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Abstract

Neoadjuvant therapy (NAT) is considered the gold standard preoperative treatment for re-
ducing tumor charge in breast cancer. However, the tumor’s pathological response highly
depends on patient conditions and clinical factors. There is a dire need to develop mod-
eling tools to predict a patient response to NAT and thus improve personalized medical
care plans. Recent studies have shown promising results of machine learning (ML) method-
ologies in breast cancer prognosis through the combination of several modalities, including
imaging and molecular features derived from biopsy analyses. We here present a ML model
to predict response to NAT through two sequential prediction stages. First, a pre-treatment
dynamic contrast-enhanced magnetic resonance imaging model is trained, followed by a sec-
ond model with molecular biomarkers-enriched data. We propose the integration of the
Conformal Prediction (CP) framework in the first non-invasive model to identify patients
whose predicted responses show large uncertainty and refer them to the second model that
includes data from invasive tests. The major advantage of this procedure is in the reduction
of unnecessary biopsies. Different alternatives for the standard ML algorithms and the CP
functions are explored on a publicly available clinical dataset. Results clearly show the
potential of our uncertainty-aware clinical predictive tool in such real scenarios.

Keywords: Breast cancer · Neoadjuvant therapy · Pathological response · DCE-MRI
radiomics · Molecular biomarkers · Uncertainty · Conformal Prediction

1. Introduction

Breast carcinoma is considered the most prevalent type of invasive cancer among women
worldwide ( Lukasiewicz et al., 2021), becoming a major public health issue. Despite signifi-
cant progress in recent decades to reduce mortality rates, there is a critical need to develop
better prognostic tools and therapeutic approaches that can improve patient outcomes. In
this sense, neoadjuvant therapy (NAT) has become one of the gold standard pre-operative
treatments to reduce tumor burden and improve the patient’s chances of breast conserving
surgery rather than mastectomy (Selli and Sims, 2019). There are several NAT modalities,
including (a) chemotherapy, (b) radiation therapy, and, (c) endocrine therapy, and their
administration depends on the patient’s characteristics and clinical factors. In the best-case
scenario, a patient treated with NAT achieves pathological complete response, i.e., absence
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of any residual invasive disease (Cortazar and Geyer, 2015). Such optimal response to NAT
is far from guaranteed. In fact, several studies (see for example Spring et al. (2020); Romeo
et al. (2021)) report that only about 20 - 30 % of breast cancer patients achieve complete
response, with success rates varying depending on tumor biology. Consequently, those pa-
tients experiencing ineffective NAT incur in toxicity and side effects without reaching the
desired clinical benefits. In this context, the development of predictive tools to early assess
whether a patient will achieve pathological complete response becomes key.

Several biomarkers have been analyzed to predict response to NAT in breast cancer
patients through machine learning (ML) algorithms. These include clinical and molecular
predictors (Goorts et al., 2017), as well as pre-treatment dynamic contrast-enhanced medical
resonance imaging (DCE-MRI) features (Mani et al., 2013; Massafra et al., 2022). Each
of these methods has its own strengths and limitations. One the one hand, pre-treatment
DCR-MRI can provide a fast, early and non-invasive assessment of tumor response with
no additional cost to those patients where MRI is part of their preoperative test (Cain
et al., 2019). On the other hand, molecular-level predictors identified through biopsy can
provide better understanding of biological processes with the drawback of being invasive
and incurring risk of patient infection.

We argue that non-invasive imaging protocols should be preferred in favor of quality pa-
tient care. Only in those cases where the imaging features lack meaningful predictive power,
should a biopsy be performed. However, standard ML and data-driven models provide no
reliable levels of individual uncertainty and are unable to determine the confidence of a
particular prediction. To overcome this limitation, the Conformal Prediction (CP) (Vovk
et al., 2022; Balasubramanian et al., 2014) framework offers statistical procedures to gen-
erate set predictions that are guaranteed to contain the ground truth with a user specified
error rate and minimal assumptions. Set predictions with high cardinality point to samples
that are difficult to predict, while set predictions with unique labels are associated with the
most confident cases. The CP framework has been applied across many medical disciplines,
including breast cancer diagnosis (Lambrou et al., 2009) and survivability (Alnemer et al.,
2016), but CP models to predict NAT response remain uncovered.

