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Abstract

Disk scrubbing is a process aimed at resolving read errors on disks by reading data from
the disk. However, scrubbing the entire storage array at once can adversely impact system
performance, particularly during periods of high input/output operations. Additionally,
the continuous reading of data from disks when scrubbing can result in wear and tear,
especially on larger capacity disks, due to the significant time and energy consumption
involved. To address these issues, we propose a selective disk scrubbing method that
enhances the overall reliability and power efficiency in data centers. Our method employs
a Machine Learning model based on Mondrian Conformal prediction to identify specific
disks for scrubbing, by proactively predicting the health status of each disk in the storage
pool, forecasting n-days in advance, and using an open-source dataset. For disks predicted
as non-healthy, we mark them for replacement without further action. For healthy drives,
we create a set and quantify their relative health across the entire storage pool based on
the predictor’s confidence. This enables us to prioritize selective scrubbing for drives with
established scrubbing frequency based on the scrub cycle. The method we propose provides
an efficient and dependable solution for managing enterprise disk drives. By scrubbing just
22.7% of the total storage disks, we can achieve optimized energy consumption and reduce
the carbon footprint of the data center.

Keywords: Mondrian conformal prediction, calibration, disk scrubbing, storage array.

1. Introduction

A large-scale data center is a complex ecosystem primarily consisting of various types of
storage devices, such as hard disk drives (HDD), solid-state drives (SSD), and hybrid storage
devices, spread over multiple geographic locations. As the number of storage components
grows in the storage ecosystem, it becomes increasingly difficult to manage its business
continuity (Bajgorić et al., 2022) because of the underlying complexity and uncertainty
associated with each individual component’s internal working mechanics. For instance, a
data center can have a mixed workload of transactional databases, network-attached storage
(NAS), and archival storage. Each workload has its unique characteristics and impact on the
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reliability and remaining useful life of the storage system. Inadequate management of these
storage components can result in data loss and eventually business disruption (Pinheiro
et al., 2007). Monitoring the health of storage components is a common proactive approach
to maintaining the reliability of storage systems. This is typically achieved through system
logs and SMART logs of HDDs and SSDs (Zhang et al., 2023).

In the context of data centers, many device manufacturers and vendors (Ma et al., 2015;
Vishwakarma and Perneti, 2021) utilize drive failure analysis as a metric to assess the overall
reliability of the data center. Drive failure analysis typically categorizes failures into two
types: complete failure and latent failure of the disk drive. Complete failure is relatively
easy to detect and enables a transparent approach for replacing failed disks. However,
latent failure is nearly undetectable and can lead to sudden failure and loss of critical data
(Bairavasundaram et al., 2007; Schroeder et al., 2010).

Traditional system-level approaches, such as storage virtualization technology like Re-
dundant Array of Independent Disks (RAID), tend to focus on passive fault tolerance rather
than proactive approaches. Alternatively, many statistical (Hamerly et al., 2001; Singh and
Vishwakarma, 2023) and machine learning (Pitakrat et al., 2013; Sun et al., 2019) ap-
proaches have been explored to enhance the reliability of the storage system. Machine
learning approaches, while powerful, face challenges when it comes to making accurate
predictions on unseen data, as production data is subject to change over time (Lu et al.,
2018), requiring continuous model updates. One argument to consider is that even a small
false positive rate (FPR), such as 0.1%, can be a concern when implementing the model in
real-world data centers that may have millions of disk drives. Instead of using drive failure
analysis for reliability enhancement, an alternative approach could be to leverage disk drive
scrubbing (Iliadis et al., 2008, 2011) in a more fine-grained manner to identify specific disks
that require further attention.

Disk scrubbing is a process of performing full media pack sweeps across allocated and
unallocated disks to detect and rebuild latent medium errors (Ryu and Park, 2009), reducing
the chances of bad block media detection during host I/O activity. However, running
scrubbing tasks for the entire disk population in an array can significantly increase the load
on the data storage system, potentially degrading its performance. Additionally, if the disk
has a larger capacity (e.g., 12TB), it will take a considerable amount of time to complete
the operation.

