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Abstract

Conformal prediction provides distribution-free uncertainty quantification under minimal
assumptions. An important ingredient in conformal prediction is the so-called nonconfor-
mity measure, which quantifies how the test sample differs from the rest of the data. In
this paper, existing nonconformity measures from the current literature are collected and
their underlying ideas are analyzed. Furthermore, the influence of different factors on the
performance of conformal prediction are pointed out by focusing on the relation between
the influencing factors and the choice of nonconformity measures. Lastly, we provide sug-
gestions for future work with regard to currently existing knowledge gaps and development
of new nonconformity measures.
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1. Introduction

With the increasing popularity of machine learning, concerns regarding its prediction ac-
curacy have risen. Conformal prediction is currently the only method that can provide
distribution-free uncertainty quantification (Vovk et al., 2005). Conformal prediction can
be used in combination with any machine learning method − including Bayesian methods
− and can provide each prediction with a valid confidence measure (Papadopoulos et al.,
2011; Fontana et al., 2023). This means that the conformal prediction interval covers the
true response with a pre-specified probability. The only required assumption for confor-
mal prediction is that data are exchangeable, unlike other probabilistic machine learning
methods that require stronger assumptions on output distributions.

An important aspect of conformal prediction is the so-called nonconformity measure,
defining how the test sample differs from the rest of the data (Shafer and Vovk, 2007).
In principle, any function can be used as a nonconformity measure. However, it is most
likely that the usefulness of the predictive confidence highly depends on the choice of the
nonconformity measure (Angelopoulos and Bates, 2021; Papadopoulos, 2008). Therefore,
recent work started to focus on the development of new nonconformity measures (Jung
et al., 2022). As Papadopoulous and colleagues mentioned, many different nonconformity
measures can be constructed for each method and each of these measures potentially defines
a different variant of conformal prediction (Papadopoulos et al., 2011). In this paper, we
performed a literature review focusing on existing nonconformity measures in the regression
setting. These nonconformity measures are assessed and analyzed based on their underlying
ideas.
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1.1. Outline

This paper is organized as follows; A brief background on conformal prediction is provided
in Section 2, where we introduce the two most widely used types of conformal predictors,
namely transductive and inductive conformal predictors (Section 2.1). Furthermore, the
two main characteristics describing the performance of conformal predictions, validity and
efficiency, are described (Section 2.2). In Section 3, we analyze existing nonconformity
measures by assessing how they work, motivation to use them and possible limitations.
Subsequently, the influences of different factors on the performance of conformal prediction
are pointed out in Section 4. In particular, the relation between these influencing factors and
the choice of nonconformity measures is highlighted. Furthermore, we discuss considerations
regarding a choice of nonconformity measures and suggestions for future work in Section 5.
Findings are summarized and the main conclusion is provided in Section 6.

2. Conformal prediction and uncertainty

In order to start the discussion on conformal prediction, let us consider a regression setting
using a training dataset of n observations D = (xi, yi) with i ∈ {1, . . . , n}. We assume that
all the samples (xi, yi)

n
i=1 are drawn i.i.d. from a joint distribution pxy. Using some under-

lying method that can make a prediction ŷ, the aim is to obtain uncertainty information
about the unknown value of yn+1 at a test point xn+1.

Conformal prediction constructs a marginal distribution-free prediction interval for the
test point xn+1, C(xn+1) ⊂ R, based on the training dataset which contains the unknown
response yn+1.

P{yn+1 ∈ C(xn+1)} ≥ 1− ϵ

where 1− ϵ ∈ (0, 1) is the coverage rate.
Although this holds for any sample size n without any additional assumptions on the

underlying data distribution (Tibshirani et al., 2019), it is important to emphasize that this
is a marginal coverage. This means that the probability that C satisfies the true test value
yn+1 is at least 1− ϵ, on average over a random sample from the training and test data.

