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Abstract

An important mathematical tool in the analysis of dynamical systems is the approximation
of the reach set, i.e., the set of states reachable after a given time from a given initial state.
This set is difficult to compute for complex systems even if the system dynamics are known
and given by a system of ordinary differential equations with known coefficients. In practice,
parameters are often unknown and mathematical models difficult to obtain. Data-based
approaches are promised to avoid these difficulties by estimating the reach set based on a
sample of states. If a model is available, this training set can be obtained through numerical
simulation. In the absence of a model, real-life observations can be used instead. A re-
cently proposed approach for data-based reach set approximation uses Christoffel functions
to approximate the reach set. Under certain assumptions, the approximation is guaranteed
to converge to the true solution. In this paper, we improve upon these results by notably
improving the sample efficiency and relaxing some of the assumptions by exploiting statis-
tical guarantees from conformal prediction with training and calibration sets. In addition,
we exploit an incremental way to compute the Christoffel function to avoid the calibration
set while maintaining the statistical convergence guarantees. Furthermore, our approach
is robust to outliers in the training and calibration set.

Keywords: data-driven reachability, Christoffel functions, conformal prediction, probably
approximately correct analysis, statistical learning

1. Introduction

The problem of reach set approximation arises in different branches of applied mathematics
and computer science, and in particular in control theory. In mathematics, the study of
initial value problems and their guaranteed solution raises the question of which states can
be reached under different configurations; see, for instance the work of Berz and Makino
(1998). In computer science, the computation of reach sets is a fundamental operation
in formal methods, which establish the correctness of a system with mathematical rigor.
Initially, it was applied to program analysis, e.g., by Halbwachs et al. (1994). Later, the
approach was extended to cyber-physical systems, which can involve interacting physical
components, software, and communication channels, see Alur (2015). Reach set approxi-
mations may take different forms based on whether the focus is on scalability, tightness,
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or efficient computability. Examples include polyhedra, ellipsoids, polynomial zonotopes,
and others; see the overview by Althoff et al. (2021). In this paper, we establish reach set
approximations that are sublevel sets of polynomials, more precisely, sum-of-squares (SOS)
polynomials, which are computationally advantageous. Once established, these can readily
be used to investigate properties of regions of attraction, stability, and safety or to solve
optimization problems. To achieve this, polynomial reach set approximations have been
used as barrier certificates, inductive invariants, or Lyapunov functions; see the survey by
Doyen et al. (2018).

Traditionally, reach set approximations are established from first principles, starting
from a mathematical model of the dynamics. This approach is limited to cases where
sufficiently simple models are available and precise enough. More recently, data-based
approaches have been used to deal with systems whose dynamics are too complex or where
a model is not available and only observations are at hand. In the following, we provide a
brief overview of such approaches.

Related Work The traditional approach to go from data to reach set approximations is
to first identify a model of the system dynamics and then analyse the model. To give an
example, a linear model can be identified efficiently by subspace identification as proposed
by Van Overschee and De Moor (2012) and then one of the set-based techniques in the
survey by Althoff et al. (2021) can be applied to approximate the reach set at a given
time in the future. This can be extended to uncertain linear models and nonlinear systems
based on linearization, as pursued by Alanwar et al. (2023). More recently, it has been
proposed to derive reach set approximations more directly from data, e.g., the approach of
Djeumou et al. (2021) uses Taylor series expansions and Lipschitz bounds to derive reach
sets for nonlinear systems. These approaches can, in principle, bound the reach set over an
arbitrary time horizon, but the approximation error may increase very rapidly with time.
Furthermore, these approaches struggle with complex dynamics.

Our goal in this paper is different and more modest: We establish an SOS polynomial
whose sublevel set contains the reachable set in the sense of a probably approximately correct
(PAC) property. In particular, we consider the approximation of a single time step. This
is sufficient for many of the applications considered above (as a first step in constructing
barrier certificates, inductive invariants etc.), but in contrast to the approaches cited in
the beginning of this section, it does not readily extend to extrapolating the reach set over
longer time horizons (it would involve costly quantifier elimination).

One of the earliest data-driven approaches involving SOS polynomials was the construc-
tion of barrier certificates by Prajna (2006), e.g., to show that obstacles are avoided by a
control system. The scalability was later improved by Han et al. (2015), but the optimi-
sation problem remains somewhat challenging. Approximating the reach set is related to
approximating the support of a probability measure, as observed by Devonport et al. (2021).
Recent work by Lasserre and Pauwels (2019); Lasserre (2022) suggests that Christoffel func-
tions are particularly useful for approximating the support. Our work is heavily inspired
by Devonport et al. (2021), who proposed to approximate the one-step reach set with an
SOS polynomial that is the superlevel set of the Christoffel function. The PAC guarantees
provided by Devonport et al. (2021) are derived from measure theory and are, in practise,
somewhat conservative. Based on conformal prediction, we propose significant improve-
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ments that we outline below. Further work on conformal prediction will be cited in the
text.

Contributions In this paper, we make the following contributions:

• We use conformal prediction to provide stronger and more sample-efficient guarantees
on reach set approximation than those given by Devonport et al. (2021).

• We propose a version of reach set approximation that is robust to outliers, in contrast
to the approach of Devonport et al. (2021).

• We exploit an incremental form of the Christoffel function for transductive conformal
prediction, thanks to which we don’t need to split the data set into training and
calibration sets.

