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Abstract

In this paper, we introduce coverage vs acceptance-error graphs as a visualization tool for
comparing the performance of conformal predictors at a given significance level ϵ for any
k-class classification task with k ≥ 2. We show that by plotting the performance of each
predictor for different significance levels in ϵ ∈ [0, 1], we receive a coverage vs acceptance-
error curve for that predictor. The area under this curve represents the probability that
the p-value of randomly chosen true class-label of any test instance is greater than the
p-value of any other false class-label for the same or any other test instance. This area can
be used as a metric for predictive efficiency of a conformal predictor, when the validity has
been established. The new metric is unique in that it is related to the empirical coverage
rate, and extensive experiments confirmed its utility and difference from existing predictive
efficiency criteria.
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1. Introduction

The progress in reliable machine learning in the past two decades has been realized mainly
in the context of the conformal prediction framework (Vovk et al., 2005; Shafer and Vovk,
2008; Toccaceli, 2022; Angelopoulos and Bates, 2023). This framework provides a set of
techniques for establishing precise level of confidence in new predictions under minimal
assumptions on the data. These techniques allow training predictors that output prediction
sets with guaranteed coverage; i.e. sets that contain the true value for any new test instance
with probability at least 1 − ϵ for a given significance level ϵ. In practice the predictions
sets need to be non-empty and small. If this condition holds the conformal predictors are
said to be predictively efficient.

One of the interesting problems in conformal prediction is the problem of model selection.
So far different metrics for establishing the validity and estimating the predictive efficiency of
conformal classifiers have been introduced (Johansson et al., 2013; Vovk et al., 2005, 2016).
Techniques for visualizing these metrics have been proposed usually in function of signif-
icance level ϵ or of different model parameters. However, there is no metric/visualization
that combine simultaneously metrics for the validity and predictive efficiency.

In this paper we introduce a first example of validity vs predictive efficiency graphs
for conformal predictors employed in classification tasks. For validity we use the empirical
coverage rate while for predictive efficiency we employ the empirical acceptance error rate
(defined as the averaged size of the maximal subsets of prediction sets consisting of false class
labels). The resulting coverage vs acceptance-error graphs allow visualising the performance
of conformal predictors, their comparison, selection and even design on a given significance
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level ϵ. When we plot the performance of each predictor for different significance levels
ϵ ∈ [0, 1], we receive a coverage vs acceptance-error curve for that predictor. Its area under
the curve can be viewed as the probability that the p-value of randomly chosen true class-
label of any test instance is greater than the p-value of any other false class-label for the
same or any other test instance. If the validity has been already established, the area under
coverage vs error-acceptance curves can be used as a metric for predictive efficiency.

The rest of the paper is organized as follows. In Section 2 we formalize the classification
task. The conformal prediction framework is presented in Section 3. Section 4 provides
related work on metrics for predictive efficiency. The coverage vs acceptance-error graphs
are introduced in Section 5. In Section 6 we define coverage vs acceptance-error curves.
The area under curve is introduced in Section 7. The experiments are provided in Section
8. Section 9 concludes the paper.

2. Classification

Let X be an object space and Y be a finite set of class labels. We assume an unknown
probability distribution P defined over X × Y . Training data set Tr is a multi set of M
instances (xm, ym) ∈ X × Y i.i.d. drawn from P . The classification task is to find a point
estimate y ∈ Y of the true class label for a test instance x ∈ X according to P .

In addition to the point estimate test instance x can be supplied by a prediction set
Γ(x) ⊆ Y that contains possible class labels for x ∈ X according to P . To provide such a
set we need a class-label set predictor. The two most desired properties of such predictor
are validity and predictive efficiency. A class-label set predictor is said to be valid iff the
coverage probability that the prediction sets Γϵ(x) ⊆ Y do contain the true class labels for
test instances x is at least 1 − ϵ for chosen significance level ϵ ∈ (0, 1). A class-label set
predictor is said to be predictively efficient if the prediction sets Γϵ(x) ⊆ Y are non-empty
and small.