1.1. Contribution

In this work, we propose the integration of CP within the design of a multimodal ML
model for predicting three possible severity responses to NAT in breast cancer patients.
Specifically, our proposal lies on a sequential ensemble defined by two chained predictors:
a first-stage model crafted on the basis of DCE-MRI data and a second-stage model aug-
mented with molecular features. The key idea is to take advantage of the uncertainty
quantification property of CP to (1) predict responses to NAT through the radiomics model
only on those cases for whom the model is sufficiently confident, and, (2) ask for a “second
opinion” for the most ambiguous patients and compute a prediction using the augmented
model. Hence, our ML model allows to avoid unnecessary invasive tests and improve overall
patient care management.

We present an application of the proposed sequential model using a publicly available
dataset that suits the setting of our clinical problem.
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2. Materials and methods

In this section, we introduce the clinical dataset we employ to train and validate our pro-
posed ML solution. We specify the cohort selection and define the predictive task in medical
terms, including the clinical target. Then, we briefly review the inductive version of the
CP framework within the classification paradigm as the underlying method of our proposal.
Finally, we present the detailed aspects of our model, including training and new patient
assessment workflows.

2.1. Patient population and problem definition

The Duke Breast Cancer MRI dataset (Saha et al., 2018), available through the Cancer
Imaging Archive (TCIA) (Clark et al., 2013), provides a fully annotated and anonymazed
collection of 922 invasive breast cancer patients admitted at Duke University Hospital be-
tween January 1st, 2000 and March 23rd, 2014.

Out of this cohort, we identified a subset of 312 cases treated with NAT. To evaluate the
effectiveness of NAT, pathological reports from the first surgical intervention were obtained.
Such reports allowed to further characterize NAT tumor responses according to the ypTNM
re-staging classification. In clinical practice, the ypTNM classification is a widely recognized
and standard system for measuring cancer re-staging after adjuvant therapies, based on
the size of the primary tumor (T), the presence and extent of lymph node involvement
(N), and the presence of distant metastasis (M) (Cserni et al., 2018). We identified 240
patients treated with NAT with complete ypTNM classification status available. From this
classification, each patient was matched to a meaningful global cancer stage, ranging from
IA (only a small local tumor mass remains present) to IV (tumor has spread to other distant
organs, i.e., metastasis).

We considered three possible severity responses to NAT therapy based on representative
sample sizes and clinical relevance: (a) pathological complete response, (b) early stage, and,
(c) locally advanced or metastatic stage. These responses were defined according to Table
1 criteria.

Table 1: Clinical definitions and sample sizes for severity response to NAT.

Response Cancer re-stage Sample size

Pathological complete response ∅ 71 (29.6 %)
Early stage IA or IIA 104 (44.3 %)
Locally advanced or metastasis stage From IIB to IV 65 (27.1 %)

Patient’s age, menopausal status and different information modalities to address the
response to NAT predictive task were also identified, including:

� Imaging sequences and feature extraction For each patient in the final cohort,
pretreatment axial breast DCE-MRI assessments were available from 1.5T or 3T scan-
ners. Several sequences were acquired: (a) T1-weighted fat-satured pre-contrast se-
quence, (b) T1-weighted fat-satured sequence after contrast agent administration,
and, (c) T1-weighted non-fat satured sequence. Once the sequences were recorded,
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breast tumors were manually segmented by radiology experts using three-dimensional
boxes. Then, a tumor mask was obtained applying a fuzzy C-means algorithm inside
the annotations boxes. Potentially meaningful radiomic features were extracted us-
ing an inhouse software from Duke University Hospital. Specifically, a comprehensive
list of 539 potential image biomarkers describing texture and time-dependent tumor
and fibroglandular tissue characteristics are available for each patient. A detailed
explanation of each radiomic feature is available on Saha et al. (2017).

