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Abstract

Graph Neural Networks (GNNs) have achieved remarkable performance on diverse graph
representation learning tasks. However, recent studies have unveiled their susceptibility to
adversarial attacks, leading to the development of various defense techniques to enhance
their robustness. In this work, instead of improving the robustness, we propose a framework
to detect adversarial attacks and provide an adversarial certainty score in the prediction.
Our framework evaluates whether an input graph significantly deviates from the original
data and provides a well-calibrated p-value based on this score through the conformal
paradigm, therby controlling the false alarm rate. We demonstrate the effectiveness of our
approach on various benchmark datasets. Although we focus on graph classification, the
proposed framework can be readily adapted for other graph-related tasks, such as node
classification.
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1. Introduction

Graph-structured data is an essential component of many domains, such as chemoinformat-
ics, bioinformatics, and social network analysis. In these domains, graphs provide a natural
way to represent complex relationships between entities, such as molecules, proteins, and
social actors, as well as their attributes. The vast use of machine learning applications in
these domains has motivated the development of specialized neural network models that can
operate on graph-structured data, known as graph neural networks (GNNs). These models
leverage the graph structure to learn meaningful representations of nodes that could be
combined to represent the whole graph. Hence, GNNs have emerged as a powerful tool for
learning both node and graph representations. They enable effective information sharing
between connected nodes and can capture high-order relationships between them, which are
meaningful in many applications. Over the past few years, GNNs have been successfully
applied to a wide range of problems, including drug design, where they have been used to
predict the efficacy and safety of drug candidates based on their molecular and biological
properties (Kearnes et al., 2016); and session-based recommendation, where they have been
used to recommend items to users based on their historical behavior (Wu et al., 2019b).

Adversarial attacks have been shown to be highly effective in compromising the ac-
curacy and reliability of deep learning architectures, particularly in the field of computer
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vision (Goodfellow et al., 2014). These attacks involve injecting small, well-crafted pertur-
bations into the input data, which can lead to unreliable results and predictions, limiting
the applicability of these models to real-world problems. Similar to other deep neural net-
works, GNNs are also vulnerable to adversarial attacks. Recent studies have shown that
even small structural perturbations to the input graphs can easily fool a GNN (Dai et al.,
2018a; Zügner et al., 2018; Günnemann, 2022). This vulnerability poses a critical threat
to the reliability of GNNs, particularly in safety-critical applications such as finance and
healthcare. For example, an attacker could manipulate social network data or online re-
views to spread false information or influence recommendation systems, causing significant
harm. As a result, different attack scenarios and schemes have been proposed to explore
the robustness of GNNs. In parallel, a defense effort is being conducted to mitigate the
possible effect of these perturbations. Recently, different defense techniques have been pro-
posed; these include augmenting training data with adversarial examples and retraining the
model (Feng et al., 2019), enhancing the robustness of an input GNN (Zhang and Zitnik,
2020), and more recently proposing robustness certificates (Schuchardt et al., 2021). We
note that adversarial attacks on GNNs can manifest themselves in various forms due to the
diverse nature of graphs. These forms include structural perturbation attacks, node feature
attacks, and edge feature attacks. Structural perturbation attacks involve injecting or re-
moving nodes or edges from the input graph, thereby producing erroneous predictions and
classifications. Node feature and edge feature attacks entail manipulating the nodes/edges
features within the input graph to achieve the attacker’s desired outcome.

While the majority of defense methods for enhancing the robustness of victim models
focus on modifying the message-passing scheme, pre-processing the input graph, or editing
the underlying scheme, in this work, we take a different route by providing an adversarial
estimation at inference time. Specifically, we aim to control the false alarm rate, i.e., incor-
rectly classifying a non-attack as an attack, while at the same time still being able to identify
as large a fraction of the attacks as possible. In this work, we propose to leverage conformal
prediction (CP) for this task. The proposed framework does neither require prior knowledge
of the victim model nor the underlying data distribution, making it possible to approach
the model in a black-box manner. The approach is therefore model-agnostic and allows
for more straightforward implementation with various GNN architectures. We demonstrate
instances of our framework on two popular GNNs and evaluate them on standard graph
classification datasets. Our main contributions are summarized as follows:

• We propose a general framework based on conformal prediction for controlling the
false alarm rate for adversarial attack detection.