• To the best of our knowledge, this is the first use of the Christoffel function in confor-
mal prediction. The particular properties of the Christoffel function in set and density
approximation make it an excellent candidate for a nonconformity function.

Structure of the paper The paper is organized as follows. Section 2 presents the
data-driven framework for reachability analysis using Christoffel functions. It describes the
theoretical developments related to the reach set approximation and to Christoffel func-
tions. In Section 3, we introduce our proposed approach to the reach set approximation
with conformal prediction, whose statistical guarantees are presented in Section 3.1. Sec-
tion 3.2 presents a technique to avoid the calibration set by using transductive conformal
prediction and an incremental version of the Christoffel function. In Section 4, we discuss
the robustness of our methodology to outliers. Section 5 provides numerical experiments
on simulated data to support our theoretical results, and to highlight the effectiveness and
potential of the proposed approach.

2. Data-driven Reach Set Approximation with Christoffel Functions

Reachability analysis aims to determine the possible future states of a dynamical system
starting from a given initial state. For our purposes, we consider the system to be defined
(explicitly or implicitly) by a transition function

f : Rn → Rn,

which maps a state x ∈ Rn to its successor state. We forego extending the notation to
nondeterministic or stochastic systems, since our focus is on estimating the image of f
applied to a set of initial states; in the case of a stochastic system we are interested in
approximating the support of the image distribution. Beginning with a given initial set of
states I, we are interested in computing the reachable set

S = {f(x) : x ∈ I}.

When f is not precisely known or complex, obtaining the exact solution may not be possible
or economical. Instead, we compute an approximation Ŝ that covers most of S. Every set S
can be represented by a probability measure µ such as S is the support of µ. This motivated
Devonport et al. (2021) to use the Christoffel function to approximate the set S. In the
following subsection, we introduce the Christoffel function, its empirical counterpart, and
discuss how to compute it.
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2.1. Preliminaries

We start by introducing some mathematical notation. Given a vector x ∈ Rn, we denote
its elements as x = (x1, ..., xn). An integer coefficient vector α = (α1, ..., αn) ∈ Nn defines
the monomial xα = xα1

1 × xα2
2 ... × xαn

n . For d ∈ N, we consider R[X]nd to be the vector
space of n-variate polynomials whose degree is less or equal to d. With each coefficient
vector α ∈ Nn, we associate the monomial xα whose degree is equal to ∥α∥ =

∑n
i=1αi.

The monomials xα with ∥α∥ ≤ d form a canonical basis of R[X]nd . We denote the number
of monomials of degree less or equal to d with

s(d) =

(
n+ d

n

)
.

Let vd(x) ∈ Rs(d) be the vector of monomials of degree less or equal to d evaluated at x.
For example, if d = 2 and n = 2, then vd(x) = [1 x1 x2 x1x2 x21 x22].

2.2. Christoffel Functions

Christoffel functions are a class of functions associated with a finite measure and a parameter
degree d ∈ N. They have a strong connection to approximation theory and in this section
we briefly summarize some results by Lasserre and Pauwels (2019). For a finite measure
µ on Rn and an integer degree d, the Christoffel function Λµ,d(x) : Rn 7→ R is defined in
terms of the moment matrix of the measure µ:

Md =

∫
Rn

vd(x)vd(x)
⊤dµ(x).

The moment matrix is semi-definite positive for all d ∈ N. We furthermore assume that
the matrix is positive definite, which ensures the invertibility of Md.

1 With the help of the
moment matrix, the Christoffel function is defined as :

Λµ,d(x) =
(
vd(x)

TM−1
d vd(x)

)−1
. (1)

The following alternative formulation of the Christoffel function can be useful when the
moment matrix is large. It can be computed by solving a convex quadratic programming
problem, which can be done efficiently using numerical techniques, even for high degrees d:

Λµ,d(x) = inf
P∈R[X]nd

{∫
Rn

P (z)2dµ(z), s.t. P (x) = 1

}
In a data-driven setting, the exact measure µ is unknown. One way to obtain information

about µ is by sampling a set of points independently drawn from its distribution. For every
N ∈ N, when disposing of N i.i.d samples {x1, . . . ,xN} from µ, we approximate µ with the
empirical measure

µ̂ = 1
N

∑N

i=1
δxi ,

1. In fact, the moment matrix of any finite measure µ is definite positive unless the support of µ is contained
in the zeros of a polynomial; for a closer look at the moment matrix, we refer the reader to Lasserre and
Pauwels (2019).

4



Data-driven Reachability using Christoffel Functions

where δx is the Dirac measure. The moment matrix M̂d associated with the empirical
measure µ̂ is

M̂d = 1
N

∑N

i=1
vd(x

i)vd(x
i)T (2)

Therefore, the empirical measure µ̂ defines an empirical Christoffel function. Since we are
only interested in superlevel sets of the Christoffel function, we can forego the inversion and
instead work with sublevel sets of what we call the empirical Christoffel polynomial:

Λ−1
µ̂,d(x) = vd(x)

TM̂d
−1

vd(x) (3)

Note that the moment matrix M̂d is almost surely invertible if the number of samples
N ≥ s(d). The Christoffel polynomial is a sum-of-squares polynomial of degree 2d. Conse-
quently, it is nonnegative, and if N > s(d), the empirical Christoffel polynomial is strictly
positive. Note that, for increasing sample size N , the empirical Christoffel function con-
verges uniformly to the Christoffel function of the exact measure.