� Pathological information Several features derived from tumor genomics and molec-
ular profiling were determined through pathology assessments and immunohistochem-
ical analyses from the biopsy. We here considered three main receptors commonly
tested in breast cancer whose status provides key information about cell division and
tumor growth: estrogen receptor (ER), progesterone receptor (PR) and human epi-
dermal growth factor (HER2). We further include the surrogate molecular subtype
from such receptor status: Luminal A, Luminal B, HER2+, and triple-negative. Ad-
ditionally, we considered several tumor biological features, including:

• Histological type, describing tumor tissue and cell morphology.

• Histological grade according to the Nottingham Grade System, which is based
on tubule formation, nuclear pleomorphism, and mitosis rate.

• Initial cancer staging based on the TNM classification system.

A total set of 12 features describing tumor biology were identified for each patient.

2.2. Inductive CP

The CP framework provides statistical procedures to quantify reliable levels of individual
uncertainty by means of multivalued prediction regions. Let’s assume a set formed by a
sequence of training samples {zi}mi=1 = {(xi, yi)}mi=1 ∈ X ×Y = Z. Given a new test object
xm+1, a conformal predictor compute a prediction interval Γϵ(xm+1) that will contain the
true ym+1 with user specified expected error rate ϵ ∈ [0, 1].

The development of a conformal predictor rests on the definition of a non-conformity
measure S : Z ×Z(k), which is employed to quantify the degree of strangeness of a sample
z with respect to a given collection {z1, . . . , zk}. Although the non-conformity measure can
be by definition any measurable function, it is usually shaped from the output of a ML
model. Formally,

S(z, {z1, . . . , zk}) = ∆(y, h(x)) (1)

where h : X → Y is a predictive model learned on {z1, . . . , zk} and ∆ : Y × Y is a
function of dissimilarity between the real target y and the prediction h(x).

CP was originally proposed through a transductive strategy, in which the non-conformity
measure needs to be computed for each training sample zi. In practice, the transductive
strategy is computationally demanding since it requires the underlying ML model to be
retrained for each test object (Vovk, 2013).

In this work, we focus on inductive CP (ICP) (Papadopoulos et al., 2002), a modified
approach to build conformal predictors in an efficient way. Under the ICP scheme, the
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training set is split into a proper training set (z1, . . . , zn) and a calibration set (zn+1, . . . , zm).
The proper training set is used to learn a single predictive model. This predictive model
will be used to compute the non-conformity measure on the remaining calibration samples.
At this point, we can assign a new test object xm+1 with a hypothetical value ym+1 and
check how strange this completion zm+1 = (xm+1, ym+1) is with respect to the calibration
samples. Therefore, given the non-conformity scores:

si = S(zi, {z1, . . . , zn}) i = n + 1, . . . ,m

sm+1 = S(zm+1, {z1, . . . , zn})
(2)

we can compute a p-value for each label as follows:

p ym+1
=

|{i = 1, . . . ,m + 1 : si > sm+1}|
m + 1

(3)

For a given error rate ϵ ∈ [0, 1], the prediction region for the test object xm+1 will
contain all the possible target values ym+1 whose p-value is greater than ϵ:

Γϵ(xm+1) = {ym+1 | p ym+1
> ϵ} (4)

This conformal predictor can be built on top of any supervised ML model, and it pro-
vides validity (i.e., true label coverage) without requiring any further assumption beyond
exchangeability on the probability distribution (i.e. the probability measure does not de-
pend on the order of its arguments).

Forced single predictions. Prediction sets are usually the output choice for an induc-
tive conformal predictor. However, for a given test sample xm+1, a forced single prediction
can be computed by assigning the target value with the highest p-value (i.e., the less non-
conformal target value). This allows to produce point predictions by an inductive conformal
predictor comparable to conventional ML models.

Γforced(xm+1) = argmax
ym+1∈Y

p ym+1
(5)

The forced prediction does not depend on the desired error rate ϵ, and allows to fairly
compare the output of an inductive conformal predictor with the point predictions generated
from a standard ML model.

