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Abstract

The widespread use of machine learning models has achieved considerable success across
various domains. Nevertheless, their deployment in safety-critical systems can result in
catastrophic consequences if uncertainties are not handled properly. This study is con-
cerned with the simulation of the physical response of a subsea pipeline when it is hooked
by an anchor. Predicting this response is crucial for risk assessment, however, it is compu-
tationally unfeasible to run a significant amount of input sets to compute the probability
of failure of the system. Therefore, the use of a surrogate model becomes essential. In this
context, a surrogate model is a machine learning model trained on data from a physics-
based simulation. This is achieved by neural network based surrogate models, as they are
capable of modelling complex relationships and provide greater accuracy than other ma-
chine learning models in many use cases. However, to ensure the safe use of these models, it
is important to understand the uncertainty associated with their predictions. Therefore, we
apply the conformal prediction framework to provide valid prediction intervals and improve
the uncertainty quantification of the neural network models. In order to create adaptive
conformal prediction intervals, we employ multilayer perceptron neural network models
that provide uncertainty estimates through both the Monte Carlo dropout technique and
treating the output as a Gaussian distribution, with the neural network providing estimates
for both mean and variance. The conformal prediction procedure improves the uncertainty
estimation of uncalibrated models and guarantees new test samples are within the predicted
intervals with the corresponding selected confidence level.

Keywords: Inductive Conformal Prediction, Supervised Learning, Neural Networks, Sur-
rogate Models, Safety-Critical Systems

1. Background and motivation

As modern machine learning (ML) methods continue to demonstrate their efficacy in solving
complex engineering problems, ensuring the safe use of ML models in critical decision-
making and control strategies has become a top priority, particularly in industries where
the value of what is produced is high and operational deviations could be dangerous or have
a significant negative impact on service.
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When it comes to providing quick insights into complex systems based on observations
and experience, data-driven models play a crucial role. However, these models must account
for the inherent uncertainties in observations and the limited experience base, to be accurate
and relevant. Safety can be defined as “freedom from risk which is not tolerable” (ISO).
According to this definition, a safe system is one in which scenarios with unacceptably se-
vere consequences have a sufficiently low probability, or frequency, of occurrence. Therefore,
the models efficiency metrics should not be based on the predictive power alone but also
include a rigorous uncertainty assessment. As uncertainty is essential for assessing risk,
methods that include rigorous treatment of uncertainty are preferred (e.g., Bayesian meth-
ods, probabilistic inference, and conformal prediction). Incorporating uncertainty analysis
into data-driven models is needed as it allows us to assess the reliability of the results,
identify potential sources of error, gain a more comprehensive understanding of the system
under study, and promote more informed decision-making.

In the past, the safety of complex systems has been addressed by cautiously engineering
their capability and carefully examining potential scenarios to which the system may be
exposed. Even though many operations are now automated, people are still overseeing the
entire system and bearing the ultimate accountability. However, as high-risk and safety-
critical systems increasingly rely on ML methods, greater attention is being paid to ensuring
their assurance. C. Agrell (2018) identifies three critical challenges when applying machine
learning methods to high-risk and low-probability scenarios:

• A high-risk scenario reduces the tolerance for erroneous predictions: We
cannot accept a decision that may have catastrophic consequences based on a faulty
ML algorithm.

• Critical consequences are often related to tail events - for which data are
naturally scarce: ML methods require data. If the data are scarce, the uncer-
tainty associated with the predictions will be high, and the predictive accuracy will
be significantly reduced.

• ML models that can fit complex data well are often opaque and impen-
etrable for human understanding: This makes the model inscrutable and less
falsifiable. For a decision maker in a high-risk context, this increases the uncertainty
and thus reduces her ability to trust the model.