2.3. Set Approximation with Christoffel Functions

Lasserre and Pauwels (2019) proposed various thresholding schemes for approximating the
support of a probability measure using the Christoffel function or, more precisely, its em-
pirical counterpart. This idea was applied by Devonport et al. (2021) to approximate the
reachable set S with the superlevel sets of the Christoffel function. In this section, we will
briefly summarize the approach.

Let µ be the probability measure of the reachable set S. For a given degree d ∈ N, the
reachable set can be approximated with the sublevel set

Ŝ = {x ∈ Rn | Λ−1
µ,d(x) ≤ α} (4)

for some α ∈ R. However, since the exactly reachable set S is unknown, µ is unknown.
Instead, the Christoffel function Λµ,d is approximated by an empirical Christoffel function
using i.i.d generated samples xi from S. We can obtain a conservative threshold α such
that xi ⊆ Ŝ by letting

α = max
i

Λ−1
µ̂,d(x

i). (5)

Using methods from statistical learning theory, Devonport et al. (2021) proposed the fol-
lowing PAC guarantees:

Conjecture 1 (Thm. 1 in Devonport et al. (2021)) Given a training set of i.i.d sam-
ples D = {x1, . . . ,xN} from S, let

Ŝ = {x ∈ Rn | Λ−1
µ̂,d(x) ≤ max

i
Λ−1
µ̂,d(x

i)}. (6)

If N ≥ 5
ϵ

(
log 4

δ +
(
n+2d
n

)
log 40

ϵ

)
, then P

(
µ
(
Ŝ
)
≥ 1− ϵ

)
≥ 1− δ.

In other words, if N, δ, ϵ satisfy the condition in Conjecture 1, then with probability bigger
than 1−δ we are sure that Ŝ contains more than 1−ϵ of the mass of S. However, we believe
this result neglects the dependencies between the empirical Christoffel polynomial and the
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points used to construct the threshold α. As will be discussed in more detail in Section 3,
different samples should be used for constructing the empirical Christoffel polynomial and
for constructing the threshold α to ensure independence.

We informally note convergence results by Lasserre and Pauwels (2019), which hold for
uniform probability measures (and some generalizations):

• As d → ∞ and with an appropriately chosen threshold, the sublevel set of the (non-
empirical) Christoffel polynomial converges to the support of the measure, i.e., to the
exact reach set in these sense of a Hausdorff distance.

• For fixed d and n → ∞, the empirical Christoffel function converges uniformly to the
Christoffel function.

• For fixed d and n → ∞, the border of the empirical Christoffel polynomial converges
to the border of the Christoffel polynomial in these sense of a Hausdorff distance.

In consequence, we can informally expect that for a large enough degree d and large enough
sample size N , the sublevel sets of the Christoffel polynomial are close enough to the
reachable set.

We will use the following running example throughout the paper to illustrate the different
concepts.

Example 1 (Four squares) Let the transition function f : R2 → R2 be

f(x, y) = (1 + sign(x) · x2, 1 + sign(y) · y2)

and let the initial set be I = [−1, 1]2. The reachable set consists of four squares, i.e.,

S = [−3,−1]2 ∪ [−3,−1]× [1, 3] ∪ [1, 3]× [−3,−1] ∪ [1, 3]2.

Figure 1 shows the reach set approximation given by (6), for a sample of size N = 10 000
and different degrees d. The caption includes the corresponding uncertainty bound ε for
confidence 1− δ = 0.99 obtained by Conjecture 1.

We observe that, as intended by construction, all samples are included in Ŝ. For increas-
ing degrees, Ŝ becomes more precise. However, the uncertainty in the covered probability
mass ϵ, increases substantially. Indeed, the bound ϵ seems rather conservative since, in all
instances, Ŝ covers nearly 100% of S.

3. Reach Set Approximation with Conformal Prediction

Following the reasoning of Section 2, we can expect a sublevel of the Christoffel polynomial
to converge to the support of the distribution. Intuitively, the Christoffel polynomial takes
high values where the density is low and low values where the density is high, which makes
it a good candidate for a nonconformity function.

In this section, we briefly recall relevant results from conformal prediction and instantiate
them to the special case of estimating the support of distribution, which in our setting is
equivalent to approximating the reach set S.
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(a) d = 3, ε = 0.085 (b) d = 6, ε = 0.23 (c) d = 10, ε = 0.51 (d) d = 15, ε = 0.9

Figure 1: Reach set approximation Ŝ for Example 1, using the sublevel set of the empirical
Christoffel polynomial in (6) (purple outline) on a sample of sizeN = 10000 (black
dots), for different degrees d and corresponding uncertainty bound ε, according
to Conjecture 1.

Let r : Rn → R be a non-conformity function. Given a sample D =
{
x1, . . . ,xN

}
, the

p-value at x is

pvalue(x) =
1
N

∣∣∣{ i
∣∣ r(xi) ≥ r(x)

}∣∣∣
For i ∈ {0, ..., N}, the conformal region is defined as

C
i
N
D =

{
x ∈ Rn

∣∣∣ pvalue(x) ≥ i
N

}
According to conformal prediction theory, see Shafer and Vovk (2008); Angelopoulos and
Bates (2021), a new i.i.d sample xN+1 satisfies

P
(
xN+1 ∈ C

i
N
D

)
≥ 1− i+1

N+1 . (7)

Note that in (7), the set D is also subject to randomness. In other words, (7) stands on
average only if the set D is re-sampled for each xN+1. However, in reachability analysis
and data-driven applications more generally, we may be restricted to a single, fixed data
set D. Therefore, we need to take into account the probability on the left hand side of (7),
conditioned on the sample D.