Our proposed method aims to optimize disk scrubbing by selectively targeting only the
disks that require the operation. We use a learning framework based on Mondrian conformal
prediction, which is agnostic to the specific machine learning algorithm, to identify specific
disks for scrubbing. The method involves forecasting the health of a disk n-days ahead
through binary classification. A set of healthy drives is created, and the health status of
the entire storage pool is quantified based on the predictor’s confidence. Drives marked as
unhealthy are then sent for treatment based on the administrator’s decision. The metrics
obtained from Mondrian conformal prediction are used to prioritize selective scrubbing for
the drives. This proposed method has two main advantages: first, it leverages the underlying
drive failure analysis, and second, the quantified output from the forecast engine can be
used as input for the disk scrubbing scheduler engine, optimizing the scrubbing process and
enhancing reliability in the data center environment. A summary of our contributions is as
below:
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• Introducing a fine-grained approach for identifying disk drives to be scrubbed by
complementing the existing failure analysis engine on the storage sub-system with an
algorithm-agnostic framework based on Mondrian conformal prediction.

• Translating the output of the framework, i.e. the confidence of prediction for new
data points, into a ranking mechanism that sorts the healthy drives in descending
order for further treatment by the decision engine.

• Implementing a scrubbing frequency schedule for the entire storage array based on
n-step ahead system load prediction using probabilistic weighted fuzzy time series,
which is mapped to the scrubbing engine for optimized disk scrubbing.

The method contributes to a proactive approach that provides value for business continuity,
such as resource and power savings in data centers during data scrubbing by selectively
spinning disks down. This means that only the required disks are scrubbed on a priority
basis, while the healthy disks can be scrubbed less frequently or not at all. This optimized
approach helps improve operational efficiency and reduces unnecessary disk wear, resulting
in potential cost savings and enhanced reliability for the data storage system.

This paper is structured as follows: section 2 provides the motivation for our work and
outline the design considerations. In section 3, we present a review of related work in the
field. We provide a definition and algorithmic overview of conformal prediction in section 4.
In section 5, we deliver a synopsis of our proposed solution, followed by the presentation
of experimental results in section 6. The usability and interpretation of disk drive health
metrics are discussed in section 7, and we conclude with section 8, summarizing our findings.

2. Motivation and design goals

In data centers, a significant number of unhealthy drives go undetected due to latent failure
attributes, resulting in fail-stop scenarios. One common approach to mitigate such scenar-
ios is disk scrubbing, which consists of verifying disk data through a background scanning
process to identify bad sectors. However, this process can consume energy and cause per-
formance degradation depending on the trigger schedule. This scenario raises concerns in
the industry, especially as disk capacities increase. We notice a missing link in addressing
’which disk to scrub’, ’when to scrub’, based on frequency of scrub cycle while minimizing
storage array performance impact and also maximizing the reliability. In this paper, we
consider the following objectives and design approaches to tackle this challenge :

• Which disk to scrub? Depending on the specific scrubbing process, it can tem-
porarily degrade the performance of the drive. To ensure that the drive remains fast
and responsive, minimizing the frequency of scrubbing is crucial. Instead of perform-
ing scrubbing for all disks in the storage array, our approach focuses on selectively
scrubbing only the disks that require it, thereby reducing the overall time required to
complete the process.

