
7 Appendix

7.1 Algorithm

Algorithm 2 CRSfD
Input: Env Environment for the new task Mi; θπ initial policy parameters; θQ initial action-
value function parameters; θQ

′
initial target action-value function parameters; N target network

update frequency.
Input: BE replay buffer initialized with demonstrations. B replay buffer initialized empty. K
number of pre-training gradient updates. d expert buffer sample ratio. batch mini batch size.
Input: θV initial value function (potential function), original task discount factor γ0.
Output: Qθ(s, a) action-value function (critic) and π(.|s) the policy (actor).
Estimate value function from demonstration.
for step t in {0,1,2,...T} do

Sample with batch transitions fromBE , calculate their Monte-Carlo return with discount factor
γ0.
Estimate Vθ(s) conservatively by equation ??

end for
Interact with Env.
for episode e in {0,1,2,...M} do

Initialize state s0 ∼ Env
for step t in episode length {0,1,2,...T} do

Sample action from π(.|st)
Get next state and natural sparse reward st+1, rt
Shape reward by: r′t = rt + γiV (st+1, θ

V)− V (st, θ
V)

Add single step transition (st, at, r
′
t, st+1) to replay buffer B.

end for
for update step l in {0,1,2,...L} do

Sample with prioritization: d ∗ batch transitions from BE , (1− d) ∗ batch transitions from
B. Concatenate them into a single batch.
Perform SAC update for actor and critic:LActor(θπ), LCritic(θ

Q).
if step l ≡ 0 (mod N) then

Update target critic using moving average:θQ
′

= (1− τ)θQ
′
+ τθQ

Decrease expert buffer sample ratio: d = d− δ if d > 0.
end if

end for
end for

7.2 Implementation Details

We implemented our CRSfD algorithm and the baseline algorithms in PyTorch and the implemen-
tation can be found in the supplementary materials. Simulated environments are based on ro-
bosuite framework https://github.com/ARISE-Initiative/robosuite. Our CRSfD algo-
rithm is based on https://github.com/denisyarats/pytorch_sac_ae while baseline algo-
rithms are based on https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail and
https://github.com/ku2482/gail-airl-ppo.pytorch.

7.3 Videos

Videos for simulated environments and real world environments can be found in the supplementary
materials.

7.4 Ablations

As mentioned in section 4, we make two improvements over the reward shaping method to encour-
age the agent to explore around the demonstrations conservatively. (1) Regress value function of
OOD states to zero. (2) Use a larger discount factor in new tasks.

12

https://github.com/ARISE-Initiative/robosuite
https://github.com/denisyarats/pytorch_sac_ae
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ku2482/gail-airl-ppo.pytorch

We ablate these 2 improvements and compare their performance on more environments, as show in
Figure 6.

CRSfD w/o (1) w/o (2) w/o (1)(2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Samples(1e5)

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
Ra

te

(a) Hole ”1”

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Samples(1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

(b) Hole ”2”

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Samples(1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

(c) Hole ”3”

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Samples(1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

(d) Hole ”4”

Figure 6: Ablation studies of the conservativeness techniques. (1) means regressing value function
to zero for OOD states. (2) means setting larger discount factors.

7.5 Proof for theorem

Theorem 1 For task M0 with transition T0 and new task Mk with transition Tk, define to-
tal variation divergence DTV (s, a) = Σs′ |T0(s′|s, a) − Tk(s′|s, a)| = δ. If we have δ <
(γk − γ0)ET2(s′|s,a)[V

D
M0

(s′)]/γ0 maxs′ V
D
M0

(s′), then following the expert policy in new task will
result in immediate reward greater then 0:

Ea∼π(.|s)r′(s, a) ≥ (γk − γ0)ETk(s′|s)[V
D
M0

(s′)]− γ0δmax
s′

V DM0
(s′) > 0 (5)

Proof: For simplify, denote demonstration state value function in original task V DM0
= V1(s). Start

from the reward shaping equations, and extend V1(s) for one more time step:
r′(s, a, s′) =r(s, a, s′) + γkV1(s′)− V1(s)

r′(s, a) =r(s, a) + γkETk(s′|s,a)[V1(s′)]− V1(s)

=(γk − γ0)ETk(s′|s,a)[V1(s′)] +
(
r(s, a) + γ0ETk(s′|s,a)[V1(s′)]− V1(s)

)
≥(γk − γ0)ETk(s′|s,a)[V1(s′)] + (Qπ1(s, a)− V1(s))− γ0δmax

s′
V1(s′)

(6)

Take expectation on demonstration policies:
Ea∼π(.|s)r′(s, a) ≥Ea∼π(.|s)

[
(γk − γ0)ETk(s′|s,a)[V1(s′)]

]
− γ0δmax

s′
V1(s′) (7)

For a sparse reward environment, we have r(s, a) = 0 almost everywhere:

Ea∼π(.|s)r′(s, a) ≥Ea∼π(.|s)
[
(γk − γ0)ETk(s′|s,a)[V1(s′)]

]
− γ0δmax

s′
V1(s′)

=(γk − γ0)ETk(s′|s)[V1(s′)]− γ0δmax
s′

V1(s′)
(8)

7.6 Increasingly Larger Task Mismatch

Figure 7: Increasingly larger task mismatch. Experiments are done on hole shape 0 with increasing
random hole position.

We can observe that as task difference increases, our method first gradually outperforms baseline
methods. When task mismatch are too large, our method gradually loss some performance and has
similar performance with baselines.

13

