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Abstract

Predictive UNcertainty Calibration and Conformalization (PUNCC) is an open-source
Python library integrating a collection of state-of-the-art Conformal Prediction (CP) al-
gorithms and related techniques for regression and classification problems. This package
aims to make conformal procedures accessible to non-experts using a simple and intuitive
implementation. It is compatible with scikit-learn, PyTorch and TensorFlow and easily
extensible to other prediction toolkits. PUNCC also comes with a low-level API that pro-
vides a unified workflow in a pythonic environment to build, combine and run inductive CP
algorithms. It offers generic structures and consistent interfaces to design customized non-
conformity scores, data partition schemes, and methods for constructing prediction sets.
In this paper, we present the design of our library and demonstrate its use with various
CP procedures, Machine Learning (ML) problems and models from different ML libraries.
Source code, documentation and demos are available at https://github.com/deel-ai/puncc.

Keywords: Uncertainty Quantification, Conformal Prediction, Python, Library, Regres-
sion, Classification, Deep Learning.

1. Introduction

Conformal Prediction (CP) is a distribution-free, model-agnostic and non-asymptotic frame-
work to estimate the predictive uncertainty of ML models by constructing confidence sets
that include the true output with high probability. Such sets are theoretically valid, i.e.
with guaranteed probability of marginal coverage, and desirably efficient, i.e. as small as
possible (the set of all values of the output space is guaranteed to cover but is not infor-
mative). This can be a valuable tool particularly when deploying ML models in critical
systems and moving towards their certification (Mamalet et al., 2021; Luo et al., 2023). For
example, in a self-driving car, CP could be used to identify situations where the model is un-
certain about the road conditions, allowing the car to slow down or take other precautionary
measures to avoid accidents.

More formally, for a sequence1 {(Xi, Yi)}ni=1∪{(Xnew, Ynew)} ∈ (X × Y)n+1 of exchange-
able (or more simply i.i.d) data and an error rate (or significance level) α ∈ (0, 1) set by
the user, a CP procedure builds the prediction set Cα(Xnew) such that:

1. Dcal = {(Xi, Yi)}ni=1 are the calibration data and (Xnew, Ynew) is a test point.
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P
{
Ynew ∈ Cα (Xnew)

}
≥ 1− α. (1)

Over several data sequences, Cα(Xnew) will contain the true output Ynew with frequency
at least (1 − α). For example, the prediction intervals C(X) obtained in Figure 1 for a
regression task (detailed in Section 3) are centered on the point predictions f̂(X) and have
a constant width 2 · δα: C(X) = [f̂(X) − δα, f̂(X) + δα] (details below for how to choose
an appropriate δα). Within the CP framework, Inequality 1 holds for any model, any data
distribution PXY and any finite sample size n. As the coverage probability is marginalized
over the input space X , it is possible that undercoverage occurs in some regions of X (e.g.
in Figure 1, the coverage is locally smaller than 1− α for the clusters of red points within
some time windows).
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Figure 1: Example of conformal regression applied on elec2, a dataset of electricity market
in Australia (more details in Section 3). The prediction intervals aim to cover the
true outputs with an error rate at most 10%.

The canonical entry point to CP is the monograph by Vovk et al. (2005), collecting
and expanding the early contributions to the field, notably Gammerman et al. (1998) and
Papadopoulos et al. (2002). Since then, multiple studies have brought new ideas. A first
achievement is the relaxation of full conformal, which originally requires the prediction al-
gorithm to be invoked as many times as the cardinality of the output space Y (which is
infinite for regression problems). Alternatively, split (or inductive) CP approach relies on
held-out calibration data (Papadopoulos et al., 2002; Lei et al., 2018) to reduce the compu-
tational complexity. Another method, the jackknife+ by Barber et al. (2019), is preferred
when data is scarce and it is not affordable to dedicate some of them for calibration only.
Jackknife+ relies on leave-one-out or K-fold data schemes for better statistical efficiency
and comes with the cost of training several models.
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The general inductive CP procedure can be summarized as follows:

1. Define a nonconformity score function (x, y) → s(x, y) on X × Y → R, where X and Y
are the input and the output spaces, respectively.