• When to scrub? We can optimize the disk drive scrubbing schedule by considering
factors such as the workload of the system, the importance of the data on the drive,
and the availability of resources. This approach ensures that scrubbing is performed at
the most appropriate times, minimizing the impact on the overall system performance.
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3. Related Work

Storage device reliability has long been a critical concern in the industry, and existing
solutions often rely on failure analysis of storage systems. However, traditional methods
like accelerated life tests (Cho et al., 2015) have not proven to be reliable indicators of actual
failure rates in production environments. Recent machine learning-based approaches, such
as multivariate time-series (Yu, 2019) and time-series classification (Ircio et al., 2022), have
focused on improving model accuracy, but often lack deep integration of domain knowledge.
Moreover, the multi-modal approach by (Lu et al., 2020) using performance metrics (disk-
level and server-level) and disk spatial location only focuses on fail-stop scenarios, which
may not be helpful in detecting latent failures. A most recent study (Lu et al., 2023) has
addressed this issue by investigating grey failures (fail-slow drives) using a regression model
to pinpoint and analyze fail-slow failures at the granularity of individual drives.

Another important factor of disk scrubbing is the implementation cost and power con-
sumption. (Mi et al., 2008) and (Jiang et al., 2019) address performance degradation due
to scrubbing and propose assigning a lower priority to the background process during idle
time, i.e. when the disk drive is not actively engaged in processing data or performing any
other tasks. (Liu et al., 2010) and (Oprea and Juels, 2010) propose a method to mitigate
power consumption and determine when to scrub in systems with inexpensive data but
require designing another method to identify less critical data. Drive space management
in case of replacing the failed disk is discussed in (Pâris et al., 2010), along with reducing
the need for frequent scrubbing. A multilevel scrubbing is proposed in (Zhang et al., 2020)
using a Long Short-Term Memory (LSTM) model to detect latent sector errors in a binary
classification setup. However, using machine learning-based models may treat healthy and
relatively less healthy disks the same, leading to unnecessary scrubbing of healthy disks.

To the best of our knowledge, our work is the first to adopt Mondrian conformal pre-
diction for assigning a health score to each individual disk drive and using the metrics to
design a scrubbing cycle aligned with the system idle time.

4. Conformal prediction

Conformal prediction (Shafer and Vovk, 2008) is a powerful framework in machine learning
that allows for prediction with uncertainty. Unlike traditional point prediction methods
used in classification tasks, conformal prediction provides a set prediction. This means
that instead of outputting a single predicted label, conformal prediction provides a range of
possible labels that are likely to be correct, along with confidence and credibility measures in
the correctness of these predictions. This is particularly useful in cases where the prediction
task may be uncertain or when the model is dealing with previously unseen data, especially
when the application is of high risk (Luo et al., 2022).

Conformal prediction is not limited to classification tasks alone, but it is also valid for
regression tasks by providing prediction intervals instead of a single-point prediction. These
prediction intervals represent a range of possible values for the target variable, along with
a measure of confidence in the correctness of these intervals. This allows for more nuanced
and interpretable predictions in regression tasks, where the goal is to estimate a continuous
value rather than a discrete class label.
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One of the key advantages of conformal prediction is its agnostic nature, which means it
can be used with any machine learning algorithm. This flexibility allows for the integration
of conformal prediction into various machine learning pipelines without being constrained
by the choice of a specific algorithm. This makes conformal prediction a versatile tool that
can be applied to various tasks and domains (Messoudi et al., 2020).

A great resource for learning more about conformal prediction is the book ”Algorithmic
Learning in a Random World” (Vovk et al., 2022), which provides a detailed overview of
the theory and applications of conformal prediction. Additionally, a repository of conformal
prediction implementations and resources is maintained on GitHub1(Manokhin, 2022), pro-
viding practical tools and examples for applying conformal prediction in various machine
learning settings. This makes it easier for researchers and practitioners to implement and
experiment with conformal prediction in their own work.

The overall approach of conformal prediction in the inductive setting is presented in
algorithm 1.

Algorithm 1: Inductive conformal prediction (ICP)

Input: Divide the training sequence Ztr into two disjoint subsets; the proper training set
Zt and the calibration set Zc = {(x1, y1) , . . . , (xq, yq)}
Task: Predict yn+1 ∈ Y for any new object xn+1 ∈ X.
Algorithm:

1. Split the original data set Z into a proper training set Ztr with
∣∣Ztr

∣∣ = m and a
calibration set Zcal with

∣∣Zcal
∣∣ = n−m = q.

