
5 Appendix

The appendix is organized as follows:

1. Subsection 5.1 gives simple steps to use our algorithm for any robot learning problem.
2. Subsection 5.2 presents the Wilcoxon p-values for Table 3.
3. Subsection 5.3 details the Model Predictive Control formulation we used in all our experi-

ments.
4. Subsection 5.4 describes the DNN architectures, training hyper-parameters, and train/test

datasets for all experiments. Specifically, Subsections 5.4.1 - 5.4.3 describe the Toy 2D-
Planning experiments, RoboSuite Manipulation experiments, and X-plane experiments re-
spectively.

5. Subsection 5.5 provides an ablation study showing how to tune the weight for the consis-
tency loss k that determines how adversarial rendered scenarios are.

6. Finally, Figs. 11, 12, and 13 depict adversarial examples for all experiments.
7. We have also submitted all the code and will be making it open-source.

5.1 Steps to use Task-Driven Training for Robust Robotic Learning

1. Train a VAE (or any generative model) on the training dataset.
2. Train a task model (i.e., perception and planning model) on the training data, D train

orig . Note
that the perception network does not need to be a VAE Encoder. The task model can be any
network, such as MLPs, CNNs, or Transformers.

3. Use Alg. 1 to generate a new adversarial synthetic dataset D train
adv .

4. Retrain the task model on the combined dataset D train
orig [D train

adv .

Scaling to the real-world: Scaling to the real world mainly depends on the output quality of the dif-
ferentiable renderer (VAE in our experiments). Therefore, if the differentiable renderer can generate
real-world images, our adversarial learning procedure will be able to find examples that lead to a
higher model-based controller cost. Recently, there have been significant improvements in genera-
tive models (used as differentiable renders in our work), such as realistic VAEs [42], transformers
(DALLE-2) [43], and diffusion models [44], which can be used as the differentiable renderer in our
proposed algorithm. Therefore, due to the flexibility of our proposed algorithm, we can plug in any
generative model to generate adversarial scenarios for more realistic and unstructured environments.

Self-driving cars can be a real-world use case of our method. LidarSim [45] and SurfelGan [46]
are generative models to synthesize realistic self-driving scenarios, trained on a vast amount of
self-driving scenarios (Waymo and Uber datasets). Using our proposed method, we can use these
differentiable simulators as differentiable renderers to synthesize new adversarial scenarios.

5.2 Wilcoxon p-values

The difference between standard data augmentation and our task-driven approach is statistically

significant for both control cost and waypoint error with a Wilcoxon p-value much below 0.01.

Domain Dataset Avg MPC Cost
Difference Wilcoxon p-value

Avg Waypoint Error
Difference Wilcoxon p-value

Toy D test
OoD 1e

�4 1e
�4

D test
adv 0 1e

�4

Manipulation D test
OoD 1e

�4 1e
�4

D test
adv 0 1e

�4

X-plane D test
night 0 1e

�4

D test
adv 0 1e

�4

Figure 6: TASK-DRIVEN vs DATA AUGMENTATION schemes for MPC Costs and Waypoint Error

Wilcoxon P-values: We present the corresponding Wilcoxon p-values for Table 3.

13

5.3 MPC Cost Functions

Toy 2-D Planning and X-Plane: Differentiable Model Predictive Control (MPC): The planning
module provides the MPC controller with a waypoint vector wF for F future timesteps to track.
The robot’s state at discrete time t is denoted by zt 2 R4⇥1, defined as zt = {lx, ly,v,q} for both
experiments. Here, lx and ly are the robot’s x,y location in meters, v is the speed in meters/sec, and
q is the robot’s heading angle in radians. The robot’s control input at time t is defined as ut = {a,g},
where a is the robot’s acceleration in m/s

2 and g is the robot’s steering input in radians/sec.

