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Abstract

Learning Under Privileged Information (LUPI) is a framework that exploits information
that is available during training only, i.e., the privileged information (PI), to improve the
classification of objects for which this information is not available. Knowledge transfer
LUPI (KT-LUPI) extends the framework by inferring PI for the test objects through sep-
arate predictive models. Although the effectiveness of the framework has been thoroughly
demonstrated, current investigations have provided limited insights only regarding what
parts of the transferred PI contribute to the improved performance. A better understand-
ing of this could not only lead to computational savings but potentially also to novel
strategies for exploiting PI. We approach the problem by exploring the use of explainable
machine learning through the state-of-the-art technique SHAP, to analyze the contribution
of the transferred privileged information. We present results from experiments with five
classification and three regression datasets, in which we compare the Shapley values of the
PI computed in two different settings; one where the PI is assumed to be available during
both training and testing, hence representing an ideal scenario, and a second setting, in
which the PI is available during training only but is transferred to test objects, through
KT-LUPI. The results indicate that explainable machine learning indeed has the potential
as a tool to gain insights regarding the effectiveness of KT-LUPI.
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1. Introduction

The Learning Under Privileged Information (LUPI) (Vapnik and Vashist, 2009) framework
has been successfully applied in various fields. SVM+ (Vapnik and Vashist, 2009) was the
first realization of the LUPI paradigm, which accelerated the learning process, and outper-
formed classical machine learning in a variety of applications. However, SVM+ suffered
from limited scalability. To mitigate the scalability problem, various knowledge transfer
methods within the LUPI framework have been proposed, see for example, (Vapnik and
Izmailov, 2015, 2016, 2017), where the knowledge from the space of privileged informa-
tion is transferred to the space where decision rule is constructed. In knowledge transfer
LUPI (KT-LUPI), the privileged features are approximated by regressing on standard data
features.

Shapley values have been used for explaining the predictions of (black-box) models by
assessing feature importance when making predictions with such models. The Shapley
value (Shapley, 1997) is defined as an average of all the marginal contributions to all possi-
ble coalitions of features. However, the computational cost of computing the value increases
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exponentially with the number of features. To address the computational complexity, var-
ious approximation methods have been proposed, with the Shapley Additive exPlanations
(SHAP) method (Rodŕıguez-Pérez and Bajorath, 2019) perhaps being the most prominent.

The main objective of this paper is to investigate the contribution of privileged fea-
tures by studying their importance using SHAP. To accomplish this objective, four main
experiments have been performed, see section 4 for the details. In all our experiments, we
compare the performances of the KT-LUPI models with the classical machine learning mod-
els, i.e. SVM, trained with and without PI. The SHAP values for the privileged features are
compared between the KT-LUPI models and the classical machine learning models trained
with all the features (including the privileged). We also explore the effect of the number of
privileged features and the sample sizes on predictive performance and model explainability.

The paper is organized as follows. In section 2, we outline the background concepts and
notations used throughout the paper. In Section 3, we describe the proposed approach to
assess the contribution of PI by using Shapley values. In section 4, we conduct an empirical
investigation using a set of real-world data sets. In Section 5, we conclude and discuss
limitations and future work.

2. Background

In this section, we provide a brief background on the LUPI framework, Shapley values, and
required machine learning concepts, and we fix notations and assumptions used throughout
the paper.

In this paper, we will focus on binary classification and regression problems. The object
space is denoted by X ∈ Rp, where p is the number of features; the label space is denoted
by Y ∈ {−1, 1} and Y ∈ R for binary classification and regression problems, respectively.
The privileged feature space is denoted by X ∗ ∈ Rm, where m is the number of privileged
features. We assume that each training example consists of corresponding objects in feature
space (xi ∈ X ) and privileged feature space (xi ∈ X ∗) and its label (yi ∈ Y), specifically
{(xi, x∗i , yi)}li=1, where l is the number of training examples. However, a test object consists
of only an object in the feature space, x ∈ X .

2.1. Knowledge Transfer LUPI

Let us assume that ℓ IID triplets {(xi, x∗i , yi)}li=1 are given. For the privileged features,
ϕj(x), j = 1, . . . ,m, m regression functions are learned by using p-dimensional vectors X =
x1, x2, ..., xℓ as explanatory variables and corresponding scalar values x∗(i), for i = 1 . . .m,
as response variables. Different learning algorithms can be used for approximating the
privileged features. In all our experiments, we use linear regression for this purpose.

