
Supplementary Material for Learning Temporally
Extended Skills in Continuous Domains as Symbolic

Actions for Planning

Jan Achterhold Markus Krimmel Joerg Stueckler
Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tübingen, Germany
{jan.achterhold,markus.krimmel,joerg.stueckler}@tuebingen.mpg.de

S.1 Introduction

In the following we provide supplementary details and analysis of our approach. We show visualisa-
tions of the learned skills in Sec. S.2 and provide an analysis for solution depths > 5 in Sec. S.3. In
Sec. S.4 we introduce additional embedded LightsOut environments, featuring a 3D board and larger
board sizes, to evaluate the exploration capabilities and limitations of our method. In Sec. S.5 we
give details on the robot experiment, and provide additional ablation results in Sec. S.6. Architectural
and implementation details are given in Sec. S.8 for SEADS, in Sec. S.9 for the SAC baseline and
in Sec. S.10 for the HAC baseline. In Sec. S.11 we compare SEADS to a variant which uses a skill
discriminator instead of a forward model as in ”Variational Intrinsic Control” (VIC, Gregor et al. [1]).
In Sec. S.12 we detail how we define training and test splits on our proposed environments. Finally,
we present detailed results for hyperparameter search on the SAC and HAC baselines in Sec. S.13.

S.2 Learned skills

We provide additional visualizations on the behaviour of SEADS in Fig. S.1, showing that SEADS
learns to assign skills to pushing individual fields on the game boards.

(a) Contact points of Jaco end ef-
fector.

(b) Contact points of Reacher end
effector.

Figure S.1: Contact points of the Jaco (Reacher) end effector in the LightsOutCursor
(LightsOutReacher) environments when executing skill k ∈ {1, ..., 25} on 20 different initial-
izations of the environment. Each skill is assigned a unique color/marker combination. We show the
agent performance after 1× 107 environment steps. We observe that the SEADS agent learns to push
individual fields as skills.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



k=0 k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8 k=9

k=10 k=11 k=12 k=13 k=14

k=15 k=16 k=17 k=18 k=19

k=20 k=21 k=22 k=23 k=24

(a) Skill trajectories on LightsOutCursor.

k=0 k=1 k=2 k=3

k=4 k=5 k=6 k=7

k=8 k=9 k=10 k=11

(b) Skill trajectories on TileSwapCursor.

Figure S.2: Trajectories in Cursor-embedded environments for skills k on 20 different environment
initializations. Colored lines show the x, y-coordinates of the Cursor, with the circular marker
indicating the start position of the skill. Black markers indicate locations where a ”push” was
executed, and green markers where the push has caused a change in the symbolic state.

S.2.1 Skill trajectories

In Figs. S.2, S.3 and S.4 we provide visualizations of trajectories executed by the learned skills on
the Cursor, Reacher and Jaco environments.

S.2.2 Solution length

In Fig. S.5 we provide an analysis how many low-level environment steps (i.e., manipulator actions)
are executed to solve instances of the presented physically embedded board games. We follow
the evaluation procedure of the main paper (Fig. 3) and show results for 10 trained agents and 20
initial board configurations for each solution depth in {1, ..., 5}. We only report results on board
configurations which are successfully solved by SEADS. We observe that even for a solution depth of
5, for the Cursor environments, only relatively few environment steps are required in total to solve
the board game (≈ 15 for LightsOutCursor, ≈ 10 for TileSwapCursor). In contrast, the more
complex Reacher and Jaco environments require significantly more interactions to be solved, with up
to 400 steps executed on TileSwapJaco for a solution depth of 5 and enabled re-planning.

S.2.3 Skill length

Following the evaluation procedure from Sec. S.2.2 we report the distribution of skill lengths (i.e.,
number of actions applied to the manipulator per skill) in Fig. S.6. Again, we only include problem in-
stances which were successfully solved by SEADS. While skill executions on the Cursor environments
are typically short (median 3/2 manipulator actions for LightsOutCursor/TileSwapCursor), the
Reacher and Jaco environments require a higher number of manipulator actions per skill (median
11/12/9/13 for LightsOutReacher/LightsOutJaco/TileSwapReacher/TileSwapJaco).

2



k=0 k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8 k=9

k=10 k=11 k=12 k=13 k=14

k=15 k=16 k=17 k=18 k=19

k=20 k=21 k=22 k=23 k=24

(a) Skill trajectories on LightsOutReacher.

k=0 k=1 k=2 k=3

k=4 k=5 k=6 k=7

k=8 k=9 k=10 k=11

(b) Skill trajectories on TileSwapReacher.

Figure S.3: Trajectories in Reacher-embedded environments for skills k on 20 different environment
initializations. Colored lines show the x, y-coordinates of the Reacher end-effector, with the circular
marker indicating the start position of the skill. Black markers indicate locations where a ”push” was
executed, and green markers where the push has caused a change in the symbolic state.

k=0 k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8 k=9

k=10 k=11 k=12 k=13 k=14

k=15 k=16 k=17 k=18 k=19

k=20 k=21 k=22 k=23 k=24

(a) Skill trajectories on LightsOutJaco.

k=0 k=1 k=2 k=3

k=4 k=5 k=6 k=7

k=8 k=9 k=10 k=11

(b) Skill trajectories on TileSwapJaco.

Figure S.4: Trajectories in Jaco-embedded environments for skills k on 20 different environment
initializations. Colored lines show the x, y-coordinates of the Jaco hand, with the circular marker
indicating the start position of the skill. Green markers indicate contact locations with the board.

3



0

5

10

15

20

E
nv

.
st

ep
s

LightsOutCursor

0

50

100

150

200

E
nv

.
st

ep
s

LightsOutReacher

0

100

200

300

E
nv

.
st

ep
s

LightsOutJaco

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(Solution depth, Replanning)

5

10

15

20

E
nv

.
st

ep
s

TileSwapCursor

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(Solution depth, Replanning)

0

25

50

75

100
E

nv
.

st
ep

s

TileSwapReacher

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(1
, no)

(1
, ye

s)

(2
, no)

(2
, ye

s)

(3
, no)

(3
, ye

s)

(4
, no)

(4
, ye

s)

(5
, no)

(5
, ye

s)

(Solution depth, Replanning)

0

100

200

300

400

E
nv

.
st

ep
s

TileSwapJaco

Figure S.5: Analysis of solution lengths (total number of manipulator steps required to solve
the physically embedded board games) for different environments, solution depths and planning
with/without re-planning. Box-plots show the 25%/75% quartiles and median (green line). Whiskers
extend to the farthest datapoint within the 1.5-fold interquartile range. Outliers are plotted as circles.