Our main goal is to formulate the task cost J(wF), which is a standard quadratic cost penalizing
state deviations and control effort. Namely, Q 2 R4⇥4 is the state cost matrix and R 2 R2⇥2 is the
control cost matrix. The matrices A 2 R4⇥4 and B 2 R4⇥2 define the robot’s dynamics. For the toy
2-D planning experiment, we use standard double integrator dynamics while the X-Plane experi-
ment uses linearized unicycle dynamics, which is common for experiments on the TaxiNet DARPA
Assured Autonomy Dataset [38]. The robot has box control constraints umin  ut  umax bound-
ing the minimum and maximum acceleration and steering angle. Likewise, box state constraints
zmin  zt  zmax define limits on the velocity and linear obstacle avoidance constraints. These con-
straints, used only in our first motion planning example, were calculated by drawing perpendicular
hyperplanes from the obstacles. Given a set of F future waypoints wF = {w0,w1, . . . ,wF�1} for a
planning horizon starting at t = 0, our MPC task cost and problem become:

min
z0:F ,u0:F�1

J(wF) =
F

Â
t=0

(w>
t
�z>

t
)Q(wt �zt)+

F�1

Â
t=0

u
>
t

Rut

such that zt+1 = Azt +But

umin  ut  umax

zmin  zt  zmax.

(2)

RoboSuite Manipulation: The MPC problem is discussed in Subsec. 5.4.2.

5.4 Experiment Details

5.4.1 Illustrative Toy Example: 2D Obstacle Avoidance.

We now introduce a simple task where a planar 2-D robot has to navigate around obstacles to reach
a goal location, as pictured in Fig. 7. This experiment demonstrates how adversarial training creates
more challenging scenarios for the task model to plan in. Furthermore, we quantitatively show that
a task model trained on adversarial scenarios D train

adv learns to avoid collisions more successfully and
with lower control cost compared to standard training procedures.

Visual Input: The input to the 2-D planar robot is a 100⇥ 100 grey-scale image s of the scene,
including obstacles and the goal g, indicated by a star-shaped marker. Given the sensory input s,
the task model wF = ftask(s,wP) is a perception-planning module that outputs a sequence of future
waypoints wF for the robot to navigate. A waypoint wF is simply a pose the robot must move to in
the xy plane. The task model ftask uses a history of past waypoints wP to improve its predictions.
The linear MPC task cost is defined in Eq. 2.

Training and Test Datasets: We synthetically created the training D train
orig and the held-out test

datasets D test
orig and D test

OoD for the experiments. As shown in Fig. 7, each scenario had randomly
generated ellipsoid obstacles with random sizes and locations. The ground truth waypoints y = wF

are generated using a standard Frenet Planner [34] that has full access to all obstacles and start/goal
locations for the entire scene. The synthetic dataset contained |D train

orig | = 7000 training scenarios
and |D test

orig| = 2200 test scenarios. A larger similar dataset had |D train
add | = 10000 training examples.

Another dataset of |D train
aug | = 10000 training examples was generated from task-agnostic data aug-

mentation. The synthetic adversarial dataset generated by our method had |D train
adv |= 10000 training

scenarios and |D test
adv |= 2200 adversarial test scenarios. We used K = 10 gradient steps in Algorithm

1 to generate the adversarial scenarios. Finally, we also generated a challenging OoD test dataset,
D test

OoD, where the ellipsoid obstacles were samples from a different distribution than the original

14

Figure 7: Our method’s Synthesized Adversarial Scenarios for Toy 2-D Planning: The robot’s goal is to
navigate from a start location at (0,0) to the goal at (100,100) (green star). Original Scene (Top): The blue
obstacles (4 ellipsoids) represent the original scene. Adversarial Scene (Bottom): The red obstacles in the
bottom are adversarially created using our method for the original scenario above it. The waypoint trajectories
(small sequential dots) are generated by the task model for the corresponding scene, and MPC task cost is given
in the title. Clearly, the adversarial scenario generates much higher MPC costs by moving the obstacles in the
robot’s intended path. Crucially, the waypoint trajectory generated by our re-trained TASK DRIVEN scheme
(yellow) learns to better avoid the obstacles with lower MPC cost. Fig. 11 shows additional examples.

dataset D train
orig . Specifically, ellipsoid obstacles were bigger and closer in the OoD test dataset, thus

making it hard for the robot to plan.