• The framework assumes no knowledge about the underlying architecture or the un-
derlying data distribution, thus allowing us to demonstrate it on two popular GNN
models.

• We evaluate the proposed framework on several benchmark graph classification datasets
where we show its ability to detect adversarial attacks.
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2. Related work

Attacking machine learning models has received significant attention in recent years, with
numerous studies focused on images (Goodfellow et al., 2014; Ren et al., 2020). More
recently, research has emerged on attacking machine learning models operating on discrete
data such as graphs. However, the discrete nature of graphs presents unique challenges for
applying attack methods used in other domains. To address this issue, many existing graph-
based attack methods frame the problem as a search problem, aiming to find the closest
adversarial perturbation to a given input graph. This approach has led to the development
of various attack strategies, such as Nettack (Zügner et al., 2018), which uses a greedy
optimization algorithm to attack the graph structure and node features. Furthermore,
Zügner and Günnemann (2019) introduced a bi-level optimization approach that leverages
meta-gradients to generate adversarial attacks. Building on this work, Zhan and Pei (2021)
proposed a black-box gradient attack algorithm to overcome limitations of previous work.
Another approach, proposed by Dai et al. (2018b), uses reinforcement learning to solve the
search problem and generate adversarial attacks. Notably, our proposed framework does
not require any prior knowledge of the underlying model, enabling it to be applied to various
GNN architectures in a black-box manner.

The area of defending GNNs against adversarial attacks is still relatively unexplored
compared to that of models related to image classification. The majority of techniques are
primarily centered on ad hoc defense mechanisms. Similar to image-based models, tech-
niques such as robust training (Zügner and Günnemann, 2019a) and aggregation (Geisler
et al., 2020) have been introduced as means to enhance the robustness of GNNs. Further-
more, low-rank matrix estimation approaches (Ma et al., 2021) have been used to protect
against adversarial attacks. For instance, GNN-Jaccard (Wu et al., 2019a) employs pre-
processing of the graph’s adjacency matrix to identify potential edge manipulation. Sim-
ilarly, GNN-SVD (Entezari et al., 2020) uses a low-rank approximation of the adjacency
matrix to eliminate noise. Additionally, other methods such as edge pruning (Zhang and
Zitnik, 2020) and transfer learning (Tang et al., 2020) have been employed to minimize the
impact of poisoning attacks. Finally, a low-pass ”message passing” mechanism that can be
intergrated into existing GCN architecture has been proposed to both defend and provide
theoretical guarantees against structural perturbations. Despite the moderate success of the
aforementioned defense strategies in mitigating current adversarial attacks, their heuristic
approach does not ensure the robustness of the underlying GNN. This may leave these
defenses vulnerable to other new, more sophisticated attack methods in the future. Conse-
quently, there has been an increasing focus on exploring robustness certificates (Zügner and
Günnemann, 2019b; Bojchevski and Günnemann, 2019) as a promising direction in tackling
adversarial attacks. These certificates offer attack-independent assurances of the model’s
prediction stability. For example, Bojchevski et al. (2020) utilized randomized smoothing
to provide a highly scalable and model-agnostic certificate for graphs.
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3. Preliminaries

Before continuing with our contribution, we introduce the graph classification problem and
some key notation.

3.1. Problem Setup

Let G = (V,E) be a graph where V is its set of vertices and E its set of edges. The number
of vertices is denoted n = |V | and, respectively the number of edges as m = |E|. The
topology of a graph can be represented by its adjacency matrix A ∈ Rn×n that encodes
edge information. The (i, j)-th element of the adjacency matrix is equal to the weight (1 in
the case of unweighted graphs) of the edge between the i-th and j-th node of the graph and
a weight of 0 in case the edge does not exist. In some settings, the nodes of a graph might
be annotated with feature vectors. We use X ∈ Rn×D to denote the node features where D
is the dimensionality; the features of the i-th node corresponds to the i-th row of X.

In a graph classification setting, we have a set of graphs G = {G1, G2, . . . , GN} and each
graph Gi is associated with a class label yi ∈ Y = {1, 2, ...,K}, K being the number of
classes. The graph classification problem is defined as the task of finding a classifier h : G →
Y that associates to each graph Gi a predicted label ŷi while minimizing a classification loss
(e. g., cross-entropy loss).