Lig
hts

O
utC

urso
r

Lig
hts

O
utJ

ac
o

Lig
hts

O
utR

ea
ch

er

Tile
Swap

Curso
r

Tile
Swap

Ja
co

Tile
Swap

Rea
ch

er

Environment

0

10

20

30

40

50

S
ki

ll
le

ng
th

(n
um

b
er

of
en

v.
st

ep
s)

Skill length

Figure S.6: Analysis of skill lengths (number of manipulator steps executed within a single skill) for
different environments. Box-plots show the 25%/75% quartiles and median (green line). Whiskers
extend to the farthest datapoint within the 1.5-fold interquartile range. Outliers are plotted as circles.

4



S.3 Large solution depth analysis

In Fig. S.7 we present an analysis for solving LightsOut tasks with solution depths > 5 using the
learned SEADS agent on LightsOutCursor. We observe a high mean success rate of ≥ 98% for
solution depths ≤ 8. However, the time required for the breadth-first search planner to find a feasible
plan increases from ≈ 2.02s for solution depth 5 to ≈ 301.8s for solution depth 9. We abort BFS
planning if the list of nodes to expand exceeds a size of ≈ 16 GB memory usage. All experiments
were conducted on Intel® Xeon® Gold 5220 CPUs with a clock rate of 2.20 GHz.

1 2 3 4 5 6 7 8 9 10 11
Solution depth

0

50

100
P

la
n

fo
un

d
/

O
ve

ra
ll

su
cc

es
s

ra
te

[%
]

(n
o

re
pl

an
.)

LightsOutCursor

0

300

600

900

1200

1500

P
la

nn
in

g
ti

m
e

[s
ec

]
(w

he
n

pl
an

fo
un

d)

Plan found [%]

Overall success rate [%] (no replan.)

Planning time

Figure S.7: Analysis of the LightsOutCursor environment for solution depths > 5. ”Solution
depth” is the number of game moves required to solve the LightsOut instance. ”Plan found” refers
to the ratio of problem instances where BFS finds a feasible plan. ”Overall success rate” quantifies
the ratio of problem instances for which a feasible plan was found and, in addition, was successfully
executed by the low-level policy. The ”Planning time” refers to the wall-time the breadth-first search
planner runs, for the cases in which it finds a feasible plan. We report results for 20 problem instances
for each solution depth for 5 independently trained agents. We refer to sec. S.3 for details. The solid
line refers to the mean, shaded area to min/max over 5 independently trained agents.

S.4 Additional LightsOut variants

S.4.1 LightsOut3DJaco

In addition to the LightsOutJaco environment presented in the main paper we introduce an ad-
ditional environment LightsOut3DJaco. While in LightsOutJaco the LightsOut board is a flat
plane, in LightsOut3DJaco the fields are elevated/recessed depending on their distance to the
board’s center (see Fig. S.8). This poses an additional challenge to the agent, as it has to avoid to
push fields with its fingers accidentally during skill execution. Despite the increased complexity
of LightsOut3DJaco over LightsOutJaco we observe similar results in terms of detected game
moves (Fig. S.9a) and task performance (Fig. S.9b). Both environments can be solved with a high
success rate of 94.9% (LightsOutJaco) and 96.3% (LightsOut3DJaco). For the experiments, we
follow the evaluation protocols from the main paper.

Figure S.8: LightsOut3DJaco: A variant of the LightsOutJaco environment with elevated fields.
In comparison to the LightsOutJaco environment this environment poses an additional challenge
to the agent, as it has to avoid to push fields with its fingers accidentally during skill execution. We
show the execution of a skill which has learned to push the center field for T = {0, 4, 8, 12, 14}.

S.4.2 Larger LightsOut boards / spacing between fields

In this experiment we investigate how well SEADS performs on environments in which a very large
number of skills has to be learned and where noisy executions of already learned skills uncover

5



0 5M 10M
Env. steps

0

25

A
ve

ra
ge

un
iq

ue
ga

m
e

m
ov

es

Skills detected

LightsOutJaco LightsOut3DJaco

(a) Average number of
unique game moves de-
tected on LightsOutJaco and
LightsOut3DJaco.

0 5M 10M
Env. steps

0

100

S
uc

ce
ss

ra
te

(%
) LightsOutJaco

0 5M 10M
Env. steps

LightsOut3DJaco

SEADS (replan.) SEADS (no replan.)

(b) SEADS task performance on LightsOutJaco and
LightsOut3DJaco, with and without replanning.

Figure S.9: Evaluation on number of (a) detected game moves and (b) task performance on
LightsOut3DJaco (see sec. S.4.1 for details).

new skills with low probability. To this end, we modified the LightsOutCursor environment to
have more fields (and thereby, more skills to be learned), and introduced a spacing between the
tiles, which makes detecting new skills more challenging. For a fair comparison, we keep the total
actionable area in all environments constant, which introduces an empty area either around the board
or around the tiles (see Fig. S.10). We make two main observations: (i) As presumed, learning
skills in the LightsOutCursor environment with spacing between tiles requires more environment
interactions than for adjacent tiles (see Fig. S.11a) (ii) For boards up to size 9× 9 a large majority
of skills is found after 1.5 million environment steps of training (5× 5 : 24.9/25 , 7× 7 : 48.6/49,
9 × 9 : 76.8/81). The LightsOutCursor environment with boardsize 13 × 13 poses a challenge
to SEADS with 119.3/169 skills detected after 1.5 million environment steps (see Fig. S.11). The
numbers reported are averages over 5 independently trained agents.

Figure S.10: Variants of LightsOutCursor for different board sizes (5× 5, 7× 7, 9× 9, 13× 13)
and spacing introduced between fields (second panel from left).

0 0.5M 1M 1.5M
Env. steps

0

25

A
ve

ra
ge

un
iq

ue
ga

m
e

m
ov

es

Boardsize 5, Spacing 0

Boardsize 5, Spacing 1

(a) Boardsize 5× 5

0 0.5M 1M 1.5M
Env. steps

0

49

Boardsize 7, Spacing 0

(b) Boardsize 7× 7

0 0.5M 1M 1.5M
Env. steps

0

81

Boardsize 9, Spacing 0

(c) Boardsize 9× 9

0 0.5M 1M 1.5M
Env. steps

0

169

Boardsize 13, Spacing 0

(d) Boardsize 13× 13

Figure S.11: Detected average unique game moves (skills) on LightsOutCursor environment for
different board sizes (5× 5, 7× 7, 9× 9, 13× 13) and spacing. The introduced spacing slows down
skill learning (a). While for boards until size 9 × 9 nearly all skills are found (a-c), the 13 × 13
environment poses a challenge to SEADS (d). Solid line: mean / Shaded area: min/max over 5
independently trained agents.