In order to produce prediction intervals C(xn+1), conformal prediction uses a noncon-
formity measure. This can for instance be a real-valued function that measures the dis-
agreement between the prediction output ŷi, and the actual value yi, for a given instance
xi (Shafer and Vovk, 2007; Vovk et al., 2005). After computing the nonconformity scores
αi, (i = 1, . . . , n), which are essentially the output of the nonconformity measure, the non-
conformity score at test point xn+1, αn+1, is ranked by computing π(y) as follows:

π(y) =
1

n+ 1

n+1∑
i=1

1{αi ≤ αn+1} =
1

n+ 1
+

1

n+ 1

n∑
i=1

1{αi ≤ αn+1} (1)

π(y) shows the proportion of points which αi is smaller than αn+1. Here 1{·} is the indi-
cator function. Conformal prediction interval at xn+1, C(xn+1), can be obtained using the
obtained π(y) as follows:

C(xn+1) = {y ∈ R : (n+ 1)π(y) ≤ ⌈(1− ϵ)(n+ 1)⌉} (2)
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In this paper, we mainly consider nonconformity measures in a regression setting. In
a number of cases, depending on the context of the task, a conformity measure, instead
of nonconformity measure can be chosen as well (Fontana et al., 2023). The connec-
tion between nonconformity and conformity measures is, however, often fairly simple (e.g.
conformity ≡ 1− nonconformity or conformity ≡ −nonconformity). For those interested in
such conformity measures instead, see e.g., Vovk (2015); Chernozhukov et al. (2021); Lei
et al. (2015).

2.1. Conformal predictors

Conformal prediction methods can be divided into two main categories: transductive con-
formal predictors (TCP) (Saunders et al., 1999) and inductive conformal predictors (ICP)
(Papadopoulos et al., 2002; Papadopoulos, 2008). The main differences between TCP and
ICP are their usage of the training data and overall training procedure. In TCP, the whole
training dataset is used to train the underlying model. In order to establish the noncon-
formity baseline, TCP measures the nonconformity of all examples, including (xi+1, ŷn+1).
This means that the predicted test point (xi+1, ŷn+1) is considered when calculating the
nonconformity scores for the training set. Therefore, for each new test point, the underly-
ing model needs to be retrained, and the nonconformity measure for the training data has
to be recomputed (Linusson et al., 2014). This can be computationally expensive, and this
computational burden of TCP can be problematic, especially when the underlying method
requires data preprocessing or hyper-parameter selection (Vovk et al., 2022).

In contrast to TCP, ICP first separates the training set into a proper training set (to
train the underlying algorithm) and a calibration set (to obtain the nonconformity scores).
Since these two datasets are completely disjoint, the calibration dataset provides unbiased
nonconformity measures. This also means that the underlying algorithm has to be trained
only once, which makes ICP computationally more efficient.

2.2. Validity and Efficiency

In conformal prediction, two main characteristics (validity and efficiency) determine the
quality of the obtained prediction intervals. A conformal prediction interval is valid when
the interval covers the true response yn+1 with a predetermined coverage 1− ϵ. In fact, the
following proposition holds:

Proposition 1 (Vovk (2012)) Let Γ be a conformal predictor or an inductive conformal
predictor. If random examples Z1, ..., Zi, Z = (X,Y ) are exchangeable (i.e., their distribu-
tion is invariant under their permutations), the probability of error Y /∈ (Z1, ..., Zi, X) does
not exceed ϵ for any ϵ

Proposition 1 automatically provides a conformal prediction interval of unconditional va-
lidity (Vovk, 2012). Furthermore, Vovk mentioned that, in general, a conformal predictor
is conservatively valid, meaning that the probabilities for errors are allowed to be even less
than ϵ (Vovk et al., 2005).