3.2. Graph Neural Networks

GNNs have recently become the standard approach for dealing with graph classification
tasks. A GNN typically consists of a series of neighborhood aggregation layers that use
both the graph structure and the features of the nodes to iteratively generate new repre-
sentations. In other words, a GNN updates the feature vectors of the nodes by aggregating
local neighborhood information.

Suppose we have a GNN model that contains T neighborhood aggregation layers. Let

also h
(0)
v denote the initial feature vector of node v, i. e., the row of matrix X that corre-

sponds to node v. At each iteration (t > 0), the hidden state h
(t)
v of a node v is updated as

follows:

a(t)v = AGGREGATE(t)
({

h(t−1)
u : u ∈ N (v)

})
h(t)
v = COMBINE(t)

(
h(t−1)
v ,a(t)v

) (1)

where AGGREGATE is a permutation invariant function that maps the feature vectors
of the neighbors of a node v to an aggregated vector. This aggregated vector is passed

along with the previous representation of v (i. e., h
(t−1)
v ) onto the COMBINE function

which combines those two vectors and produces the new representation of v. After T
iterations of neighborhood aggregation, to produce a graph-level representation, GNNs
apply a permutation invariant readout function, e. g., the sum or mean operator, to the
feature vectors of all nodes of the graph as follows:

hG = READOUT
({

h(T )
v : v ∈ V

})
(2)
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4. Methods

In this section, we present our proposed method for detecting adversarial examples via con-
formal prediction. Firstly, we give an overview of adversarial attacks in the graph domain.
Then, we introduce the conformal prediction process and provide a detailed description of
the approach.

4.1. Adversarial attacks

We consider three measurable spaces with a defined norm over each space (G, ∥.∥G), (X ,
∥.∥X ) and (Y, ∥.∥Y). Let {(A1, X1, y1), . . . , (AN , XN , yN )} ∈ (G,X ,Y)N be a sampled set
from an underlying probability distribution D defined on (G,X ,Y). We consider a graph-
based classifier f trained as described in section 3. Given an input graph point G ∈ G
and its corresponding label y ∈ Y where f(G) = y, the goal of an adversarial attack is to
produce a perturbed graph G̃ slightly different from the original graph with its predicted
class being different from the predicted class of G. This could be formulated as finding
a G̃ with f(G̃) = ỹ ̸= y such that the perturbed graph G̃ is semantically similar to the
input graph. We quantify this semantic similarity using a graph distance defined on our
considered input metric spaces, for instance, we can use the following distance:

d([A,X], [Ã, X̃]) = min
P∈Π

{∥A− PÃP T ∥2 + ∥X − PX̃∥2}. (3)

where Π denotes the collection of permutation matrices. It is worth mentioning that in
the case of unattributed graphs, we can only consider the first part related to structural
comparison, and in this case, this quantity is equivalent to the commonly used notion of
graph edit distance. This measures the resemblance between two graphs by determining
the minimum number of edge modifications that are necessary to transform one graph into
another, taking into account graph isomorphism. It is important to note that even though
we use the l2 norm for our graph distance formulation, any other valid metric defined on
the input space could be utilized instead.

4.2. Proposed framework

The main assumption of the proposed framework is that we have access to a set of graphs, all
sampled IID from some static but unknown underlying distribution of non-attacked graphs.
In contrast, we do not assume access to a similar sample of attacked graphs, due to the
difficulty of collecting such graphs in reality and also that the underlying distribution of
attacked graphs hardly can be assumed to be static, as the different types of attack are con-
stantly evolving. The original training set, which through the application of the conformal
prediction framework, will be further divided into a proper training set and a calibration
set, hence containing instances with one label only. For the test instances, each prediction
set will accordingly consist of either a singleton (the label non-attack) or be empty, which
means that the label can be rejected at the specified level of confidence. An empty-set
prediction may signal that the corresponding graph should be further investigated, as it,
with high probability, could be excluded from the set of non-attacked graphs. Assuming
attack to be the positive class and non-attack to be the negative, the confidence level hence
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serves to control the false positive rate (or false alarm rate), i.e., the number of false posi-
tives divided by the sum of the number of false positives and true negatives. By lowering
the confidence, the recall of the positive class will increase at the cost of an increased false
alarm rate. Conversely, by increasing confidence, a reduced false alarm rate will lead to
fewer graphs that need to be inspected, at the cost of missing out on more true attacks.