S.5 Real Robot Experiment

For the real robot experiment we use a uArm Swift Pro robotic arm that interacts with a LightsOut
board game. The board game runs on a Samsung Galaxy Tab A6 Android tablet with a screen size
of 10.1 inches. We mapped the screen plane excluding the system status bar and action bar of the
app (blue bar) to normalized coordinates (x, y) ∈ [0, 1]. A third z ∈ [0, 1] coordinate measures the
perpendicular distance to the screen plane, with z = 1 approximately corresponding to a distance

6



of 10 cm to the screen. To control the robot arm, we use the Python SDK from [2], which allows
to steer the end effector to

−→
X = (X,Y, Z) target locations in a coordinate frame relative to the

robot’s base. As the robot’s base is not perfectly aligned with the tablet’s surface, e.g. due to the rear
camera, we employed a calibration procedure. We measured the location of the four screen corners in
(X,Y, Z) coordinates using the SDK’s get position method (by placing the end effector holding
the capacitive pen on the particular corners) and fitted a plane to these points minimizing the squared
distance. We reproject the measured points onto the plane and compute a perspective transform by
pairing the reprojected points with normalized coordinates (x, y) ∈ {0, 1} × {0, 1}. To obtain robot
coordinates (X,Y, Z) from normalized coordinates (x, y, z) we first apply the perspective transform
on (x, y), yielding X̂ = (X,Y, Z = 0). We subsequently add the plane’s normal to (X,Y, Z) scaled
by z and an additional factor which controls the distance to the tablet’s surface for z = 1. The
state of the board is communicated to the host machine running SEADS via USB through the logging
functionality of the Android Debug Bridge. The whole system including robotic arm and Android
tablet is interfaced as an OpenAI Gym [3] environment.

S.5.1 Training on robot with absolute push position actions

In a first variant, the action space of the robotic environment is 2-dimensional, comprising a normal-
ized pushing coordinate (x, y) ∈ [0, 1] which is translated into a sequence of three commands sent
to the robot, setting the position of the end effector to (x, y, z = 0.2), (x, y, z = 0), (x, y, z = 0.2)
subsequently. To simulate a more realistic gameplay, we do not resample the LightsOut board state or
the robots’ pose at the beginning of an episode. We show the setup and behaviour during training in
Fig. S.12. After 5000 environment interactions (corresponding to ≈ 7.5 hours total training time)
we evaluated the SEADS agent’s performance on 100 board configurations (20 per solution depth in
{1, ..., 5}) and found all of them to be successfully solved by the agent.

(a) Robotic arm (uArm Swift Pro)
interacting with a LightsOut game
running on an Android tablet.

(b) Contact points of 200 skill ex-
ecutions with randomly sampled
skills k ∈ {1, ..., 25} at the be-
ginning of training.

(c) Contact points of the last 200
skill executions with randomly
sampled skills k ∈ {1, ..., 25}
when training SEADS on 5000 en-
vironment interactions.

Figure S.12: Real-world setup with a robotic arm (a), on which SEADS learns a symbolic forward
model on the LightsOut board state and associated low-level skills which relate to pushing locations
on the tablet’s surface. In (b) and (c) we depict the first 200 and last 200 pushing locations of 5000
pushes used for training in total. While pushing locations are randomly scattered at the beginning of
training (b), in the last 200 of 5000 training interactions skills relate to pushing particular fields on
the game board (c).

S.5.2 Training on robot with positional displacement actions

In this experiment the action space of the environment is 3-dimensional a = (∆x,∆y, p), with the
first two actions being positional displacement actions ∆x,∆y ∈ [−0.2, 0.2] and the third action
p ∈ [−1, 1] indicating whether a ”push” should be executed. The displacement actions represent
incremental changes to the robotic arm’s end effector position. In normalized coordinates (see
sec. S.5) the end effector is commanded to steer to (clip(x+ ∆x, 0, 1), clip(y + ∆y, 0, 1), z = 0.3),
where (x, y) are the current coordinates of the end effector. If the push action p exceeds a threshold
p > 0.6, first the end effector is displaced, followed by a push, which is performed by sending the

7



target coordinates (x, y, z = 0), (x, y, z = 0.3) to the arm subsequently. In contrast to the first variant
in which the SEADS agent sends a push location to the agent directly, here the SEADS agent has to
learn temporally extended skills which first locate the end effector above a particular board field and
then execute the push. Therefore, to reach a high success rate on the LightsOut task, significantly
more environment interactions are required compared to the first variant. We observe that a test set
of 25 LightsOut instances (5 per solution depth in {1, ..., 5}) is solved with a success rate of 100%
after ≈ 165k environment interactions, taking in total ≈ 43.5 hours wall-time to train. We refer to
Fig. S.13 for a visualization of the success rate of SEADS over the course of training and to Fig. S.14
for a visualization of skills learned after ≈ 220k environment interactions. We refer to the video on
the real robot experiment provided with the supplemental materials.

13
36

3
ste

ps

3h
52

m
23

s

30
36

5
ste

ps

8h
6m

58
s

46
72

2
ste

ps

12
h

20
m

31
s

63
51

0
ste

ps

16
h

43
m

14
s

80
69

1
ste

ps

21
h

11
m

30
s

98
05

9
ste

ps

25
h

42
m

56
s

11
54

04
ste

ps

30
h

14
m

45
s

13
21

72
ste

ps

34
h

39
m

56
s

14
91

38
ste

ps

39
h

5m
36

s

16
62

33
ste

ps

43
h

35
m

49
s

18
38

30
ste

ps

48
h

14
m

33
s

20
15

18
ste

ps

52
h

47
m

3s

21
90

15
ste

ps

57
h

17
m

53
s

Env. steps / Wall time

0

20

40

60

80

100

S
uc

ce
ss

ra
te

(%
)

Success rate of LightsOut on real robot with ∆-displacements

Figure S.13: Task success rate during the course of training SEADS on the LightsOut game embedded
into a physical manipulation scenario with the uArm Swift Pro robotic arm. The arm is controlled by
SEADS with positional displacement actions (see S.5.2). We evaluate the task performance as success
rate on 25 board configurations for each reported step (5 instances per solution depth in {1, ..., 5}).

S.6 Extended ablations

In this section we present an extended ablation analysis. We refer to sec. 4 of the main paper for a
description of the evaluation protocol.

S.6.1 Relabelling

In this section we provide additional ablations for the episode relabelling. In addition to the ”No
relabelling” ablation considered in the main paper we investigate not relabelling episodes for the
SAC agent only (No SAC relabelling) and not relabelling episodes for training the forward model
(No forw. model relabelling). All evaluations are performed on 10 individually trained agents. We
refer to Fig. S.15 for a visualization of the results. The results demonstrate that relabelling both for
the forward model and SAC agent training are important for the performance of SEADS.

S.6.2 Numerical results

In Table 1 we present the number of average unique game moves executed as skills by SEADS and
its ablations. On the simpler Cursor environments, the ablations perform similarly well as SEADS
in finding almost all skills. On the Reacher environments, most important for the performance of
SEADS is to perform relabelling. On LightsOutJaco, all ablated design choices are important for
the high performance of SEADS.