This paper addresses two of the above-mentioned challenges in ML related to high-
risk cases where erroneous predictions could lead to disastrous consequences: the need for
accurate predictions and the issue of scarce data. To address these issues, the paper suggests
using conformal prediction with neural networks to incorporate uncertainty estimates into
predictions. Furthermore, it can potentially mitigate the negative impact of scarce data on
predictive accuracy. By using conformal prediction in neural networks, the authors aim to
increase the transparency and trustworthiness of ML models for high-risk decision-making.

This paper is organized as follows: section 2 describes the use case considered in this
study. Section 3 provides the neural networks and conformal prediction methods. Section
4 presents and discusses the results, and section 5 concludes the paper.
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2. Use Case

In this study, we address the problem of pipeline structural response in the case of anchor
hooking. If a ship’s anchor is dragged along the seabed where a subsea pipeline is lying, it
may hook around the pipe and pull it along. This can lead to damage to the pipeline which
has the potential to cause failure. The force that a dragged anchor applies to a pipeline can
be estimated in a stochastic sense according to a probability distribution for given limiting
mechanisms, for example, fluke breaks, anchor chain breaks, etc. With given parameters,
the response of the pipeline to an anchor hooking can be simulated with nonlinear 3D Finite
Element Analysis (FEA).

Figure 1: Pipeline being dragged by the anchor as seen in an FEA simulation.

The probability that a dragged anchor will hook a given pipeline can be quantified
by considering historic/forecasted ship traffic data and estimated anchoring frequencies
along with simple geometric considerations such as fluke length, pipe outer diameter, etc.
Generally, there is a distribution of different ship classes and corresponding anchor sizes as
well as velocities, contributing to the complexity of the anchor force statistical evaluation.
In addition, some of the relevant pipeline parameters such as axial and lateral soil resistance,
and depth are typically subject to uncertainty or known variation along a given route.

The Probability of Failure (POF) is the overall governing acceptance criteria for the
design. To quantify this, response parameters are compared to established failure criteria.
Due to the complexity of the FEA required to predict the pipeline response, it is com-
putationally unfeasible to satisfactorily account for the input statistics and calculate the
probability distributions for the response quantities simply by running the FEA enough
times with different input sets.

Equinor and GASSCO have identified two goals for a project to make this problem more
tractable in practice: (1) calculate the POF for given input statistics of pipeline and ship
traffic parameters; (2) calculate the (POF) for a particular anchor hooking incident, given
observed lateral displacement and/or dent depth of the pipe’s wall.
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DNV has addressed these problems with a structural reliability analysis and the Monte
Carlo method is used to account for the stochastic nature of the input parameters. To
speed up the iterative calculation of the pipeline response within the Monte Carlo method,
a surrogate model has been established, in place of the FEA. The surrogate model is a
machine learning model which is trained upon a finite set of FEA cases.

The matrix of FEA cases was established by:

• identifying which input dimensions the project required the tool to account for;

• specifying a quantitative range of relevance for each dimension;

• identifying output responses quantities of interest, for the failure criteria;

• after setting a quantity of FEA cases to run, Latin hypercube sampling was used to
define the individual cases.

Since the surrogate model is an approximation to the FEA model, there will be some
error and this should be included as a ‘model uncertainty’ in the structural reliability
analysis. Relevant outputs include lateral displacement, the bending moment over the pipe
cross-section, and the peak axial compressive strain which is the focus of this work. Figure 1
shows the first principal stress distribution in the pipe wall during a hooking incident.

3. Methodology

This study aims to evaluate the uncertainty of neural network based surrogate regression
models using tabular data by employing a conformal prediction framework. The dataset
used in this study comprises approximately 500 simulation runs, each with 10 data points.
Each data point (xi) consists of eleven input variables, and the corresponding continuous
target (yi) is the quantitative response of interest.

To construct the predictive models, we used a Multilayer Perceptron (MLP) neural
network with three hidden layers. The optimal hyperparameters of the MLP model were
selected using a three-way holdout validation method (Raschka, 2018) and Bayesian opti-
mization. Two techniques were employed to estimate the prediction uncertainty: Monte
Carlo Dropout (MCD) (Gal and Ghahramani, 2016) and an MLP with a probabilistic out-
put layer, henceforth referred to as PMLP. The models’ outputs, including point predictions
and uncertainty estimates, were used to construct conformal prediction intervals.