2. Train using h : X → Y on Ztr and obtain the nonconformity measure f(z). The
non-conformity measure for h is defined as f(z) = 1− P̂h[y | x].

3. Apply the non-conformity measure f(z) to each example zi of Z
cal to get the noncon-

formity scores α1, . . . , αq.

4. Choose a significance level ϵ ∈ (0, 1) to get a prediction set with a confidence level of
1− ϵ

5. For a new example xn+1, compute a non-conformity score for each class Ck ∈ Y :
αCk
n+1 = f ((xn+1, y = Ck))

6. For each class Ck ∈ Y, compute the p-value : pCk
n+1 =

∣∣∣{i∈1,...,q:αCk
n+1≤αi

}∣∣∣
q

7. Build the prediction set: Γϵ =
{
Ck ∈ Y : pCk

n+1 > ϵ
}

4.1. Mondrian conformal prediction (MCP)

Mondrian conformal prediction (MCP) is a variant of the conformal prediction framework
that provides a guarantee on a subset of the dataset, or on specific categories of the dataset.
This variant is originally established for a classification problem by creating class-conditional

1. https://github.com/valeman/awesome-conformal-prediction
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or attribute-conditional categories (Vovk et al., 2003). However, a Mondrian version exists
for regressors (Boström and Johansson, 2020).

In imbalanced datasets, the minority class (i.e., the class with fewer instances) may lead
to biased predictions and inaccurate confidence measures. Mondrian conformal prediction is
a powerful tool to handle this issue by maintaining the same error rate for both the majority
and minority classes, ensuring that the predictions are not biased toward the majority class.

When calculating the non-conformity scores in MCP, we only consider the scores related
to the examples that share the same class as the object xn+1, which we are testing hypo-
thetically. Consequently, the p-value is substituted in step 6 of algorithm 1 and calculated
as:

pCk
n+1 =

∣∣∣{i ∈ 1, . . . , q : yi = Ck, α
Ck
n+1 ≤ αi

}∣∣∣
|{i ∈ 1, . . . , q : yi = Ck}|

.

Mondrian conformal prediction has been implemented for various domains in many real-life
use cases for academia as well as industry. For instance, (Messoudi et al., 2021) apply
MCP for tenant debt prediction in real estate, (Alvarsson et al., 2021) use it for modeling
ABC transporters in drug discovery, and (Vishwakarma and Liu, 2021) leverage conformal
predictors for detecting persistent storage failure analysis in the enterprise storage domain.

4.2. Evaluation metrics

To evaluate the performeance of conformal prediction models, several metrics can be em-
ployed. In our study, we will focus only on two :

• Confidence: reflects the certainty of the model that a prediction is a singleton, or
a unique outcome. Confidence is based on the concept of p-values, which are used
to assess the probability of obtaining an outcome as extreme as the one observed,
assuming that the null hypothesis is true. A higher confidence value suggests that the
model is more confident about the accuracy of its prediction and that the predicted
label is likely to be correct. Conversely, a lower confidence value implies that there
may be alternative labels that are equally likely. This metric is defined as:

Confidence(x) = sup{1− ϵ : |Γϵ(x)| ≤ 1}.

• Credibility quantifies the likelihood that a sample comes from the training set, as
determined by the minimal significance level that would result in an empty prediction
region. In other words, credibility is expressed as the largest p-value, which serves
as the lower bound for the value of the significance level ϵ that would result in an
empty prediction. A higher credibility value indicates a higher likelihood that the
sample is consistent with the training set, while a lower credibility value indicates a
higher likelihood of the sample being inconsistent with the training set. This metric
is defined as:

Credibility(x) = inf{ϵ : |Γϵ(x)| = 0}.
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5. Mondrian conformal prediction for Disk Scrubbing: our approach

In contrast to the conventional studies mentioned above, we propose a novel approach for
disk drive scrubbing based on Mondrian conformal prediction to quantitatively assess the
health status of disk drives and use it as a metric for selecting drives for scrubbing. Figure 1
shows a high-level overview of the proposed method.

