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Abstract

We propose JAWA-FCS, which uses higher-order influence functions to approximate predic-
tive intervals of the (previous) jackknife+ weighted for feedback covariate shift for further
computational efficiency (no retraining). We evaluate our method on protein design tasks.
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1. Introduction

Predictive uncertainty intervals for feedback covariate shift Many decision-making
scenarios require uncertainty quantification in the presence of feedback loops. A prominent
example is biomolecular design: consider a protein engineer who fits a machine-learning re-
gressor µ̂ on a limited dataset of protein sequences {X1, ..., Xn} and experimentally-labeled
“fitness” values {Y1, ..., Yn} (e.g., fluorescence or medicinal efficacy) to then propose a novel
protein sequence Xtest with high predicted fitness value µ̂(Xtest). The use of the trained µ̂
to propose the design sequence Xtest induces a feedback covariate shift (FCS) dependency
between the training and test data (Fannjiang et al., 2022), which violates common i.i.d.
and exchangeability assumptions. Still, given the demands of developing and experimen-
tally measuring novel biomolecules, rigorous uncertainty quantification remains essential
for understanding whether µ̂(Xtest) is reliable relative to the true label Ytest. This work
is motivated by approximating predictive uncertainty intervals under FCS when resource
constraints of low data-availability and computational budget demand efficient approaches.

Conformal and jackknife+ predictive inference Conformal prediction (CP) (Vovk
et al., 2005) is a framework for converting machine-learning predictions into predictive in-
tervals (or prediction sets, more generally) with finite-sample distribution-free coverage (see
Angelopoulos and Bates (2021) for a gentle introduction). Full (or transductive) CP is the
CP variant with most efficient use of labeled data, which usually results in more precise
and informative intervals, but full CP is mainly limited by its notorious computational de-
mands of extensive retraining. On the other hand, split (or inductive) CP (Papadopoulos
et al., 2002; Papadopoulos, 2008) is a computationally efficient alternative to full CP that
avoids retraining, but split CP suffers from reduced data efficiency due to requiring a hold-
out set not used for training, which often degrades prediction accuracy. In between the
computational-statistical tradeoff poles of full and split CP are cross CP (Vovk, 2015; Vovk
et al., 2018) and jackknife+ methods (Barber et al., 2021). Recent works have extended
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full and split CP to standard (Tibshirani et al., 2019) and feedback (Fannjiang et al., 2022)
covariate shift, as well as the jackknife+ to both these settings (Prinster et al., 2022, 2023).

Computationally efficient approximation with influence functions Influence
functions (IFs) (Cook, 1979) estimate how model parameters would change if a particu-
lar point were removed from training via a Taylor-series approximation, which itself avoids
retraining at the main cost of computing the inverse Hessian. IFs have recently become pop-
ular in machine learning (Koh and Liang, 2017) and have been proposed for computationally
efficient approximation of full CP (Abad et al., 2022) in classification. In regression, higher-
order IFs have also been proposed to approximate the leave-one-out (LOO) parameters
required by the jackknife+ (Alaa and Van Der Schaar, 2020) and by JAW, the JAckknife+
Weighted for standard covariate shift (Prinster et al., 2022). Giordano et al. (2019) give
regularity conditions for consistency of higher-order IF LOO parameter estimation.

Current work In the feedback covariate shift setting, we use higher-order influence
functions to further improve the computational efficiency of the JAW-FCS method of Prin-
ster et al. (2023) with an approximation that avoids any retraining. Accordingly, we call the
current method JAckknife+ Weighted Approximation for FCS (JAWA-FCS). In particular,
our JAWA-FCS implementation uses the memory-efficient algorithm for higher-order IFs
LOO parameter estimation from Giordano et al. (2019) to approximate the LOO model
parameters required by JAW-FCS (Prinster et al., 2023). JAWA-FCS is distinct from the
JAWA for standard covariate shift (Prinster et al., 2022) due to the distinct FCS likelihood-
ratio weights that require LOO parameter estimation (see Prinster et al. (2023) for weights).

2. Experimental Results

As in Fannjiang et al. (2022) and Prinster et al. (2023) we conduct experiments on red
and blue fluorescence protein datasets from Poelwijk et al. (2019). We use a small neural
network regressor with tanh activation trained on 192 samples, and we approximate LOO
parameters with 3rd-order IFs. JAWA-FCS computation time (with hyperparameter search
for Hessian damping) was less than 3 minutes, versus about 1 hour 24 minutes for JAW-FCS.
Figure 1 compares methods that avoid retraining: only JAWA-FCS and weighted split CP
(Tibshirani et al., 2019) maintain coverage at the target level (1−α = 0.9), though JAWA-
FCS does so with smaller (more informative) predictive intervals and higher mean predicted
fitness (arrows point to desired metrics). Future work could explore if these results scale to
larger predictor models and how IF approximation error impacts coverage guarantees.

Figure 1: Coverage, width, and predicted fitness results for increasing shift λ. Code, details,
and additional experiments at https://github.com/drewprinster/jaws-x
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