In a regression setting, another measure indicating the quality of the prediction intervals
is the average length of the prediction intervals. This is known as the efficiency and is defined
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as follows (Johansson et al., 2013):

1

n

n∑
i=1

|Ci|

This is named the N criterion by Vovk et al. (2016). Under this criterion, high efficiency is
obtained by forming tight prediction intervals. However, this also requires careful consid-
eration when choosing nonconformity measures given that a poor choice of nonconformity
measures inherently leads to a decrease in efficiency as explained in Papadopoulos (2008).
Other possible efficiency measures are discussed in (Vovk et al., 2016).

In order to get high-quality conformal prediction, we would like to retain validity and
maximize efficiency. Much research has focused on making conformal prediction more effi-
cient, see e.g., Linusson (2021); Lei et al. (2013). Although both TCP and ICP are assured
to reach the targeted validity, TCP tends to produce prediction intervals with higher validity
comparing to ICP (Papadopoulos et al., 2002).

3. Nonconformity measures

Two major categories of nonconformity measures, absolute error-based nonconformity mea-
sures and quantile-based nonconformity measures, together with their advantages and dis-
advantages, are discussed in what follows.

3.1. Absolute error-based nonconformity measures

In a regression setting, the absolute error-based nonconformity measure is the most straight-
forward nonconformity measure and is defined as:

αi = |yi − ŷi| (3)

which is the absolute value of the difference between the prediction ŷi for xi and yi (Pa-
padopoulos et al., 2011). We refer to this as the absolute error-based nonconformity mea-
sure.

It is important to note that the absolute error-based nonconformity measure, as defined
in Equation (3), provides prediction intervals (using Equation (2)) that have the same length
for all test examples, and thus potentially affects the efficiency of conformal prediction.
Although the fact that intervals have the same width for all test samples pose no difficulties
when the research focuses on the validity of conformal prediction (e.g., Vovk (2012)), it can
have a drawback since efficiency of conformal prediction can be sacrificed in some cases.
This can be for instance the case when data noise is heteroscedastic, where the average
length of intervals increase, resulting in a lower efficiency.

To overcome the aforementioned issue, the normalized nonconformity measure (often
referred to as locally weighted nonconformity measure) was proposed. This is obtained
through an adjustment of the first measure in Equation (3). The normalized nonconformity
measure was defined as follows:

αi =

∣∣∣∣yi − ŷi
σi

∣∣∣∣ (4)
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where σi = eµi , µi is the prediction of the value ln(|yi − ŷi|). Subsequently, the prediction
interval for xi is obtained as follows:

C(xi) = (ŷi − αs(ϵ)σi, ŷi + αs(ϵ)σi) (5)

where s(ϵ) = ⌊ϵ(n+1)⌋. The logarithmic scale is used to ensure that the estimate is always
positive. After training the underlying model on training data, we calculate the residuals
|yi − ŷi| for all training examples i = 1, ..., n. Thereafter, the underlying model is retrained
on the pairs (xi, ln(|yi − ŷi|). These predicted values are used to obtain the normalized
nonconformity measure. It should be noted that the underlying model is trained twice and
these models do not necessarily have to be the same. This results in additional variability
to nonconformity measures, and thus this measure is not well suitable for TCP.

This measure was originally proposed by Papadopoulos and colleagues for ridge regres-
sion (Papadopoulos et al., 2002). It was used in combination with Support Vector Machine
and Random Forests in Carlsson et al. (2014). With this normalized nonconformity mea-
sure, the length of prediction intervals will be proportional to the predicted accuracy of
the underlying method at the new example. This means that we can make the conformal
prediction more efficient, by providing larger prediction intervals for difficult examples and
smaller ones for the easier examples to predict. The difficulty is defined as the accuracy
of the underlying method. Using this locally weighted nonconformity measure, conformal
prediction can produce locally-weighted prediction intervals, as shown in Lei et al. (2018).
Focus on this fact, Bellotti (2020) combined this normalized nonconformity measure with a
surrogate conformal predictor optimization, which is similar to ICP approximately though
does not guarantee validity. Nevertheless, it was shown that the predictive efficiency for
regression problems using several data while retaining validity was improved.