To assess the performance of the models, we used a k-folds cross-validation procedure
to estimate the test error as depicted in Figure 2. The dataset is divided into k equal-
sized folds. The cross-validation procedure iterates k times, where in each iteration, the kth

fold is used as a test set. The remaining k − 1 folds are split randomly into 90% used for
training and 10% as conformal prediction calibration set. The model is trained and used
to provide predictions of the calibration set examples to construct conformal prediction
intervals for the test set. Different performance metrics are used to assess the performance
of the model’s predictions, uncertainty estimates, and conformal prediction intervals. After
completing the k iterations, the performance metrics are summarized, using the mean and
variance for instance, to provide an overall performance estimation of the model. In this
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study, the cross-validation procedure is performed for each model using 100-folds cross-
validation. The data split was based on the simulation runs, ensuring that data points from
the same simulation were grouped together in the same set. Subsequent sections detail
the MLP predictive models, conformal prediction intervals construction methodology, and
performance assessment.

Figure 2: Neural Network based Conformal Prediction procedure

3.1. Predictive models

The dominant paradigm for training neural networks involves the maximization of the like-
lihood objective, which produces a unique set of model parameters. However, this approach
can potentially limit the neural network model’s capacity to capture diverse functions that
fit the data while also generalizing differently. An alternative approach is to adopt Bayesian
inference principles, which allow for the consideration of a range of models with different
parameter settings, resulting in improved accuracy and the representation of uncertainty
(Murphy (2023)). By leveraging Bayesian inference in neural networks, it becomes pos-
sible to account for model uncertainty and produce more reliable predictions. However,
Bayesian neural networks are generally more computationally expensive to train due to a
large number of parameters and voluminous datasets.

Monte Carlo dropout is a widely used technique to approximate the Bayesian predic-
tive distribution for neural networks (Gal and Ghahramani, 2016). This method involves
applying dropout, which is a regularization technique for neural networks, to perform a
random sampling of hidden units during test time. This results in the computation of mul-
tiple forward pass, generating different models. The mean and the standard deviation of
the resulting predictions can then be used as point prediction and uncertainty estimates,
respectively. While MCD has shown effectiveness in various areas, such as natural language
processing and computer vision, its application should be undertaken with caution. Al-
though intended to represent the learned model’s uncertainty (i.e., epistemic uncertainty),
it may be an inadequate approximation, as suggested by previous research (see e.g., Osband,
2016; Folgoc et al., 2021). Furthermore, accurate estimates of uncertainty require careful
tuning of the dropout rate.
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An alternative approach to quantifying the uncertainty in neural network predictions
is to model the output as a distribution, for instance, with the assumption that the true
output follows a Gaussian distribution with learnable mean and variance parameters. In this
study, we consider an MLP with a probabilistic output layer (PMLP). To learn the optimal
parameters of the estimated Gaussian distribution, the negative log-likelihood is used as
a loss function, which maximizes the likelihood of the target values given the estimated
distribution with parameters µ̂ and σ̂. However, the normal distribution may not always
be an appropriate choice for modeling the true output distribution, and the estimated
mean and variance values obtained from the model may not necessarily reflect the actual
distribution. This could impose a significant inductive bias into the model resulting in a
poor performance both for point predictions and uncertainty estimations and leading to
wrong interpretations. Therefore, it is crucial to perform further validation to assess the
reliability and accuracy of the estimated distribution, which may involve statistical tests
and cross-validation techniques.

3.2. Conformal Prediction

Conformal Prediction is a statistical framework that offers a robust method for quantifying
uncertainty in predictive models. This methodology can be applied to any predictive model
and provides prediction sets or intervals with a guaranteed bound on prediction error at
a specified error level. This study specifically considers the inductive conformal regression
setting (Papadopoulos et al., 2002), where the underlying model is induced from training
data and uses a calibration dataset, to generate conformal prediction intervals for new in-
stances. The procedure followed in this study to construct conformal regressors is described
in Algorithm 1.