We also observe that the ”More skills” variant (equivalent to SEADS, but with K = 30 for LightsOut,
K = 15 for TileSwap) yields a similar number of executed unique game moves as SEADS, which is

8



k=0 k=1 k=2 k=3 k=4

k=5 k=6 k=7 k=8 k=9

k=10 k=11 k=12 k=13 k=14

k=15 k=16 k=17 k=18 k=19

k=20 k=21 k=22 k=23 k=24

Figure S.14: Visualization of 320 trajectories executed on the uArm Swift robotic arm with positional
displacement actions, after the agent has been trained for ≈ 220k environment interactions. Each
subpanel shows trajectories for a specific symbolic action k. Green markers indicate push locations.
Similar to the other environments, SEADS has learned to push individual fields as skills.

an encouraging result, justifying to over-estimate the number of skills K in situations where it is
unknown.

We perform one-sided Mann-Whitney U tests [4] to conclude about significance of our results. On
each environment, for each of the 10 independently trained SEADS agents, we obtain a set of 10
samples on the average number of detected skills. Analogously, we obtain such a set of 10 samples
for every ablation. We aim at finding ablations which either (i) detect significantly more skills
than SEADS or (ii) detect significantly less skills than SEADS on a particular environment. We
reject null hypotheses for p < 0.01. For (i), we first set up the null hypothesis that the distribution

9



underlying the SEADS samples is stochastically greater or equal to the distribution underlying the
ablation samples. For ablations on which this null hypothesis can be rejected it holds that they
detect significantly more skills than SEADS. As we cannot reject the null hypothesis for any ablation,
no ablation exists which detects significantly more skills than SEADS. For (ii), we set up the null
hypothesis that the distribution underlying the SEADS samples is stochastically less or equal to the
distribution underlying the ablation samples. For all ablations there exists at least one environment in
which we can reject the null hypothesis to (ii), indicating that all ablations contribute significantly
to the performance of SEADS on at least one environment. The results of the significance test are
highlighted in Table 1.

Cursor Reacher Jaco

LightsOut TileSwap LightsOut TileSwap LightsOut TileSwap

SEADS 24.94± 0.06 11.99± 0.02 24.3± 0.28 11.81± 0.13 23.64± 1.04 11.54± 0.27
No sec.-best norm. 24.74± 0.42 11.98± 0.03 24.42± 0.32 11.78± 0.11 22.28± 0.92 9.26± 1.17
No nov. bonus 24.83± 0.32 11.99± 0.03 23.75± 0.71 11.81± 0.09 20.24± 1.46 11.58± 0.29
No relab. 24.72± 0.39 12.0± 0.02 16.58± 4.62 3.62± 3.2 19.26± 1.0 11.53± 0.12
No forw. mod. relab. 24.9± 0.07 11.99± 0.02 22.73± 0.94 11.77± 0.28 11.5± 3.47 8.64± 1.83
No SAC relabelling 24.88± 0.09 11.98± 0.03 22.94± 1.51 11.76± 0.15 17.32± 2.54 11.05± 0.48

More skills 24.97± 0.03 11.99± 0.02 24.36± 0.36 11.8± 0.12 23.9± 0.47 11.47± 0.41

Table 1: Number of average unique game moves executed as skills by SEADS and its ablations after
training on 5× 105 (Cursor) / 1× 107 (Reacher, Jaco) environment interactions. Best performance
on each environment is marked by underline, worst in red. The ablated design choices contribute
to the performance of SEADS especially on the more difficult Reacher and Jaco environments.
Overestimating the number of skills does not decrease performance (”More skills”). We report mean
and standard deviation on 10 independently trained agents. Ablations which perform significantly
(one-sided Mann-Whitey U [4], p < 0.01) worse than SEADS are colored red. We did not find any
ablation to perform significantly better than SEADS (including the ”More skills” ablation). We refer
to sec. S.6.2 for details.

0 0.5M
Env. steps

0

25

A
ve

ra
ge

un
iq

ue
ga

m
e

m
ov

es

LightsOutCursor

0 0.5M
Env. steps

0

12
TileSwapCursor

0 5M 10M
Env. steps

0

25
LightsOutReacher

0 5M 10M
Env. steps

0

12
TileSwapReacher

0 5M 10M
Env. steps

0

25
LightsOutJaco

0 5M 10M
Env. steps

0

12
TileSwapJaco

SEADS No relabelling No forw. model relabelling No SAC relabelling

Figure S.15: Extended relabelling ablation analysis with 10 trained agents per variant. The results
demonstrate that relabelling both for the forward model and SAC agent training are important for the
performance of SEADS. See sec. S.6 for details.

S.7 Environment details

S.7.1 Cursor environments

At the beginning of an episode, the position of the cursor is reset to x ∼ Uniform(0, 1), y ∼
Uniform(0, 1). After a game move, the cursor is not reset. Both LightsOut and TileSwap board
extents are (x, y) ∈ [0, 1]× [0, 1].

S.7.2 Reacher environments

At the beginning of an episode, the two joints of the Reacher are set to random angles θ ∼
Uniform(0, 2π), φ ∼ Uniform(0, 2π). After a game move, the joints are not reset. Both LightsOut
and TileSwap board extents are (x, y) ∈ [−0.15, 0.15] × [−0.15, 0.15]. The control simulation
timestep is 0.02s, and we use an action repeat of 2.

10



Algorithm 1 Task solution (without replanning). bfs plan denotes breadth-first search over a se-
quence of skills to transition z(0) to z∗, leveraging the symbolic forward model qθ. Nodes are
expanded in BFS via the function successorqθ : Z ×K → Z .

Input: environment E, skill-conditioned policy π, symbolic forward model qθ, initial state
s(0) = s0, symbolic goal z∗, symbolic mapping function Φ
Output: boolean success
N, [k1, ..., kN ] = bfs plan(qθ, z(0) = Φ(s(0)), z

∗)
for n = 1 to N do
s(n) = apply(E, π, s(n−1), ki)

end for
success = (Φ(s(N)) == z∗)

S.7.3 Jaco environments

At the beginning of an episode and after a game move the Jaco arm is randomly reset above the
board. The tool’s (end effector) center point is randomly initialized to x ∼ Uniform(−0.1, 0.1),
y ∼ Uniform(−0.1, 0.1), z ∼ Uniform(0.2, 0.4) with random rotation θ ∼ Uniform(−π, π).
The LightsOut board extent is (x, y) ∈ [−0.25, 0.25] × [−0.25, 0.25], the TileSwap board extent
(x, y) ∈ [−0.15, 0.15]× [−0.15, 0.15]. We use a control timestep of 0.1s in the simulation.

S.8 SEADS details

In the following, we will present algorithmic and architectural details of our approach.

S.8.1 Task solution with and without replanning

One main idea of the proposed SEADS agent is to use separate phases of symbolic planning (using the
symbolic forward model qθ(zT | z0, k)) and low-level control (using the skill policies π(a | s, k)) for
solving tasks. In algorithm 1 and algorithm 2 we present pseudocode of task solution using planning
and skill execution, with and without intermittent replanning.