3. Conformal Prediction

Conformal predictor are class-label set predictors that are automatically valid when the data
is i.i.d. generated (Vovk et al., 2005; Shafer and Vovk, 2008; Toccaceli, 2022; Angelopoulos
and Bates, 2023). They operate as follows. Given a test instance xM+1 ∈ X, to decide
whether to include a class label y ∈ Y in prediction set Γϵ(xM+1) ⊆ Y , the labeled instance
(xM+1, y) is provisionally considered. Then the nonconformity scores αm of all the instances
(xm, ym) in T ∪ {(xM+1, y)} are computed. The p-value py of class label y for test instance
xM+1 is computed as follows:

py =
#{(xm, ym) ∈ T |αm > αM+1}}

M + 1
(1)

where αM+1 is the nonconformity score of (xM+1, y).
Once we have the system of p-values for xM+1 computed for all the class labels y ∈ Y

according to (1), we can set the conformal predictor by fixing significance level ϵ. The
predictor forms the prediction set Γϵ(xM+1) for test instance xm+1 from those class labels
y ∈ Y for which py > ϵ. In this way we receive validity: the coverage probability that the
prediction sets Γϵ(xM+1) do include the true class labels is at least 1− ϵ in a long run.
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To compute the prediction sets Γϵ(xM+1) we need to compute nonconformity scores for
the instances in Tr ∪ {(xm+1, y)} when we assume any class label y ∈ Y for xm+1. In
the transductive conformal predictor a nonconformity score αm for any instance (xm, ym)
is determined as a score that indicates how untypical is (xm, ym) w.r.t. the instances in
data T ∪ {(xM+1, y)} \ {(xm, ym)}. This implies that computing the nonconformity scores
is realized by a leave-one-out process that provides superior predictive efficiency for the
transductive conformal predictor. However, we note that leave-one-out process is com-
putationally intensive and, thus, the transductive conformal predictor is computationally
inefficient.

4. Related Work: p-Value-based Performance Criteria for Predictive
Efficiency

We view the proposed area under the coverage vs error-acceptance curve as a metric for
predictive efficiency that is independent of significance level. Therefore, we consider here
only p-value-based performance criteria for predictive efficiency from (Johansson et al., 2013;
Vovk et al., 2005, 2016).

• S-criterion is the average of the sum of p-values py for class labels y ∈ Y over all the
test instances.

• U -criterion is the sum of the second largest p-values py over all the test instances.

• F -criterion is the average of the sum of p-values py for class labels y ∈ Y minus largest
p-values over all the test instances.

• OU -criterion is the sum of the largest p-values py for false class labels y ∈ Y \ {yn}
over all the test instances (xn, yn).

• OF -criterion is the average of the sum of p-values py for all the false class labels
y ∈ Y \ {yn} over all the test instances (xn, yn).

The criteria S, U , and F are label-independent while the criteria OU and OF are
label-dependent since the later do employ class-label information from the test instances.
Both types of the p-value-based performance criteria indicate predictive efficiency for lower
values. However, they may still indicate efficiency for invalid conformal predictors.

5. Coverage vs Acceptance-Error Graphs

Assume that we have a test data set Te defined as a multi set ofN instances (xn, yn) ∈ X×Y
i.i.d. drawn from P (just like the training data set Tr). If we fix the significance level ϵ
for the conformal predictor, then we can define its empirical coverage rate and acceptance
error rate.

The empirical coverage rate C for a conformal predictor is defined as proportion of the
prediction sets Γϵ(xn) that do contain the corresponding true class labels yn (see Figure
1(a)). More formally,
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C =
1

N

∑
(xn,yn)∈Te

1Γϵ(xn)(yn) (2)

where 1 is the indicator function.
The empirical acceptance error rate AE is defined as the averaged size of the maximal

subsets of prediction sets Γϵ(xn) that consist of false class labels only (see Figure 1(b)).
More formally,

AE =
1

N

∑
(xn,yn)∈Te

|Γϵ(xn) \ {yn}|
|Y | − 1

(3)

(a) Empirical coverage rate C in function
of confidence 1− ϵ

(b) Empirical acceptance error rate AE in
function of confidence 1− ϵ

Figure 1: Emprical rates of transductive conformal predictor based on naive Bayes for the
vehicle data (Dua and Graff, 2017). The non-conformity function of this predictor
is the general non-conformity function (Vovk et al., 2005).