2.3. Uncertainty-Aware Sequential Modeling

For the sake of developing a ML approach to predict tumor response to NAT, we rely on a
dataset of sample triplets:

(xMRI
1 , xBIO1 , y1), . . . , (x

MRI
n , xBIOn , yn) xMRI

i ∈ XMRI, xBIOi ∈ XBIO, yi ∈ Y (6)

where xMRI
i denotes a collection of radiomic features acquired through MRI sequencing,

xBIOi denotes a collection of cancer profile biological features assessed through biopsy and
immunochemistry analyses, and yi denotes the severity response to NAT.

Our goal is to learn and validate a classifier using this dataset. Under a conventional
ML approach, one could initially consider the whole set of features to train an algorithm
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Figure 1: Uncertainty-Aware Sequential Predictive Pipeline data flow

and generate predictions for future patients. However, when it comes to predict response to
NAT, each of the considered data modalities is gathered from independent assessments with
different associated cost for the patients. Our alternative is a sequential ML model based on
the uncertainty quantification property of CP to predict response to NAT in breast cancer
patients by efficiently use each data modality.

The pseudocode of our sequential model is presented in Algorithm 1 and visually il-
lustrated in Figure 1. The proposal follows the ensemble of two chained models: a first
non-invasive model trained from the MRI data (see 1st Stage from Algorithm 1), and, a
second model enriched with clinical information gathered from the biopsy analyses (see 2nd
Stage from Algorithm 1). We are interested in predicting a response to NAT using only
non-invasive features when the model is confident in the prediction. This is addressed by
learning an inductive conformal predictor built on top of such non-invasive features. We
use the uncertainty quantification property of CP to generate prediction regions for each
patient and identify those whose set size is above what we have called an uncertainty set
size threshold. In this way, we can distinguish between confident and uncertain predictions.
The confident predictions are kept to be predicted through the conformal predictor, while
the uncertain predictions are referred to the second model to produce a final prediction. It
can be noticed that both modeling stages must share the same train/test splits to provide
a fair end-to-end performance evaluation of the sequential model.
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Algorithm 1: Uncertainty-Aware Sequential Model

Input: Patient triplets dataset D = {(xMRI
i , xBIOi , yi)}ni=1 ∈ XMRI ×XBIO × Y

Supervised learning classification algorithm A(λ).

Hyperparameter configuration grid Λ = {λ(1), . . . , λ(m)}.

Non-conformity measure S = ∆(y, h(x)).

Error rate ϵ ∈ [0, 1].

Uncertainty set size threshold τ ∈ {0, . . . , |Y|}
Output: Sequential Predictive Model

1st Stage: Non-invasive MRI model training and calibration

Out of D, select DMRI = {(xMRI
i , yi)}ni=1.

Split DMRI into a training set DMRI
train and a test set DMRI

test .

Split DMRI
train into a proper training set DMRI

proper and a calibration set DMRI
calib.

Find optimal A(λ∗), λ∗ ∈ Λ using cross validation over DMRI
proper.

Learn h(xMRI) from DMRI
proper using A(λ∗).

Compute non-conformity measures on calibration set {∆(yi, h(xMRI
i ))}i∈DMRI

cal
.

Induce a conformal predictor and infer {Γϵ(xMRI
i )}i∈DMRI

test
according to {si}i∈DMRI

cal
.

Compute Γforced(xMRI
i ) for every test sample that |Γϵ(xMRI

i )| ≤ τ .

2nd Stage: Invasive MRI + biopsy model training

Select Dtrain = {xMRI
i , xBIOi , yi}i∈DMRI

train
.

Find optimal A(λ∗), λ∗ ∈ Λ using cross validation over Dtrain.

Learn h(xMRI, xBIO) from DMRI
train using A(λ∗).

Compute a final prediction h(xMRI, xBIO) for every test sample that |Γϵ(xMRI
i )| > τ .

3. Experimental settings and results

In this section, we cover the experimental set up followed to develop and assess the validity
of our sequential model. We present two different experiments:

� Experiment 1: Benchmarking assessment. It is worth noting that the motivation of
our proposal lies on the assumption that the complete multimodal feature set provide
a more meaningful information for predicting response to NAT than considering the
MRI radiomic biomarkers alone. Consequently, we conducted an initial experiment
to quantify to what extent the biopsy analysis improved the predictive performance
with respect to the MRI-only model. These models establish a bottom and a top
predictive limits on which our sequential model will range based on the number of
filtered patients from the first model to the second model.