Constructing a conformal regressor requires choosing the following elements: (i) an
underlying model, (ii) a non-conformity score function, and (iii) a significance level. Also,
a calibration dataset distinct from the training dataset is needed. This study employs the
MLP with Monte Carlo dropout and the PMLP as underlying models. It should be noted
that the predictions generated by these models come with variance estimates. In order to
measure the non-conformity score, which is used to assess the conformity of new instances
that the models have not seen during training, a scoring function is chosen. This scoring
function is applied to the calibration set to obtain non-conformity scores. The specified
significance level α is used to achieve the desired level of confidence 1 − α . The non-
conformity score corresponding to the (1 − α)th percentile from the calibration dataset is
then used to construct prediction intervals on test data. As the non-conformity scoring
function is the standardized residuals, the prediction intervals obtained are adaptive.

3.3. Performance Assessment

The performance accuracy of the predictive models is evaluated using the Mean Absolute
Error (MAE) and the Root Mean Squared Error (RMSE). To quantitatively measure the
quality of the predictive models’ uncertainty estimation, the Mean Absolute Calibration
Error (MACE) (Chung et al., 2021; Fenlon et al., 2018), the Average Negative Log Predictive
Density(NLPD) (Quinonero-Candela et al., 2006), and the Continuous Ranked Probability
Score (CRPS) (Gneiting and Raftery, 2007) are used.
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Algorithm 1: Inductive Split Conformal Prediction

Input: Training data {(xi, yi)}i∈Dtrain , calibration data {(xi, yi)}i∈Dcalib
, test data

{(xi, yi)}i∈Dtest , predictive model P , non-conformity score s, significance level
α ∈ [0, 1].

Output: Pcp(xtest), prediction intervals of test examples.
Fit the MLP network on training data.
Compute non-conformity scores of calibration data S = s(xi, yi)i∈Dcalib

using the score

function s(xi, yi) =
|yi−ŷi|

σ̂i
where ŷ and σ̂ are the point prediction and the standard

deviation estimate produced by P for the sample x.
Compute the q̂ the (m+1)(1−α)

m quantile of S where m is the size of Dcalib

for xi, i ∈ Dtest do
Get the point prediction ŷi and the standard deviation estimate σ̂i.

end
return Pcp(xi) = [ŷi − σ̂iq̂, ŷi + σ̂iq̂]

The MACE estimates the overall level of error during the calibration of n samples

by averaging the absolute difference between the predicted probability p
(b)
i and observed

frequency o
(b)
i for a bin b as given equation (1).

MACE(b) =
1

n

n∑
i=1

|p(b)i − o
(b)
i | (1)

The NLDP is given by equation (2) where ŷi is the prediction and p(.) is the probability
density function. It quantifies the discrepancy between the predicted probabilities and the
true probabilities. The NLDP penalizes both over and under-confident predictions but
also favors conservative models, that is models tending to be under-confident rather than
over-confident.

NLPD = − 1

n

∑
log p(ŷi = yi|xi)

n
i=1 (2)

The CRPS is a measure for probabilistic predictions of scalar observations. It is a
quadratic measure of the difference between the cumulative distribution function (CDF) of
the predicted probabilities and the empirical CDF of the observed outcomes. The CRPS
is given by equation (3) as the integral of the squared difference between the predicted
CDF denoted as F , and the empirical CDF of the scalar observation given by the indicator
function 1(x ≥ y) defined as a Heaviside step function.

CRPS(F, y) =

∫
R
[F (x)− 1(x ≥ y)]2dx, (3)

To evaluate the performance of the conformal prediction intervals, two commonly used
metrics were employed: coverage and efficiency. Coverage is defined as the ratio of test
targets that were covered by the intervals, while efficiency is defined as the mean length
of the test intervals (Angelopoulos and Bates, 2022). These metrics are widely used in the
literature to assess the accuracy and effectiveness of conformal prediction intervals and can
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provide valuable insights into the reliability and usefulness of the generated intervals in
practical applications.