Figure 1: Overall approach of Mondrian conformal disk drive scrubbing.

The proposed architecture consists of three subsystems. The first subsystem is respon-
sible for collecting storage and system statistics, which includes retrieving disk drive data
from the storage array, as well as capturing CPU and disk busy statuses. The second sub-
system, referred to as the drive health predictor engine, predicts the health status of the
drives. It uses MCP to output a set of ”No concern” drive disks, i.e. unhealthy/dying
drives that can be flagged for manual diagnostics by experts (not discussed in this paper)
or completely healthy drives that do not need any scrubbing, as well as a set of ”Con-
cern” disks with assigned health scores based on the predictor’s confidence, which then are
turned into scrubbing frequencies with the scrubbing frequency indicator. The underlying
non-conformity score used is margin error function. The third subsystem is the workload
predictor engine, which first predicts the resources’ utilization percentage by taking into
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account SAR logs2, and then combine this result with the scrubbing frequencies in order to
schedule when and how frequently disk drive scrubbing is performed. Finally, the scrubbing
operation is triggered on the storage array based on the scrubbing cycle. In the following
subsections, each component of the overall architecture is described in detail.

5.1. System and Storage statistics

The main components of this subsystem are:

• SMART: stands for Self-Monitoring, Analysis, and Reporting Technology, and refers
to a set of predefined parameters provided by device manufacturers that offer insights
into various aspects of a storage device’s performance, including temperature, error
rates, reallocated sectors, and more. Each attribute has a threshold value assigned
by the manufacturer, indicating the acceptable limit for that parameter. When a
parameter exceeds its threshold value, it may indicate a potential issue with the
storage device. We use SMART parameters as input features for the drive health
predictor engine.

• BMS: stands for Background Media Scanning, and is a passive process that dif-
fers from disk scrubbing, which actively scans the disk for errors during idle periods
without reading or writing data. BMS involves scanning the disk for errors in the
background without interrupting normal operations. In our proposed architecture,
we also extract this BMS feature, which is a numerical value for the number of times
it encounters errors while performing a scan on the same drive, and feed it to the
drive health predictor engine.

• Disk and CPU busy time: The performance of a drive is heavily dependent on
its critical processes, such as data access and write speed. The numeric values range
between 1 to 100 in terms of percentage and change over time with a sampling period
of 1 hour. These system statistics are extracted from the SAR logs (standard logs for
system utilization) and converted into time series data, which can then be used by
the workload predictor engine.

5.2. Which disk to scrub: Drive health predictor

In a normal data center setting, all disk drives are classified as either healthy or unhealthy.
Unhealthy disks are supposed to be dying or imminently failing, thus they are not marked
for scrubbing, while healthy disks are marked for scrubbing.

In our approach, we propose to assign a relative ’degree of health’ score to each disk.
Drives that are marked as of No concern are either dying/imminently failing or completely
healthy, while those marked as of Concern have different degrees of health other than
failing or healthy. The conformal prediction framework then classifies the ”No-concern”
and ”Concern” drives, and only selects the disks which are in the set of ”Concern” drives

2. The System Activity Report is a command that provides information about different aspects of system
performance. For example, data on CPU usage, memory and paging, interrupts, device workload,
network activity, and swap space utilization
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for further ranking. These are the drives which are concerning to us and is used as input
for the scrubbing scheduler.

Our focus, as shown in Figure 2, is on identifying disks in the system that are currently
of concern or may become concerning soon, and only selecting those disks for scrubbing.
This approach reduces the number of disks meant for scrubbing, since even completely
healthy drives are not scrubbed, making the process more efficient and targeted. By doing
so, we optimize time, power, and energy consumption and reduce the carbon footprint of
data centers.