� Experiment 2: Uncertainty-aware proposal. Considering the benchmarking results, we
trained our sequential model with different patient filtering patterns and compared it
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with the baseline models predictive performance, as well as the number of patients
referred to the second stage model.

3.1. Data preparation and model training

In both experiments, we followed a common procedure to prepare data, train the classifica-
tion algorithms, and estimate predictive performance results.

We initially split our dataset into 70 % for training our prediction models, with the
remaining 30 % as test set to generate predictions and quantify performance. Both training
and test sets followed the same class distribution as the original dataset.

We employed a learning pipeline to preprocess data and train the predictive algorithms.
Regarding feature preprocessing, we drop features with a linear correlation coefficient higher
than 0.99. We then converted nominal features to one-hot encoded binary features and
scaled continuous features to zero-mean and unit variance. We set missing values to the
median for continuous attributes and to unknown category in the case of nominal features.
From the resulting dataset, we then performed an univariate feature selection step by means
of a mutual information criteria, in which we obtained a score for each feature; the higher
the score, the more important was the feature towards the target variable. The total number
of features to be retained by this selection step was considered a pipeline hyperparameter
to be tuned. We further considered three different state-of-the-art supervised learning
algorithms: logistic regression (LR), random forest (RF), and xgboost (XGB). We chose
these algorithms since they represent different modeling paradigms: logistic regression is
an easily understandable model that assumes linearity of features, random forest is based
on the foundations of bootstrap aggregation of several decision trees, and xgboost is an
example of a more complex boosting method. We used standard implementations from
Python’s scikit-learn module (Pedregosa et al., 2011) for the first two algorithms and
xgboost module (Chen and Guestrin, 2016) to train the gradient-boosted trees.

To find the optimal learning configuration (i.e., k-best ranked features using the mutual
information criteria and the classification algorithm hyperparameters) and avoid data leak-
age, we train the complete learning pipeline using a stratified k-fold cross validated random
search over a fixed parameter grid. We did so using a 3-fold cross validation and searching
across 50 random pipeline configurations. To account for label imbalance, each algorithm
was trained with balanced class-dependent weights.

3.2. Performance evaluation

Once a model was learned, we predicted response to NAT for the test set and report several
multiclass metrics to assess the predictive performance of the ML models. We consider
both global and class-level metrics to detail the behavior on each of the possible responses
to NAT. The complete list of the covered metrics and a brief description are shown in Table
2.

3.3. Conformal predictor design

We now describe the design aspects of the inductive conformal predictor, that is the back-
bone of our methodological proposal. Note that the following settings only apply to Exper-
iment 2.
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Table 2: Standard performance metrics considered in our multiclass predictive task.

Metric Definition

Accuracy =
1

N

N∑
i

1(yi = ŷi) Correct classification rate

RecallCR =
1

NCR

NCR∑
i

1(yi = CR)1(ŷi = CR) Pathological complete response cases correctly identified

RecallES =
1

NES

NES∑
i

1(yi = ES)1(ŷi = ES) Early stage cases correctly identified

RecallLA =
1

NLA

NLA∑
i

1(yi = LA)1(ŷi = LA) Locally advanced or metastasic stage cases correctly identified

F1macro =
1

3
F1CR + F1ES + F1LA Unweighted F1 between all per-class F1 scores

To build the conformal predictors, we further split the training set into a stratified 50 %
proper training set to train the underlying learning pipeline (see Section 3.1) and a stratified
20 % calibration set on which non-conformity scores are computed.

As explained in Section 2.2, the definition of a suitable non-conformity measure is a
key element when developing a conformal predictor. In this work, we test two different
non-conformity measures: (a) inverse probability error, and, (b) marginal error.

IPE(yi, h(xi)) = 1 − h(xi)yi (7)

ME(yi, h(xi)) = 0.5 −
h(xi)yi − maxy!=yi h(xi)y

2
(8)

Another important step in our sequential model involves the definition of a sample filter-
ing strategy to refer highly uncertain cases from the non-invasive model to the invasive one.
Such filtering depends on two factors: the uncertainty set size threshold τ ∈ {0, . . . , |Y|},
and the user specified error rate ϵ ∈ [0, 1]. Note that, given a fixed τ , testing different
error rates lead to different prediction sets and, consequently, to different patient filtering
patterns.

