8 Appendix

8.1 Difficulty Bucket Statistics

The summary statistics of the difficulty scores in each bucket of the training and test datasets are
presented in Tables 2 and 3, respectively.

8.2 Geometric Schedule

The Geometric-schedule-10% uses a schedule that starts training by weighting each bucket equally
(i.e., the unbiased dataset), and ends by weighting each bucket proportional to the average difficulty

score of the segments it contains. Specifically, at step ¢, the sampling weight for bucket £ is g5, =

qt — qf a4+ qf , where ¢¢ and qf are the initial and final weights for bucket &, and « is the common
ki k k k g

ratio of the geometric progression. The sample weights for all the buckets are then normalized
to sum to 1 to acquire sampling probabilities. For the Geometric-schedule-10% variant, we set
a = 0.999975 and ¢!, = 1 for each bucket, and {q}1" , is given by the “Mean” row in table 2. This
progression is visualized in Figure 4.
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Figure 4: Sampling schedule of each bucket for the Geometric-schedule-10% variant.

Table 2: Summary statistics of the difficulty scores in each training data bucket.

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
Min 0.001 0.019 0.031 0.046 0.066 0.094 0.133 0.189 0.270 0.407
Mean | 0.013 0.025 0.038 0.056 0.079 0.112 0.159 0.227 0.331 0.573
Max 0.019 0.031 0.046 0.066 0.094 0.133 0.189 0.270 0.407 0.939

Table 3: Summary statistics of the difficulty scores in each test data bucket.
0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%
Min 0.001 0.016 0.026 0.040 0.059 0.085 0.122 0.176 0.258 0.396
Mean | 0.011 0.021 0.033 0.049 0.071 0.103 0.147 0.214 0.320 0.562
Max 0.016 0.026 0.040 0.059 0.085 0.122 0.176 0.258 0.396 0.939

12



8.3 Uniform Variant

The Uniform-10% variant sets the sampling weight of each bucket to be proportional to the
range of difficulty scores of each bucket. The score ranges for the 10 training buckets are
[0.0180,0.0126,0.0150,0.0199, 0.0276, 0.0392, 0.0557, 0.0814, 0.1368, 0.5324].

8.4 Metrics by Bucket

In Figures 5 and 6 we present the performance of each training variant and baseline for each bucket.
The clear upward trend in collision rate with the increasing bucket scores demonstrates that colli-
sions are highly correlated with the difficulty scores. We observe a similar, but not quite as strong,
correlation in the route failure rate and off-road rate as well.

8.5 Adaptive Importance Sampling Variants

We conducted a series of experiments that perform adaptive importance sampling, wherein we up-
sample certain buckets based on the agent’s performance during training, but then we correct for
this upsampling via a likelihood ratio. Importance sampling measures the expectation of a statistic
over a distribution P using a different distribution () . In particular, Ep[f(X)] = Eq[f(X)w(X)],
where w(z) := p(x)/q(z) is the likelihood ratio for density functions p and ¢ from distributions P
and @, respectively.

Our nominal distribution P is the natural distribution of run segments. Due to the infrastructure chal-
lenges surrounding large training datasets mentioned in Section 4.2, we implemented reweighting
on the level of buckets rather than on the level of individual run segments. This allows our method
to easily scale to arbitrarily large datasets since it depends only on the number of buckets, not on
the dataset size. In this setting, the nominal density is p; := 1/N. We constructed the sampling
distribution () as follows: every K training steps, we collected the average policy loss per bucket
(Lp); over the preceding window of K steps. Since our losses can be positive or negative, we set
the sampling weights ¢; o exp (7 . (Z'p)i) , where vy is the inverse temperature parameter. We also
dedicated a small constant probability mass € to all buckets that were not sampled during the last K
iterations, which ensures a nonzero probability of sampling a run segment from any given bucket.
During training, we multiplied the loss for a segment from bucket 4 by the ratio w; := 1/(N - ¢;).

To evaluate the effect of different degrees of importance reweighting, we also considered wf for
different values of 8 € [0, 1]. Algorithm 1 describes this procedure in the context of training the
planning agent. We note that this approach is similar to Prioritized Experience Replay (PER) [23],
but adapted to our setting with priority weights assigned over a discrete set of buckets.