Figure 2: Quantifying the health of disk drives: The disks which are healthy and non-
healthy are not selected for scrubbing, while the disks of concern are marked for scrubbing.

When dealing with disk drives in a usual data center environment, failures are rare over
a period of time, resulting in a highly imbalanced dataset with a small number of failed
disks and the majority of disks being healthy. To handle this imbalanced data, we adopt a
Mondrian Conformal Prediction approach, in order to get the prediction labels ”0”: failed
and ”1”: healthy, along with their confidence score that serves as a health score in our case.
This means that our MCP algorithm selects disks with a confidence score depending on the
threshold chosen by the administrator.

For instance, if the administrator sets a threshold of 1%, this will lead to excluding
disks with health scores above 99% as healthy or failing (depending on the label) and only
selecting disks with a health score lower than 99% for scrubbing. Furthermore, the selected
drives can be mapped to distinct scrubbing frequencies. Thus, drives with poor health
scores may require more frequent scrubbing (every week), while those with good health
scores will need less frequent scrubbing (every 3 months). For the same threshold of 1%,
the administrator can then map the disk health with a scrubbing frequency, as in Table 1.
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Disk health Scrubbing frequency Health score

Best LOW (CYCLE – A) [95%, 99[
Medium MEDIUM (CYCLE - B) [80%, 95[
Poor HIGH (CYCLE – C) < 80%

Table 1: Mapping of the disk health with the scrubbing frequency based on health score.

5.3. When to scrub: Workload predictor

After identifying the disks to be scrubbed using the drive health predictor engine, the next
step is to determine the optimal time to perform scrubbing using the workload predictor.
This component needs to consider the availability of system resources, i.e. disk and CPU
utilization information in the system and storage statistics subsystem.

The workload predictor employs a Probabilistically Weighted Fuzzy Time Series algo-
rithm (PWFTS), as detailed in (Orang et al., 2020). This algorithm forecasts n-days ahead
system utilization, by predicting the system utilization percentage for the next 12 hours,
with 1-hour intervals. Then, this information is combined with one of the three possible
scrubbing cycles (A, B, or C as in Table 1) obtained from the drive health predictor. Finally,
the scrubbing is triggered. During the 1-hour interval, if the scrubbing is complete, then we
stop, if not, the administrator is notified. The high-level flowchart for the system workload
predictor is outlined in Figure 3.

Figure 3: Flowchart of the workload predictor using the PWFTS algorithm.
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In Figure 4, we showcase the n-days ahead forecasting of the system utilization percent-
age. It is evident from the figure that the system exhibits a lower load on day 0 and a higher
load on day 2. Consequently, scheduling the scrubbing operations at day 0, when the system
is under a lower load, would be more favorable. This approach optimizes the utilization of
system resources, ensuring efficient scrubbing of the disks, and leading to lower processing
time, lower energy consumption, and a reduced carbon footprint of the data center.

Figure 4: Probability distribution of system utilization percentage for n-days ahead fore-
casting.

6. Experimental setting

In this section, we detail the dataset used for our study and the conducted experiments as
well as their results.

6.1. Open-source Baidu dataset

This dataset (DrTycoon, 2023) consists of samples collected from Seagate ST31000524NS
enterprise-level HDDs, with a total of 23395 units and 13 features describing SMART at-
tributes as shown in Table 2. The labeling of each disk was based on its operational status,
categorized as either functional or failed. A significant proportion of disks, totaling 22962,
were classified as functional, while a smaller subset of 433 was marked as failed, resulting in
an imbalanced dataset. The SMART attribute values were recorded at an hourly interval
for each disk, generating 168 samples per week for operational disks which gives 1,048,573
actual rows in the dataset corresponding to 23,395 disks (sampling frequency of 1 hour over
a period of 2 years). The number of rows represents only the sample of operational disks
that are provided in the dataset. However, the failed disks had varying numbers of samples,
up to 20 days prior to failure.
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Column No Feature Description