3.1. Statistical Guarantees

In this section, we ensure statistical independence between the nonconformity function r
and the set D by splitting it into a training set Dtrain and a calibration set Dcal. The use of
distinct sets of samples from the same measurement (i.e., a training set and a calibration
set) is essential to ensure the independence of the samples used for computing the p-values
and conformal regions from the nonconformity function, which is computed based on the
training set, see Angelopoulos and Bates (2021) and Bates et al. (2023). This is a special case
of conformal prediction called split conformal prediction or inductive conformal prediction.
The computational advantage of this method lies in its requirement to fit the model only
once. However, this comes at the cost of statistical efficiency as the method necessitates the
division of the data into separate, and therefore smaller, training and calibration data sets.
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A smaller calibration set increases the coverage error, while a smaller training set reduces the
tightness of the approximation. An alternative to this trade-off will be examined in section
3.2. Here, we use the training set for computing the empirical Christoffel polynomial, while
the calibration set is used to compute the conformal region. This will lead to bounds on
the conditional probability

P
(
xN+1 ∈ C

i
N
D

∣∣∣ Dcal

)
.

Note that the theorems in this section apply to any choice of nonconformity function. The
following theorem provides PAC guarantees for conformal regions that are defined with
suitably chosen probability thresholds b1, . . . , bn. We will afterwards propose values for
b1, . . . , bn that correspond to the special case of set approximation.

Theorem 2 (Thm. 4 from Bates et al. (2023)) Consider N uniform random samples

U1, . . . , UN
i.i.d.∼ Unif

(
[0, 1]

)
, with order statistics U(1) ≤ U(2) ≤ . . . ≤ U(N), and fix any

δ ∈ (0, 1). Suppose 0 ≤ b1 ≤ b2 ≤ . . . ≤ bN ≤ 1 are reals such that

P
[
U(1) ≤ b1, . . . , U(N) ≤ bn

]
≥ 1− δ.

Let also b0 = 0. Then for any i.i.d vector x sampled from µ:

P
[
P
(
x ∈ C

i
N
Dcal

∣∣∣ Dcal

)
≥ 1− bi

]
≥ 1− δ (8)

We propose an analogous, theorem to bound the conditional probability from above.

Theorem 3 Under the assumptions of Thm. 2, suppose further that the nonconformity
function r(x) is continuous, the measure µ is continuous, and that α is a real such that

P
(
U(N) ≤ α

)
≥ 1− δ.

Then for any i.i.d vector x sampled from µ:

P
[
P
(
x ∈ C

1
N
Dcal

∣∣∣ Dcal

)
≤ α

]
≥ 1− δ (9)

Proof Under the assumptions, r(x) has a continuous distribution. Let Fµ be the cumulative
distribution function of r(x). Since r(x) has a continuous distribution, Fµ(r(x)) follows
Unif([0, 1]) and Fµ(r(x

1)), Fµ(r(x
2)), ..., Fµ(r(x

N )) all follow Unif([0, 1]). Without loss of
generality, we assume r(x1) ≤ r(x2) ≤ ... ≤ r(xN ). Letting UN = Fµ(r(x

N )), we obtain

P
[
Fµ(r(x

N )) ≤ α
]
≥ 1− δ.

Considering x sampled i.i.d from µ, we get

P
(
x ∈ C

1
N
Dcal

∣∣∣ Dcal

)
= P

(
r(x) ≤ r(xN )

∣∣∣ Dcal

)
= Fµ

(
r(xN )

)
Combining the latter two results, we obtain (9).

We now use the results of Thm. 2 and Thm. 3 to provide a guarantee on the accuracy of
approximated reachable set Ŝ in Algorithm 1. Note that Thm. 3 requires the nonconformity
function to be continuous, which is the case for the empirical Christoffel polynomial.
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Theorem 4 Suppose that the nonconformity function r(x) is continuous. ∀δ ∈ (0, 1),

P
[
µ

(
C

1
N
Dcal

)
≥ exp

(
log(δ)

N

)]
≥ 1− δ, (10)

If the measure µ is continuous, then

P
[
exp

(
log(1− δ)

N

)
≥ µ

(
C

1
N
Dcal

)]
≥ 1− δ, (11)

Combining these results, we obtain ∀δ ∈ (0, 1/2):

P
[
exp

(
log(1− δ)

N

)
≥ µ

(
C

1
N
Dcal

)
≥ exp

(
log(δ)

N

)]
≥ 1− 2δ. (12)

Proof We instantiate Theorem 2 for a particular choice of b1 . . . , bN . Since we are interested
in the support of the measure, we take b1 as the smallest possible value and set the other
values b2 . . . , bN = 1. To satisfy the conditions of Theorem 2, we first show the following

intermediate result: Let U1, . . . , UN
i.i.d.∼ Unif([0, 1]), with order statistics U(1) ≤ U(2) ≤

. . . ≤ U(N). Fixing b1 = 1− δ
1
N and b2 = .... = bN = 1, it is straightforward that

P
(
U(1) ≤ b1, . . . , UN ≤ bN

)
= P

(
U(1) ≤ b1

)
= 1− P

(
U(1) ≥ b1

)
.