DNN architectures: We use a history of P = 10 past waypoints to predict the next F = 20 future
waypoints. In this experiment, the VAE Encoder is made up of 3 CNN layers with filter sizes of
[(3,3),(4,4),(5,5)], strides of [1,2,2], and padding of [1,1,2] respectively. Similarly, the decoder
is made up of 3 CNN layers with filter sizes of [(6,6),(6,6),(5,5)], strides of [2,2,1], and padding
of [2,2,2] respectively. Rather than hand-tuning a desired weight between reconstruction error and
KL divergence with a prior in the VAE loss, we use a s -VAE [14] which allows for this tuning to
happen automatically. We used a VAE with latent size of 20. The VAE is trained with the ADAM
optimizer with a learning rate of 1e�3. The encoder is used for the perception module fperc. and the
decoder is used for the differentiable rendering module yrender. Note that the encoder is re-trained
after adversarial scenario generation.

Additionally, for the planning module, fplan is a NN consisting of three fully connected layers with
ReLU activation functions with output sizes [80,60,40] respectively. The planning module, fplan, is
trained with the ADAM optimizer with a learning rate of 1e�3. The robot’s past waypoints wP are
of length P = 10 and the future waypoints wF are of length F = 20. All the planning modules, fplan,
were trained for 2000 epochs with early stopping. We experimented with multiple k values (in loss
Eq. 1) and finally used k = 30 for the toy experiment. We found our results to be quite robust across
a wide range of values k .

Quantitative results: Table 8 shows the number of scenarios with collisions for all training schemes.
Our TASK DRIVEN approach was able to perform as well as the DATA AUGMENTATION , DATA
ADDED , and ORIGINAL benchmarks on the original test dataset. Additionally, the TASK DRIVEN
approach significantly outperformed the DATA AUGMENTATION scheme by 49%, DATA ADDED

15

scheme by 67% and ORIGINAL scheme by 69% on the adversarial test dataset D test
adv . Furthermore,

our TASK DRIVEN approach outperformed the DATA AUGMENTATION scheme by 15.8%, DATA
ADDED scheme by 30.8% and ORIGINAL scheme by 38.6% on the unseen OoD test dataset D test

OoD.
Thus, our training scheme TASK-DRIVEN leads to significantly fewer collisions on challenging OoD
scenarios.

Figure 8: Our method improves collision avoidance on challenging motion planning environments: We
show the number of collisions with an obstacle for different training schemes on the original, OoD, and syn-
thetic adversarial test environments. A single collision occurs when the MPC-enacted trajectory intersects an
ellipsoidal obstacle. The columns represent how many scenarios of the 2200 test scenarios had even a single
collision for held-out test datasets D test

orig, D test
OoD and D test

adv respectively. The best performance is bolded and rows
correspond to benchmark schemes.

Algorithm D test
orig D test

OoD D test
adv

ORIGINAL 389 585 1058
DATA-ADDED 314 552 1044

DATA AUGMENT 321 489 933
TASK-DRIVEN (OURS) 334 422 623

5.4.2 RoboSuite Manipulation

We now introduce the RoboSuite manipulation environment, where the Franka Emika Panda arm
has to navigate around red box obstacles to reach a blue ball, as pictured in Fig. 9. This experiment
demonstrates how adversarial training creates more challenging scenarios for the task model to plan
in. Furthermore, we quantitatively show that a task model trained on adversarial scenarios D train

adv
learns to avoid collisions with red boxes more successfully and with lower control cost compared to
standard training procedures. The main difference between this domain and the Toy 2-D Planning
domain is that inputs scenes for the manipulation task are much more realistic.