2. Compute δα, the (1−α)(1+ 1
n)-th empirical quantile of the scores {s(X1, Y2), . . . s(Xn, Yn)}.

3. Build the prediction sets for new examples based on δα:

Ĉα(Xnew) =
{
y : s(Xnew, y) ≤ δα

}
. (2)

While all conformal predictors are valid (assuming data exchangeability), the choice of
a nonconformity score function is decisive to generate efficient prediction sets (the smallest
possible). A substantial number of contributions focused on tailoring nonconformity scores
for practical situations with more or less conditions on the underlying models (Papadopoulos
et al., 2002; Lei et al., 2018; Romano et al., 2019, 2020; Angelopoulos et al., 2020).

2. Design of PUNCC

Conformal procedures are simple, flexible, usable for any model and deployable during
training or afterwards (post-processing). The diversity of CP methods stems from the
choice of the nonconformity scores and calibration data, all enabling rigorous Uncertainty
Quantification (UQ) throughout valid and efficient prediction sets. The design of PUNCC
aspires to leverage these properties and is guided by the following principles:

• Simplicity of use and clear documentation.

• Interoperability with diverse ML libraries.

• Flexibility to build and compare new CP procedures.

PUNCC comes with a collection of plug-&-play CP and related procedures from the liter-
ature, implemented as their authors intended in a unified environment that facilitates learn-
ing and benchmarks. Table 1 lists the methods currently implemented and their sources.

Conformal Method Source Task

Split Conformal Prediction (SCP) Papadopoulos et al. (2002) Regression
Locally Adaptive CP (LACP) Lei et al. (2018) Regression
Conformalized Quantile Regression (CQR) Romano et al. (2019) Regression
Cross-Validation+ (CV+) Barber et al. (2019) Regression

Adaptive Prediction Sets (APS) Romano et al. (2020) Classification†

Regularized Adaptive Prediction Sets (RAPS) Angelopoulos et al. (2020) Classification†

Ensemble batch Prediction Interval (EnbPI)∗ Xu and Xie (2021) Regression‡

Weighted Split Conformal Prediction (WSCP)∗ Barber et al. (2022) Regression

Table 1: CP methods currently implemented in PUNCC. ∗: these methods rely on addi-
tional hypotheses. †: binary or multiclass. ‡: developed for time series data.
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Using the aforementioned methods in an UQ workflow can be done in a few lines of code
and, at most, requires tuning only a couple of high-level hyperparameters (whose initializa-
tion is intuitive, documented and clearly explained in the tutorials). Such procedures are or-
ganized accordingly to their respective ML tasks in the library modules puncc.regression
and puncc.classification.

Throughout the paper, the code contains variables named X_fit, y_fit, X_calib and
y_calib, which are not commonly found in the existing ML terminology. These are common
in CP, whenever one uses a method like SCP: the training data is split (disjointly) into
Dtrain = Dfit ∪Dcal; Dfit (also known as “proper training set”) is used to fit the underlying
model and Dcal is used to compute the nonconformity scores. With CP and PUNCC, one
is able to use pretrained models, which is convenient with Deep Learning architectures.
In this case, only X_calib and y_calib will be used in the code, as access to training
data is not necessary. The following code snippet executes the split conformal regression
(Papadopoulos et al., 2002); examples of various use-cases are presented in Section 3.

from deel.puncc.regression import SplitCP

from deel.puncc.api.prediction import BasePredictor

# Load data

# X_train , y_train = ...

# X_test = ...

# Create a regression model

# my_model = ...

# Wrap model in a predictor (more details on this later)

my_predictor = BasePredictor(my_model , is_trained=False)

# CP method initialization

split_cp = SplitCP(my_predictor)

# The call to ‘fit ‘ trains the model on the fitting set and

# computes the nonconformity scores on the calibration set.

# In this example , 80\% of the train samples are randomly

# assigned to the fitting set and 20\% to the calibration set

split_cp.fit(X_train=X_train , y_train=y_train , fit_ratio=0.8)

# The ‘predict ‘ method returns the point estimates and

# prediction intervals w.r.t the significance level alpha = 10%

y_pred , y_pred_lower , y_pred_upper = split_cp.predict(X_test , alpha=0.1)

For research and experimentation purposes, users may want more flexibility into defining
the CP approaches (e.g. new nonconformity scores or use of calibration data). In this case,
PUNCC provides an API to enable more in-depth design of CP algorithms. Figure 2
presents an overview of the library’s architecture.
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2.1. The API

The purpose of PUNCC’s API is to provide the flexibility to conceive CP methods in
an organized and consistent framework. Its set of modules jointly define and build CP
wrappers over ML models from most ML libraries. Let’s say we want to fit/calibrate
a neural network quantile estimator through cross-validation with a nonconformity score
tailored to our application. Inductive CP is applicable here and needs to incorporate a
set of building blocks. In the API, we propose to do so in a seamless way through our
predictor-calibrator-splitter paradigm. The latter relies on three entities (assembled by an
orchestrator):

• Predictor : wrapper for ML models to ensure interoperability with various ML libraries
(such as TensorFlow, PyTorch and scikit-learn).

