yl < Yh : f(Yl, Ŷ ) < f(Yh, Ŷ )

∀Ŷl < Ŷh : f(Y, Ŷl) > f(Y, Ŷh)

∀i ̸= j : Ri,j = f(Yi, µ̂−(Sk(i),Sk(j))(Xi))

(17)

Prediction function

From a conformity score and a prediction, the function g outputs a perturbed prediction:

g : F × E → E

(R, Ŷ ) 7→ g(R, Ŷ )
(18)

It verifies the following properties:

∀Rl < Rh : g(Rl, Ŷ ) < g(Rh, Ŷ )

∀i ̸= j : Yi = g(Ri,j , µ̂−(Sk(i),Sk(j))(Xi))
(19)

Function relationship

The two functions must verify the following property:

∀Ŷ , ∀R : R = f(g(R, Ŷ ), Ŷ ) (20)

The jackknife+ prediction interval

Let’s derive the proof of the theorem to build ”the jackknife+ prediction interval” (Foygel Bar-
ber et al., 2021) (Theorem 1, part 6, p. 18-21) with more general non-conformity scores.

Construction of R

Instead of defining the R matrix with the absolute value of the residuals, let’s assume that
R is defined thanks to a non-conformity score f , with Ri,j being the non-conformity score of
the point i using a model fitted on the training plus test data, with points i and j removed:

Ri,j = f(Yi, µ̂−(i,j)(Xi))

RLOO
i = Ri,n+1

(21)
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Construction of A

According to the paper, comparison matrices A can be built. Ai,j is the indicator for the
event that, when excluding data points i and j from the regression, data point i has a more
extreme (may be higher or lower depending on the considered case, as described below)
non-conformity score than data point j. There are two cases:

1. the symmetrical case when the conformity scores are assumed to be symmetrical
around 0. In this case, the absolute values of the conformity scores are used to
construct the A matrix.

2. otherwise, the signed conformity scores are kept as they are.

Symmetrical case

According to the paper, the comparison A matrix is defined as below:

Ai,j = 1{|Ri,j | > |Rj,i|}

Asymmetrical case

The two following definitions of comparison matrix A are considered:

A+
i,j = 1{Ri,j > Rj,i}

A−
i,j = 1{Ri,j < Rj,i}

(22)

Strange points

As above, the definition of strange points depends on the case considered.

Symmetrical case

According to the paper, there is a single set S(A) = {i ∈ {1, ..., n+1} : Ai. ≥ (1−α)(n+1)}.

Asymmetrical case

Instead of the single set S(A), two sets should be considered: S(A+) and S(A−). Keeping
the same definition of the set S of the paper, we have:

1. S+ = S(A+) = {i ∈ {1, ..., n + 1} : A+
i. ≥ (1 − α

2 )(n + 1)} for ”data points with
unusually large [positive] residuals”, and

2. S− = S(A−) = {i ∈ {1, ..., n+1} : A−
i. ≥ (1−α

2 )(n+1) ⇐⇒ (n−A+
i. ) ≥ (1−α

2 )(n+1)}
for ”data points with unusually large [negative] residuals”.
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Step 1 and 2

Changing R and A, does not change the results of steps 1 and 2 from the proof of the original
paper (Foygel Barber et al., 2021) (Theorem 1, part 6, p. 18-21) considering absolute value
of the residuals. From step 1, in the symetrical case, we get |S(A)| ≤ 2α(n + 1). And in
the asymmetrical case |S+| ≤ α(n+1) and |S−| ≤ α(n+1) since the new matrices have the
same property as in the paper. From step 2, we have that the probability of the test point
n + 1 being strange inside S+ is bounded by α and the probability of the test point n + 1
being strange inside S− is also bounded by α for the asymmetrical case (and the probability
of the test point n+1 being strange inside S(A) is bounded by 2α for the symmetrical case).