In KT-LUPI, both the features of space X and the features defined by the regression
functions are considered for constructing the decision rules. In our experiments, we choose
a small number of important features in the privileged space. We then transfer them (using
linear regression) into the decision space.

A classifier (or regressor) is trained, e.g., using SVM (or SVR), on the modified dataset
(Y,Xmod), and a decision function, f , is learned, where Xmod is defined as in Equation 1.
Given a new object in the feature space x ∈ X , we compute m regression estimates x̂∗,
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using the m regression functions learned previously, after which the inference is made in
the m+ p dimension space using the decision function f .

Xmod =


x1 ϕ1(x1) ϕ2(x1) . . . ϕm(x1)
x2 ϕ1(x2) ϕ2(x2) . . . ϕm(x2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xℓ ϕ1(xℓ) ϕ2(xℓ) . . . ϕm(xℓ)

 (1)

2.2. Model Explainability using SHAP Values

SHAP (SHapley Additive exPlanations) (Lundberg and Lee, 2017) is based on a game-
theoretic approach, which offers a way to fairly distribute the payoffs to the individual
players in a coalition (Shapley, 1997). SHAP employs the approach to measure the con-
tribution of input features to the outcome of a machine learning model at the instance
level (Rodŕıguez-Pérez and Bajorath, 2019). Given a specific data object, SHAP outputs a
value for each feature that represents the contribution of that feature to the final prediction.

Let us denote the decision function for a machine learning method with f(x), where
x ∈ X and the object space is denoted by X = Rp, where p is the number of features. Let
the player set be a single data object x = {xi|1 ≤ i ≤ p}. Then the payoff of a coalition
s ⊆ x is the scalar value prediction f(s) calculated from the subset of feature values. Since
the decision function takes the input in feature space x ∈ X , for computing f(s), the
missing input feature values are imputed with reference values, e.g., the mean computed
from multiple instances (Lundberg and Lee, 2017). In all our experiments, we use SHAP
to compute feature scores.

3. Model Explainability of KT-LUPI using SHAP Values

In this section, we describe SHAP value computation for KT-LUPI. As discussed in the
previous section, given a test object to compute the SHAP values for a subset of features
it is required that the decision function takes the input for those features, and the values
for the remaining features are imputed. In general, for LUPI methods, the input space for
the decision rule is limited to the standard feature space, and it is not possible to compute
SHAP values for the Privileged Features (PFs). However, for KT-LUPI, the input for the
decision function is both standard features and transformed PFs. Hence, it is possible to
compute the importance of PFs (though in the transformed space).

4. Experiments

We perform experiments with five binary classification and three regression datasets from
the UCI machine learning repository (Lichman et al., 2013); see Table 1 for details about
the datasets. Each dataset is randomly partitioned into a test set (30%) and a training set
(70%). We use SHAP values to choose privileged features; for example, for choosing five
PFs in a dataset, we first train a linear model using the training set with all the features and
then compute the SHAP values using the test set, and finally, the top five features having
highest SHAP values are identified as PFs. Once the PFs are chosen, we remove them

3



Gauraha Boström

from the set of features. For example, for a hypothetical dataset having 10 features, let us
assume that all the features are named {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and also assume that the
features {1, 3, 5, 7, 9} are PFs. Then X consists of samples from the features {0, 2, 4, 6, 8}
and X∗ consists of samples from the privileged features {1, 3, 5, 7, 9}. The set of all features
are now denoted by {XX∗} = {0, 2, 4, 6, 8, 1, 3, 5, 7, 9} and their indices are reset from 0 to
9 again.

Table 1: Description of the datasets from UCI repository that are used in the evaluation.
Training refers to the number of examples in the training set, Test refers to the
number of objects in the test set, Features refer to the number of features in the
dataset. Privileged Features and Standard Features refer to the number of PFs and
standard features, respectively. The first five datasets correspond to classification
problems, while the remaining three datasets correspond to regression problems

Dataset Training Test Features Privileged Features Standard Features

Spambase 3220 1381 57 5 52
Breast Cancer 398 171 30 5 25
Phishing Websites 7738 3317 30 5 25
Australian 483 207 14 5 9
Parkinsons 136 59 22 5 17
Wine 3428 1470 10 3 7
Energy Efficiency 537 231 8 2 6
Concrete 721 309 8 2 6

All the experiments are conducted using Python. The package ”shap” is used to compute
SHAP values. Support Vector Machine (SVM) and Support Vector Regression (SVR) with
linear kernel are trained using Python implementations of LibSVM (Chang and Lin, 2011)
in the Python package ”scikit-learn” (Pedregosa et al., 2011). In all the experiments, linear
regression is used to approximate the privileged features. The top m features that have the
highest SHAP values are chosen as PFs, these m features are referred to as primary features
and the rest of the features are referred to as standard features. We may interchangeably
use primary features or privileged features. In all the experiments, the following three types
of classification (or regression) models are trained:

1. SVM (or SVR) on standard features: the SVM (or SVR) algorithm is used to create
a decision rule using standard features.