• Calibrator : entity composed of an estimator of nonconformity scores and a method
to construct prediction sets.

• Splitter : implements a strategy to select the calibration data, such as K-fold cross-
validation or some domain-dependent data partition.

conformalization

classification regressionmetricsplotting

prediction calibration splitting

prediction_setsnonconformity_scores

utils

API

CQR CV+APS RAPS ... EnbPISplit ...

Figure 2: Overview of PUNCC’s architecture.

ConformalPredictor class from puncc.api.conformalization module is the backbone of
PUNCC’s API, where the three entities are assembled to build a CP procedure. This canvas
combines a predictor, a calibrator and a splitter (more details will follow):

from deel.puncc.api.conformalization import ConformalPredictor

# Define my_predictor , my_calibrator and my_splitter

# ...

# Conformal prediction canvas assembling our combination of predictor ,

# calibrator and splitter

conformal_predictor = ConformalPredictor(predictor=my_predictor ,

calibrator=my_calibrator ,

splitter=my_splitter)

5



PUNCC: Predictive Uncertainty Calibration and Conformalization Library

The ConformalPredictor entity is an orchestrator that characterizes the two main
stages of any conformal procedure:

• fit: fits the predictor if needed (e.g., in cross-validation) and computes nonconformity
scores according to the calibrator and the data split strategy provided by the splitter.

# X_train and y_train are the training data samples.

# Internally , the splitter assigns data to the fit and calibration

# sets; then the calibrator computes nonconformity scores

conformal_predictor.fit(X_train , y_train)

• predict: for new samples, it estimates the point predictions and prediction sets, with
respect to a chosen error (significance) level α.

# Point predictions are yielded by the predictor.

# Prediction sets are calculated from the calibrator

# for a marginal coverage target at least 1-alpha

y_pred , set_pred = conformal_predictor.predict(X_new , alpha=0.1)

One single call to fit on the ConformalPredictor is enough to compute the noncon-
formity scores on the calibration data. Subsequently, conformal predictions given different
values of the target error rate α are performed with no extra computational overhead.

2.1.1. Predictor

Any model can be wrapped by a CP procedure to evaluate its predictive uncertainty, with
no specific assumption about the underlying properties2. The only limitation is the abil-
ity to support certain model interfaces and data structures that come with ML libraries.
Therefore, our API relies on predictors: wrappers that standardize the models interface
and guarantee their compliance with the CP framework of PUNCC. The BasePredictor

and DualPredictor classes in puncc.api.prediction cover two required behaviors via:

• fit: action used to train the model. It takes as arguments two sequences of sample
(Xtrain, Ytrain) (such as numpy arrays and tensors) and any additional configuration
of the underlying model (such as random seed and number of epochs).

• predict: action used to predict outputs based on X. It takes as arguments an iterable
X and any additional configuration of the underlying model (e.g. batch size).

The BasePredictor is built from the model to be wrapped, a flag to inform if the model
is already trained (in which case the training can be skipped during the CP procedure)
and the compilation configuration if the underlying model needs to be compiled (such as
in TensorFlow and PyTorch). The constructor of DualPredictor is similar but takes as
arguments a list of two models, a list of two trained flags and a list of two compilation
configurations. Such predictor is useful when the calibration relies on several models (such as
upper and lower quantiles in CQR or conditional mean and dispersion in LACP). Examples
are provided in Section 3.