Visual Input: The input to the arm is a 64⇥ 64⇥ 3 RGB image s of the scene, including red
box obstacles and the blue sphere. Given the sensory input s, the task model wF = ftask(s,wP) is a
perception-planning module that outputs a sequence of future waypoints wF for the arm end-affector
to navigate. A waypoint wF is simply a pose the arm end-affector must move to in the xy plane. The
task model ftask uses a history of past waypoints wP to improve its predictions. The linearized MPC
task space cost is defined in Eq. 2. Specifically, when solving the MPC problem, we treat the
middle of the arm-gripper as a point mass trying to reach the blue ball, while avoiding the red box
obstacles. After doing this relaxation, we can use the same MPC formulation as shown in Eq. 2.
The states zt and the control inputs ut will relate to the “virtual” point mass at the middle of the
arm-gripper. Finally, after obtaining a sequence of MPC waypoints, we used Robosuite’s built-in
joint space controller, OSC POSE, to track MPC’s state trajectory, z ?

0:F . In all our experiments, the
joint space controller was able to generate joint poses to reach the desired task space configuration.

Training and Test Datasets: We create the training D train
orig and the held-out test datasets D test

orig by
randomly placing all the red boxes and the blue sphere on a table for the arm to navigate to. The
ground truth waypoints y = wF are generated using a standard Frenet Planner [34] that has full
access to all obstacles and start/goal locations for the entire scene. The synthetic dataset contained
|D train

orig | = 20000 training scenarios and |D test
orig| = 5000 test scenarios. A larger similar dataset had

|D train
add | = 30000 training examples. Another dataset of |D train

aug | = 20000 training examples was
generated from task-agnostic data augmentation. The synthetic adversarial dataset generated by our
method had |D train

adv | = 10000 training scenarios and |D test
adv | = 5000 adversarial test scenarios. We

used K = 5 gradient steps in Algorithm 1 to generate the adversarial scenarios. Finally, we also
generated a challenging OoD test dataset, D test

OoD, where the red box obstacles were samples from a
different distribution than the original dataset D train

orig . Specifically, red box obstacles were bigger and
closer in the OoD test dataset, thus making it hard for the arm to reach the blue sphere.

DNN Architectures: We use a history of P = 5 past waypoints to predict the next F = 5 future
waypoints. In this experiment, we used a Soft-Intro VAE [13] in order to deal with realistic images.
We used a Soft-Intro VAE with a latent size of 500. The Soft-Intro VAE is trained with the ADAM

16

Original MPC Cost: 112.3 Adver MPC Cost: 5567.8

Figure 9: Our method’s Synthesized Adversarial Scenarios for Robosuite Manipulation: The arm’s goal
is to navigate from a start location to pick up the blue ball. Original Scene (Left): The two red box obstacles
and the blue sphere were randomly placed in the the original scene. Adversarial Scene (Right): The red box
obstacles are adversarially replaced by our method starting from the original scenario (left). The adversarial
scenario generates much higher MPC costs by moving the obstacles in the arm’s intended path and placing
them such that arm will have to do big swerves to reach the blue ball.

optimizer with a learning rate of 1e�3. The encoder is used for the perception module fperc. and the
decoder is used for the differentiable rendering module yrender. Note that the encoder is re-trained
after adversarial scenario generation.

Additionally, for the planning module, fplan is a NN consisting of three fully connected layers with
ReLU activation functions with output sizes [1024,512,20] respectively. The planning module,
fplan, is trained with the ADAM optimizer with a learning rate of 1e�3. The robot’s past waypoints
wP are of length P = 5 and the future waypoints wF are of length F = 5. All the planning modules,
fplan, were trained for 2000 epochs with early stopping. We experimented with multiple k values
(in loss Eq. 1) and finally used k = 100. We found our results to be quite robust across a wide range
of values k .

5.4.3 X-Plane: Autonomous Vision-Based Airplane Taxiing

As shown in Fig. 10, the airplane has a wing-mounted camera and passes the images through a
perception model to estimate its distance and heading angle relative to the center-line of a runway.
Then, it uses differentiable MPC to navigate to the runway center-line with minimal control cost.
We use a public dataset from the photo-realistic X-Plane simulator [40] consisting of images from
the plane’s wing-mounted camera in diverse weather conditions and at various poses on the runway.
This standard benchmark dataset has been used in recent works on robust and verified perception
[37–39].