1 Index of the disk serial number Ranging from 1 to 23395
2 Value of SMART ID #1 Raw Read Error Rate
3 Value of SMART ID #3 Spin Up Time
4 Value of SMART ID #5 Reallocated Sectors Count
5 Value of SMART ID #7 Seek Error Rate
6 Value of SMART ID #9 Power On Hours
7 Value of SMART ID #187 Reported Uncorrectable Errors
8 Value of SMART ID #189 High Fly Writes
9 Value of SMART ID #194 Temperature Celsius
10 Value of SMART ID #195 Hardware ECC Recovered
11 Value of SMART ID #197 Current Pending Sector Count
12 Raw Value of SMART ID #5 Reallocated Sectors Count
13 Raw Value of SMART ID #197 Current Pending Sector Count
14 Class label of the disk 0 for failed and 1 for functional

Table 2: Features’ description for the Open-source Baidu dataset.

6.2. Experimental results

For our experiments, we employed the Python programming language and used the MAPIE3

library (map) for implementing Mondrian Conformal Prediction. The underlying algorithm
employed in our experiments was the k Nearest Neighbors (kNN) algorithm.

The main goal of conducting the experimental evaluation is to showcase the significant
reduction in the number of disk drives to be scrubbed that can be achieved by using the
drive health predictor engine, i.e. exploiting the Mondrian conformal predictor.

Table 3 shows a comparison between the confusion matrix for the drive disk classifica-
tion problem using the underlying algorithm alone kNN and adding Mondrian Conformal
Prediction, where label ”0” indicates a disk failure and label ”1” indicates a functional one.
We can notice that, adding MCP, the number of disks correctly classified as failing has
increased from 51314 to 51669, i.e., a difference of 355. This shows MCP helps to identify
more disks of the minority class, but with a drawback that is a decrease in the number
of disks correctly classified as healthy which has reduced from 296689 to 268616, i.e., a
difference of 28073.

This issue can be solved by considering the confidence scores and their respective health
status, as shown in Figure 5. There are nearly 126,224 drives with a health score greater
than 99.95% for the disks labeled as healthy (left), out of total 349,525 disks, but when
considering the relative health score, we categorize the 79,396 disk drives with a health score
less than 99.9% as less healthy. Consequently, as shown in Table 4, we only select these
79,396 disk drives for scrubbing and skip the remaining 270,129. This approach significantly
reduces the number of disks to be scrubbed to only 22.7%, resulting in lower power and
energy consumption, which is noteworthy.

3. https://github.com/adamzenith/MAPIE/tree/Mondrian
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kNN MCP

Predicted 0 1 0 1
Actual 0 51314 547 51669 537

1 975 296689 28703 268616

Table 3: Comparison of confusion matrix results for disk drive classification using kNN and
MCP.

Heath score 0.998 - 0.9985 0.9985 - 0.999 0.999 - 0.9995 0.9995 and 1

Disk count 16468 62928 63087 126244

Table 4: The number of relatively healthy drives based on the health score intervals

7. Discussion

The proposed method for disk identification for scrubbing offers a dual benefit. Firstly,
it can be utilized to assess the reliability of the storage system. Secondly, it employs a
disk ranking mechanism to assign relative health scores to individual disks. The choice
of classification algorithm depends on factors such as dataset size and available compute
resources. However, the decision can be guided by the expertise of the system administrator.

In addition, we discuss how the use of the Mondrian conformal predictor can aid in
identifying latent failures of disks, which could be a potential area for future research.
Furthermore, we identify three key aspects for designing optimal scheduling and cover per-
formance metrics, including effective coverage and size of the average prediction set.

Lastly, we provide a hypothetical evaluation of energy and power savings resulting from
selective scrubbing. This showcases the potential benefits of the proposed method in terms
of reduced power and energy consumption, highlighting its effectiveness in optimizing disk
scrubbing operations.