2. The only strong requirement is data exchangeability (or simply i.i.d).
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In most situations (including with TensorFlow and PyTorch models, see Appendix A),
creating a predictor is as simple as calling its constructor on the underlying models that
natively implement fit and predict:

from deel.puncc.api.prediction import BasePredictor

# Definition of a predictor

my_predictor = BasePredictor(my_model)

Sometimes, the user has to subclass BasePredictor or DualPredictor to comply with the
fit-predict interface. For instance: conformal classification built over a random forest classi-
fier from scikit-learn. To calibrate such classifier, the APS procedure (for example) requires
the model to output the estimated probability of each class, but RandomForestClassifier
.predict(.) returns only the most likely class. We need to create a predictor where we
redefine the predict call:

from sklearn.ensemble import RandomForestClassifier

from deel.puncc.api.prediction import BasePredictor

# Create a random forest classifier

rf_model = (n_estimators=100 , random_state=0)

# Create a wrapper of the random forest model to redefine its predict method

# into logits predictions. Make sure to subclass BasePredictor.

# Note that we needed to build a new wrapper (over BasePredictor) only

# because the predict (.) method of RandomForestClassifier does not predict

# logits. Otherwise , it is enough to use BasePredictor (e.g., neural network

# with softmax).

class RFPredictor(BasePredictor):

def predict(self , X, ** kwargs):

return self.model.predict_proba(X, ** kwargs)

# Wrap model in the newly created RFPredictor

rf_predictor = RFPredictor(rf_model)

2.1.2. Calibrator

The calibrator provides a structure to compute the nonconformity scores on the calibration
set and to compute the prediction sets for new samples. When building a BaseCalibrator

from deel.puncc.api.calibration module, one decides which nonconformity score and
prediction set functions to use. The calibrator instance computes the scores (e.g. mean
absolute deviation) via the fit method on the calibration dataset. Based on the estimated
quantiles of the nonconformity scores, the calibrator constructs and/or calibrates the pre-
diction sets on a new data point via calibrate. For example, the BaseCalibrator in
the split conformal regression (proposed by Papadopoulos et al.) uses the mean absolute
deviation as nonconformity score and prediction sets are built as constant intervals. These
and other functions are provided in the modules puncc.api.nonconformity_scores and
puncc.api.prediction_sets.
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from deel.puncc.api.calibration import BaseCalibrator

from deel.puncc.api.nonconformity_scores import mad

from deel.puncc.api.prediction_sets import constant_interval

# Calibrator construction

my_calibrator = BaseCalibrator(nonconf_score_func=mad ,

pred_set_func=constant_interval)

One can also define custom functions and pass them as arguments to the calibrator :

from deel.puncc.api.calibration import BaseCalibrator

# Definition of a custom nonconformity scores function.

# Alternatively , several ready -to -use nonconf scores are provided in

# the module deel.puncc.nonconformity_scores

def my_ncf(y_pred , y_true):

return abs(y_pred-y_true)

# Definition of a custom function to build prediction sets.

# Alternatively , several ready -to -use procedure are provided in

# the module deel.puncc.prediction_sets

def my_psf(y_pred , nonconf_scores_quantile):

y_lower = y_pred - nonconf_scores_quantile

y_upper = y_pred + nonconf_scores_quantile

return (y_lower , y_upper)

# Calibrator construction

my_calibrator = BaseCalibrator(nonconf_score_func=my_ncf ,

pred_set_func=my_psf)

2.1.3. Splitter

In inductive CP, assigning data samples in the calibration set is motivated by two criteria:
data availability and computational resources. If data is abundant, we can split the training
samples into disjoint subsets Dfit and Dcal. When data is scarce, a cross-validation strat-
egy is more suited. These and other strategies are selectable in the puncc.api.splitting

module. Their implementation is compliant with several data structure such as numpy ar-
rays, PyTorch and TensorFlow tensors and pandas dataframes. Some examples are random
K-fold and deterministic user-defined splitters:

from deel.puncc.api.splitting import KFoldSplitter

# Definition of a K-fold splitter that produces

# 20 folds of fit/calibration

kfold_splitter = KFoldSplitter(K=20)

from deel.puncc.api.splitting import IdSplitter

# Definition of an identity splitter that wraps

# a predetermined partition of fit and calibration data

id_splitter = IdSplitter(X_fit , y_fit , X_calib , y_calib)
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3. Examples

In this section, we provide several examples where PUNCC is used to quantify the un-
certainty of prediction models. For each example, we present the experimental settings
(dataset, learning task, etc.), discuss some key aspects about the implementation and ob-
tained results. The full source code is available online3 and additional code snippets are
highlighted in the next sections and Appendix A. Note that an earlier version of PUNCC
was used to benchmark several CP procedure on times series, specifically on an industrial
dataset by Air Liquide for gas demand forecasting (Mendil et al., 2022).