Since U(1) is the smallest of the random variables, U1, . . . , UN , P
(
U(1) ≥ b1

)
is equivalent

to all of the Ui being greater or equal to b1:

1− P
(
U(1) ≥ b1

)
= 1−ΠN

i=1P (Ui ≥ b1) = 1− (1− b1)
N = 1− δ.

Applying the above in Theorem 2, we obtain

P
[
P
(
x ∈ C

1
N
Dcal

∣∣∣ Dcal

)
≥ exp

(
log(δ)

N

)]
≥ 1− δ.

As µ

(
C

1
N
Dcal

)
= P

[
x ∈ C

1
N
Dcal

| Dcal

]
we obtain the result in (10).

Fixing α = exp
(
log(1−δ)

N

)
, we have P [UN ≤ α] = αN = 1− δ, since U(N) ≤ α means all

Ui have to be lower than α. Substituting the above value of α in Theorem 3, we obtain the
result in (11). Combing (10) and (11), we obtain the result in (12).

Example 2 We illustrate Algorithm 1 on the running Example 1. We take M = 10000
i.i.d samples from the reachable set S by sampling uniformly M i.i.d samples in I, which
we then split into a calibration set of size N = 2000 and a training set of size M − N .
Figure 2 shows the approximated reachable set produced by Algorithm 1 for various degrees
d. Theorem 4 guarantees that with confidence 1−δ = 99%, the coverage error ϵ is lower than
ϵ ≤ 0.002. Notably, in contrast to the algorithm presented in Devonport et al. (2021), this
guarantee is independent of the dimension of the samples n and the degree of the empirical

9



Tebjou Frehse Chamroukhi

Algorithm 1: Reach set approximation (without outliers)

Input: An i.i.d data sample D = {x1, . . . ,xM}, drawn from the reach set S = f(I),
the degree d, the size N of the calibration set with N < M

Output: ϵ-accurate approximation Ŝ of S with confidence 1− δ and coverage error
ϵ = 1− δ1/N

# Construct the training set of M −N samples and the calibration set of N samples:
Dtrain = {xN+1, . . . ,xM} and Dcal = {x1, . . . ,xN}

1. Compute the empirical moment matrix M̂d and its inverse

(a) M̂d = 1
M−N

∑M
i=N+1 vd

(
xi
)
vd

(
xi
)⊤

, with xi ∈ Dtrain

(b) Compute M̂−1
d .

2. Calculate the threshold α: α = maxi=1,...,N vd

(
xi
)⊤

M̂−1
d vd

(
xi
)
, with xi ∈ Dcal

3. Given the returned M̂−1
d and α, record the conformal region:

C
1
N
Dcal

= Ŝ =
{
x ∈ Rn

∣∣∣ vd(x)
⊤M̂−1

d vd(x) ≤ α
}

(a) d = 6, ε = 0.002 (b) d = 10, ε = 0.002 (c) d = 15, ε = 0.002

Figure 2: Reach set approximations (outlined in purple) from Example 2, obtained with
Algorithm 1, which uses the Christoffel polynomial as a nonconformity function,
for M = 10000 samples, of which N = 2000 are the calibration set (red dots)
and the remainder the training set (black dots). Higher degrees d lead to tighter
approximation.
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(a) d = 6, ε = 0.02 (b) d = 10, ε = 0.02 (c) d = 15, ε = 0.02

Figure 3: Reach set approximations (outlined in purple) from Example 2, with a reduced
sample size of M = 1000, of which N = 200 are used as a calibration set.

Christoffel polynomial d. It only depends on the confidence parameter δ and the size N
of the calibration set. Figure 3 shows the same result for M = 1000 samples, of which
N = 200 samples were utilized as a calibration set. Here, the coverage error ϵ will be lower
than ϵ ≤ 0.02. To empirically verify the theoretical guarantees obtained in Theorem 4, we
repeated this experiment 1000 times. The empirical error was computed by checking how
many of these 10000 samples were not contained in the approximated reachable set. In only
6 experiments, the coverage error exceeded ϵ = 0.02, confirming that the confidence 1− δ is
greater than 99%.

3.2. Avoiding the Calibration Set

In this section, we circumvent split between training and calibration sets by using trans-
ductive conformal prediction Vovk (2013). Transductive conformal prediction is a method
used to construct prediction regions for a new data point without relying on a separate
training set or calibration set. The calibration set is taken to be the entire training set
plus the point at which the function is evaluated, in other words a new non conformity
is modulated by the data point. The statistical guarantees of the previous section, and in
particular of Theorem 4, hold also for this choice of nonconformity function, with Dcal := D.
This approach allows us to use all the available sample points from the measure µ to
train the Christoffel function and compute the conformal region, but at the price of higher
computational cost, as will be discussed below.

Let the training set be D = {x1,x2, ...,xN} be N i.i.d samples from the probability
distribution µ. To compute the p-value at any point x ∈ Rn, we add x to the set D
before computing the empirical Christoffel polynomial. Let Dx = D∪{x}, let the empirical

measure for Dx be µ̂x, and let M̂x be its moment matrix. Using Dx in the empirical
Christoffel polynomial, we get the nonconformity function

r(x) = Λ−1
µ̂x,d

(x) = vd(x)
TM̂−1

x vd(x).