We set τ = 1, setting up a conservative threshold for which only single set predictions
are kept to be predicted by the first model. In order to produce prediction sets, we test two
different error rates: ϵ ∈ {0.1, 0.2}.

To assess the performance of the inductive conformal predictors, we further report sev-
eral uncertainty metrics to measure both validity and efficiency properties. These metrics
are presented in Table 3.

4. Results

4.1. Benchmark performance

Table 4 shows prediction performance metrics from the benchmark experiments each clas-
sification algorithm. Table 4(a) includes evaluation results for the MRI models, whereas
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Table 3: Uncertainty evaluation metrics considered for measuring inductive conformal pre-
dictors performance.

Metric Definition

Coverage =
1

N

N∑
i

(yi ∈ Γ(xi)) True label coverage rate

Empty rate =
1

N

N∑
i

(|Γ(xi)| = 0) Empty prediction set rate

Multiple rate =
1

N

N∑
i

(|Γ(xi)| > 1) Multiple prediction set rate

Single rate =
1

N

N∑
i

(|Γ(xi)| = 1) Single prediction set rate

Single coverage =
1

Nsingle

Nsingle∑
i

(yi ∈ Γ(xi)) True label coverage for single prediction sets

True single rate =
1

N

N∑
i

(yi ∈ Γ(xi) : |Γ(xi)| = 1) Single prediction set covering true label rate

Table 4(b) summarizes classification performance based on the complete feature set. Ad-
ditionally, Table 4(c) highlights the predictive improvement across metrics achieved by
including all the available data.

Table 4: Test set classification metrics for (a) the MRI models, (b) the MRI+BIO models,
and (c) the predictive improvement. For stability, we ran the experiment 25 times and
averaged metrics over all iterations.

(a)

LRMRI RFMRI XGBMRI

Accuracy 0.424 0.434 0.432
RecallCR 0.364 0.217 0.269
RecallES 0.434 0.514 0.461
RecallLA 0.472 0.538 0.560
F1macro 0.416 0.408 0.414

(b)

LRBIO
MRI RFBIO

MRI XGBBIO
MRI

0.524 0.532 0.536
0.488 0.455 0.360
0.480 0.539 0.672
0.630 0.602 0.510
0.523 0.525 0.512

(c)

∆BIO

0.102
0.124
0.158
0.070
0.109

It is noteworthy that the selected features consistently maintained a comparable mag-
nitude across experiments, with an average range of approximately 75 features.

In general terms, the MRI models showed a moderate predictive power regarding overall
accuracy and F1 metrics, reaching a maximum of 0.434 and 0.416, respectively. Despite
each of the trained algorithms performing quite similar for these metrics, they yielded
to different results across recall classes. The LR model performed better for identifying
complete responses to NAT (0.364). When predicting early stage cases, the RF model was
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the best option (0.514), whereas the XGB model achieved the highest score on the third
class (0.560), namely locally advanced cancer patients.

In the case of the MRI+BIO models, the LR model outperformed the other alternatives
for identifying minority classes, reaching a 0.488 and a 0.630 recall scores for complete
response and locally advanced cases, respectively. The XGB model achieved the best global
accuracy (0.536) and a remarkable score of 0.672 for identifying early stage cases, the highest
metric overall. Finally, it is worth mentioning that both the RF model and the LR model
performed similarly good on F1 metrics (0.525 and 0.523).

Comparing which ML model is best for each scenario, we identified significant gaps for
each evaluation metrics. On average, the invasive models improved the MRI classifiers by
an 11.2 %. On one hand, the largest difference was observed for the early stage patients,
with an improvement of 15.8 %. On the other hand, the prediction of locally advanced
cases improved the least (7 %). These results confirm our initial hypothesis that, despite
reasonable predictive power, the MRI models underperformed when predicting response to
NAT. The inclusion of the biological features provided valuable information to the algo-
rithms, producing improvements on every performance metric, and achieving substantial
better results.