Algorithm 2 Task solution (with replanning). bfs plan denotes breadth-first search over a sequence
of skills to transition z(0) to z∗, leveraging the symbolic forward model qθ. Nodes are expanded in
BFS via the function successorqθ : Z ×K → Z .

Input: environment E, skill-conditioned policy π, symbolic forward model qθ, initial state
s(0) = s0, symbolic goal z∗, symbolic mapping function Φ
n← 0
repeat
N, [k1, ..., kN ]← bfs plan(qθ, z(n) = Φ(s(n)), z

∗)
for i ∈ {1, . . . , N} do
n← n+ 1
ẑ(n) ← successorqθ (Φ(s(n−1)), ki) {Compute the expected symbolic state after applying
skill ki}
s(n) ← apply(E, π, s(n−1), ki)
z(n) ← Φ(s(n))
if z(n) 6= ẑ(n) then

Break {If the actual symbolic state differs from the predicted state, we replan}
end if

end for
until z(n) == z∗

S.8.2 Training procedure

The main training loop of our proposed SEADS agent consists of intermittent episode collection
and re-labelling for training the skill-conditioned policy π using soft actor-critic (SAC, [5]) and

11



symbolic forward model (see Algorithm 3). For episode collection we first sample a skill from a
uniform distribution over skills k ∼ Uniform{1, ...,K} and then collect the corresponding episode.
In our experiments we collect 32 episodes per epoch (i.e., Nepisodes = 32) for all experiments except
the real robot experiment with absolute push positions (sec. S.5.1), where we collect 4 episodes
per epoch. We maintain two replay buffers of episodes for short-term (Episodesrecent) and long-
term storage (Episodesbuffer), in which we keep the Nbuffer = 2048 / Nrecent = 256 most recent
episodes. For training the SAC agent and skill model we combine a sample of 256 episodes from the
long-term buffer and all 256 episodes from the short-term buffer, comprising the episodes Episodes.
These episodes are subsequently passed to the relabelling module. On these relabelled episodes the
SAC agent and skill model are trained. Please see the following subsections for details on episode
collection, relabelling, skill model training and policy training.

Algorithm 3 SEADS training loop

Input: Environment E
Number of epochs Nepochs

Number of new episodes per epoch Nepisodes

Episode buffer size Nbuffer

Result: Trained skill-conditioned policy π(a | s, k) and forward model qθ(zT | z0, k)
Episodesbuffer = [], Episodesrecent = []
for nepoch = 1 to Nepochs do

for nepisode = 1 to Nepisodes do
Sample k ∼ p(k)
s0 = E.reset()
Ep = collect episode(E, π, s0, k)
Episodesbuffer.append(Ep), Episodesrecent.append(Ep)

end for
Episodesbuffer ← Episodesbuffer[-Nbuffer:] {Keep Nbuffer most recent episodes}
Episodesrecent ← Episodesrecent[-Nrecent:]
Episodes = sample(Episodesbuffer, N = 256) ∪ Episodesrecent
EpisodesSM ← relabel(Episodes, p = 1.0)
update skill model(EpisodesSM)
Episodes = sample(Episodesbuffer, N = 256) ∪ Episodesrecent
EpisodesSAC ← relabel(Episodes, p = 0.5)
update sac(EpisodesSAC)

end for

S.8.2.1 Episode collection (collect episode)

The operator collect episode works similar to the apply operator defined in the main paper (see sec.
3). It applies the skill policy π(at | st, k) iteratively until termination. However, the operator returns
all intermediate states s0, ..., sT and actions a0, ..., aT−1 to be stored in the episode replay buffers.

S.8.2.2 Relabelling (relabel)

For relabelling we sample a Bernoulli variable with success probability of p for each episode in the
Episodes buffer, indicating whether it may be relabeled. For training the forward model we relabel
all episodes (p = 1), while for the SAC agent we only allow half of the episodes to be relabeled
(p = 0.5). The idea is to train the SAC agent also on negative examples of skill executions with small
rewards. Episodes in which the symbolic observation did not change are excluded from relabelling
for the SAC agent, as for those the agent receives a constant negative reward. All episodes which
should be relabeled are passed to the relabelling module as described in sec. 3. The union of these
relabelled episodes and the episodes which were not relabeled form the updated buffer which is
returned by the relabel operator.

S.8.2.3 SAC agent update (update sac)

In each epoch, we fill a transition buffer using all transitions from the episodes in the EpisodesSAC
buffer. Each transition tuple is of the form ([sit, k

i], ait, [s
i
t+1, k

i], rit+1) where s are environment

12



observations, a low-level actions, k a one-hot representation of the skill and r the intrinsic reward. [·]
denotes the concatenation operation. The low-level SAC agent is trained for 16 steps per epoch on
batches comprising 128 randomly sampled transitions from the transition buffer. We train the actor
and critic networks using Adam [6]. For architectural details of the SAC agent, see sec. S.8.3.1.

S.8.2.4 Skill model update (update skill model)

From the episode buffer EpisodesSM we sample transition tuples (zi0, ki, z
i
T i). The skill model is

trained to minimize an expected loss

L = EB

[∑
i∈B

L(zi0, ki, z
i
T i)

]
(1)

for randomly sampled batches B of transition tuples. We optimize the skill model parameters θ
using the Adam [6] optimizer for 4 steps per epoch on batches of size 32. We use a learning rate
of 10−3. The instance-wise loss L to be minimized corresponds to the negative log-likelihood
L = − log qθ(z

i
T i | z

i
0, k) for symbolic forward models or L = − log qθ(k | zi0, ziT i) for the VIC

ablation (see sec. S.11).

S.8.3 Architectural details

S.8.3.1 SAC agent

We use an open-source soft actor-critic implementation [7] in our SEADS agent. Policy and critic
networks are modeled by a multilayer perceptron with two hidden layers with ReLU activations. For
hyperparameters, please see the table below.

{LightsOut, TileSwap }- Cursor Reacher Jaco Robot (LightsOut)

Learning rate 3 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

Target smoothing coeff. τ 0.005 0.005 0.005 0.005
Discount factor γ 0.99 0.99 0.99 0.99

Hidden dim. 512 512 512 512
Entropy target α 0.1 0.01 0.01 0.1

Automatic entropy tuning no no no no
Distribution over actions Gaussian Gaussian Gaussian Gaussian

S.8.3.2 Symbolic forward model

Our symbolic forward model models the distribution over the terminal symbolic observation zT
given the initial symbolic observation z0 and skill k. It factorizes over the symbolic observation as
qθ(zT | k, z0) =

∏D
d=1 qθ([zT ]i | k, z0) =

∏D
d=1 Bernoulli([αT (z0, k)]i) where D is the dimension-

ality of the symbolic observation. We assume z ∈ Z to be a binary vector with Z = {0, 1}D. The
Bernoulli probabilities αT (z0, k) are predicted by a learnable neural component. We use a neural
network f to parameterize the probability of the binary state in z0 to flip pflip = fθ(z0, k), which
simplifies learning if the change in symbolic state only depends on k and is independent of the current
state. Let αT be the probability for the binary state to be True, then αT = (1−z0)·pflip+z0·(1−pflip).
The input to the neural network is the concatenation [z0, onehot(k)]. We use a multilayer perceptron
with two hidden layers with ReLU nonlinearities and 256 hidden units.