We expanded on this approach using Distributionally Robust Optimization (DRO) [42], which intro-
duces an additional loss weighting term with hyperparameter p € [0, 1]. Larges values of p allow for
a greater deviation of the loss weights from the importance sampling weights that would be needed
to exactly account for the non-uniform sampling.

We show the dataset sampling probabilities g; for the PER variant in Figure 7 with two settings of the
inverse temperature parameter v: “PER (y = 0.1, 8 = 1)-10%” and “PER (v = 1,8 = 1)-10%".
While v = 0.1 results in a distribution that is close to uniform, v = 1 quickly produces a heavily
skewed distribution that samples from the most difficult bucket at least 75% of the time. In both
cases, the sampling probability of each bucket is directly related to its difficulty scores: the higher
a bucket’s difficulty scores, the more frequently it is sampled. This clearly demonstrates that a run
segment’s difficulty score is a strong predictor for how challenging it will be for a planning agent to
navigate successfully.

We present our results for PER and DRO in Table 4 with different values of v, /3, and p. For these
experiments, we use 10% of the available training data, and we set X' = 1000 and € = 3.125 x 104.
We observe that certain settings of PER and DRO achieve the lowest route failure and off-road
rates. They also result in the best collision rate, overall failure rate, and route progress ratio, though
other non-adaptive variants achieve comparable results that are within the confidence bounds. This
suggests that adaptive importance sampling is a promising curriculum learning approach that can
provide comparable or better results to fixed sampling strategies without the need for hand-tuning
custom sampling weights and schedules.
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Figure 5: Metrics by test decile bucket for each of the training variants.
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Figure 6: Metrics by test decile bucket for each of the training variants.

Algorithm 1 MGAIL curriculum training with bucket-wise adaptive importance sampling

Input: datasets { D}¥ |, sampling period K, step size 7, inverse temperature parameter v, IS weight

exponent 3, budget T', minibatch size B

1: Initialize sampling probabilities g; = %, loss buffers H; = () fori =1,..., N
2: fort=1to T do

3: ift =0 mod K then ~
4: Compute per-dataset mean policy loss (Lp); from each buffer H;
5: Compute dataset sampling weights ¢; < exp(y - (Lp);)
6: Normalize dataset sampling probabilities ¢; < ¢;/ Zjvzl q;
7: ResetH; = fori=1,..,N
8: end if
9: Sample B dataset indices {b}2 ; ~ Q, where @ has probability mass function q
10 Sample minibatch {z}Z ,, where z; U [Dy, ] > Example z; is from dataset Dy,
11: Compute per-example policy losses Lp(z;) and discriminator losses Lp(x;)
12: Add stopgrad (Lp(x;)) to Hy,
13: Compute IS weights w; <+ 1/(N - ¢;)
14: Compute weighted policy losses lp + & Ele w,’i Lp(x;)
15: Compute weighted discriminator losses Ip < + Zil wgi Lp(x;)
16: Update policy weights 8 < 0 +n - Vglp
17: Update discriminator weights w <— w + 1 - Vlp
18: end for
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Figure 7: Dataset sampling probabilities throughout training for the PER adaptive importance sam-
pling variant for two different values of the inverse temperature parameter ~y.

8.6 Other Variants

We implemented two additional variants, which differ from the other variants in their training dataset
sizes and sampling strategies. Their performance is shown in Table 4.

1. The “Highest-1%” variant is an agent trained on only the top 1% of training examples
ordered by difficulty score. As such, it is not strictly comparable to the other variants which
use 10% of the data. Our results show that while it achieves a lower collision rate than the
baselines, its performance on all other metrics is worse. This demonstrates that extreme
upsampling strategies on the most difficult examples, combined with using significantly
less training data, can lead to worse overall performance. However, the fact that its collision
rate is lower than that of the baselines suggests that upsampling difficult segments has a
strong positive effect on metrics that are highly correlated with the difficulty score. It is
possible that incorporating other metrics into our definition of “difficulty” for the difficulty
model could improve this variant’s performance on those metrics as well.

2. We also trained the “Highest-10% + Lowest-10%” variant on the combination of the most
difficult bucket and the least difficult bucket. This variant achieves among the best perfor-
mance overall, matching that of the Geometric-schedule-10% variant. By incorporating the
least difficult bucket, it addresses the shortcomings of Highest-10%, which has high failure
rates on segments in the 0-40% range of difficulty scores. However, this variant uses 20%
of the available data, twice as much as the other variants.