Step 3

Symmetrical case

The prediction interval Ĉjackknife+
n,α (Xn+1) is defined as follows:

Ĉjackknife+
n,α (Xn+1) = [q̂−n,α{g(−|RLOO

j |, µ̂−j(Xn+1))}, q̂+n,α{g(|RLOO
j |, µ̂−j(Xn+1))}]

Similarly to the theorem’s proof, let’s suppose that Yn+1 /∈ Ĉjackknife+
n,α (Xn+1). We

remind that q̂+n,α{vi} = the ⌈(1− α)(n+ 1)⌉ -th smallest value of v1, ..., vn and q̂−n,α{vi} =
the ⌊α(n+ 1)⌋ -th smallest value of v1, ..., vn. This means either:

Yn+1 > q̂+n,α{g(|RLOO
j |, µ̂−j(Xn+1))}

which implies that Yn+1 > g(|RLOO
j |, µ̂−j(Xn+1)) for at least (1 − α)(n + 1) many indices

j ∈ {1, ..., n}. Thanks to the properties of f and g we have:

(1− α)(n+ 1) ≤
n∑

j=1

1{Yn+1 > g(|RLOO
j |, µ̂−j(Xn+1))}

=

n∑
j=1

1{f(Yn+1, µ̂−j(Xn+1)) > f(g(|RLOO
j |, µ̂−j(Xn+1)), µ̂−j(Xn+1))}

=

n∑
j=1

1{f(g(Rn+1,j , µ̂−j(Xn+1)), µ̂−j(Xn+1)) > |RLOO
j |}

=
n∑

j=1

1{Rn+1,j > |RLOO
j |}

≤
n∑

j=1

1{|Rn+1,j | > |RLOO
j |} =

n∑
j=1

An+1,j (23)

Or otherwise:

Yn+1 < q̂−n,α{g(−|RLOO
j |, µ̂−j(Xn+1))} (24)

26



Uncertainty Estimation with Conformal Prediction via the MAPIE library

which implies that Yn+1 < g(−|RLOO
j |, µ̂−j(Xn+1)) for at least (1−α)(n+1) many indices

j ∈ {1, ..., n}.

(1− α)(n+ 1) ≤
n∑

j=1

1{Yn+1 < g(−|RLOO
j |, µ̂−j(Xn+1))}

=
n∑

j=1

1{f(Yn+1, µ̂−j(Xn+1)) < f(g(−|RLOO
j |, µ̂−j(Xn+1)), µ̂−j(Xn+1))}

=

n∑
j=1

1{f(g(Rn+1,j , µ̂−j(Xn+1)), µ̂−j(Xn+1)) < −|RLOO
j |}

=

n∑
j=1

1{Rn+1,j < −|RLOO
j |}

≤
n∑

j=1

1{|Rn+1,j | > |RLOO
j |} =

n∑
j=1

An+1,j (25)

Therefore, in either case, n+1 ∈ S(A), that is, point n+1 is a strange point with high
absolute conformity scores.

Thus:

P{Yn+1 /∈ Ĉjackknife+
n,α (Xn+1)} ≤ 2α

and:

P{Yn+1 ∈ Ĉjackknife+
n,α (Xn+1)} ≥ 1− 2α

Asymmetrical case

In this section, the prediction interval Ĉjackknife+
n,α (Xn+1) is defined as follows:

Ĉjackknife+
n,α (Xn+1) = [q̂−n,α

2
{g(RLOO

j , µ̂−j(Xn+1))}, q̂+n,α
2
{g(RLOO

j , µ̂−j(Xn+1))}]

Similarly to the theorem’s proof, let’s suppose that Yn+1 /∈ Ĉjackknife+
n,α (Xn+1). This

means either:

Yn+1 > q̂+n,α
2
{g(RLOO

j , µ̂−j(Xn+1))}

which implies that Yn+1 > g(RLOO
j , µ̂−j(Xn+1)) for at least (1 − α

2 )(n + 1) many indices
j ∈ {1, ..., n}, or otherwise:

Yn+1 < q̂−n,α
2
{g(RLOO

j , µ̂−j(Xn+1))}

which implies that Yn+1 < g(RLOO
j , µ̂−j(Xn+1)) for at least (1 − α

2 )(n + 1) many indices
j ∈ {1, ..., n}.