4.2. Uncertainty-aware model performance

The uncertainty metrics for the induced conformal predictors are reported in Table 5,
whereas predictive performance metrics using the sequential model are shown in Table
6. It is worth mentioning that these performance metrics must be interpreted taking into
account the number of patients kept in the first model (i.e., the single rate reported in Table
5).

Table 5: Test set uncertainty metrics for the inductive conformal predictors. Empty set
rates were not reported since they were not generated in any of the experiments.

LR RF XGB
ϵ = 0.1 ϵ = 0.2 ϵ = 0.1 ϵ = 0.2 ϵ = 0.1 ϵ = 0.2

IPE

Coverage 0.911 0.798 0.880 0.768 0.889 0.788
Multi 0.924 0.813 0.948 0.839 0.958 0.863
Single 0.076 0.187 0.052 0.161 0.042 0.137
Single coverage 0.873 0.772 0.820 0.733 0.866 0.762
True single 0.066 0.145 0.043 0.118 0.037 0.105

ME

Coverage 0.822 0.774 0.888 0.782 0.910 0.816
Multi 0.825 0.663 0.874 0.724 0.879 0.747
Single 0.175 0.337 0.126 0.276 0.121 0.253
Single coverage 0.828 0.735 0.854 0.766 0.901 0.797
True single 0.145 0.247 0.108 0.212 0.109 0.201

For the IPE-calibrated models, prediction coverage almost reached the expected theo-
retical value, either 0.9 or 0.8. Regarding set sizes, the LR conformal predictor achieved
the highest rate of patients kept within the first stage for both ϵ = 0.1 (0.076) and ϵ = 0.2
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Table 6: Test set predictive performance metrics for the sequential model. Note that this
metrics are computed from both 1st stage forced predictions (confident cases) and 2nd stage
point predictions (uncertain cases).

LR RF XGB
ϵ = 0.1 ϵ = 0.2 ϵ = 0.1 ϵ = 0.2 ϵ = 0.1 ϵ = 0.2

IPE

Accuracy 0.519 0.507 0.527 0.518 0.528 0.525
RecallCR 0.463 0.438 0.371 0.345 0.314 0.316
RecallES 0.506 0.500 0.604 0.598 0.674 0.659
RecallLA 0.598 0.588 0.570 0.576 0.526 0.536
F1macro 0.515 0.501 0.506 0.494 0.498 0.497

ME

Accuracy 0.494 0.489 0.524 0.508 0.515 0.508
RecallCR 0.421 0.410 0.366 0.337 0.320 0.318
RecallES 0.505 0.498 0.564 0.552 0.639 0.627
RecallLA 0.554 0.558 0.623 0.618 0.528 0.524
F1macro 0.486 0.479 0.513 0.493 0.491 0.483

(0.187). This result became more meaningful since the LR sequential model also outper-
formed the RF and the XGB in classifying complete response and locally advanced cases.
Note that the XGB sequential model was the best for predicting early stage cases, and, for
ϵ = 0.1, this model produce a single rate of 0.042 without sacrificing predictive power for
this class.

If we focus on the ME-calibrated models, we observe an overall increment on the single
set rates for each algorithm. Consider, for example, the case of the RF. For the ME-
calibrated predictor, single set rate with ϵ = 0.1 (0.052) was more than double the single
set rate for the IPE-calibrated predictor with ϵ = 0.2 (0.126). The highest single set rate
was at 0.337, reached by the LR conformal predictor with ϵ = 0.2. In addition, the XGB
conformal predictor produced the highest single rate coverage for both error rates (0.901
for ϵ = 0.1 and 0.797 for ϵ = 0.2).