3.1. Tabular Regression on California Housing Prices

In this experiment, we use PUNCC to run several conformal regressions on the California
housing price dataset and compute their performance (validity and efficiency) for different
error targets α. The underlying task consists of predicting median house prices within a
given area based on structural features such as the number of rooms and household incomes
(Pace and Barry, 1997). We compare different models from multiple ML libraries:

• Neural networks from the libraries PyTorch and TensorFlow to estimate the con-
ditional mean median house prices.

• eXtreme Gradient Boosting (XGBoost) (resp. nearest neighbors) from the
library xgboost (resp. scikit-learn) to estimate the conditional mean (resp. conditional
mean absolute deviation of) median house prices.

• Gradient boosting from scikit-learn to estimate conditional upper and lower quan-
tiles of the median house prices.

During the learning phase, the parameters of each model are obtained by minimization
of the loss function on Dfit according to the fit-calibration scheme. The mean squared error
is considered for the neural networks and XGBoost models; while the pinball loss is used for
gradient boosting quantile regression. The following conformal procedures are performed
to build and calibrate the interval predictions:

• SCP based on each of the neural network models. 80% (resp. 20%) of the train
samples are randomly assigned to fitting (resp. calibration).

• LACP based on XGBoost and nearest neighbors models. 80% (resp. 20%) of the
train samples are randomly assigned to fitting (resp. calibration).

• A combination of CQR and CV+ built from the gradient boosting quantile regression
models. 10 000 samples are divided based on 10-folds cross-validation.

3.1.1. Implementation Highlights

The experimental setup involves using different models from various ML libraries. One key
aspect of the implementation is wrapping the defined models in predictor instances. As
previously mentioned, the goal is to expose a consistent interface (fit and predict) to be
called later in the CP procedures. Depending on the ML libraries, this wrapping can either

3. https://github.com/M-Mouhcine/PunccExperiments
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be straightforward or may need some adaptations. The instances of the chosen models
from TensorFlow, xgboost and scikit-learn all implement the fit and predict methods;
therefore, they can be directly encapsulated. However, neural networks in PyTorch do not
natively implement these calls and additional steps are to be taken to conform to PUNCC’s
interface. Examples of code snippets are provided in Appendix A, but the user is free to
adopt any implementation that meets the requirements. SCP and LACP are instantiated
from the module puncc.regression and the calibration in CQR with a cross-validation
scheme uses PUNCC’s API.

3.1.2. Results

We run the experiments with 10 000 train and test samples with 20-fold cross-validation
and α ∈ {0.1, 0.2, . . . , 0.9}. The average validity and efficiency of the experiments, along
with their standard deviations, are reported in Table 2. Validity is assessed by calculating
the gap between the empirical coverage and the target 1− α; efficiency is measured by the
width of the Prediction Intervals (PIs). Both metrics are averaged over all 20 validation
folds. The empirical results show that CP behaves as expected with negligible coverage
gaps. The average width of the PIs, on the other hand, is linked to the chosen models and
the conformalization procedure. The intervals predicted by LACP and CQR are tighter
compared to SCP. This stems from their adaptiveness to heteroscedastic data, leading to
tight PIs of varying sizes (conditionally to X, in contrast to the fixed-size intervals with
SCP), which experimentally validates the claims of the authors (Lei et al., 2018; Romano
et al., 2019).

Table 2: Coverage gap (between empirical and target) and width of the predicted intervals
averaged across 20 folds.

Method Coverage Gap (± std) Width (± std)

CQR CV+ 0.02 ± 0.012 0.80 ± 0.028
LACP 0.02 ± 0.010 0.62 ± 0.018
SCP (PyTorch) 0.02 ± 0.011 1.22 ± 0.025
SCP (Tensorflow) 0.02 ± 0.012 1.14 ± 0.093

We also evaluate the performance of the CP methods for target error rates α spread
between 10% and 90%. Figure 3 displays the average empirical average for each α, with
the perfect calibration line indicating the case where target coverage equals empirical cov-
erage (ideal scenario in CP, i.e. validity without excessive conservativenes). The results
demonstrate that the methods are well calibrated. Figure 4 shows an increasing PI width
for smaller values of α. As expected, LACP and CQR exhibit adaptiveness, particularly for
large target coverage 1− α where the PIs are twice as narrow as those produced by SCP.
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Figure 3: Average coverage gap (across
20 validation folds).
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Figure 4: Average empirical size of PIs
(across 20 validation folds).