The main idea of the proposed framework is to define the nonconformity measure us-
ing a binary GNN classifier, trained from the proper training set (where all instances are
labeled non-attack and a synthetically generated set of graphs (all labeled attack). Since
the conformal prediction framework allows us to freely define the nonconformity measure,
the exact way in which the synthetic (adversarial) graphs are constructed will not affect
the validity (or false alarm rate). Still, if these adversarial graphs are properly generated,
we can expect to see a higher proportion of true attacks among the graphs for which the
non-attack label has been rejected.

Given an input graph Gq+1 with its corresponding node features Xq+1, a set prediction
is formed, using the conformal predictor formed from a chosen nonconformity measure.

Algorithm 1 Conformal Prediction for Adversarial Attacks

Input : Confidence level 1 − ϵ, a trained GNN victim model f , a training set N , a cali-
bration set C = G1, .., Gq, input graph Gq+1

Output: Prediction set Pq+1

1 - Generate a set of adversarial graphs A with respect to f and N
2 - Train a GNN S from A ∪N , where elements of the former set are labeled 1 (”attack”)
and the latter 0 (”non-attack”)

3 - Compute nonconformity scores α1, . . . , αq for the calibration set, where αi = S(Gi), for
i = 1, . . . , q

4 - Compute nonconformity score αq+1 for the input graph, where αq+1 = S(Gq+1)
5 - Compute p-value for the input graph:

pq+1 =
|{i∈{1,...,q} s.t. αi>αq+1}|+τ |{i∈{1,...,q} s.t. αi=αq+1}|

q+1 where τ ∼ U(0, 1)
6 - Produce prediction set: Pq+1 = ∅ if pq+1 < ϵ, else Pq+1 = {0}

4.3. Nonconformity scores and synthetic adversarial graphs

Our proposed framework relies on identifying a suitable non-conformity score to accurately
evaluate and rank the distance between an input graph and the available calibration set. In
graph analysis, there are various metrics and similarity measures that can be employed, in-
cluding traditional semantic measures such as degree, closeness, or betweenness centrality,
as well as more advanced kernels such as the Random Walk kernel. Although these un-
supervised methods are advantageous, our experiments have revealed that they may have
limitations in terms of effectiveness. To overcome these limitations, we propose to enrich
our original training set with crafted adversarial points and train a GNN-based model to
classify the attack/non-attack aspect. As shown in Algorithm 1, this classifier will be the
basis for the nonconformity scores. While in this work, we focus on structural perturbations,
our framework can easily be adapted for node-feature-based attacks.
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Given a trained GNN model f built on a specific task related to the considered dataset
G, a set of perturbed graphs {G̃1, G̃2, . . . , G̃M} are generated from the set of training graphs
that are correctly classified by the GNN. Those graphs are produced by applying a set of
perturbation matrices {∆1,∆2, . . . ,∆M} to the correctly classified graphs. It should be
noted that the perturbations can be generated using various schemes. For example, the user
may choose to use an available adversarial attack or opt for random perturbations. In our
work, we focused on random perturbations drawn from a Gaussian distribution. We use this
synthetically generated training set comprising original training graphs (corresponding to
the ”non-attack” class) and adversarial graphs (representing the ”attack” class) to train an-
other GNN that classifies attacks and non-attacks. This GNN serves as our non-conformity
score.

We should note that the test and calibration set from the original dataset
We should note that when interacting with this latter GNN (during both training and

testing), we
When interacting with this latter GNNs, it is important to note that we do not use the

calibration and test set and their corresponding labels to eithet train or test it.
Instead, we use them to represent the ”non-attack” aspect, assuming they are drawn

from the same underlying distribution.
Based on the above, the proposed framework, as described in Algorithm 1, can be

divided into two main components that are considered to be independent and hence respect
the black-box setting.