2. Knowledge transfer LUPI (KT-LUPI): knowledge transfer from privileged features to
the space of standard features is realized using linear regression. After augmenting
standard features with the regressed values of privileged features, the SVM (or SVR)
algorithm is used to create a decision rule on the augmented decision space.

3. SVM (or SVR) on all features: the SVM (or SVR) algorithm is used to create a
decision rule using both primary and standard features.
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For the assessment of model performance, we measure Area Under Curve (AUC) for clas-
sification (higher is better) and Root Mean Squared Error (RMSE) for regression (lower
is better). To measure the similarity of the contribution of the privileged information in
KT-LUPI and in SVM (or SVR) on all features, we compute the sum of absolute differences
(SAD) of the SHAP values for privileged features. A lower SAD score indicates a higher
similarity between KT-LUPI and SVM on all features in terms of the contribution of the
PI.

We present results from four experiments to investigate the performance and explain-
ability of the KT-LUPI models.

4.1. Experiment 1: Model performance and explainability for classification
datasets

The main objective of this experiment is to analyze the contribution of the transferred
privileged features using SHAP values for classification problems. We compare the per-
formances of KT-LUPI models with the following models: SVM on standard features and
SVM on all features. The SHAP values for the Privileged Features (PFs) are compared for
the KT-LUPI models and the models trained using SVM on all features.

In this experiment, we train three different models for each of the classification datasets
that are described in Table 1. The first model is trained with the SVM algorithm using only
the standard featuresX. In the second model, the privileged features (PF) are approximated
using linear regression, and the KT-LUPI model is trained using SVM on the combined
features, X and the approximated PFs. The third model is trained using SVM on all
the features. The results are reported in Table 2. The AUC scores for SVM on standard
features, KT-LUPI and SVM on all features are reported in columns 1-3. The fourth column
shows the sum of absolute difference between the SHAP values for the PFs as computed
from the models obtained by KT-LUPI and SVM on all features. A plot of the SHAP values
for the Spambase dataset is shown in Figure 1, where features are ordered in descending
order (from top to bottom) according to their scores. Similar plots for the other data sets
are available in Appendix A.

Table 2 shows that KT-LUPI yields higher AUC scores than SVM on standard features
for most of the datasets. It also shows that the AUC scores for KT-LUPI lie in between
SVM on standard features and SVM on all features. We also notice that the higher the
difference in AUC scores between the two models (SVM on all features and KT-LUPI )
is, the higher the SAD value. As explained previously, by construction the PFs are the
five features having the highest SHAP values for the model SVM on all features. The five
privileged features for KT-LUPI are also among the top 10 features with the highest SHAP
values, as shown in Figures 1, 5, 6, 7 and 8.
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Table 2: Experiment 1: The first column presents the name of the datasets. The AUC scores
for SVM on standard features, KT-LUPI and SVM on all features are reported in
the three following columns. The last column shows the sum of absolute difference
between the SHAP values for the privileged features, when computed using KT-
LUPI and SVM on all features, repectively.

Dataset SVM on standard features KT-LUPI SVM on all features SAD

Spambase 0.869 0.871 0.899 0.137
Breast Cancer 0.975 0.975 0.979 0.027
Phishing Websites 0.727 0.727 0.926 0.374
Australian 0.754 0.782 0.884 0.374
Parkinsons 0.757 0.769 0.808 0.099

(a) (b)

Figure 1: Results from experiment 1 for the Spambase dataset; (a) SVM on all features
(X +X∗) (b) KT-LUPI using SVM with X as standard features and X∗ as PI

4.2. Experiment 2: Model performance and explainability for regression
datasets

The aim of this experiment is to analyze the contribution of the (transferred) privileged
features using SHAP values for regression problems.