This normalized nonconformity measure was used in several applications, for example,
change point detection (Ho and Wechsler, 2010), chemical engineering (Jablonka et al.,
2020), deep learning (Cortés-Ciriano and Bender, 2019). Eklund et al. (2015) used this
nonconformity measure Equation (4) for the drug discovery process and reported that ICP
with the normalized nonconformity measure empirically shows more efficient prediction
interval, even when i.i.d. assumption is often violated. However, there are no reports on
direct comparisons between conformal predictors using different nonconformity measures.
As such, it is not yet fully possible to assess the added value of this normalized nonconformity
measure based on currently available literature.

In Papadopoulos and Haralambous (2011), a variant of normalized nonconformity mea-
sure was proposed as follows:

αi =
|yi − ŷi|
σi + β

(6)

where β ≥ 0 works as a regularizer. With this normalized nonconformity the prediction
interval for xi is obtained as follows:

C(xi) = (ŷi − αs(ϵ)(σi + β), ŷi + αs(ϵ)(σi + β)) (7)

where s(ϵ) = ⌊ϵ(n + 1)⌋. By increasing β, we reduce the importance of σi and as a result,
increases the importance of all other examples (Papadopoulos et al., 2007). In Papadopoulos

5



Kato Tax Loog

and Haralambous (2011), the effect of different values of β (0 and 0.5) on different datasets
was investigated. The paper shows that the tighter prediction intervals can be obtained
by adjusting β for each dataset. However, no hyperparameter tuning for β was performed.
Johansson et al. (2014) compared the efficiency by tuning β and claimed that, although the
parameter value is very important and dependent on the target range, all reasonable small
values produce conformal predictors with similar efficiency.

Papadopoulos and colleagues proposed a total of six variants of normalized nonconfor-
mity measures in combination with k-nearest neighbors (Papadopoulos et al., 2011). For
these measures, two quantities λk

i and ξki were calculated using k-nearest neighbors. For
each example (xi, yi), Ti is the training data set which is used for predicting ŷ.

Firstly, λk
i measures expected accuracy based on the distance of the example from its

k-nearest neighbours and was defined as:

dki =

k∑
j=1

δ(xi, xij), (8)

λk
i =

dki
median({dkj : zj ∈ Ti})

, (9)

where δ is a distance and dki is the sum of the distance between xi and its k-nearest neighbors,
and is normalized with the distances of all training examples from its k-nearest neighbors.

Using λk
i , the following two nonconformity measures were defined as:

αi =

∣∣∣∣yi − ŷi

γ + λk
i

∣∣∣∣ , (10)

αi =

∣∣∣∣ yi − ŷi

exp(γλk
i )

∣∣∣∣ , (11)

where γ works as a regularizer. While Equation (10) works in a similar way to the firstly
introduced normalized nonconformity measure (Equation (6)), Equation (11) has a different
property. This measure has a minimum value of 1 and the nonconformity score exponentially
increases. As a result, this measure is more sensitive to changes when λk

i is large. The
preferred measure depends on the context.

Secondly, ξki measures accuracy based on the standard deviation of the outputs of its
k-neighbours and was defined as follows:

ski =

√√√√√1

k

k∑
j=1

yij −
1

k

k∑
j=1

yij

, (12)

ξki =
ski

median({skj : zj ∈ Ti})
. (13)

Similarly, the following nonconformity measures were defined as below:
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αi =

∣∣∣∣yi − ŷi

γ + ξki

∣∣∣∣ , (14)

αi =

∣∣∣∣ yi − ŷi

exp(γξki )

∣∣∣∣ . (15)

where again γ acts as a regularizer.