16



Table 4: Evaluation of agent variants and baselines on the full unbiased test set (mean + standard
error of each metric across 10 seeds, unless noted otherwise). For all metrics except route progress,
lower is better.

Route Failure Collision Off-road Route Progress | Failure
Agent Variant rate (%) rate (%)  rate (%) ratio (%) rate (%)
Baseline-all 1.38+0.13 1.46+009  0.73+0.07 81.21+0.39 3.33+0.20
Baseline-10% 1.34+0.06 1.50+009  0.67+0.06 81.12+0.37 3.28+0.13
Baseline-lowest-10% 1.14+0.05 4.15+011  0.98+0.10 81.88-+0.41 5.91+0.13
Highest-10% 1.33+0.06 1.23+009  0.74+0.02 77.95+133 3.10+0.10
Uniform-10% 1.35+0.09 1.17+0.08  0.75+0.07 80.67+0.73 3.07+0.17
Highest-1% 1.53+0.08 1.39+006  0.99+0.11 79.35+1.18 3.66+0.13
Highest-10% + Lowest-10% 1.18+0.06 1.28+007  0.65+0.06 79.97+0.81 2.94-+0.12
Geometric-schedule-10% 1.19+0.07 1.25+004  0.74+0.10 80.48+0.36 2.92+0.11
PER(y = 0.1, 5 = 0)-10% (6 seeds) 1.37+0.06 1.32+002  0.55+0.07 81.91+0.58 2.99+0.05
PER(y = 0.1, 8 = 0.5)-10% (7 seeds) 1.28+0.09 1.39+0.11  0.73+0.11 82.89-+0.68 3.1540.20
PER(y =0.1,8 = 1)-10% 1.31+0.09 1.63+009  0.51+0.05 80.34+0.47 3.28+0.14
PER (y = 1,8 = 0)-10% 1.28+0.08 1.06+0.03  0.71+0.08 81.16+0.88 2.88+0.08
PER(y = 1,3 = 0.5)-10% 1.21+0.06 1.47+010  0.90+0.12 82.60-+0.69 3.3640.20
PER(y = 1,5 = 1)-10% 1.20+0.06 1.994007  1.06+0.21 82.34-+0.64 3.9340.25
DRO (v =0.1,8 =0, p = 0.25) 10% (4 seeds) 1.23+0.10 1.34+013  0.85+0.12 80.01+0.52 3.27+0.18
DRO (v =0.1,8 =1, p = 0.05) 10% (8 seeds) 1.1940.09 1.16+004  0.69+0.07 80.86+0.65 2.83+0.10
DRO (v =0.1,8 =1, p = 0.25) 10% (9 seeds) 1.24+0.03 1.49+008  0.70+0.03 81.23+0.48 3.2540.08
DRO (v =0.1,8=1,p=1) 10% (4 seeds) 1.02+0.04 1.65+009 0.87+0.21 78.28+0.81 3.43+0.18
DRO (v = 1,5 =0,p = 0.25) 10% (4 seeds) 1.27+0.15 1.31+007  0.58+0.06 79.43+1.02 3.04+0.24
DRO (v = 1,5 = 0.5, p = 0.25) 10% (7 seeds) 1.33+0.05 1.18+0.08  0.73+0.06 80.72+1.22 3.02+0.06
DRO (v =1,8 =1, p=0.05) 10% (7 seeds) 1.20+0.02 1.58+005 0.72+0.12 81.72+0.46 3.31+0.14
DRO (v =1,8=1,p=0.25) 10% (6 seeds) 1.18+0.09 1.65+0.10  1.12+0.29 82.22+0.91 3.70+037
DRO (y=1,8=1,p=1) 10% (5 seeds) 1.28+0.14 2.33+0.19  1.95+0.20 77.97+1.84 5.1440.20