3.2. Classification on Imagenette and Imagewoof

The purpose of this experiment is to estimate the predictive uncertainty of a ResNet-50,
a classifier introduced by He et al. (2016) and pretrained on Imagenet. We consider two
image datasets of increasing levels of difficulty provided by Howard et al. (2020). The first
dataset is Imagenette, which comprises ten dissimilar classes from Imagenet. The second
dataset, Imagewoof, includes ten classes of dog breeds from Imagenet that are inherently
more difficult to classify due to their resemblance. The following conformal classifiers are
called from PUNCC to build and calibrate the set predictions for different values of α:

• APS based on the pretrained ResNet-50. 2048 samples are used for calibration and
2048 for testing on each dataset.

• RAPS based on the pretrained ResNet-50. The regularization hyper-parameters
chosen for this study are λ = 0.01 and kreg = 6, representing the weight of the
regularization term and the number of classes at which the regularization begins to
take effect, as detailed by Angelopoulos et al. (2020). 2048 samples are employed for
calibration, and a further 2048 are utilized for testing on each dataset.

3.2.1. Implementation Highlights

PUNCC enables the integration of pretrained blackbox models into the CP process. This
involves wrapping the model in the predictor and specifying whether it has already been
trained by setting the corresponding flag. The code snippet below shows how a pretrained
ResNet-50 model from Keras is encapsulated:
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import tensorflow as tf

# Load ResNet50 as a pretrained Keras model

model = tf.keras.applications.ResNet50(weights="imagenet")

# The classifier is wrapped in a predictor

# with the flag is_trained set to True

predictor = BasePredictor(model , is_trained=True)

Thereafter, the conformal procedure should be initialized with the train flag set to
false. In this case, the call to fit on the conformal predictor will skip the model training
and only trigger the computation of nonconformity scores. APS and RAPS are directly
available in the high level module puncc.classification:

from deel.puncc.classification import APS , RAPS

# Initialize the APS and RAPS with restnet50 predictor

# and the flag train set to False to skip model fitting

aps = APS(predictor , train=False)

raps = RAPS(predictor , train=False , lambd=0.01, k_reg=6)

Besides, an interesting feature of PUNCC is caching the nonconformity scores computed
on the calibration set. This way, generating prediction sets for different values of α will have
no additional overhead and will utilize the appropriate quantile on the cached nonconformity
scores to construct the prediction sets.

3.2.2. Results

Table 3 reports the average coverage gap and prediction set size obtained with APS and
RAPS on the Imagenette and Imagewoof datasets. The initial accuracy of RestNet-50 is
limited: 55% on Imagenette and 26% on Imagewoof, indicating the particular difficulty of
classifying images from the second dataset. The difficulty of image classification has a sig-
nificant impact on model uncertainty in the context of CP. Although both CP methods are
almost valid, the average size of the prediction sets is nearly five times larger on Imagewoof
compared to Imagenette. Additionally, the regularization in RAPS reduces the cardinality
of the prediction sets by cutting out classes in the far-end tail of the distribution, resulting
in exchange in a small increase in the coverage gap (at the third decimal place). Figure 5
and Figure 6 confirm the overall trend on specific coverage targets 1 − α. The complexity
of Imagewoof leads to more conservative (larger) prediction sets.

Table 3: Average coverage gap (between empirical and target) and average size of the pre-
diction sets.

Accuracy Coverage Gap Size

Dataset Top-1 Top-5 APS RAPS APS RAPS

Imagenette 0.55 0.77 0.01 0.01 7.45 4.78
Imagewoof 0.26 0.45 0.03 0.03 40.63 21.21
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Figure 5: Average coverage gap.
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Figure 6: Average size of prediction sets.

3.3. Time Series Regression on Australian Electricity Market

This experiment aims to estimate uncertainty for time series regression using PUNCC. We
consider the Elec2 dataset introduced by Harries et al. (1999), which consists of records of
electricity transfers between the Australian states of New South Wales and Victoria. The
transfers occur every 30 minutes and are affected by the varying electricity demand and price
in each state. Vovk et al. (2021) reported the presence of distribution drifts in Elec2, which
makes the data non-exchangeable and can invalidate the guarantee of CP marginal coverage.