The Coverage vs Acceptance-Error (CAE) graphs for conformal predictors are two-
dimensional graphs in which the empirical coverage rate C is given on the Y axis and
empirical acceptance error AE is given on the X axis (see Figure 2). For any significance
level ϵ we can visualize the performance of the corresponding conformal predictor by point
(AE,C). We note that by construction the CAE graphs can be employed for two-class and
multi-class classification tasks.

To employ the CAE graphs we note four special conformal predictors which performance
is determined by the following points:

• (0, 0): these conformal predictors output empty prediction sets Γϵ(xn) for all the test
instances (xn, yn) ∈ Te. They can be defined for any significance level ϵ that is strictly
greater than the maximum of the p-values py over all the test instances xn and class
labels y ∈ Y .
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• (1, 1): these conformal predictors output prediction sets Γϵ(xn) equal to Y for all the
test instances (xn, yn) ∈ Te. They can be defined for any significance level ϵ that is
strictly smaller than the minimum of the p-values py over all the test instances xn and
class labels y ∈ Y .

• (0, 1): these conformal predictors output prediction set Γϵ(xn) equal to {yn} for any
test instance (xn, yn) ∈ Te. They can be defined for any significance level ϵ s.t.
(∀(xn, yn) ∈ Te)((pyn > ϵ) ∧ (∀y ∈ Y \ {yn})(py ≤ ϵ)).

• (1, 0): these conformal predictors output prediction sets Γϵ(xn) equal to Y \ {yn} for
any test instance (xn, yn) ∈ Te. They can be defined for any significance level ϵ s.t.
(∀(xn, yn) ∈ Te)((pyn ≤ ϵ) ∧ (∀y ∈ Y \ {yn})(py > ϵ)).

Special attention deserves conformal predictors which performance is given by points
on the diagonal determined by points (0, 0) and (1, 1). For those predictors the density
function of the probability distribution of the p-values of the true class labels is close to the
density function of the probability distribution of the p-values of the false class labels.

Figure 2: Coverage vs Acceptance Error (CAE) graph for seven transductive conformal pre-
dictors based on nearest neighbor (5NN, 13NN, 17NN, 61NN), naive Bayes (NB),
decision trees (DT) and voting feature intervals (VFI) tested on the diabetes data
(Dua and Graff, 2017) on confidence level of 0.9. The non-conformity function of
these predictors is the general non-conformity function (Vovk et al., 2005).

Analyzing the CAE graph in Figure 2 we can define a relationship between conformal
predictors (following the approach from the ROC analysis in (Fawcett, 2006)). We can
state that conformal classifier h1 dominates conformal classifier h2 iff its empirical coverage
rate is greater and its empirical acceptance rate is smaller. Given this definition, we can
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compute the convex hull of the predictor’s points in the CAE graph in Figure 3 1. The
convex hull has an important property: there is no conformal predictor in the convex hull
that dominate any conformal predictor on the convex hull. Thus, any conformal predictor
on the convex hull is optimal for certain conditions (expressed in terms of empirical coverage
rate and acceptance error rate).

Figure 3: Convex hull in the Coverage vs Acceptance Error (CAE) graph based on seven
transductive conformal predictors based on nearest neighbor (5NN, 13NN, 17NN,
61NN), naive Bayes (NB), decision trees (DT) and voting feature intervals (VFI)
tested on the diabetes data (Dua and Graff, 2017) on confidence level of 0.9.
The non-conformity function of these predictors is the general non-conformity
function (Vovk et al., 2005).