We now have to evaluate a different empirical Christoffel polynomial each time we evaluate
the p-value

pvalue(x) =
1
N

∣∣∣{i ∣∣ Λ−1
µ̂x,d

(xi) ≥ Λ−1
µ̂x,d

(x)
}∣∣∣

11
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Figure 4: Reach set approximation of example 1 using the transductive conformal prediction
and a Christoffel polynomial of degree d = 15, which avoids the split into training
and calibration sets.

In particular, we need to compute a new moment matrix and invert it for each evaluation.
This is computationally expensive, on the order of O(s(d)3). To avoid this, we compute the
inverse moment matrix of the set Dx incrementally using the Sherman-Morrison formula,
as proposed by Ducharlet et al. (2022). This allows us to replace the evaluation of Λ−1

µ̂x,d
(x),

which depends on x, with evaluations of the original Christoffel polynomial Λ−1
µ̂,d(x), plus

one additional product:

Λ−1
µ̂x,d

(x) =
Λ−1
µ̂,d(x)

1 + Λ−1
µ̂,d(x)

, Λ−1
µ̂x,d

(xi) = Λ−1
µ̂,d(x

i)−
(
vd(x)

⊺yi
)2

1 + Λ−1
µ̂,d(x)

, (13)

where yi = M̂−1
d vd(x

i) are vectors that can be precomputed. The cost of precomputing
Λ−1
µ̂,d(x

i) and the vectors yi is O(Ns(d)2), with storage requirements O(Ns(d)). The reduces

the cost of evaluating Λ−1
µ̂x,d

(xi) for a given x to O(s(d)). The resulting cost of evaluating

pvalue(x) is O(Ns(d) + s(d)2).

Example 3 Building on example 1, Figure 4 shows the reachable set approximation ob-
tained using transductive conformal prediction with a Christoffel function of degree 15. In
this case, we use the same M = N = 1000 sample points to train the Christoffel function
and compute the set approximation. The guarantees provided by Theorem 4 assert that,
using a training set of 1000 samples, the coverage error is below 0.45% with confidence
1− δ = 0.99.

4. Robustness to Outliers

In this section, we address the presence of outliers in the data set. As data may not
be very abundant in real-life applications, one may have to work with a calibration set
containing outliers without knowing which data point is an outlier and which one isn’t. The
presence of outliers in the training set does not affect the theoretical guarantees obtained

12
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using conformal prediction theory, though it will affect the tightness of the approximated
reachable set. On the other hand, the presence of outliers in the calibration set will impact
those guarantees.

The following theorem provides PAC guarantees on the reach set approximation even
with outliers in the calibration set. Under the assumption that no more than p outliers are
in the calibration set D, the confidence in the result depends on ϵ, p, and the size of the
calibration set N .

Theorem 5 Consider a set of points D = {x1,x2, ...,xN} containing no more than p
outliers, with 2p+1 < N , and where the rest of samples are i.i.d from a probability measure
µ. Then for any i.i.d vector x sampled from µ and ϵ ∈ (0, 1),

P
(
µ
(
C

p+1
N

D

)
≥ 1− ϵ

)
≥

N−p∑
i=p+1

(
N−p
i

)
ϵi(1− ϵ)N−p−i (14)

This bound is tight in the sense that for p = 0, (14) is identical to the case without outliers,
i.e., we obtain (10).
Proof Let D = Dinlier ∪ Doulier, with m ≤ p being the unknown real size of Doutlier. Let

U1, . . . , UN−m
i.i.d.∼ Unif([0, 1]), with order statistics U(1) ≤ U(2) ≤ . . . ≤ U(N−m).

For ϵ ∈ (0, 1) let b1 = ... = bp+1 = ϵ and bp+2 = ... = bN−p = ... = bN−m = 1. Then ∀m ≤ p:

P
[
U(1) ≤ b1, . . . , U(N−m) ≤ bN−m

]
≥ P

[
U(1) ≤ b1, . . . , U(N−p) ≤ bN−p

]
≥

N−p∑
i=p+1

(
N−p
i

)
ϵi(1− ϵ)N−p−i.

The above result is obtained by the following reasoning: let 0 < i ≤ N −p, if we have N −p

random variable Vi, . . . , VN−p
i.i.d.∼ Unif([0, 1]) the probability to have exactly i of them

below ϵ is equal to
(
N−p
i

)
ϵi(1− ϵ)N−p−i, therefore, the probability of having at least p+ 1

of them below ϵ is equal to
∑N−p

i=p+1

(
N−p
i

)
ϵi(1− ϵ)N−p−i.

Let x be an i.i.d vector sampled from µ. By definition,

µ
(
C

p+1
N−m

Dinliers

)
= P

(
x ∈ C

p+1
N−m

Dinliers

∣∣∣ Dinliers

)
.

Using Theorem 2, we get :

P
(
µ
(
C

p+1
N−m

Dinliers

)
≥ 1− ϵ

)
≥

N−p∑
i=p+1

(
N−p
i

)
ϵi(1− ϵ)N−p−i

Since C
p+1
N−m

Dinliers
⊆ C

p+1
N

D , we have µ
(
C

p+1
N

D

)
≥ µ

(
C

p+1
N−m

Dinliers

)
, which leads us to (14).