Finally, two quantities λk
i and ξki are combined and the following two nonconformity

measures were proposed:

αi =

∣∣∣∣ yi − ŷi

γ + ξki + λk
i

∣∣∣∣ , (16)

αi =

∣∣∣∣ yi − ŷi

exp(γξki ) + exp(ρλk
i )

∣∣∣∣ . (17)

Parameters γ and ρ are used to control the sensitivity of ξki and λk
i , depending on the

context. They showed that all the proposed nonconformity measures increased efficiency
and especially two measures (Equation (16) and Equation (17)) are superior to the others.

Although these measures were developed for k-nearest neighbors, it is possible to apply
the principal idea of these measures to different machine learning methods. Some noncon-
formity measures (Equation (16) and Equation (17)) have other parameters in addition to
β. However, no tuning of these parameters was described either. Additionally, it is worth
noting that the normalized noncofnormity measure is not widely adopted even when us-
ing the measure can potentially be helpful to provide efficient prediction intervals. One
issue here might be that extending the normalized nonconformity measure is not straight-
forward in some application settings (e.g., high dimensional data for time series forcasting
(Stankeviciute et al., 2021)).

More importantly, although the use of additional parameters in the normalized noncon-
formity measure has the potential to increase the efficiency (Boström et al., 2016), there is
no clear indication of how this can be achieved. Therefore, at this moment, it is difficult
to conclude which nonconformity measure behaves better in terms of the efficiency of the
prediction intervals.

3.2. Quantile-based nonconformity measures

Although the normalized nonconformity measure can provide us with different sizes of
predictive regions depending on a local estimate of variance, the following issues still remain.

Firstly, as mentioned by Lei and colleagues, the locally adaptive nonconformity mea-
sure cannot generate efficient prediction intervals when the data is homoscedastic (Lei et al.,
2018). They argued that this inefficiency is mainly due to the extra variability arising from
estimating σi (as can be seen from e.g., Equation (4)). Secondly, in general, experiments
seem rather limited to draw solid conclusions about the advantage of using normalized
nonconformity measures in many cases. Therefore, experiments using non-Gaussian distri-
butions (e.g. multivariate, heavy-tailed and skewed) with different data sizes are required
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to evaluate the performance of these normalized nonconformity measures. Knowledge ob-
tained from such experiments can be used to determine whether normalized nonconformity
measures will result in more efficient prediction intervals.

In order to overcome these issues discussed above, a new approach has been proposed
that combines ICP with quantile regression (Romano et al., 2019). They mentioned that
there is no guarantee that prediction intervals produced by quantile regression satisfy the
desired coverage rate. This shortcoming motivated them to propose Conformalized Quantile
Regression which requires a new quantile-based nonconformity measure.

During CQR, data are split into a training set L1 and a calibration set L2. Given any
quantile regression algorithm M , lower and upper conditional quantile functions q̂ϵlow and
q̂ϵhigh are fitted to the proper training set:

{q̂ϵlow , q̂ϵhigh} ←M({xi, yi} : i ∈ L1).

Using the calibration set, the conformity score is computed to quantify the error made by
the plug-in prediction interval Ĉ(x) = [q̂ϵlow , q̂ϵhigh ] and are evaluated on the calibration set
as follows:

αi = max{q̂ϵlow(xi)− yi, yi − q̂ϵhigh(xi)}. (18)

Finally, the prediction interval for xi is constructed as follows:

C(xi) = (q̂ϵlow(xi)−Q1−ϵ(α,L2), q̂ϵhigh(xi) +Q1−ϵ(α,L2)). (19)

where

Q1−ϵ(α,L2) ≡ (1− ϵ)(1 + 1/|L2|)-th empirical quantile of {αi : i ∈ L2}. (20)

The main difference between the previously introduced normalized nonconformity measures
and quantile-based nonconformity measures is that these focus on estimating the lower
and upper conditional quantiles rather than the conditional mean. The advantage of this
approach is that it is fully adaptive to heteroscedasticity and theoretically guarantees a valid
coverage. Moreover, their experiments showed more efficient prediction intervals compared
to the normalized nonconformity measure as defined in Equation (4). However, to show
that this method also works sufficiently efficient in the case of homoscedastic noise, further
comparative research is needed. To the authors knowledge, such results have not been
reported yet. Finally, it is also noteworthy that if quantile regression does not produce
valid estimates, which can happen (Romano et al., 2019), the performance of CQR is also
affected since it tries to cover the garuanteed validity by sacrificing efficiency (Chung et al.,
2021).