In the example in Figure 3 the convex hull is determined by four predictors (plus (0,0)
and (1,1) predictors) and we can use any of them. Then the question is whether we can
construct any conformal predictor on the convex hull. For that purpose we can easily adapt
the procedure proposed by (Fawcett, 2006). Assume that we have two conformal classifiers
h1 and h2 which points are consecutive on the convex hull. The line segment that connects
the points of these predictors has size l and on this segment there is the point of a third
conformal predictor h3 that we wish to achieve. The distance from the point of h3 to the
point of h1 is l13 and the distance from the point of h3 to the point of h2 is l32. We receive
the performance of conformal predictor h3 by taking randomly the prediction sets of h1 for
l32
l 100% of test instances and the prediction sets of h2 for predicting the remaining l13

l 100%
of test instances.

1. Computing convex hull can be realized by standard algorithms such as the Jarvis march algorithm
(Jarvis, 1973).
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6. Coverage vs Acceptance-Error Curves

Assume that we have computed the p-values py for all the class labels y ∈ Y for any instance
from the test dataset Te using equation (1). Now if we change the significance level ϵ from 0
to 1, we can in principle receive infinitely many conformal predictors. Assume that we can
plot the performance of these predictors using points (AE,C) on the CAE graphs. These
points form Coverage vs Acceptance-Error curves (CAE curves for short). They show the
tradeoff between the empirical coverage rate C and acceptance error rate AE in function
of the significance level ϵ (see Figure 4). We note that by construction the CAE curves can
be employed for two-class and multi-class classification tasks.

Figure 4: Coverage vs acceptance-error curves for conformal predictor based on naive Bayes
(blue) and 5NN (red) for the vehicle data (Dua and Graff, 2017). The non-
conformity function of these predictors is the general non-conformity function
(Vovk et al., 2005).

The above description provides an intuitive definition of the CAE curves, not an algo-
rithm. We adapt the ROC algorithm of Fawcett (2006) and propose below a computationally
efficient algorithm for CAE curves in Algorithm 1. To run the algorithm we first need to
form list L of triples (n, y, py) for each test instance (xn, yn) ∈ Te, where py is the p-value
of label y ∈ Y computed according to formula (1) for xn. Then we sort the triples (n, y, py)
in list L in decreasing order of py. We set counter covers (acceptance errors) initially to
0 since it counts the number of class labels (in)correctly accepted. In addition, we set the
threshold variable to +∞ since it is used to provide class-label acceptance and initially
no class label is supposed to be accepted. Once the counters and threshold variable are
set, the algorithm visits sequentially the triples (n, y, py) in L. If py of the current triple
(n, y, py) differs the value of threshold, this is an indication that accepting label y assumes
that we need to lower threshold. Thus, we preserve the information on what we have
accepted so far by adding tuple ( coversN , acceptance errors

N(|Y |−1) ) to the resulting list R of (C,AE)
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points (check formulas 2 and 3). If py of the current triple (n, y, py) equals the value of
threshold, this is an indication that label y is accepted. If y is the correct label yn for test
instance xn, then covers is incremented. Otherwise, (y is incorrect label for test instance
xn) acceptance errors is incremented. Once all the elements of L have been visited, the
algorithm outputs list R of (C,AE) points of the Coverage vs Acceptance Error Curve in
the increasing order of AE.

Algorithm 1 Algorithm for Coverage vs Acceptance-Error Curves

Input: List L of triples (n, y, py) for each test instance (xn, yn) ∈ Te
where py is the p-value computed by the conformal class-set predictor for
instance xn and class y ∈ Y .

Output: List R of (C,AE) points of the Coverage vs Acceptance Error Curve for list L.

1: Sort the triples (n, y, py) in list L in decreasing order of py;
2: R := ∅;
3: covers := 0;
4: acceptance errors := 0;
5: threshold := +∞;
6: for next triple (n, y, py) ∈ L do
7: if py ̸= threshold then
8: Add tuple ( coversN , acceptance errors

N(|Y |−1) ) to R;
9: threshold := py;

10: else
11: if y = yn then
12: covers := covers+ 1;
13: else
14: acceptance errors := acceptance errors+ 1;
15: Output list R.