This experiment is similar to the first except that we here used regression instead of
classification datasets and the SVR instead of the SVM algorithm for training. In this
experiment, we also train three different models for each dataset. The first model is trained
with Support Vector Regression (SVR) using only the standard features. In the second
model, the privileged features (PF) are approximated using linear regression, and the KT-
LUPI model is trained using SVR on (X, X̂∗). The third model is trained with SVR using
all the features (X,X∗). The results are reported in Table 3. The Root Mean Squared
Error (RMSE) score for SVR on standard features, KT-LUPI and SVR on all features are
reported in columns 2-4. The fifth column shows the sum of absolute difference between the
privileged feature SHAP values. SHAP values for the Wine dataset are plotted in Figure 2,
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where the features are again ordered in descending order (from top to bottom) according
to their SHAP values. Similar plots for the other data sets are available in Appendix B.

Table 3 shows that KT-LUPI yields lower (better) RMSE scores than SVR on standard
features for most of the datasets. It also shows that the RMSE scores for KT-LUPI lie in
between SVR on standard features and SVR on all features. As before, the PFs are the top
features having the highest SHAP values for the model SVR on all features, and we can
observe that some of the privileged features for KT-LUPI are also among top five features
with the highest SHAP values, as reported in Figure 2.

Table 3: Experiment 2: The first column presents the name of the datasets. The RMSE
scores for SVR on standard features, KT-LUPI and SVR on all features are re-
ported in the three following columns. The last column shows the sum of absolute
difference between the privileged feature SHAP values computed by KT-LUPI and
SVR on all features.

Dataset SVR on standard features KT-LUPI SVR on all features SAD

Wine 1.011 1.010 0.478 1.576
Energy Efficiency 4.651 4.236 2.937 1.296
Concrete 14.323 11.918 11.594 2.252

(a) (b)

Figure 2: Results from experiment 2 for the Wine dataset; (a) SVR on all features (X+X∗)
(b) KT-LUPI using SVR with X as standard features and X∗ as PI

4.3. Experiment 3: Varying numbers of privileged features

In this experiment, we analyze the effect of the number of PFs on predictive performance
and explainability of KT-LUPI. The results are reported in Table 4 and Figure 3. This
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experiment is similar to the first except that we use only the Spambase dataset, and it is
repeated for the following number of PFs: {5, 10, 15, 20}.

It can be observed in Table 4 that, as we increase the number of PFs, the performance
of both KT-LUPI and SVM on standard features decreases, while KT-LUPI still performs
better of the two. It can also be seen (in column four of Table 5) that with the increase
in the number of PFs, the SAD score increases. In other words, with a larger number of
PFs, it becomes more difficult to explain the contribution of the (transferred) privileged
information. The corresponding plot of SHAP values for Spambase dataset with 10 PFs is
reported in Figure 3. Similar plots with 5, 15 and 20 PFs are available in Appendix C.

Table 4: Experiment 3: The first column presents the number of privileged features selected.
The AUC scores for SVM on standard features, KT-LUPI and SVM on all features
are reported in the three following columns. The last column shows the sum of
absolute difference between the PFs SHAP values computed by KT-LUPI and
SVM on all features.

# PFs SVM on standard features KT-LUPI SVM on all features SAD

5 0.869 0.871 0.899 0.13868
10 0.834 0.846 0.899 0.29582
15 0.781 0.794 0.899 0.37658
20 0.762 0.784 0.899 0.52306

(a) (b)

Figure 3: Results from experiment 3 for the Spambase dataset (with ten PFs); (a) SVM on
all features (X +X∗) (b) KT-LUPI using SVM with X as standard features and
X∗ as PI

4.4. Experiment 4: Varying the sample size

The main goal of this experiment is to investigate the effect of the sample size on the
predictive performance and explainability of KT-LUPI.
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This experiment is again similar to the first except that we use only the Spambase
dataset, and it is repeated for the following sample sizes: {100, 200, 500, 1000, 20000}. The
results are reported in Table 5 and Figure 4.

Table 5 shows that for a very small sample size (100), the performance of KT-LUPI
is worse than SVM on standard features. However, with moderate sample sizes (500 and
above) it is more efficient. The performance of KT-LUPI is always lower as compared to
SVM on all features. However, the explainability is comparable for the two models as shown
in Figure 4. As expected, with an increase in the sample size, the SAD score decreases,
as shown in column five of Table 5. In other words, when increasing the sample size, the
contribution of PI becomes more similar for both KT-LUPI and SVM on all features.

