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Conformal Prediction is Robust to Dispersive Label Noise
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In most supervised classification and regression tasks, one would assume the provided
labels reflect the ground truth. In reality, this assumption is often violated; see Cheng
et al. (2022); Xu et al. (2019); Yuan et al. (2018); Lee and Barber (2022); Cauchois et al.
(2022). For example, doctors labeling the same medical image may have different subjective
opinions about the diagnosis, leading to variability in the ground truth label itself. In
other settings, such variability may arise due to sensor noise, data entry mistakes, the
subjectivity of a human annotator, or many other sources. In other words, the labels we
use to train machine learning (ML) models may often be noisy in the sense that these are
not necessarily the ground truth. Quantifying the prediction uncertainty is crucial in high-
stakes applications in general, and especially so in settings where the training data is inexact.
Conformal prediction (Vovk et al., 2005) is a powerful tool for uncertainty quantification
which generates prediction sets that represent the plausible outcome. In short, this paper
outlines the fundamental conditions under which conformal prediction still works under
label noise, and furthermore, studies its behavior with several common score functions and
noise models.

Suppose we are given a pre-trained model f̂ , e.g., a classifier or a regressor, and a
hold-out data {(Xi, Yi)}ni=1, sampled from an arbitrary unknown distribution PXY . Here,
Xi ∈ Rp is the feature vector that contains p features for the i-th sample, and Yi denotes its
response, which can be discrete for classification tasks or continuous for regression tasks.
Given the calibration dataset, an i.i.d. test data point (Xtest, Ytest), and a pre-trained
model f̂ , conformal prediction constructs a set Ĉ(Xtest) that contains the unknown test
response, Ytest, with high probability, e.g., 90%. That is, for a user-specified level α ∈ (0, 1),

P
(
Ytest ∈ Ĉ(Xtest)

)
≥ 1−α. This property is calledmarginal coverage, where the probability

is defined over the calibration and test data. More formally, we use the model f̂ to construct
a score function, s : X ×Y → R, which is engineered to be large when the model is uncertain
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and small otherwise. Abbreviate the scores on each calibration data point as si = s(Xi, Yi)
for each i = 1, ..., n. Conformal prediction achieves the desired marginal coverage rate by
setting q̂clean = s(⌈(n+1)(1−α)⌉) as the ⌈(n+ 1)(1− α)⌉-smallest of the calibration scores and

constructing the prediction sets as Ĉ (Xtest) = {y ∈ Y : s (Xtest, y) ≤ q̂clean} .

In this paper, we suppose that the observed calibration labels, Ỹ1, . . . , Ỹn, are cor-
rupted, while their clean versions are unavailable, so we cannot calculate q̂clean. In gen-
eral, Ỹi = g(Yi) for some corruption function g : Y × [0, 1] → Y, so the i.i.d. assump-
tion and marginal coverage guarantee of conformal prediction are invalidated. Instead,
we can calculate the noisy quantile q̂noisy as the ⌈(n + 1)(1 − α)⌉-smallest of the noisy
score functions, s̃i = s(Xi, Ỹi). The main question of our work is whether the result-
ing prediction set, Ĉnoisy(Xtest) = {y : s(Xtest, y) ≤ q̂noisy}, covers the clean label. For-
mally, our objective is to find the conditions under which a valid coverage rate is obtained:

P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≥ 1− α. We argue that prediction sets will produce valid coverage

whenever the noisy score distribution stochastically dominates the clean score distribu-
tion. The intuition is that the noise distribution ‘spreads out’ the distribution of the score
function such that q̂noisy is (stochastically) larger than q̂clean. Formally, we claim that if
P(s̃test ≤ t) ≤ P(stest ≤ t) for all t, then the desired coverage rate is obtained on the unob-

served clean labels P
(
Ytest ∈ Ĉnoisy(Xtest)

)
≥ 1−α. The stochastic dominance requirement

depends on the clean data distribution, the noise model, the ML model performance, and
the score we use to construct the sets. In the paper, we present realistic experiments and
mathematical analysis of cases in which this assumption holds.

In real-world applications, it is often desired to control metrics other than the miscover-
age loss, as in segmentation or multi-label classification tasks. Examples of such alternative
losses include the F1-score or the false negative rate, where the latter is especially relevant
for high-dimensional responses. There have been developed extensions of the conformal
framework that go beyond the 0-1 loss, providing a rigorous risk control guarantee over
general loss functions (Bates et al., 2021; Angelopoulos et al., 2021, 2022). Formally, these
techniques take a loss function L that measures prediction error and generate uncertainty
sets with a risk controlled at pre-specified level α: E[L(Ytest, Ĉ(Xtest)] ≤ α. Analogously
to conformal prediction, these methods produce valid sets under the i.i.d. assumption, but
their guarantees do not hold in the presence of label noise. Nonetheless, as outlined above,
we argue that conservative sets are obtained when the distribution of the losses of noisy
labels dominates the distribution of the losses of clean labels.

In this work, we present theoretical examples under which the stochastic dominance
requirement holds, meaning that the conformal prediction and risk-controlling frameworks
applied with noisy labels generate valid uncertainty sets with respect to the true, noiseless
label. These examples include additive symmetric noise in the regression case, or disper-
sive corruptions in single-label or multi-label classification tasks. Furthermore, we conduct
extensive synthetic and real-data experiments of various tasks, including classification, re-
gression, segmentation, and more. In all these experiments, conformal prediction normally
achieves conservative coverage/risk even with access only to noisy labels, unless the noise
is adversarially designed. If such noise can be avoided, a user should feel safe deploying
conformal prediction with noisy labels.
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