7.1. Optimal scheduling aspect

With respect to disk scrubbing frequency scheduling, we can design three aspects of schedul-
ing: time window, frequency, and space allocation. Each of them is described below:

• Time window focuses on scheduling the time window for scrubbing based on the
workload pattern. Scrubbing is done when the system is predicted to be idle.

• Frequency involves scheduling the frequency of scrubbing based on the health status
of the drive. For drives with the best health, scrubbing is done less frequently. For
drives with medium health, scrubbing is done more frequently.

• Space deals with scheduling space allocation based on the spatial and temporal locality
of sector errors. Instant scrubbing is performed on problematic chunks to ensure
efficient disk scrubbing.
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Figure 5: Histogram of the health scores corresponding to healthy predictions (left) and
faulting predictions (right).

7.2. Performance metrics

We captured the effective coverage (i.e., for any chosen confidence level, prediction intervals
will fail to include the correct label) and prediction set size for the open source dataset in .
The plot in Figure 6 demonstrates that there is a positive correlation between the confidence
level and the coverage. The split-conformal method results in a higher mean coverage than
the cross-validation method, indicating that the calibration set selection has a considerable
influence on the effective coverage. Furthermore, the right side of the figure displays the
average size of the prediction set, which increases as the confidence level increases. Similarly,
the split-conformal method yields a consistently higher mean prediction set size than the
cross-validation method. The metrics can be used to evaluate how well the Mondrian
conformal predictor is performing.

Figure 6: Effective coverage and average prediction set size plotted against confidence level

14



Enterprise Disk Drive Scrubbing Based on Mondrian Conformal Predictors

7.3. Power saving from selective scrubbing

Scrubbing is a resource-intensive operation that can impact the performance of the system
during its execution. The time taken to complete a scrubbing operation depends on various
factors, such as the size of the HDD being scrubbed. For instance, scrubbing a 1TB HDD
may take a few to several hours, while scrubbing an 8TB HDD could take significantly
longer, potentially a day or more. Assuming an average power consumption of 7 watts
during a 6-hour scrubbing operation for a single HDD, the total energy consumed would be
42 watt-hours (Wh). It’s important to note that power consumption during scrubbing can
vary for different disks in a data center, depending on factors like disk size, manufacturer,
and storage operations. Taking an average value for power usage comparison, if selective
scrubbing is performed on 28,000 disks instead of scrubbing all 120,000 disks in a data
center based on results from the Baidu open-source dataset, significant power and energy
savings can be achieved for the entire data center.

8. Conclusion

The complexity and uncertainty of individual storage components in large-scale data centers
pose challenges to business continuity. While proactive approaches like monitoring and
failure analysis have been implemented, machine learning approaches may have false positive
concerns in real-world applications with numerous disk drives. In this paper, we propose
a fine-grained approach to disk scrubbing using a learning framework based on Mondrian
conformal prediction, evaluated on the Baidu open-source dataset.

Our method provides a modest yet effective contribution from a methodological per-
spective. It tackles the issue of aggressive scrubbing of the entire storage array by utilizing
Mondrian conformal predictors to assign health scores to each drive and selectively target-
ing disks with lower scores for scrubbing. This approach generates a prioritized list for the
scheduler engine, leveraging drive failure analysis and quantifying disk health across the
entire storage pool. As a result, only 22.7% of the drives need to be scrubbed, leading to
power savings and improved reliability.

Future work could involve incorporating Venn-Abers predictors, which offer calibrated
probabilities for predictions and could further enhance the accuracy and effectiveness of our
approach (Vovk and Petej, 2012). By incorporating such predictors, we could potentially
refine and optimize our method for even better performance in identifying and addressing
potential disk failures in large-scale data centers.
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Omid Orang, Rodrigo Silva, Petrônio Cândido de Lima e Silva, and Frederico Gadelha
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disk drive population. 2007.
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