S.9 SAC baseline

We train the SAC baseline in a task-specific way by giving a reward of 1 to the agent if the board
state has reached its target configuration and 0 otherwise. At the beginning of each episode we first
sample the difficulty of the current episode which corresponds to the number of moves required to
solve the game (solution depth S). For all environments S is uniformly sampled from {1, ..., 5}. For
all Cursor environments we impose a step limit Tlim = 10 · S, for Reacher and Jaco Tlim = 50 · S.
This corresponds to the number of steps a single skill can make in SEADS multiplied by S. We use a
replay buffer which holds the most recent 1 million transitions and train the agent with a batchsize of

13



256. The remaining hyperparameters (see table below) are identical to the SAC component in SEADS;
except for an increased number of hidden units and an additional hidden layer (i.e., three hidden
layers) in the actor and critc networks to account for the planning the policy has to perform. In each
epoch of training we collect 8 samples from each environment which we store in the replay buffer.
We performed a hyperparameter search on the number of agent updates performed in each epoch
N and entropy target values α. We also experimented with skipping updates, i.e., collecting 16 (for
N = 0.5) or 32 (for N = 0.25) environment samples before performing a single update. We found
that performing too many updates leads to unstable training (e.g., N = 4 for LightsOutCursor).
For all results and optimal settings per environment, we refer to sec. S.13.1. For the SAC baseline we
use the same SAC implementation from [7] which we use for SEADS.

{LightsOut, TileSwap }- Cursor Reacher Jaco

Learning rate 3 · 10−4 3 · 10−4 3 · 10−4

Target smoothing coeff. τ 0.005 0.005 0.005
Discount factor γ 0.99 0.99 0.99

Hidden dim. 512 512 512
Entropy target α tuned (see sec. S.13.1)

Automatic entropy tuning no no no
Distribution over actions Gaussian Gaussian Gaussian

S.10 HAC baseline

For the HAC baseline we adapt the official code release [8]. We modify the architecture to allow for
a two-layer hierarchy of policies in which the higher-level policy commands the lower-level policy
with discrete subgoals (which correspond to the symbolic observations z in our case). This requires
the higher-level policy to act on a discrete action space Ahigh = Z . The lower-level policy acts on
the continuous actions space Alow = A of the respective manipulator (Cursor, Reacher, Jaco). To
this end, we use a discrete-action SAC agent for the higher-level policy and a continuous-action
SAC agent for the lower-level policy. For the higher-level discrete SAC agent we parameterize the
distribution over actions as a factorized reparametrizable RelaxedBernoulli distribution, which is a
special case of the Concrete [9] / Gumbel-Softmax [10] distribution. We use an open-source SAC
implementation [7] for the SAC agent on both levels and extend it by a RelaxedBernoulli distribution
over actions for the higher-level policy.

S.10.1 Hyperparameter search

We performed an extensive hyperparameter search on all 6 environments ([LightsOut, TileSwap ] ×
[Cursor, Reacher, Jaco ]) for the HAC baseline. We investigated a base set of entropy target values
αlow, αhigh ∈ {0.1, 0.01, 0.001, 0.0001} for both layers separately. On the Cursor environments
we refined these sets in regions of high success rates. We performed a hyperparameter search on
the temperature parameter τ of the RelaxedBernoulli distribution on the Cursor environments with
τ ∈ {0.01, 0.05, 0.1, 0.5} and found τ = 0.1 to yield the best results. For experiments on the Reacher
and Jaco environments we then fixed the parameter τ = 0.1. We report results on parameter sets with
highest average success rate on 5 individually trained agents after 5×105 (Cursor) / 1×107 (Reacher,
Jaco) environment interactions. We refer to sec. S.13.2 for a visualization of all hyperparameter
search results.

14



Parameters for high-level policy

all environments

Learning rate 3 · 10−4

Target smoothing coeff. τ 0.005
Discount factor γ 0.99

Hidden layers for actor/critic 2
Hidden dim. 512

Entropy target αhigh tuned (see sec. S.13.2)
Automatic entropy tuning no
Distribution over actions RelaxedBernoulli

RelaxedBernoulli temperature τ tuned (see sec. S.13.2)

Parameters for low-level policy

all environments

Learning rate 3 · 10−4

Target smoothing coeff. τ 0.005
Discount factor γ 0.99

Hidden layers for actor/critic 2
Hidden dim. 512

Entropy target αhigh tuned (see sec. S.13.2)
Automatic entropy tuning no
Distribution over actions Gaussian

S.11 VIC baseline

We compare to Variational Intrinsic Control (VIC, Gregor et al. [1]) as a baseline method of un-
supervised skill discovery. It is conceptually similar to our method as it aims to find skills such
that the mutual information I(sT , k | s0) between the skill termination state sT and skill k is max-
imized given the skill initiation state s0. To this end it jointly learns a skill policy π(st | at, k)
and skill discriminator qθ(k | s0, sT ). We adopt this idea and pose a baseline to our approach in
which we model qθ(k | z0, zT ) directly with a neural network, instead of modelling qθ(k | z0, zT )
indirectly through a forward model qθ(zT | z0, k). The rest of the training process including its
hyperparameters is identical to SEADS. We implement qθ(k | z0, zT ) by a neural network which
outputs the parameters of a categorical distribution and is trained by maximizing the log-likelihood
log qθ(k | zi0, ziT i) on transition tuples (zi0, ki, z

i
T i) (see sec. S.8.2.4). We experimented with different

variants of passing (zi0, ziT i) to the network: (i) concatenation [zi0, ziT i ] and (ii) concatenation with
XOR [zi0, ziT i , z

i
0 XOR ziT i ]. We only found the latter to show success during training. The neural

network model contains two hidden layers of size 256 with ReLU activations (similar to the forward
model). We also evaluate variants of VIC which are extended by our proposed relabelling scheme
and second-best reward normalization. In contrast to VIC, our SEADS agent discovers all possible
game moves reliably in both LightsOutCursor and TileSwapCursor environments, see Fig. S.16
for details. Our proposed second-best normalization scheme (+SBN, sec. 3) slightly improves per-
formance of VIC in terms of convergence speed (LightsOutCursor) and variance in number of
skills detected (TileSwapCursor). The proposed relabelling scheme (+RL, sec. 3) does not improve
(LightsOutCursor) or degrades (TileSwapCursor) the number of detected skills.