4. Results and Discussion

Figure 3: Accuracy metrics of the Monte Carlo Dropout for dropouts rates 0.1 - 0.5 and for
the Probabilistic Multilayer Perceptron. The plot shows the distribution of the
metrics from the 100-folds cross-validation. In each case, the dashed green line
indicates the mean, and the orange line the median.

Figure 4: Uncertainty performance metrics of the Monte Carlo Dropout for dropouts rates
0.1 - 0.5 and for the Probabilistic Multilayer Perceptron. The plot shows the
distribution of the metrics from the 100-folds cross-validation. In each case, the
dashed green line indicates the mean, and the orange line the median.

In order to define what is the best approach to the problem we have used the Uncertainty
Toolbox1 (Chung et al., 2021) to estimate the MAE, RMSE, MACE, NLPD, and CRPS

1. See https://github.com/uncertainty-toolbox/uncertainty-toolbox
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for the PMLP and the MCD, the latter with 5 dropout rates from 0.1 to 0.5. Figure 3
and 4 show the distribution of these performance metrics in each case. The distributions
are built with the outputs of each 100-folds as depicted in figure 2. From the MAE and
RMSE metrics, we can conclude that there is not a substantial difference in performance
among the models. The MACE metric shows that MCD with 0.4 and 0.5 dropout rates
are the best at calibrating the predicted probabilities with the observed frequencies, while
the NLPD metric shows that MCD with a 0.5 dropout rate performs slightly better than
the 0.4 dropout rate. Therefore the former is also the model whose predictions are more
likely, given the data. The PMLP shows similar results but still, its performance is slightly
poorer.

Figure 5 shows the predictions (± 1 standard deviation) vs true values and the cali-
bration for the models. The calibration plot refers to the degree to which the targets fall
within the uncertainty ranges. It shows the proportion of the test data we expect to lie
inside the uncertainty range on the x-axis, and the observed proportion of test data inside
the uncertainty ranges on the y-axis. The plot is made by dividing the interval [0, 1] to 100
bins or quantile ranges. For each quantile, we calculate the proportion of test points falling
in the interval corresponding to that quantile. This is done by computing the proportion
of normalized residuals within the lower and upper bound for that quantile. The model is
considered well-calibrated when the blue line falls over the dashed orange line. The shaded
area represents the variance of the values from the 100-folds cross-validation procedure.
The upper and lower bounds are the 0.9 and 0.1 quantiles, respectively. The blue line cor-
responds to the mean across the cross-validation values. If the line lies below the diagonal,
the model is overconfident with too narrow uncertainty ranges. Otherwise, the model is
underconfident with wide uncertainty ranges. As already discussed, the MCD with 0.4 and
0.5 dropout rates seem to be the models that best perform on the data followed by the
PMLP, according to the calibration plots.

Figure 6 shows the performance metrics for the conformal prediction intervals and the
neural network models’ uncertainty. To properly evaluate the performance, it is necessary
to establish a trade-off between coverage and efficiency metrics. Efficiency is a measure
of how narrow the prediction intervals are. The smaller the interval the more precise the
prediction. While coverage represents how often the true outcome falls within the predicted
interval. Having a better efficiency may lead to a lower coverage, as it may happen that
narrower intervals exclude the true outcome more often. Hence, we need to choose predic-
tion intervals that are sufficiently narrow (efficient) and provide high confidence that the
true value is falling within the interval. The plots in Figure 6 show the distribution of the
metrics from the 100-folds cross-validation procedure. The first two panels from the left
represent the conformal prediction intervals performance after applying the framework on
each model for 0.1, and 0.05 significance levels. The third panel shows the metrics related
to two standard deviation uncertainty ranges from the neural network models. Herein, the
criterion of two standard deviations is applied because it would cover around 95% of the
possible values if the prediction were normally distributed. The conformal prediction with
a confidence level of 95% (0.05 significance) guarantees a 95% coverage for all the neural
network models, especially the badly calibrated ones, as it is noticeable for the MCD models
with dropout rates of 0.1, 0.2, 0.3 and 0.4 in the coverage plots in Fig. 6. The conformal
prediction framework also improves the efficiency of the PMLP model. In the same figure,
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Figure 5: Prediction error (left panels) and calibration plots (right panels) with neural
network models uncertainty estimates. The diagonal grey line represents where
the samples would fall if the model predictions were perfect. In the calibration
plots, the dashed orange line represents how the data should distribute when the
model is perfectly calibrated, while the blue line shows the actual distribution of
the model’s outcomes. The shaded region corresponds to the upper and lower
bounds from the 100-folds cross-validation, given by the 0.9 and 0.1 quantiles
respectively.