8.7 Planning Agent Details

We use the same hierarchical planning agent described in Bronstein et al. [41]; additional details can
be found in that work. This planning agent consisting of a high-level route-generation policy and a
low-level action policy trained using MGAIL. The high-level policy uses an A* search to produce
multiple lane-specific routes through a pre-mapped roadgraph and selects the lowest-cost route. We
can either evaluate the low-level policy in a standalone fashion by conditioning it on a given route,
or the high-level and low-level policies together by allowing the agent to choose its own goal routes
given a destination. The low-level action policy and discriminator use stacked transformer-based
observation models [43, 44] to encode the goal route, AV’s state, other vehicles’ states, roadgraph
points, and traffic light signals. Similar to Set-Transformer [45] and Perceiver [46], this observation
encoder uses learned latent queries and a stack of cross-attention blocks, one for each group of
features. A delta actions model is used for the AV’s dynamics, where the action a is the offset from
the current state s: s’ = s + a. The policy head predicts the parameters (weights, means, and
covariances) of a Gaussian Mixture Model (GMM) with 8 Gaussians, used to parameterize the delta
actions. We trained the action policy and discriminator using a combination of MGAIL and behavior
cloning (BC). The total policy loss is given by ApLp + AgcLic, where Lp = —Egr, [log D, ()]
is the MGAIL policy loss, Lgc = —Es gne [log mo(als)] is the BC loss, and Ap and Apc are
hyperparameters. The MGAIL discriminator loss is Lp = Esr, [log Dy (8)] + Esre [log(1 —
D,,(s))]. The discriminator is only conditioned on the state s as in [47]. During backpropagation,
only the policy parameters 6 are updated for £ and L3¢, and only the discriminator parameters w
are updated for Lp.

8.8 Evaluation With Interactive Agents

A potential concern is that the planning agent is trained and evaluated with other agents replaying
their logged trajectories. This may result in unrealistic behavior if the planning agent behaves in a
significantly different way than the logged AV and other agents don’t react realistically. It is possible
that a planning agent trained in this way would not perform well when deployed in the real world, in
which other road users influence and interact with the AV. To determine whether this is an issue, we
evaluated our planning agent alongside interactive agents controlling a subset of other vehicles in the
scene. The interactive agent policy, which was trained separately, has the same model architecture,
dynamics model, and training loss function as our planning agent. The main difference is that the
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interactive agent is not goal-conditioned because its task is to drive in a realistic manner and not
necessarily reach a specific destination.

For each bucket in the test dataset, we constructed a subset in which each segment has at least 8 other
vehicles that could be controlled by an interactive agent. Note that this is a more challenging dataset
because segments with more road users tend to be more difficult. Starting from an equal number
of segments per bucket and discarding segments with an insufficient number of other vehicles, the
number of segments remaining in each bucket in order of increasing difficulty accounted for 0.81%,
1.59%, 2.47%, 3.66%, 5.76%, 8.46%, 11.67%, 16.97%, 22.97%, and 25.64% of the total. We
evaluated the Baseline-10% and Uniform-10% planning agent variants on this dataset by using the
same initial conditions and goal route as the original test dataset. Table 5 demonstrates that the
route failure rate decreases for all variants when using interactive agents, and the collision, off-road,
and overall failure rates either decrease or remain the same. Additional investigation is needed to
determine why the route progress ratio increases for the Baseline-10% variant but decreases for
the Uniform-10% variant. These results indicate that our training procedure for the planning agent
allows it to perform better in a more realistic simulated environment, not worse. In fact, we expect
the agent to have even better performance when evaluated with interactive agents on the original data
distribution (i.e., without the requirement that at least 8 vehicles are available for replacement with
interactive agents), which would be inherently easier than the subset with interactive agents. While
training the planning agent with interactive agents may result in performance gains, this approach
is orthogonal to the curriculum learning framework we present and can be easily combined with it.
In fact, concurrent work by Zhang et al. [48] investigates this idea, finding that targeted training on
more challenging closed-loop scenarios results in more robust agents while requiring less data.

Table 5: Evaluation of agent variants and baselines without interactive agents on the original test set
vs. with interactive agents on a subset where at least 8 vehicles are available for replacement. For
all metrics except route progress, lower is better.

Without Interactive Agents With Interactive Agents
Agent Variant | Route Failure Collision Off-road Route Progress ~ Failure | Route Failure Collision Off-road Route Progress  Failure
rate (%) rate (%)  rate (%) ratio (%) rate (%) rate (%) rate (%)  rate (%) ratio (%) rate (%)
Baseline-10% 1.34+0.06 1.50+009  0.67+0.06 81.12+037 3.28+0.3 1.03=0.05 1.47x010  0.67+003 84.58+0.22 3.05+0.13
Uniform-10% 1.35+0.09 1.17+0.08  0.75+0.07 80.67+0.73 3.07+0.17 0.78-£0.07 1.16+0.06  0.29+0.04 75.5+061 2.13+0.1
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