A nonconformity measure similar to the quantile-based nonconformity measure (Romano
et al., 2019) was proposed by Kivaranovic et al. (2020). Their measure was adapted to neural
networks and to a wide class of data distributions. However, when using this quantile-based
nonconformity measure, the validity of obtained conformal prediction intervals only holds
under the assumption that the observations are i.i.d.. Such an assumption is not required
for traditional conformal prediction methods and could limit the use of CQR in specific
situations where such a condition cannot be met.
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4. Influence of various factors on conformal prediction

Although the choice of nonconformity measure can considerably affect the validity and ef-
ficiency of prediction intervals, the exact influence often remains elusive. It is known that
several factors (e.g., data, underlying model and nonconformity measure) can result in vi-
olation of the validity or maintain validity by sacrificing efficiency. Furthermore, some of
these factors are entangled with each other, further complicating the choice of an appropri-
ate nonconformity measure under different circumstances. Nevertheless, how these factors
should be taken into account when choosing the nonconformity measure and influence the
performance of conformal prediction has not been well explored yet.

This section attempts to illustrate this complexity of conformal prediction by highlight-
ing these different influences and showing that it is not straightforward to choose a suitable
nonconformity measure. In order to systematically evaluate these influencing factors, the
effect on each step of the conformal prediction algorithm is discussed, as showing in Al-
gorithm 1 (based on Sun, 2022). Although Algorithm 1 focuses on ICP, the same steps,
except for splitting the whole dataset, are applicable to TCP. Based on Algorithm 1, we
define two critical points where specific choices or circumstances can influence the perfor-
mance of conformal prediction namely: the choice of nonconformity measure and how data
is split into proper training set and calibration set.

Algorithm 1: Inductive Conformal Prediction

Input: Dataset D = (xi, yi)
n
i=1 (Section 4.2), underlying model M , nonconformity

measure α (Section 4.1), test point xn+1, target confidence level 1− ϵ
Output: Prediction interval Γ1−ϵ(xn+1)
Randomly split dataset D into training and calibration datasets D = Dtrain ∪Dcal

where |Dtrain| = m and |Dcal| = n−m;
Train underlying model f̂ = M(Dtrain);
Initialize nonconformity scores αcal = {};
for (xi, yi) ∈ Dcal do

αcal ← s ∪ {S((xi, yi), f̂)}
end
Calculate the (1− ϵ)−th quantile q1−ϵ of αcal ∪ {∞}
return Γ(1−ϵ)(xn+1) = {y : S((xn+1, y), f̂) ≤ q1−ϵ}

4.1. Choosing a nonconformity measure

Nonconformity measures can be grouped into model-agonistic and model-dependent (Alek-
sandrova and Chertov, 2021b). However, Papadopoulos et al. (2002) mentioned that, in
many situations, the nonconformity measure is chosen based on the underlying algorithm
and thus it is natural to expect that the more accurate underlying models lead to better
conformal predictions. More specifically, this step influences the performance of conformal
prediction regarding efficiency of prediction intervals, as shown by Romano et al. (2019).
This was also confirmed by Aleksandrova and Chertov (2021b,a) for a classification set-
ting. In addition, Laxhammar and colleagues suggest that the use of domain knowledge
(e.g., knowledge about the data distribution) is of importance when defining nonconformity
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measures for specific applications (Laxhammar and Falkman, 2010). Therefore, one should
carefully consider the choice of nonconformity measure since it depends strongly on the
context of the problem (Vovk et al., 2005). However, systematic evaluation of different
nonconformity measures under different conditions or context has not yet been performed.