Visual Input: The input to our “robot” is a 128⇥ 128 RGB image s of the runway taken from
the right wing. The task model wF = ftask(s,wP) is a perception-planning module that outputs the
desired pose of the airplane wF , given this sensory input s and a history of waypoints wP. Specifi-
cally, the task model outputs a single waypoint wF , which is a tuple of the distance to the centerline
of runway c and the heading angle q , denoted by wF = (ci,qi)

F

i=0 for F = 1. wP = (ci,qi)
P

i=0 is a
history of the P = 10 past waypoints which are used to improve the planning model’s predictions.
MPC with linearized dynamics (Eq. 2) is used to plan a sequence of controls to navigate to the
center-line.

DNN Architectures: In this experiment, we used a Soft-Intro VAE [13] in order to deal with
realistic images. We used a Soft-Intro VAE with a latent size of 500. The Soft-Intro VAE is trained
with the ADAM optimizer with a learning rate of 1e� 3. The encoder is used for the perception
module fperc. and the decoder is used for the differentiable rendering module yrender. Note that the
encoder is re-trained after adversarial scenario generation.

Additionally, for the planning module, fplan is a NN consisting of three fully connected layers with
ReLU activation functions with output sizes [256,128,2] respectively. The planning module, fplan,
is trained with the ADAM optimizer with learning rate of 1e�3. The robot’s past waypoints wP are
of length P = 4 and the future waypoints wF are of length F = 1. All the planning modules, fplan,

17

Figure 10: X-Plane Synthetic Adversarial Scenarios: The top row contains images from the original dataset
with the corresponding ground-truth label waypoint (distance to center-line and heading angle), as well as MPC
task cost if this waypoint was correctly followed. The bottom row shows the corresponding adversarial scenario
generated by our method. As expected, both the adversarial scenarios lead to higher MPC costs. On the left, the
adversary learns to blur the runway center-line to emulate a foggy condition, while the right image emulates an
OoD night scenario where only the center-line (top left) is faintly visible. Fig. 13 shows additional examples.

were trained for 2000 epochs with early stopping. We experimented with multiple k values (in loss
eq. 1) and finally used k = 100 for the X-Plane experiment.

Images from Diverse Weather Conditions: We will represent the whole X-plane dataset as G =
{Dafternoon,Dmorning,Dovercast,Dnight}, where each dataset corresponds to the subscripted weather
condition. Each individual weather dataset in G has 44,000 training scenarios and 11,000 testing
scenarios. Ground truth waypoints are obtained from the X-Plane simulator.

Our goal is to establish that we can re-train a perception model that robustly generalizes (with
good control performance) to OoD weather conditions. To do so, we start with a perception model
that is initially only trained on afternoon conditions and evaluate its performance on held-out test
images across OoD weather conditions. To do so, we will compare 4 different task models ftask.
The ORIGINAL model is only trained on D train

afternoon, while the DATA ADDED model is trained on
D train

add = D train
afternoon [D train

morning since the morning and afternoon are visually similar.

Today’s standard benchmark of task-agnostic data augmentation is trained on D train
aug = D train

afternoon [
D train

aug , where we perform image augmentations (random crops, rotations, and hue alterations) on the
original afternoon training data using the open-source Albumentations library [3]. Finally, our TASK
DRIVEN model is trained on D train

afternoon [D train
adv , where D train

adv are adversarial scenarios created using
our method applied to the original afternoon training data. We trained the adversary for K = 15
steps in Algorithm 1. We quantitatively compare the performance of all benchmark task models on
mean task cost J and waypoint MSE on held-out test datasets for each condition, such as afternoon,
morning, night (OoD), and synthetic test images (D test

adv).