(1) Classifier. This is an instance of a GNN model following the general graph clas-
sification scheme presented in Section 3. This model is trained for the graph classification
task of the given dataset and serves as the main victim model on which we aim to apply
our proposed framework.

(2) Non-conformity Score. This is another GNN-based classifier built using the
original training set enriched with different generated adversarial attacks, as previously
explained.

4.4. Connection to other available defenses

We argue that our proposed framework can easily be connected to other defense methodolo-
gies mentioned in Section 2. Specifically, low-rank matrix estimation-based methods such
as GNN-Jaccard or GNN-SVD aim to make the input graph as similar as possible to the
available training dataset to attenuate its adversarial effect while retaining the essential in-
formation in the input. The former can be reformulated as minimizing our non-conformity
score while keeping the main information/signal contained on the input graph. Therefore,
although it is not our primary focus, we can utilize our framework to generate pre-processing
edits that could be used to enhance the robustness of graph-based classifiers against adver-
sarial attacks for both structural and node-feature-based perturbations.

5. Experimental Evaluation

In this section, we first give details about the experimental settings and next describe the
applied empirical evaluation. We afterward report on the performance of the proposed
approach on real-world datasets.
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Table 1: Statistics of the graph classification datasets used in our experiments.

Dataset #Graphs #Nodes #Edges #Classes

D&D 1178 284.32 715.66 2
NCI1 4110 29.87 32.30 2
PROTEINS 1113 39.06 72.82 2
MUTAG 187 18.03 39.80 2

5.1. Experimental Setup

We used a Graph Convolutional Network (GCN) (Kipf and Welling, 2017) to produce our
non-conformity score where the number of message passing layers and hidden dimensions
have been arranged differently from the GNN-based classifier (especially if the underlying
victim model is a GCN) since the black-box setting, which we are interested in, assumes
no knowledge about the inner architecture of the underlying model. We focused on per-
turbations based on adding Gaussian noise N (0, I) with a scaling parameter σ to control
the attack budget. We demonstrate instances of the proposed framework on two main
GNNs: (1) Graph Convolutional Network (GCN) (Kipf and Welling, 2017) and (2) Graph
Isomorphism Network (GIN) (Xu et al., 2019) on real benchmark datasets. Each of these
models consists of 2 layers corresponding to two message-passing processing (with their rel-
evant Aggregate and Combine functions depending on the chosen underlying architecture).
We evaluate the proposed approach on standard graph classification datasets derived from
bioinformatics and chemoinformatics (MUTAG, PROTEINS, NCI1, D&D) (Morris et al.,
2020); the datasets are summarized in Table 1. Note that these graph datasets come with
either node labels or node attributes. We perform 10-fold cross-validation to estimate the
generalization performance of the approach where we used the same folds as used in pre-
vious work (Errica et al., 2020). For all models, we used the sum operator as the readout
function to produce graph-level representations. Furthermore, we train the different mod-
els by minimizing the cross-entropy loss function with the Adam optimizer and an initial
learning rate of 10−3. 1

5.2. Validity Evaluation

We start by empirically evaluating the validity of the proposed method in terms of its
statistical guarantees from the conformal prediction perspective. We will be using the
available test set, which only represents the negative class since the corresponding graphs
are all supposed to be drawn from the same underlying distribution of non-attacked graphs.
We recall that setting a confidence level 1 − ϵ limits the false positive rate not to exceed
ϵ. To test this empirically, we evaluate the rejection level for various values of ϵ. Table 2
shows a summary, presenting the results over the four considered benchmark datasets for
two different significance levels and for different values of σ (attack budget). Analyzing

1. The source code for training our proposed framework and reproducing the results is available at
shorturl.at/aqs57.
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Table 2: Conformal prediction summary for a GCN for different benchmark datasets and
for different considered values.

Dataset
σ = 0.5 σ = 1.0

ϵ = 0.05 ϵ = 0.1 ϵ = 0.05 ϵ = 0.1

PROTEINS .043 .081 .032 .113
MUTAG .041 .063 .039 .068
NCI1 .027 .076 .043 .083
D&D .063 .094 .058 .104

Table 3: Accuracy (± standard deviation) of the proposed approach for detecting adver-
sarial attacks on the different benchmark datasets.