4.2. How to split the data

In ICP, the whole dataset has to be divided into a proper training dataset and a calibration
set. Angelopoulos and colleagues confirmed that size of the calibration dataset has an
influence on the validity of conformal prediction (Angelopoulos and Bates, 2021). Their
experiments showed that larger data size leads to more stable prediction intervals, and
thus improved validity. With increasing size of the calibration set, it is possible to choose
nonconformity measures with additional hyperparameters, with the possibility to improve
efficiency of the prediction intervals. These hyperparameters can in turn be tuned using
the calibration set to improve the overall performance of the conformal prediction using
this specific nonconformity measure. This means that the size of the calibration set has an
impact on the choice of nonconformity measures.

However, increasing the size of the calibration set at the expense of the proper training
set size negatively influences the choice and training of the underlying model. With the
knowledge that some models require significantly more training, reducing the proper training
set would limit the choice of models that can be used. In order to overcome this issue,
out-of-bag conformal methods, where out-of-estimates are used for the calibration set, have
been introduced (e.g., Johansson et al. (2014); Gupta et al. (2022)). Although this approach
could improve the training process of the model, the risk is that optimizing hyperparameters
of nonconformity measure on these alternative calibration sets lead to violations of the
exchangeability assumption.

It remains difficult to quantitatively assess the impact of proper training and calibration
set sizes on a choice of nonconformity measures and the resulting validity and efficiency of the
prediction intervals under different circumstances. This warrants more detailed experiments
to understand the influence of the size of calibration and proper training set.

5. Discussion and future direction

The advantage of conformal prediction (i.e. distribution-free) makes it suitable to apply
to different (scientific) problems since it does not require assumptions on output distribu-
tions, which is rarely given as a-prior. Indeed, several authors show the use of conformal
prediction in a variety of different applications. However, this will also implicitly result
in the requirement that nonconformity measures should deal with data having different
characteristics (e.g. size, dimensionality, noise distribution). In order to accustom these
requirements, new nonconformity measures have been developed. Many of these (recent)
nonconformity measures focus on a specific characteristic of the dataset in question. In this
section, we discuss on some of the challenges associated with nonconformity measures to
handle specific datasets and suggest possible future directions for the development of new
nonconformity measures.
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5.1. Challenges faced in choosing an appropriate nonconformity measure

As described in Section 3, non-normalized nonconformity measures tend to lose efficiency
of the prediction intervals when data has heteroscedastic noise. In order to overcome this
issue, normalized nonconformity measures and quantile-based nonconformity measures were
developed. The additional parameters (e.g., β in Equation (6)) are used to adjust the pre-
diction intervals to individual datasets and experiments. Although we can obtain tighter
prediction intervals using such nonconformity measures, increasing the number of parame-
ters may result in increased interval variability. This means that there is a trade-off between
validity and efficiency with respect to the additional parameters. Therefore, it is important
to investigate the effect of including additional parameters on the performance of confor-
mal prediction in terms of this validity-efficiency trade-off. Furthermore, it is interesting to
investigate whether it is possible to draw a parallel between this validity-efficiency trade-off
and the well-known bias-variance trade-off. In other words, whether the validity-efficiency
trade-off can be related to or interpreted as the bias-variance trade-off is still in question
and requires further investigation.

While the validity of prediction intervals using normalized nonconformity measures and
quantile-based measures, is empirically proven in the literature, a more detailed theoretical
understanding is required. In particular, knowledge about the performance of noncon-
formity measures, where parameters are to be extensively tuned on the training data, is
currently lacking. In addition, there is also a lot to be gained in an empirical setting.
In current literature there have been limited in-depth assessments of the advantages and
disadvantages of the various nonconformity measures. However, we believe that this is an
important step towards a broader adoption of conformal prediction across different fields.