To capture the uncertainty, we work with two state-of-the-art methods, WSCP by Bar-
ber et al. (2022) and EnbPI by Xu and Xie (2021) for α = 0.1. Despite the data not being
exchangeable, we use Online Sequential Split Conformal Prediction (OSSCP) as a baseline
like Zaffran et al. (2022). We use a linear regressor from scikit-learn as the underlying model,
for which the fitting, calibration and training sets have a constant size and are updated each
time a new test point is available (similarly to an online setting with incoming data flow) as
shown in Figure 7. The split scheme used with WSCP and OSSCP produces two disjoint
sequential subsets, while EnbPI uses the whole dataset at time t with a bootstrap procedure.

The WSCP is a modified version of SCP that uses weighted nonconformity scores. A
higher weight reflects the belief that the calibration point comes from (nearly) the same
distribution as the test point. We use weights that decay exponentially over time so that
most recent samples have larger weights:

wi = 0.99k+1−i,

where k is the size of the calibration set and i is the time index.
EnbPI combines B predictors to compute the nonconformity scores with a technique

inspired by Jackknife+-after-Bootstrap (Kim et al., 2020); we set B = 20.
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Fit data Calibration data Test sample Fit/calibration data Unused data

Figure 7: Data partition used for WSCP and OSSCP (left) and EnbPI (right) (adapted
from Zaffran et al. (2022)).

3.3.1. Implementation Highlights

PUNCC can integrate any user-defined weight function in several state-of-the-art CP meth-
ods implemented in puncc.regression (or more generally during calibrators definition).
The code snippet below illustrates the construction of a WSCP with exponentially decaying
weights:

from deel.puncc.regression import SplitCP

# Definition of a predictor wrapping the underlying model

predictor = ...

# Definition of exponentially decaying weights function

def exp_decay(nc_scores):

k = len(nc_scores)

return [.99 ** (k + 1 - i) for i in range(k))]

# Definition of split conformal predictor whose nonconformity scores

# are weighted according to the function defined above

wscp = SplitCP(predictor , weight_func=exp_decay)

EnbPI interval predictor is also directly available in puncc.regression:

from deel.puncc.regression import EnbPI

# Definition of a predictor wrapping the underling model

predictor = ...

# Definition of EnbPI interval predictor with 20 bootstrap models

enbpi = EnbPI(predictor , B=20)

The sequential data partition scheme (see Figure 7) is deterministic and can be accomplished
by explicitly providing updated fit and calibration sets to the interval predictors:
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for X, y in data_sequence:

# Decompose data into fit and calibration subsets

# with a defined user_split function

X_fit , y_fit , X_calib , y_calib = user_split(X, y)

# The call to fit for WSCP trains the model on the fit set

# and computes the nonconformity scores on the calibration set

wscp.fit(X_fit=X_fit , y_fit=y_fit , X_calib=X_calib , y_calib=y_calib)

# The call to fit for EnbPI trains the model and computes

# the nonconformity scores in a Jackknife+-after -bootstrap fashion

enbpi.fit(X, y)

Finally, the PIs are generated by running the predict method on the interval predictors
wscp and enbpi for an chosen α. Note that in case of WSCP, the nonconformity scores
are factored by the user-defined weights and the quantile is computed consistently with
Tibshirani et al. (2019) quantile lemma.

3.3.2. Results

Figure 8 reports the rolling average coverage and PI width obtained with three uncertainty
estimation methods. The coverage and width are averaged over a sliding window of 100
points. Results indicate that WSCP and EnbPI exhibit higher resilience to the heavy drop
in coverage compared to the PIs constructed via conformal prediction (OSSCP), which
lose coverage and drop to around 60% at a given time. The decrease in coverage is less
noticeable for WSCP and EnbPI. WSCP adaptively inflates the PIs to recover coverage
while EnbPI produces PIs of steady size but relies on a more stable underlying model
(less overfitting thanks to bootstrapping), leading to a better approximation of conditional
coverage. Figure 9 displays the PIs obtained on 600 test points via the plotting module of
PUNCC.

In this experiment, the coverages of WSCP (89%) and EnbPI (90%) are valid while
OSSCP (84%) is approximately valid. In general, the performance of CP (or CP-related)
algorithms on times series depends on the problem and the data (Mendil et al., 2022).