the fluctuation of the conformal prediction coverage and efficiency between the different
100-folds can be attributed to the finite size of the test folds. As the average coverage is
approximately equal to 1 − α for all cases, we can conclude that the conformal prediction
intervals have the correct coverage. For the 0.05 significance level (95% confidence level),
both the MCD with 0.4 and 0.5 dropout rates and the PMLP have good coverage. How-
ever, the MCD gives better efficiency performance. Moreover, although the coverage and
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Figure 6: Coverage (top row) and efficiency (bottom row) performance of the conformal
prediction intervals and the neural network models uncertainty estimates. The
plot shows the distribution of the coverage and efficiency from the 100-fold cross-
validation. From left to right: the first two panels correspond to the conformal
prediction intervals with significance of 0.1, and 0.05. The last panel corresponds
to neural network models with uncertainty ranges of 2 * standard deviations.

efficiency for the MCD 0.4 and 0.5 dropout rates under the conformal prediction frameworks
are similar, the coverage for the 0.5 dropout rate in the MLP model, i.e., before applying
conformal prediction, is much better than for the 0.4 dropout rate. We, therefore, choose
to select the 0.5 dropout rate as the one that best performs given the data within the MCD
approach.

The MCD with 0.5 dropout rate provides a coverage of 93.88±0.06 with an efficiency
of 11.38±3.67, while the corresponding conformal prediction intervals have a coverage of
95.29±0.06 and an efficiency of 13.40±4.79. In this case, the conformal prediction intervals
offer a slight improvement in coverage with larger intervals.
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The use of conformal prediction guarantees that new observations will fall within the
predicted interval with a selected confidence level. And this provides outstanding informa-
tion to assess risk and make appropriate decisions. Moreover, the behavior of the intervals
when the model is exposed to new data can be used to find changes in the underlying distri-
bution of the data or to detect anomalies and errors in the training data. For instance, if the
predicted intervals widen, increasing the uncertainty, or if the observed values consistently
fall outside the predicted intervals, it may be that the distribution of data may have shifted
due to the presence of noisy inputs or outliers. Although the conformal prediction is unable
to explicitly find what is the cause of these behaviors, it does give alerts to the model users
to investigate further and make more informed decisions or to apply additional processing
in order to reduce the impact of unreliable data on the performance of the model.

5. Conclusions

This study considers the case of the simulation of a subsea pipeline structural response in
the situation of anchor hooking. It addresses the challenge of quantifying neural networks
based surrogate models uncertainty. In conclusion, the application of conformal prediction
on neural networks has shown promising results in improving uncertainty quantification.
By providing reliable prediction intervals, conformal prediction can help mitigate the risk
of making incorrect decisions based on poor-quality uncertainty estimates from surrogate
models.

Overall, this study shows that the combination of neural networks and conformal pre-
diction can significantly enhance the reliability of machine learning based surrogate models,
paving the way for their adoption in more complex and critical applications. Further re-
search in this area is required to fully explore the capabilities of this approach by designing
more suitable scoring functions and considering other validation strategies. Future work
also considers extending this approach to other safety-critical areas.
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