Note that the bound in Theorem 5 (14) is tight in the sense that for p = 0 we obtain the
same lower bound as in Theorem 4 (10). Table 4 shows the confidence bound of (14) for
different values of the calibration set size and the approximation uncertainty ϵ under the
assumption that no more than 5% of the calibration set are outliers. We observe that the
confidence rapidly approaches 100% when the admissible coverage error is above the ratio
of outliers; it rapidly drops to 0% when it is below.
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Table 1: The confidence bound of (14) for different sizes N of the calibration set and the
desired coverage error ϵ for a calibration set with 5% outliers or less

confidence in %

size N ϵ = 4% ϵ = 5% ϵ = 6% ϵ = 10%

100 33 51 68 96
500 10 42 77 99.99

1000 3 37 84 99.99
2000 0.4 31 92 99.99

Figure 5: An approximation of the reach set of example 1 (purple outline) obtained with
Algorithm 2 using a Christoffel polynomial of degree 15, on a data set with 10%
outliers. The training set is shown in black, the calibration set in red.

Example 4 To evaluate the performance of Algorithm 2 on example 1, we construct a
data set from M = 1500 samples of the reach set and substitute 10% with outliers, i.e.,
i.i.d. samples outside the reachable set. We use a calibration set of size N = 500, and the
rest of the samples are used as a training set to compute the empirical Christoffel polynomial.
Figure 5 shows the resulting approximation. With Theorem 5, the coverage error ϵ = 0.15
with a confidence = 98.9%. To empirically confirm these bounds, as in Example 2, we
repeat the experiment 1000 times with different samples. For each experiment, we take
10000 samples of the reach set in order to compute the empirical coverage error. None of
the experiments resulted in an empirical coverage error above 15%, which is consistent with
the theoretical guarantee of 98.9% confidence.

5. Experiments

We now turn our focus to the suitability of the empirical Christoffel polynomial as a non-
conformity function.
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Algorithm 2: Reachability analysis with outliers

Input: Transition function f ; initial set I ⊂ Rn; Christoffel function order d, N the
size of the calibration set and p the upper bound number of outliers in the
calibration; M the total number of simulations with M > N and an i.i.d data
sample D = {x(i) } for i ∈ {1, ...,M}. The sample x(i) is an inlier if
x(i) ∈ f(I) and an outlier otherwise. .

Output: Set Ŝ representing an ϵ-accurate approximation of the true reachable set S
with confidence

∑N−p
i=p+1

(
N−p
i

)
ϵi(1− ϵ)N−p−i

1. Compute the empirical moment matrix with the associated Christoffel degree d

using M −N samples: M̂d = 1
M−N

∑M
i=N+1 vd

(
x(i)

)
vd

(
x(i)

)⊤
2. Use a calibration set of N samples: Dcal = {x(i) | i ∈ {1, .., N}} and:

(a) Compute the scores: scorei = vd(x
(i))⊤M̂−1

d vd(x
(i)) for i = 1, . . . , N

(b) Sort the scores in descending order such that: score1 ≥ score2 ≥ ... ≥ scoreN

(c) Set the conformal region C
p+1
N

D as Ŝ =
{
x ∈ Rn : vd(x)

⊤M̂−1
d vd(x) ≤ scorep+1

}

5.1. Empirical False Positive Rate

We start by examining the tightness of the reachable set approximation in example 2 through
the empirical measurement of false positives.

We compare the empirical Christoffel polynomial with other prevalent nonconformity
functions: one-class SVM, Isolation Forest (Liu et al., 2008), and Local Outlier Factor
(LOF), as shown in Figure 6. Only the approximation using LOF seems comparable to
that of the Christoffel polynomial, while Isolation Forest exhibits significant variability
depending on the random seed.

To gauge the number of false positives and assess the accuracy of the reachable set ap-
proximation, we generated 10,000 uniformly distributed samples within the domain [−4, 4]2.
The false-positive rate was empirically determined for various degrees d, as shown in Ta-
ble 2. As observed in earlier plots, a higher degree results in a more accurate fit of the
reachable set. The false-positive rates for the other algorithms can also be observed in
Table 2 for varying sizes of the training and calibration sets. Consistent with the findings
from the Figure 6, only the LOF provides results that are comparable in quality to those
obtained using the Christoffel polynomial.

To further demonstrate the effectiveness of the empirical Christoffel polynomial as a
non-conformity function, we examine its robustness in the presence of outliers within the
training set. Although the theoretical guarantees discussed in this article and in general
conformal prediction hold for any choice of non-conformity function, even with outliers in
the training set, the presence of these outliers can impact the accuracy of the model. To
compare the empirical Christoffel polynomial with LOF, we conducted two experiments. In
the first experiment, we considered the region [−1, 1]2 as the reachable set to approximate.
We focused on comparing the performance of the algorithms under the presence of outliers
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Table 2: Experimentally estimated false-positive rates for different algorithms applied to
the reach set approximation of Example 1, with confidence 1− δ = 99%

Nonconformity function |D| |Dtrain| |Dcal| ϵ in % FP%

Christoffel with d = 6 10000 8000 2000 0.2 49.5
Christoffel with d = 10 0.2 39.5
Christoffel with d = 15

...
...

...

0.2 11.7
Christoffel with d = 18

...
...

...

0.2 7.2
LOF score 0.2 3.4
IsolationForest score 0.2 92.9
Oneclass SVM score 0.2 65.7
Christoffel with d = 6 1000 800 200 2.2 44.6
Christoffel with d = 10 2.2 20
Christoffel with d = 15

...
...