4. Conclusion

We presented PUNCC, a new open-source library in Python for uncertainty quantification
based on CP. The library is model-agnostic and can be used with popular ML frameworks
such as TensorFlow, PyTorch and scikit-learn. The high-level modules of the library provide
a set of state-of-the-art CP and CP-related algorithms for regression and classification, each
implemented as described by the authors within a unified environment to facilitate learning
and benchmarks. The library’s API enables users to design advanced procedures and cus-
tomize every step of inductive CP algorithms. It relies on a paradigm that encompasses 1)
a predictor: wrapper to standardize models interface and to guarantee their iteroperability
with PUNCC, 2) a calibrator: structure to estimate nonconformity scores on the calibration
set and to compute the prediction sets for new samples and 3) a splitter: entity to assign
data to the fit and calibration sets and to enforce compliance with several data structures
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Figure 8: Rolling average (over a window of 100 time points) of coverage and width of PIs
generated with WSCP, EnbPI and OSSCP on Elec2 data.
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such as arrays and tensors. We demonstrated how PUNCC can generate prediction sets
on various classification and regression problems. Its unified environment makes it easy to
explore, sketch and compare different CP procedures. PUNCC also offers functionalities to
analyze and display the results using the the metrics and plotting modules, respectively.

In the future, we plan to expand the state-of-the-art CP collection and update it regulary
with newly released methods. We also aim to extend PUNCC to online CP and include
other tasks such as anomaly detection and multivariate prediction.
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Appendix A. Implementation Highlights for California Housing Prices

Without loss of generality4, here is an example of model encapsulation from TensorFlow,
xgboost and scikit-learn accordingly to the setup presented in section 3.1:

from tensorflow.keras import Sequential , layers

from deel.puncc.api.prediction import BasePredictor

# Model definition: one hidden layer composed of 20 neurons

nnet = Sequential([layers.Dense(20, activation=’relu’), layers.Dense(1)])

# TensorFlow models need to be compiled , for example:

compile_kwargs={’optimizer ’:’sgd’, ’loss’:’mse’}

# Model wrapped in a predictor

predictor = BasePredictor(nnet , ** compile_kwargs)

4. The chosen models are simple and their hyperparameters are not optimized; the main aim being to
demonstrate PUNCC’s features. The results are still relevant because CP is model-agnostic.
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from xgboost import XGBRegressor

from sklearn import neighbors

from deel.puncc.api.prediction import BasePredictor

# Model definition

xgb = XGBRegressor(n_estimators=100)

knn = neighbors.KNeighborsRegressor(n_neighbors=5)

# Models wrapped in a predictor

predictor = DualPredictor([xgb , knn])

The wrapper for neural networks in PyTorch requires extra adaptation to conform to
PUNCC’s interface. The following code snippet is an example of solutions:

import torch

from deel.puncc.api.experimental import TorchPredictor

# Model definition: one hidden layer composed of 20 neurons

class LinearTorchModel(torch.nn.Module):

def __init__(self , input_feat , output_feat):

super(LinearTorchModel , self).__init__ ()

self.linear1 = torch.nn.Linear(input_feat , 20)

self.relu = torch.nn.ReLU()

self.linear2 = torch.nn.Linear(20, output_feat)

def forward(self , x):

out = self.linear1(x)

out = self.relu(out)

out = self.linear2(out)

return out

# For input_shape and output_shape already defined

nnet = LinearTorchModel(input_shape , output_shape)

# Torch models need to be compiled , for example:

compile_kwargs= {"lr": 1e-3}

# Model wrapped in a predictor

predictor = TorchPredictor(

model = nnet ,

optimizer=torch.optim.Adam ,

criterion=torch.nn.MSELoss(reduction="sum"),

** compile_kwargs)

The initialization of SCP and LACP instances is straighforward from the module puncc.

regression. The calibration in CQR procedure with a cross validation scheme is achieved
using the API as follows:

from deel.puncc.api.calibration import DualPredictor

from deel.puncc.api.nonconformity_scores import cqr_score

from deel.puncc.api.prediction_sets import cqr_interval

from deel.puncc.api.splitting import KFoldSplitter

from deel.puncc.api.conformalization import ConformalPredictor
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# Definition of the upper quantile model

regressor_q_hi = ...

# Definition of the lower quantile model

regressor_q_low = ...

# Models wrapped in a predictor

predictor = DualPredictor(models=[regressor_q_low , regressor_q_hi])

# Custom calibrator using CQR nonconformity scores and prediction sets

calibrator = BaseCalibrator(nonconf_score_func = cqr_score ,

pred_set_func = cqr_interval)

# Definition of a Kfold splitter

splitter = KFoldSplitter(K=10)

# Canvas assembling the predictor , calibrator and splitter

conformal_predictor = ConformalPredictor(

predictor = predictor ,

calibrator = calibrator ,

splitter = splitter)
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