Here RLOO
j can be positive or negative so it is added in both cases. Besides, α

2 is used
instead of α since to get the (1−α) confidence interval, we look for an upper bound on the
confidence interval so that α

2 of the residuals are above and a lower bound on the confidence
interval so that α

2 of the residuals are below.
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Let’s consider the first case Yn+1 > q̂+n,α
2
{g(RLOO

j , µ̂−j(Xn+1))}. Then, thanks to the

properties of f and g:

(1− α

2
)(n+ 1) ≤

n∑
j=1

1{Yn+1 > g(RLOO
j , µ̂−j(Xn+1))}

=

n∑
j=1

1{f(Yn+1, µ̂−j(Xn+1)) > f(g(RLOO
j , µ̂−j(Xn+1)), µ̂−j(Xn+1))}

=
n∑

j=1

1{f(g(Rn+1,j , µ̂−j(Xn+1)), µ̂−j(Xn+1)) > RLOO
j }

=
n∑

j=1

1{Rn+1,j > Rj,n+1} =
n∑

j=1

A+
n+1,j (26)

and therefore n+1 ∈ S+, that is, point n+1 is a strange point with high positive residuals.
Similarly, we can conclude the same for strange point with high negative residuals.

(1− α

2
)(n+ 1) ≤

n∑
j=1

1{Yn+1 < g(RLOO
j , µ̂−j(Xn+1))}

=

n∑
j=1

1{f(Yn+1, µ̂−j(Xn+1)) < f(g(RLOO
j , µ̂−j(Xn+1)), µ̂−j(Xn+1))}

=
n∑

j=1

1{f(g(Rn+1,j , µ̂−j(Xn+1)), µ̂−j(Xn+1)) < RLOO
j }

=
n∑

j=1

1{Rn+1,j < Rj,n+1} =
n∑

j=1

A−
n+1,j = n−

n∑
j=1

A+
n+1,j (27)

and therefore n+1 ∈ S−, that is, point n+1 is a strange point with high negative residuals.
Combining with step 2, we have:

P{Yn+1 > q̂+n,α
2
{g(RLOO

j , µ̂−j(Xn+1))} ≤ α

P{Yn+1 < q̂−n,α
2
{g(RLOO

j , µ̂−j(Xn+1))} ≤ α
(28)

Since any point cannot be simultaneously in S+ and S− otherwise α ≥ 1 (because
A+

i. ≥ (1− α
2 )(n+1) and (n−A+

i. ) ≥ (1− α
2 )(n+1) ⇒ n ≥ 2(1− α

2 )(n+1) ⇐⇒ α ≥ n+2
n+1),

a point is at most in one of the two sets.

P{Yn+1 ∈ Ĉjackknife+
n,α (Xn+1)} = 1

−P{Yn+1 > q̂+n,α
2
{g(RLOO

j , µ̂−j(Xn+1))}

−P{Yn+1 < q̂−n,α
2
{g(RLOO

j , µ̂−j(Xn+1))}

≥ 1− 2α (29)
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The jackknife-minmax prediction interval

Let’s derive the proof of the theorem to build ”the jackknife-minmax prediction interval”
(Foygel Barber et al., 2021) (Theorem 3, part B.1, p. 31-32) with more general non-
conformity scores.

Construction of R

As above, instead of defining the R matrix with the absolute residual, let assume that R is
defined thanks to a non-conformity score:

Ri,j = f(Yi, µ̂−(i,j)(Xi))

RLOO
i = Ri,n+1

(30)

Construction of A

As above, there are two cases:

1. the symmetrical case when the conformity scores are assumed to be symmetrical
around 0. In this case, the absolute values of the conformity scores are used to
construct the A matrix.

2. otherwise, the signed conformity scores are kept as they are.

Symmetrical case

According to the paper, the A matrix is defined as below:

Ai,j = 1{min
j′

|Ri,j′ | > |Rj,i|}

Asymmetrical case

The two following definitions of matrix A are considered:

A+
i,j = 1{min

j′
Ri,j′ > Rj,i}

A−
i,j = 1{max

j′
Ri,j′ < Rj,i} = 1{min

j′
−Ri,j′ > −Rj,i}

(31)

Strange points

As above, the definition of strange points depends on the case considered.

Symmetrical case

According to the paper, there is a single S(A) set S(A) = {i ∈ {1, ..., n + 1} : Ai. ≥
(1− α)(n+ 1)}.