18

5.5 Consistency Loss Weight Ablation Study

This section will show how we can control how adversarial we want the synthetic dataset to be. As
a reminder, the loss we used to train the adversary, Eq. 1, contained two parts: the MPC cost of the
synthetic adversarial scenario and the consistency loss. The consistency loss calculates the distance
between the original scene and the adversarial synthetic scene in the latent space of the renderer.
We weigh the consistency loss by a scalar value, k , which lets users decide how adversarial they
want adversarial scenarios to be. From the loss function Eq. 1, it is easy to observe that higher
values of k will make the value of the consistency loss higher than that of the MPC cost. Therefore,
the synthetic adversarial scenarios will be less adversarial. Similarly, for lower values of k , the
adversarial scenarios will be more adversarial and thus have higher MPC costs. Fig 14 shows this
relation for the Toy 2-D Planning scenario, where we show the MPC Cost (y-axis) for 500 adversarial
scenarios for different k values (x-axis). Fig. 14 clearly shows that as we increase the k values, the
MPC costs of the synthesized adversarial scenarios decrease and are thus less adversarial. We also
show that these results are statistically significant in Table 15, with Wilcoxon p-values being less
than 0.05 for all cases. We empirically confirm the expected behavior for consistency loss weight k .

5.6 Comparison with CURL

As an added baseline, we compare our method with CURL [33]. CURL extracts high-level features
from raw pixels using contrastive learning and performs waypoint estimation on top of the extracted
features (similar to our architecture). Contrastive representations are learned by specifying an anchor
observation created using standard augmentation techniques. Specifically, we used random bright-
ness, contrast, blur and crop to create the anchor observations. Then, CURL maximizes/minimizes
the agreement between positive/negative pairs in contrastive learning through Noise Contrastive
Estimation. CURL explicitly leads to significantly better feature extraction than standard data aug-
mentation and thus speeds up training, converging 2x-3x faster than standard training procedures in
our experiments. We used default training parameters for CURL. The learning rate was 3e

�4, and t
(moving average weight) was 5e

�4.

5.7 Adversarial Labels

We now discuss how to generate labels for adversarial images in Algorithm 1. We can use either
the same labels or generate new labels depending on how much the adversarial and original scenes
differ in terms of task completion and semantics. Here are a few examples.

Case 1: Adversarial Scene Differs Significantly So the Label Changes.

For the Toy 2D Navigation and Robosuite experiments (Left and middle for Fig. 4), the adversary
significantly changes the history of waypoints. Thus, we use an “oracle” Frenet Planner [34] to
re-plan a collision-avoiding trajectory for the adversarial scenarios and use the new waypoints as
ground-truth labels for training.

Case 2: The image is slightly distorted, but the desired waypoint does not change. In X-Plane,
the image is only slightly perturbed to emulate new weather or background scenarios due to the
consistency loss term. However, the ground-truth location of the runway centerline remains the
same since the real pose of the aircraft has not changed. Thus, our method uses the same label for
the original and adversarial images. Essentially, our method generates adversarial images that teach
the perception model that many possible visual distortions (due to weather/background variation)
should map to the same true runway location. Teaching the perception model about these possible
visual distortions during training improves its generalization when similar distortions occur in OoD
scenarios.

Crucially, we note that using the same labels as the original dataset for image based-tasks is a
standard practice in classical adversarial training papers [47–49]. This is because these methods
consider small, bounded perturbations on images with the same semantic meaning (same class).

19

Figure 11: Additional Synthesized Adversarial Scenarios for the Toy 2-D Planning Experiment

20

Figure 12: Additional Synthesized Adversarial Scenarios for the Robosuite Manipulation Ex-

periment

21

Figure 13: Additional Synthesized Adversarial Scenarios for the X-plane Experiment

22

Figure 14: Consistency Loss Weight Ablation Study for Toy 2D Planning: The figure shows
the relation of k values to the MPC Cost of the corresponding synthesized adversarial scenarios for
the Toy 2-D Planning experiment. On the x-axis, we have the k value used in the adversary loss,
Eq. 1, and on the y-axis, we have the corresponding MPC Cost. The plot shows that the user can
easily control how adversarial the synthesized scenarios are by tuning the k value. This plot also
demonstrates that our loss function works as desired, as we can see the scenarios with higher k
values have lower MPC costs than scenarios with lower k values.

Kappa Values k = 3 k = 30 k = 300
k = 0.3 0.042 0.046 0.015

k = 3 NA 0.048 0.039

k = 30 NA NA 0.026

Figure 15: Consistency Loss Weight vs MPC Cost Wilcoxon P-values: We present the corre-
sponding Wilcoxon p-values for k ablation study in Fig. 14.

23