...

2.2 12.7
Christoffel with d = 18

...
...

...

2.2 12.4
LOF score 2.2 10.6
IsolationForest score 2.2 86.8
Oneclass SVM score 2.2 60.7
Transduct. Christ. with d = 15 1000 1000 1000 0.5 46.6

ϵ = Coverage error, at least 1− ϵ of the measure is covered; FP% = False positives in %, measured by

uniform sampling of a sufficiently large bounding box and counting samples in Ŝ \ S

(a) One-class SVM (b) Isolation Forest (c) LOF

Figure 6: Reach set approximations (purple outline) of Example 1 using one-class SVM,
Isolation Forest, and Local Outlier Factor (LOF) as nonconformity functions, for
a common training set of size 800 (black dots) and calibration set of size 200 (red
dots).

in the training set. We generated a training set of size 1,200 containing 200 outliers and a
calibration set of size 200, all belonging to the reachable set. The second experiment was
similar to the first one, with a star-shaped region as the reachable set. We generated a
training set of size 900 containing 100 outliers and a calibration set of size 200. Figure 9 il-
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(a) Christoffel polynomial (b) LOF

Figure 7: Comparison of reachable set approximations for the empirical Christoffel polyno-
mial (degree 10) and LOF in the first experiment, with the region [−1, 1]2 as the
target. The training set, containing outliers, is represented by black dots, while
the calibration set is shown in red. The plot highlights the performance differ-
ences and robustness of both methods in the presence of outliers, demonstrating
how the empirical Christoffel polynomial is far more robust.

(a) Christoffel polynomial (b) LOF

Figure 8: A comparison of reach set approximation (purple outline) using the Christoffel
polynomial with degree 15 and LOF for the second experiment, which targets a
star-shaped region. Training set samples are in black and calibration set in red.
This plot highlights the performance and robustness of both methods when en-
countering outliers in a complex geometric scenario, illustrating the effectiveness
of the empirical Christoffel polynomial under the presence of outliers.

lustrates how the empirical Christoffel polynomial and LOF approximate the true reachable
set in the presence of outliers.

Figures 7 and 8 display the performance of both the empirical Christoffel polynomial and
LOF in handling outliers within the training set across distinct and complex geometric situ-

17



Tebjou Frehse Chamroukhi

(a) d = 6, ε = 0.002 (b) d = 10, ε = 0.002 (c) d = 15, ε = 0.002

Figure 9: Reach set approximation (purple outline) of the duffing oscillator using the
Christoffel polynomial with the data set split into training (black) and calibration
set (red), for different degrees d of the Christoffel function, with corresponding
coverage error ε for confidence 1− δ = 0.99.

ations. When employed as a non-conformity function, the empirical Christoffel polynomial
demonstrated greater robustness in the presence of outliers across both experiments.

5.2. Duffing oscillator

The Duffing oscillator is a nonlinear mathematical model that captures the behavior of a
system that oscillates when subject to an external force. It has been used in a variety of
physical systems, from mechanical vibrations to biological dynamics. The Duffing oscillator
is described by the following nonlinear second-order differential equation:

ẍ = −δẋ+ αx− βx3 + γcos(ωt)

Similar to Devonport et al. (2021), we take α = 1, β = 1, δ = 0.05, γ = 0.4 and ω = 1.3. We
choose the initial set to be I = [−0.95, 1.05]×[−0.05, 0.05]. Figure 9 shows an approximation
of the reach set, computed with the Christoffel function as nonconformity function for
different degrees. We observe that for increasing degrees, the approximation is more precise
and is able to recover holes. The results are comparable to those reported by Devonport
et al. (2021), where no split into training and calibration sets was carried out.

6. Conclusion

In this paper, we studied the mathematical reach set approximation in the analysis of dy-
namical systems based on conformal prediction. We consider for the first time the use of the
Christoffel function as a nonconformity function, thanks to its attractive properties in set
and density approximation. Our conformal prediction approach provides stronger and more
sample-efficient guarantees on reach set approximation and proposed a version of reach set
approximation that is robust to outliers, compared that the most relevant approaches in
the literature. We exploited an incremental form of the Christoffel function for transduc-
tive conformal prediction that avoids splitting the data into training and calibration sets.
Extensive illustrative numerical experiments show the effectiveness and the performance of
our proposed approach and its associated algorithms.
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The theoretical results that we presented here in the context of reach set approximation
are equally valid to approximate compact sets, or the support of probability distributions, in
other application domains. Naturally, the computation of the Christoffel function is subject
to numerical errors. The impact of such numerical issues will be studied in future work.
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Le Lann, and Youssef Miloudi. Leveraging the Christoffel-Darboux kernel for online
outlier detection, 2022.

Nicolas Halbwachs, Yann-Eric Proy, and Pascal Raymond. Verification of linear hybrid
systems by means of convex approximations. In International Static Analysis Symposium,
SAS’94, Namur (Belgium), September 1994.

Shuo Han, Ufuk Topcu, and George J. Pappas. A sublinear algorithm for barrier-certificate-
based data-driven model validation of dynamical systems. In 2015 54th IEEE Conference
on Decision and Control (CDC), pages 2049–2054, 2015. doi: 10.1109/CDC.2015.7402508.

Jean-Bernard Lasserre. On the Christoffel function and classification in data analysis.
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