29



Cordier Blot Lacombe Morzadec Capitaine Brunel

Asymmetrical case

Instead of the single set S(A), two sets should be considered: A+ and A−. Keeping the
same definition of the set S of the paper, we have:

1. S+ = S(A+) = {i ∈ {1, ..., n + 1} : A+
i. ≥ (1 − α

2 )(n + 1)} for ”data points with
unusually large [positive] residuals”, and

2. S− = S(A−) = {i ∈ {1, ..., n+1} : A−
i. ≥ (1−α

2 )(n+1) ⇐⇒ (n−A+
i. ) ≥ (1−α

2 )(n+1)}
for ”data points with unusually large [negative] residuals”.

Step 1 and 2

Changing R and A, does not change the results of steps 1 and 2 from the proof of the original
paper (Foygel Barber et al., 2021) (Theorem 1, part 6, p. 18-21) considering absolute value
of the residuals. From step 1, in the symetrical case, we get |S(A)| ≤ α(n+ 1). And in the
asymmetrical case |S+| ≤ α

2 (n + 1) and |S−| ≤ α
2 (n + 1) since the new matrices have the

same property as in the paper. From step 2, we have that the probability of the test point
n+ 1 being strange inside S+ is bounded by α

2 and the probability of the test point n+ 1
being strange inside S− is also bounded by α

2 for the asymmetrical case (and the probability
of the test point n+1 being strange inside S(A) is bounded by α for the symmetrical case).

Step 3

Symmetrical case

The prediction interval Ĉjack−mm
n,α (Xn+1) is defined as follows:

Ĉjack−mm
n,α (Xn+1) = [g(q̂−n,α{−|RLOO

j |},min
i
µ̂−i(Xn+1)), g(q̂n,α+{|RLOO

j |},max
i

µ̂−i(Xn+1))]

Similarly to the theorem’s proof, let’s suppose that Yn+1 /∈ Ĉjack−mm
n,α (Xn+1). This means

either:

Yn+1 > g(q̂n,α+{|RLOO
j |},max

i
µ̂−i(Xn+1))
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which implies that Yn+1 > g(|RLOO
j |,max

i
µ̂−i(Xn+1)) for at least (1−α)(n+1) many indices

j ∈ {1, ..., n} since g is an increasing function regarding the first variable.

(1− α)(n+ 1) ≤
n∑

j=1

1{Yn+1 > g(|RLOO
j |,max

i
µ̂−i(Xn+1))}

=

n∑
j=1

1{f(Yn+1,max
i

µ̂−i(Xn+1)) > f(g(|RLOO
j |,max

i
µ̂−i(Xn+1)),max

i
µ̂−i(Xn+1))}

=

n∑
j=1

1{min
i
f(Yn+1, µ̂−i(Xn+1)) = f(Yn+1,max

i
µ̂−i(Xn+1)) > |RLOO

j |}

=
n∑

j=1

1{min
i
Rn+1,i > |RLOO

j |}

≤
n∑

j=1

1{min
i
|Rn+1,i| > |RLOO

j |} =
n∑

j=1

An+1,j (32)

Or otherwise:

Yn+1 < g(q̂−n,α{−|RLOO
j |},min

i
µ̂−i(Xn+1))

which implies that Yn+1 < g(−|RLOO
j |,min

i
µ̂−i(Xn+1)) for at least (1 − α)(n + 1) many

indices j ∈ {1, ..., n}.

(1− α)(n+ 1) ≤
n∑

j=1

1{Yn+1 < g(−|RLOO
j |,min

i
µ̂−i(Xn+1))}

=
n∑

j=1

1{f(Yn+1,min
i
µ̂−i(Xn+1)) < f(g(−|RLOO

j |,min
i
µ̂−i(Xn+1)),min

i
µ̂−i(Xn+1))}

=
n∑

j=1

1{max
i

f(Yn+1, µ̂−i(Xn+1)) = f(Yn+1,min
i
µ̂−i(Xn+1)) < −|RLOO

j |}

=
n∑

j=1

1{max
i

Rn+1,i < −|RLOO
j |}

≤
n∑

j=1

1{−min
i
|Rn+1,i| < −|RLOO

j |} =

n∑
j=1

An+1,j (33)

Therefore, in either case, n+1 ∈ S(A), that is, point n+1 is a strange point with high
absolute conformity scores.