Model PROTEINS MUTAG D&D

GCN
σ = 0.5 93.2 ± 1.9 92.3 ± 5.4 95.4 ± 0.8

σ = 1.0 95.8 ± 1.6 94.6 ± 4.9 95.9 ± 1.1

GIN
σ = 0.5 82.9 ± 3.8 85.6 ± 5.6 96.1 ± 1.3

σ = 1.0 93.8 ± 2.7 95.7 ± 4.6 91.5 ± 0.4

the results shows that the proposed method is valid and reasonably well-calibrated for the
different cases.

5.3. Defense Performance Evaluation

One aspect of our proposed methodology involves detecting adversarial attacks, which can
then be used as a defense approach against such attacks. We are interested therefore in
this part in assessing the efficacy of our method in detecting adversarial attacks, we utilized
an evaluation strategy similar to that used in the field of anomaly detection, specifically
in supervised anomaly detection. Initially, we considered the available test set consisting
of graphs that are, by definition, non-adversarial. Then, we augmented this test set by
generating additional adversarial attacks. These attacks were meticulously designed to
ensure that the final testing set had a balanced number of adversarial and non-adversarial
samples. By adopting this evaluation strategy, we aimed to replicate a real-world scenario
where a machine learning model is deployed and it encounters both legitimate and malicious
inputs. Our objective was to verify if our method could accurately distinguish between these
two types of inputs and identify adversarial attacks, even in the presence of non-adversarial
inputs. We would like to emphasize that our primary evaluation hypothesis is that the
model is susceptible to the same types of attacks that were used during the training of our
non-conformity score.

Table 3 presents the classification accuracy and their corresponding standard deviations.
Our observations indicate that the proposed framework can effectively and precisely detect
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adversarial attacks, thereby providing an additional security layer to enhance the robustness
of the underlying victim model. As expected, the ability of the model to detect adversaries
increases with the σ value, which controls the amplitude of the attack. In practice, attackers
typically aim to create the smallest possible perturbation, and our framework demonstrates
that it can also detect such attacks effectively. This is evidenced by our results for σ = 0.5,
which indicate that our framework can detect adversaries with a high degree of accuracy
even when the perturbations are relatively small.

6. Concluding Remarks

In this paper, we have applied conformal prediction to the task of detecting adversarial
attacks, given an underlying static victim model. Our approach is model-agnostic and
operates in a black-box manner, making it easier to adapt to various architectures and use
cases. While our focus has been on structural perturbations, the method can be adapted
to different aspects of graph attacks, such as node/edge feature-based perturbations. Our
empirical evaluation confirms the validity guarantees provided by the conformal scheme and
demonstrates the effectiveness of the proposed approach in detecting adversarial attacks for
different benchmark graph classification datasets.

We consider that the proposed framework can be easily adapted to other deep learning-
related tasks, such as computer vision or natural language processing. Thus, the next step
is to work on the generalization of the method. In addition, we should investigate the
applicability of our method in tasks where the IID assumption cannot necessarily be made,
such as for the node classification task. Such an investigation can provide insights into the
potential limitations of our method and help identify potential areas for improvement.
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certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images
and more, 2020. URL https://arxiv.org/abs/2008.12952.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
attack on graph structured data, 2018a. URL https://arxiv.org/abs/1806.02371.

10

https://arxiv.org/abs/1910.14356
https://arxiv.org/abs/2008.12952
https://arxiv.org/abs/1806.02371


Conformalized Adversarial Attack Detection

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial
Attack on Graph Structured Data. In Proceedings of the 35th International Conference
on Machine Learning, pages 1115–1124, 2018b.

Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalex-
akis. All you need is low (rank): Defending against adversarial attacks on graphs.
In Proceedings of the 13th International Conference on Web Search and Data Min-
ing, WSDM ’20, page 169–177, New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450368223. doi: 10.1145/3336191.3371789. URL https:

//doi.org/10.1145/3336191.3371789.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A Fair Comparison
of Graph Neural Networks for Graph Classification. In 8th International Conference on
Learning Representations, 2020.

Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dy-
namically regularizing based on graph structure, 2019. URL https://arxiv.org/abs/

1902.08226.
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