Three different models achieved reasonably good overall classification performance in our
experiments. First, the ME-RF sequential model, that achieved a global F1 score of 0.513
for ϵ = 0.1 while retaining a 12.6 % of the cases within the first stage modeling. Note that
this model achieved a comparable overall predictive power with respect to the MRI+BIO best
model performance (see Table 4(b)). We also highlight the IPE-XGB sequential model with
ϵ = 0.2. This model was the best candidate for predicting early stage cases, reaching a 0.659
recall score while keeping a 13.7 % of the patients assessed by the first stage MRI model,
with a competitive F1 score of 0.497. Finally, the IPE-LR sequential model with ϵ = 0.1
was the preferable option for identifying complete response cases. This model achieved a
recall score for this class of 0.463, the closest one to the results from the MRI+BIO best
model. As opposed to the other two sequential models, the IPE-LR only retained a 7.6 %
of the patients within the first stage.
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5. Conclusions

Early accurate evaluation of how a breast cancer patient will respond to NAT is key for
guiding personalized treatments. Machine learning methodologies have shown promise for
such problem by integrating data from different clinical assessments with varying associated
cost for the patients. In this study, we propose an uncertainty-aware sequential model that
makes an efficient use of different data modalities for predicting response to NAT in breast
cancer patients. Our proposal is based on two different prediction stages: a first conformal
predictor built on top of non-invasive MRI features, and a second conventional predictive
model based on biological features gathered from invasive tests. The integration of confor-
mal prediction into the first modeling stage helps identify patients with large uncertainty in
the response, allowing to refer them to the second modeling stage that includes data from
invasive tests. As a result, patients assessed on the first stage avoid unnecessary biopsies.

Experimental results on a publicly available breast cancer dataset exemplify the benefits
of our proposal, leading to models that would have provided early non-invasive predictions to
a moderate fraction of patients, without sacrificing substantial performance. Our proposal
is a versatile framework that allows a wide range of uncertainty quantification functions and
patient filtering patterns. This work only covered a fraction of such, and additional work
should involve more extensive testing of error rates and novel non-conformity measures,
e.g., using ordinal prediction sets (Lu et al., 2022).

The proposed uncertainty-aware approach has a strong potential for tackling other clin-
ical scenario in which there might be data modalities with different associated costs. There-
fore, additional research in cost-variable biomedical problems is expected in the future.
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Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Valeria Romeo, Giuseppe Accardo, Teresa Perillo, Luca Basso, Nunzia Garbino, Emanuele
Nicolai, Simone Maurea, and Marco Salvatore. Assessment and prediction of response
to neoadjuvant chemotherapy in breast cancer: A comparison of imaging modalities and
future perspectives. Cancers, 13(14):3521, 2021.

Ashirbani Saha, Xiaozhi Yu, Dushyant Sahoo, and Maciej A Mazurowski. Effects of mri
scanner parameters on breast cancer radiomics. Expert systems with applications, 87:
384–391, 2017.

Ashirbani Saha, Michael R Harowicz, Lars J Grimm, Connie E Kim, Sujata V Ghate,
Ruth Walsh, and Maciej A Mazurowski. A machine learning approach to radiogenomics
of breast cancer: a study of 922 subjects and 529 dce-mri features. British journal of
cancer, 119(4):508–516, 2018.

Cigdem Selli and Andrew H Sims. Neoadjuvant therapy for breast cancer as a model for
translational research. Breast cancer: basic and clinical research, 13:1178223419829072,
2019.

Laura M Spring, Geoffrey Fell, Andrea Arfe, Chandni Sharma, Rachel Greenup, Kerry L
Reynolds, Barbara L Smith, Brian Alexander, Beverly Moy, Steven J Isakoff, et al. Patho-
logic complete response after neoadjuvant chemotherapy and impact on breast cancer
recurrence and survival: A comprehensive meta-analysispcr and association with clinical
outcomes in breast cancer. Clinical cancer research, 26(12):2838–2848, 2020.

Vladimir Vovk. Transductive conformal predictors. In IFIP international conference on
artificial intelligence applications and innovations, pages 348–360. Springer, 2013.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a ran-
dom world. Springer, 2nd edition, 2022.

15


	Introduction
	Contribution

	Materials and methods
	Patient population and problem definition
	Inductive CP
	Uncertainty-Aware Sequential Modeling

	Experimental settings and results
	Data preparation and model training
	Performance evaluation
	Conformal predictor design

	Results
	Benchmark performance
	Uncertainty-aware model performance

	Conclusions