Thus:

P{Yn+1 /∈ Ĉjackknife+
n,α (Xn+1)} ≤ α

and:

P{Yn+1 ∈ Ĉjackknife+
n,α (Xn+1)} ≥ 1− α
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Asymmetrical case

In this section, the prediction interval is defined as follows:

Ĉjack−mm
n,α (Xn+1) = [g(q̂−n,α

2
{RLOO

j },min
i
µ̂−i(Xn+1)), g(q̂

+
n,α

2
{RLOO

j },max
i

µ̂−i(Xn+1))]

Similarly to the theorem’s proof, let’s suppose that Yn+1 /∈ Ĉjack−mm
n,α (Xn+1). This

means either:
Yn+1 > g(q̂+n,α

2
{RLOO

j },max
i

µ̂−i(Xn+1))

which implies that Yn+1 > g(RLOO
j ,max

i
µ̂−i(Xn+1)) for at least (1− α

2 )(n+1) many indices

j ∈ {1, ..., n} since g is an increasing function regarding the first variable, or otherwise:

Yn+1 < g(q̂−n,α
2
{RLOO

j },min
i
µ̂−i(Xn+1))

which implies that Yn+1 < g(RLOO
j ,min

i
µ̂−i(Xn+1)) for at least (1− α

2 )(n+1) many indices

j ∈ {1, ..., n}.
Here RLOO

j can be positive or negative so it is added in both cases. Besides, α
2 is used

instead of α since to get the (1−α) confidence interval, we look for an upper bound on the
confidence interval so that α

2 of the residuals are above and a lower bound on the confidence
interval so that α

2 of the residuals are below.
Let’s consider the first case Yn+1 > g(RLOO

j ,max
i

µ̂−i(Xn+1)). We have:

(1− α

2
)(n+ 1) ≤

n∑
j=1

1{Yn+1 > g(RLOO
j ,max

i
µ̂−i(Xn+1))}

=

n∑
j=1

1{f(Yn+1,max
i

µ̂−i(Xn+1)) > f(g(RLOO
j ,max

i
µ̂−i(Xn+1)),max

i
µ̂−i(Xn+1))}

=
n∑

j=1

1{min
i
f(Yn+1, µ̂−i(Xn+1)) = f(Yn+1,max

i
µ̂−i(Xn+1)) > RLOO

j }

=
n∑

j=1

1{min
i
Rn+1,i > Rj,n+1} =

n∑
j=1

A+
n+1,j (34)

and therefore n+1 ∈ S+, that is, point n+1 is a strange point with high positive residuals.
Similarly, we can conclude the same for strange point with high negative residuals.

(1− α

2
)(n+ 1) ≤

n∑
j=1

1{Yn+1 < g(RLOO
j ,min

i
µ̂−i(Xn+1))}

=
n∑

j=1

1{f(Yn+1,min
i
µ̂−i(Xn+1)) < f(g(RLOO

j ,min
i
µ̂−i(Xn+1)),min

i
µ̂−i(Xn+1))}

=

n∑
j=1

1{max
i

f(Yn+1, µ̂−i(Xn+1)) = f(Yn+1,min
i
µ̂−i(Xn+1)) < RLOO

j }

=

n∑
j=1

1{max
i

Rn+1,i < Rj,n+1} =

n∑
j=1

A−
n+1,j (35)
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and therefore n+1 ∈ S−, that is, point n+1 is a strange point with high negative residuals.
Combining with step 2, we have:

P{Yn+1 > g(q̂+n,α
2
{RLOO

j },max
i

µ̂−i(Xn+1))} ≤ α

2

P{Yn+1 < g(q̂−n,α
2
{RLOO

j },min
i
µ̂−i(Xn+1))} ≤ α

2

(36)

Since any point cannot be simultaneously in S+ and S− because the boundaries are even
larger than in the jackknife+ case, we finally have:

P{Yn+1 ∈ Ĉjack−mm
n,α (Xn+1)} = 1

−P{Yn+1 > g(q̂+n,α
2
{RLOO

j },max
i

µ̂−i(Xn+1))}

−P{Yn+1 < g(q̂−n,α
2
{RLOO

j },min
i
µ̂−i(Xn+1))}

≥ 1− α (37)
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