Table 5: Experiment 4: The first column presents the number of sample size. The AUC
scores for SVM on standard features, KT-LUPI and SVM on all features are
reported in the following three columns. The last column shows the sum of absolute
difference between the PF SHAP values computed by KT-LUPI and SVM on all
features.

Sample size SVM on standard features KT-LUPI SVM on all features SAD

100 0.833 0.766 0.866 0.198
200 0.802 0.802 0.867 0.105
500 0.780 0.784 0.855 0.086
1000 0.850 0.864 0.866 0.072
2000 0.908 0.921 0.933 0.064

(a) (b)

Figure 4: Results from experiment 4 for the Spambase dataset (with 2000 samples size);
(a) SVM on all features (X +X∗) (b) KT-LUPI using SVM with X as standard
features and X∗ as PI
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5. Conclusion

In this study, we have investigated the predictive performance and explainability of KT-
LUPI. Similar to earlier studies, for example in (Gauraha et al., 2019), KT-LUPI was
observed to have higher predictive performance than SVM (or SVR) using standard features
only. However, in terms of explainability, KT-LUPI was comparable with SVM (or SVR)
using all features. Most interestingly, we observed a positive correlation between the relative
performance of KT-LUPI, when compared to having access to privileged information also
during testing, and the agreement on how important the privileged features are; in case of
a lower agreement, then KT-LUPI performed relatively worse compared to having access
to privileged information. We also investigated the effect of the number of PFs and sample
sizes on predictive performance and explainability. As the number of PFs increased, the
predictive performance of both KT-LUPI and SVM using standard features were observed
to decrease, but KT-LUPI still outperformed the latter. We also noticed that with an
increase of the number of PFs, the SAD score increased. Similar to findings reported earlier
(Nouretdinov, 2022), for very small sample sizes, the predictive performance of KT-LUPI
was worse than that of SVM using standard features. However, for moderate sample sizes,
KT-LUPI was more efficient. As expected, when increasing the sample size, the SAD score
was observed to decrease.

The above results indicate that explainable machine learning indeed has the potential
to be used as a tool to gain insights regarding the effectiveness of KT-LUPI. The current
study is just a start and can be extended in several directions. One direction for future
research is to analyze the contribution of privileged features for split KT-LUPI (Gauraha
et al., 2019). Other directions for future research include investigating scenarios in which
there is a cost associated with obtaining privileged information and explore strategies to
exploit the outcome from analyzing the contribution of such information.
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Appendix A. Results from Experiment 1

(a) (b)

Figure 5: Results from experiment 1 for the Breast Cancer dataset; (a) SVM on all features
(X +X∗) (b) KT-LUPI using SVM with X as standard features and X∗ as PI
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(a) (b)

Figure 6: Results from experiment 1 for the Phishing dataset; (a) SVM on all features
(X +X∗) (b) KT-LUPI using SVM with X as standard features and X∗ as PI

(a) (b)

Figure 7: Results from experiment 1 for the Australian dataset; (a) SVM on all features
(X +X∗) (b) KT-LUPI using SVM with X as standard features and X∗ as PI

(a) (b)

Figure 8: Results from experiment 1 for the Parkinsons dataset; (a) SVM on all features
(X +X∗) (b) KT-LUPI using SVM with X as standard features and X∗ as PI
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Appendix B. Results from Experiment 2

(a) (b)

Figure 9: Results from experiment 2 for the Energy Efficiency dataset; (a) SVR on all
features (X +X∗) (b) KT-LUPI using SVR with X as standard features and X∗

as PI

(a) (b)

Figure 10: Results from experiment 2 for the Concrete dataset; (a) SVR on all features
(X +X∗) (b) KT-LUPI using SVR with X as standard features and X∗ as PI
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Appendix C. Results from Experiment 3

(a) (b)

Figure 11: Results from experiment 3 for the Spambase dataset (with 5 PFs); (a) SVM on
all features (X+X∗) (b) KT-LUPI using SVM with X as standard features and
X∗ as PI

(a) (b)

Figure 12: Results from experiment 3 for the Spambase dataset (with 15 PFs); (a) SVM
on all features (X +X∗) (b) KT-LUPI using SVM with X as standard features
and X∗ as PI
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(a) (b)

Figure 13: Results from experiment 3 for the Spambase dataset (with 20 PFs) (a) SVM on
all features (X+X∗) (b) KT-LUPI using SVM with X as standard features and
X∗ as PI
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