15



0 0.5M
Env. steps

0

25

A
ve

ra
ge

un
iq

ue
ga

m
e

m
ov

es

LightsOutCursor

0 0.5M
Env. steps

0

12
TileSwapCursor

SEADS VIC VIC + RL VIC + SBN VIC + RL + SBN

Figure S.16: Number of discovered skills on the LightsOutCursor, TileSwapCursor environ-
ments for the SEADS agent and variants of VIC [1]. Only SEADS discovers all skills reliably on both
environments. See sec. S.11 for details.

solution depth
1 2 3 4 5 6 7 8

LightsOut 25 300 2300 12650 53130 176176 467104 982335
TileSwap 12 88 470 1978 6658 18081 38936 65246

solution depth
9 10 11 12 13 14 15 16

LightsOut 1596279 1935294 1684446 1004934 383670 82614 7350 0
TileSwap 83000 76688 48316 18975 4024 382 24 1

Table 2: Number of feasible board configurations for varying solution depths. No feasible board
configurations exist with solution depth > 16.

S.12 Environment details

S.12.1 Train-/Test-split

In order to ensure disjointness of board configurations in train and test split we label each board
configuration based on a hash remainder. For the hashing algorithm we first represent the current board
configuration as comma-separated string, e.g. s = ”1, 1, 0, ..., 0” for LightsOut and s = ”1, 0, 2, ..., 8”
for TileSwap. Then, this string is passed through a CRC32 hashing function, yielding the split based
on an integer division remainder

split =

{
train CRC32(s) mod 3 = 0

test CRC32(s) mod 3 ∈ {1, 2} (2)

S.12.2 Board initialization

We quantify the difficulty of a particular board configuration by its solution depth, i.e., the minimal
number of game moves required to solve the board.

We employ a breadth-first search (BFS) beginning from the goal board configuration (all fields off in
LightsOut, ordered fields in TileSwap). Nodes (board configurations) are expanded through applying
feasible actions (12 for TileSwap, 25 for LightsOut). Once a new board configuration is observed for
the first time, its solution depth corresponds to the current BFS step.

By this, we find all feasible board configurations for LightsOut and TileSwap and their corresponding
solution depths (see table 2). In table 3 we show the sizes of the training and test split for LightsOut
and TileSwap environments for solution depths in {1, ..., 5}.

16



solution depth
1 2 3 4 5

LightsOut
train 7 99 785 4200 17849
test 18 201 1515 8450 35281
total 25 300 2300 12650 53130

TileSwap
train 7 31 179 683 2237
test 5 57 291 1295 4421
total 12 88 470 1978 6658

Table 3: Number of initial board configurations for varying solution depths and dataset splits (train /
test).

S.13 Results of hyperparameter search on HAC and SAC baselines

S.13.1 Results of SAC hyperparameter search

Please see figures S.17, S.18, S.19, S.20, S.21, S.22 for a visualization of the SAC hyperparameter
search results.

0

100

α
=

0.
5

su
cc

.
ra

te

N = 0.25 N = 0.5 N = 1 N = 2 N = 4

0

100

α
=

0.
1

su
cc

.
ra

te

0

100

α
=

0.
01

su
cc

.
ra

te

0

100

α
=

0.
00

1

su
cc

.
ra

te

0 0.5M
0

100

α
=

0.
00

01

su
cc

.
ra

te

0 0.5M 0 0.5M 0 0.5M 0 0.5M

SAC, LightsOutCursor

Figure S.17: Test performance of SAC agents on the LightsOutCursor environment for varying
number of update steps per epoch (N ) and parameters α. We evaluate 5 individual agents per
configuration. The best configuration is marked in bold (N = 1, α = 0.1).

17



0

100

α
=

0.
5

su
cc

.
ra

te

N = 0.25 N = 0.5 N = 1 N = 2 N = 4

0

100

α
=

0.
1

su
cc

.
ra

te

0

100

α
=

0.
01

su
cc

.
ra

te

0

100

α
=

0.
00

1

su
cc

.
ra

te

0 0.5M
0

100

α
=

0.
00

01

su
cc

.
ra

te

0 0.5M 0 0.5M 0 0.5M 0 0.5M

SAC, TileSwapCursor

Figure S.18: Test performance of SAC agents on the TileSwapCursor environment for varying
number of update steps per epoch (N ) and parameters α. We evaluate 5 individual agents per
configuration. The best configuration is marked in bold (N = 1, α = 0.1).

0

100

α
=

0.
1

su
cc

.
ra

te

N = 0.25 N = 0.5 N = 1

0

100

α
=

0.
01

su
cc

.
ra

te

0

100

α
=

0.
00

1

su
cc

.
ra

te

0 10M
0

100

α
=

0.
00

01

su
cc

.
ra

te

0 10M 0 10M

SAC, LightsOutReacher

Figure S.19: Test performance of SAC agents on the LightsOutReacher environment for varying
number of update steps per epoch (N ) and parameters α. We evaluate 5 individual agents per
configuration. The best configuration is marked in bold (N = 0.5, α = 0.001).

18



0

100

α
=

0.
1

su
cc

.
ra

te

N = 0.25 N = 0.5 N = 1

0

100

α
=

0.
01

su
cc

.
ra

te

0

100

α
=

0.
00

1

su
cc

.
ra

te

0 10M
0

100

α
=

0.
00

01

su
cc

.
ra

te

0 10M 0 10M

SAC, TileSwapReacher

Figure S.20: Test performance of SAC agents on the TileSwapReacher environment for varying
number of update steps per epoch (N ) and parameters α. We evaluate 5 individual agents per
configuration. The best configuration is marked in bold (N = 0.25, α = 0.001).

0

100

α
=

0.
1

su
cc

.
ra

te

N = 0.25 N = 0.5 N = 1

0

100

α
=

0.
01

su
cc

.
ra

te

0

100

α
=

0.
00

1

su
cc

.
ra

te

0 10M
0

100

α
=

0.
00

01

su
cc

.
ra

te

0 10M 0 10M

SAC, LightsOutJaco

Figure S.21: Test performance of SAC agents on the LightsOutJaco environment for varying
number of update steps per epoch (N ) and parameters α. We evaluate 5 individual agents per
configuration. The best configuration is marked in bold (N = 0.5, α = 0.0001).

19



0

100

α
=

0.
1

su
cc

.
ra

te

N = 0.25 N = 0.5 N = 1

0

100

α
=

0.
01

su
cc

.
ra

te

0

100

α
=

0.
00

1

su
cc

.
ra

te

0 10M
0

100

α
=

0.
00

01

su
cc

.
ra

te

0 10M 0 10M

SAC, TileSwapJaco

Figure S.22: Test performance of SAC agents on the TileSwapJaco environment for varying number
of update steps per epoch (N ) and parameters α. We evaluate 5 individual agents per configuration.
The best configuration is marked in bold (N = 0.5, α = 0.0001).

20



S.13.2 Results of HAC hyperparameter search

Please see figures S.22, S.22, S.23, S.24, S.25, S.26 for a visualization of the HAC hyperparameter
search results.