Lastly, during the process of both choosing and developing nonconformity measures, it
is important to remind that we cannot hope for one nonconformity measure to work with
all problems. In this regard, we suggest that the choice of nonconformity measure – or
development of a new nonconformity measure for that matter – has to be done mainly
based on data type. Choosing an optimal nonconformity measure can then be done by
utilizing information from domain knowledge or previous experiments.

5.2. Future development of new nonconformity measure

One direction where an alternative nonconformity measure can be useful, is in the case of
data containing non-Gaussian heteroscedastic noise, or outliers. In this regard, conformal
prediction with a quantile-based nonconformity measure (Section 3.2) has been proposed
(Romano et al., 2019; Kivaranovic et al., 2020). Although the quantile-based nonconformity
measure has the potential to deal with a different types of data noise or outliers, this
measure requires output from quantile regression method. Therefore, in case of limited
amount of data, there is a possibility that the performance of quantile regression suffers too
much from outliers so that the efficiency of prediction intervals is sacrificed unnecessary.
Additionally, without a sufficient amount of data, the validity of the prediction intervals from
quantile regression is not guaranteed. In this case, it is possible that conformal prediction
with quantile-based nonconformity measures, using quantile regression as the underlying
algorithm, suffers from inefficient prediction intervals in order to retain the validity. This
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highlights a general issue in conformal prediction regarding the validity-efficiency trade-off,
which is also discussed in Section 5.1.

Regarding the aforementioned trade-off, it could be beneficial to design a nonconformity
measure that allows one to explicitly control the balance between validity and efficiency.
Potentially, this can be achieved by a tunable nonconformity measure that considers valid-
ity and efficiency separately. It may then be possible to the balance these two quantities
depending on the context. This idea is inspired by Chung et al. (2021), where new quantile
methods were proposed for calibrated uncertainty quantification. Their underlying motiva-
tion is that validity should be first achieved and then efficiency optimized. This is exactly
what we would like to achieve in conformal prediction using a new nonconformity measure.
Their results showed that the proposed methods provide better means of learning calibrated
conditional quantiles.

They focus on pinball loss. Given a target y, a prediction ŷ and quantile level τ ∈ (0, 1),
the pinball loss ρτ is defined as

ρτ (y, ŷ) = (ŷ − y)(1{y ≤ ŷ} − τ).

Although many current quantile-based methods focus on optimizing the pinball loss, they
highlight some limitations of the pinball loss. They claimed that, although the pinball loss
targets both validity and efficiency, the balance of these two quantities is made implicitly,
resulting in a poor optimization objective. In order to mitigate the shortcoming, they design
several quantile methods that consider two objectives (validity and efficiency) separately,
then these two objectives are combined into a single loss function. This loss function can
provide an explicit balance between validity and efficiency that can be chosen by the end
user. We believe that we can apply this idea to nonconformity measures in order to balance
validity and efficiency.

Lastly, it is worth mentioning that some studies focus on the trade-off between validity
and efficiency using existing nonconformity measures. For instance, Lei and Bellotti (2023)
used directly optimized inductive conformal regression, using Equation (3) as nonconformity
measure, which takes only the average width of prediction intervals as the loss function and
increases the efficiency while retaining validity.

6. Conclusion

We discussed the use of nonconformity measures for conformal prediction in a regression
setting. Given that the nonconformity measure is one of the important ingredients for
conformal prediction, there have only been relatively few different nonconformity measures
developed. Therefore, we argue that it is time to shift our attention to nonconformity
measures, more specifically the development and study of nonconformity measures under
different circumstances. Future research is required to establish the relation between non-
conformity measures and the resulting performance of the conformal prediction.

Although there are still many unknowns regarding the accuracy and performance of con-
formal prediction when using different nonconformity measures, there are promising results
in the literature showing the use of conformal prediction in different practical situations.
We believe that conformal prediction increasingly play a more important role in uncertainty
quantification in future.
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