7. Area Under Coverage vs Acceptance-Error Curves

Area Under Coverage vs Acceptance-Error Curves (AUCAEC) is a value in the range of
[0.0, 1.0]. This is due to the fact that the empirical coverage rate C and the acceptance
error rate AE are in the range of [0.0, 1.0]. AUCAEC has a straightforward interpretation:
it is the probability that the p-value pyn of randomly chosen true class label yn of any test
instance (xn, yn) ∈ Te is greater than the p-value py of any other false class label y computed
for xn or any other test instance. We note that AUCAEC is independent of significance
level. Since it employs class-label information, it is label-dependent metric. In addition,
AUCAEC can be used for two-class and multi-class classification tasks since it is derived
from the CAE curves.

When AUCAEC equals 1.0, the p-values pyn of true class-label yn of all the test instances
(xn, yn) ∈ Te are greater than the p-values py of all the false class-labels y computed for
those instances. This implies that there exist significance levels ϵ for which the empirical
coverage rate C is 1.0 and acceptance error rate AE is 0.0; i.e. Γϵ(xn) = {yn} for any
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test instance (xn, yn) ∈ Te. If these significance levels ϵ are greater than 0.0, then the
corresponding conformal predictors are conservatively valid.

When AUCAEC equals 0.0, the p-values pyn of true class-label yn of all the test instances
(xn, yn) ∈ Te are smaller than the p-values py of all the remaining class-labels y computed
for those instances. This implies that there exist significance levels ϵ for which the empirical
coverage rate C is 0.0 and acceptance error rate AE is 1.0; i.e. Γϵ(xn) = {Y \ {yn}} for
any test instance (xn, yn) ∈ Te. If these significance levels ϵ are smaller than 1.0, then the
corresponding conformal predictors are invalid.

When AUCAEC equals 0.5 and the CAE curve is close to the diagonal (0, 0) − (1, 1),
the probability distribution of the p-values of the true class labels is close to the probability
distribution of the p-values of the false class labels. The validity of the conformal predictors
can be observed in this case if the distributions are uniform.

Since AUCAEC is in the range of 0 to 1 from total inefficiency and inaccuracy to total
efficiency and accuracy, we consider AUCAEC as a measure for predictive efficiency once
the validity has been established.

8. Experiments

This section presents our experimental set-up, results, and analysis. We consider twenty
data sets provided by the UCI machine learning repository (Dua and Graff, 2017). We
experiment with the meta-conformal ensemble proposed in (Smirnov et al., 2006, 2009). It is
initialized as follows: the meta predictor that provides conformal prediction is transductive
conformal nearest neighbor proposed in (Proedrou et al., 2002). The base classifier is Naive
Bayes. The meta-conformal ensembles are tested using a stratified 10-fold cross validation
procedure. All of them are found to be valid. Thus, to estimate predictive efficiency we
employ the following six metrics: AUCAEC, S Criterion, U Criterion, F Criterion, OU
Criterion, and OF Criterion. The results of the experiments are given in Table 1.

In order to analyze the relationship between different predictive-efficiency metrics, we
compute the correlation matrix of these metrics based on the data from Table 1. The matrix
is given in Table 2.

The matrix in Table 2 provides some evidence that group-wise AUCAEC as a label-
dependent metric is more correlated with label-dependent metrics (the OU and OF criteria)
than with label-independent metrics (the S, U, and F criteria). The highest correlation of
AUCAEC is observed with the U and OU criteria. We note that the U criterion is associated
with the second-largest p-values, while the OU criterion is linked to the largest p-values for
false class labels. These p-values have a bigger influence on AUCAEC than smaller p-values
(since AUCAEC is the probability that the p-value of any true class-label is greater than
the p-value of any other false class-label). This explains lower correlation of AUCAEC with
the F and OF criteria, respectively.

The correlation matrix in Table 2 shows that all the p-value-based performance criteria
(S,U, F, OU, and OF) from Section 4 are highly correlated; i.e. each of them does not bring
much extra information than others. In contrast, AUCAEC has the average correlation of
0.73959498 with the p-value-based metrics. This means that AUCAEC is rather different
and shows different aspects of the predictive efficiency in relation with the empirical coverage
rate.