0

100
0.

5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, LightsOutCursor, temp 0.01

0

100

0.
5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, LightsOutCursor, temp 0.05

21



0

100

0.
5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, LightsOutCursor, temp 0.1

0

100

0.
5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, LightsOutCursor, temp 0.5

Figure S.22: Test performance of HAC agents on the LightsOutCursor environment for varying
values for RelaxedBernoulli temperature τ and entropy targets αhigh, αlow. We evaluate 5 individual
agents per configuration. The best configuration is marked in bold (τ = 0.1, αlow = 0.1, αhigh =
0.001).

22



0

100

0.
5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

1e
-0

5

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, TileSwapCursor, temp 0.01

0

100

0.
5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

1e
-0

5

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, TileSwapCursor, temp 0.05

23



0

100

0.
5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

1e
-0

5

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, TileSwapCursor, temp 0.1

0

100

0.
5

su
cc

.
ra

te

0.5 0.1 0.05 0.01 0.005 0.001 0.0001

0

100

0.
1

su
cc

.
ra

te

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0

100

0.
00

01

su
cc

.
ra

te

0 0.5M
Env. steps

0

100

1e
-0

5

su
cc

.
ra

te

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

0 0.5M
Env. steps

α
lo

w
=

αhigh =

HAC, TileSwapCursor, temp 0.5

Figure S.22: Test performance of HAC agents on the TileSwapCursor environment for varying
values for RelaxedBernoulli temperature τ and entropy targets αhigh, αlow. We evaluate 5 individual
agents per configuration. The best configuration is marked in bold (τ = 0.5, αlow = 0.5, αhigh =
0.001).

24



0

100

0.
1

su
cc

.
ra

te

0.5 0.1 0.01 0.001 0.0001

0

100

0.
01

su
cc

.
ra

te

0

100
0.

00
1

su
cc

.
ra

te

0 10M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

α
lo

w
=

αhigh =
HAC, LightsOutReacher, temp 0.1

Figure S.23: Test performance of HAC agents on the LightsOutReacher environment for varying
values for the entropy targets αhigh, αlow and fixed RelaxedBernoulli temperature τ = 0.1. We
evaluate 5 individual agents per configuration. The best configuration is marked in bold (τ = 0.1,
αlow = 0.0001, αhigh = 0.0001).

0

100

0.
1

su
cc

.
ra

te

0.5 0.1 0.01 0.001 0.0001

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0 10M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

α
lo

w
=

αhigh =
HAC, TileSwapReacher, temp 0.1

Figure S.24: Test performance of HAC agents on the TileSwapReacher environment for varying
values for the entropy targets αhigh, αlow and fixed RelaxedBernoulli temperature τ = 0.1. We
evaluate 5 individual agents per configuration. The best configuration is marked in bold (τ = 0.1,
αlow = 0.0001, αhigh = 0.0001).

25



0

100

0.
1

su
cc

.
ra

te

0.5 0.1 0.01 0.001 0.0001

0

100

0.
01

su
cc

.
ra

te

0

100
0.

00
1

su
cc

.
ra

te

0 10M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

α
lo

w
=

αhigh =
HAC, LightsOutJaco, temp 0.1

Figure S.25: Test performance of HAC agents on the LightsOutJaco environment for varying
values for the entropy targets αhigh, αlow and fixed RelaxedBernoulli temperature τ = 0.1. We
evaluate 5 individual agents per configuration. The best configuration is marked in bold (τ = 0.1,
αlow = 0.001, αhigh = 0.001).

0

100

0.
1

su
cc

.
ra

te

0.5 0.1 0.01 0.001 0.0001

0

100

0.
01

su
cc

.
ra

te

0

100

0.
00

1

su
cc

.
ra

te

0 10M
Env. steps

0

100

0.
00

01

su
cc

.
ra

te

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

0 10M
Env. steps

α
lo

w
=

αhigh =
HAC, TileSwapJaco, temp 0.1

Figure S.26: Test performance of HAC agents on the TileSwapJaco environment for varying
values for the entropy targets αhigh, αlow and fixed RelaxedBernoulli temperature τ = 0.1. We
evaluate 5 individual agents per configuration. The best configuration is marked in bold (τ = 0.1,
αlow = 0.0001, αhigh = 0.001).

26



References
[1] K. Gregor, D. J. Rezende, and D. Wierstra. Variational intrinsic control. In International

Conference on Learning Representations (ICLR), Workshop Track Proceedings, 2017. URL
https://openreview.net/forum?id=Skc-Fo4Yg.

[2] uArm Developer. uarm-python-sdk. https://github.com/uArm-Developer/
uArm-Python-SDK, 2021.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/abs/1606.01540.

[4] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 18(1):50–60, 1947. ISSN 00034851.
URL http://www.jstor.org/stable/2236101.

[5] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning (ICML), volume 80 of Proceedings of Machine Learning
Research, pages 1856–1865. PMLR, 2018. URL http://proceedings.mlr.press/v80/
haarnoja18b.html.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

[7] P. Tandon. pytorch-soft-actor-critic. https://github.com/pranz24/
pytorch-soft-actor-critic, 2021.

[8] A. Levy. Hierarchical-actor-critc-hac-. https://github.com/andrew-j-levy/
Hierarchical-Actor-Critc-HAC-, 2020.

[9] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation
of discrete random variables. In 5th International Conference on Learning Representations
(ICLR), 2017. URL https://openreview.net/forum?id=S1jE5L5gl.

[10] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In
5th International Conference on Learning Representations (ICLR), 2017. URL https://
openreview.net/forum?id=rkE3y85ee.

27

https://openreview.net/forum?id=Skc-Fo4Yg
https://github.com/uArm-Developer/uArm-Python-SDK
https://github.com/uArm-Developer/uArm-Python-SDK
http://arxiv.org/abs/1606.01540
http://www.jstor.org/stable/2236101
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1412.6980
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee

	Introduction
	Learned skills
	Skill trajectories
	Solution length
	Skill length

	Large solution depth analysis
	Additional LightsOut variants
	LightsOut3DJaco
	Larger LightsOut boards / spacing between fields 

	Real Robot Experiment
	Training on robot with absolute push position actions
	Training on robot with positional displacement actions

	Extended ablations
	Relabelling
	Numerical results

	Environment details
	Cursor environments
	Reacher environments
	Jaco environments

	SEADS details
	Task solution with and without replanning
	Training procedure
	Episode collection (collect_episode)
	Relabelling (relabel)
	SAC agent update (update_sac)
	Skill model update (update_skill_model)

	Architectural details
	SAC agent
	Symbolic forward model


	SAC baseline
	HAC baseline
	Hyperparameter search

	VIC baseline
	Environment details
	Train-/Test-split
	Board initialization

	Results of hyperparameter search on HAC and SAC baselines
	Results of SAC hyperparameter search
	Results of HAC hyperparameter search