9



Smirnov

Dataset AUCAEC S U F OU OF

anneal 0.955 0.753 0.123 0.176 0.190 0.248
audiology 0.712 7.365 0.929 6.426 0.937 6.856
autos 0.931 0.971 0.143 0.362 0.227 0.453
balance-scale 0.952 0.651 0.070 0.097 0.081 0.119
breast-w 0.993 0.556 0.004 0.004 0.007 0.007
colic 0.888 0.619 0.060 0.060 0.061 0.115
diabetis 0.804 0.687 0.096 0.096 0.193 0.193
glass 0.952 0.836 0.127 0.246 0.192 0.324
heart-statlog 0.861 0.632 0.070 0.070 0.137 0.137
hepatitis 0.901 0.608 0.055 0.055 0.101 0.101
hypothyroid 0.975 0.580 0.035 0.056 0.055 0.077
ionosphere 0.944 0.562 0.030 0.030 0.058 0.058
iris 0.995 0.525 0.010 0.017 0.012 0.019
lymp 0.891 0.831 0.165 0.211 0.273 0.333
soybean 0.991 0.699 0.024 0.180 0.039 0.195
splice 0.877 0.755 0.119 0.155 0.207 0.246
vehicle 0.923 0.740 0.111 0.151 0.188 0.234
vote 0.979 0.536 0.013 0.013 0.023 0.023
wave 0.897 0.721 0.106 0.114 0.203 0.212
zoo 0.998 0.580 0.015 0.071 0.018 0.074

Table 1: Predictive efficiency metric values for 20 UCI data sets for meta transductive
conformal ensemble based on meta conformal nearest neighbor and Naive Bayes

Metrics AUCAEC S U F OU OF

AUCAEC 1 0.703 0.767 0.693 0.830 0.706
S 0.703 1 0.983 1 0.935 1
U 0.767 0.983 1 0.979 0.983 0.983
F 0.693 0.999 0.979 1 0.928 0.999
OU 0.830 0.935 0.983 0.928 1 0.936
OF 0.706 1 0.983 0.999 0.936 1

Table 2: Absolute Pearson correlation coefficient values of different pairs of predictive effi-
ciency metrics based on the data from Table 1

9. Conclusion

In this paper we introduced the coverage vs acceptance-error graphs for visualising the
performance of conformal predictors, their comparison, selection and design on a given
significance level ϵ for any k-class classification task for k ≥ 2. When we plotted the
performance of these predictors for significance levels ϵ ∈ [0, 1], we received coverage vs
acceptance-error curves. Their area under curve is viewed as the probability that the p-
value of randomly chosen true class-label of any test instance is greater than the p-value
of any other false class-label for the same or any other test instance. If the validity has
been already established, the area under coverage acceptance-curves can be used as a metric
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for predictive efficiency. The distinctive feature of the new metric is that it is related the
empirical coverage rate. This confirmed by extensive experiments that showed the utility
of the new metric and its difference with the existing efficiency criteria.

We note that the coverage vs acceptance-error curves have some resemblance with the
ROC curves for conformal predictors proposed in (Vovk, 2013). However, a key distinction
lies in the fact that the ROC space is defined by per-class error rates, limiting its applicability
to two-class classification tasks.

Future research will focus on detailed investigation of the properties of the coverage
vs acceptance-error graphs and their application for validating conformal predictors in the
context of multi-label classification and regression.

Acknowledgments

I would like to express my gratitude to the anonymous reviewers for their valuable feedback
and insightful comments on the paper.

References

Anastasios Angelopoulos and Steven Bates. Conformal prediction: A gentle introduction.
Foundations and Trends® in Machine Learning, 16:494–591, 2023.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://

archive.ics.uci.edu/ml.

Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–
874, 2006. ISSN 0167-8655. doi: https://doi.org/10.1016/j.patrec.2005.10.010. URL
https://www.sciencedirect.com/science/article/pii/S016786550500303X. ROC
Analysis in Pattern Recognition.

R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.
Information Processing Letters, 2:18–21, 1973.
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