
Motion Style Transfer: Modular Low-Rank
Adaptation for Deep Motion Forecasting

(Supplementary Material)

Parth Kothari Danya Li Yuejiang Liu Alexandre Alahi
École Polytechnique Fédérale de Lausanne (EPFL)

A Additional Experiments

Training a residual has been shown effective in other domains like robotics [1]. Yet, it’s not clear
what kind of residual is most effective for adaptation, and where they should be introduced. To
address these open questions, we introduced two key components specific to motion forecasting: (i)
we model the residual as a low-dimensional bottleneck, (ii) we propose a modular adaptation strategy
that facilitates a targeted choice of adaptation layers.

A.1 Importance of Low-Rank constraint

Tab. 1 illustrates the importance of the low-rank constraint in the residual design. Further, Tab. 2
provides the performance on varying the rank r of the MoSA modules on SDD. Very low rank limits
the number of style factors that can be updated leading to sub-optimal performance. On the other
hand, a high rank increases the number of trainable parameters, leading to overfitting in the low-data
regime.

Sec. 3.3 demonstrated the effectiveness of our modularized adaptation strategy. Next, we provide
additional experiments that further validates our proposed scheme.

A.2 Modularized Adaptation across Agent Motion on SDD

We demonstrate the efficacy of modularized adaptation scheme on the SDD dataset. We utilize the
cyclists data on deathCircle 0 scene. The training and adaptation data are constructed based on the
average speed of the cyclist trajectories. The training set contains low-speed trajectories with the
speed in the range of 0.5 to 3.5 pixel per second. The adaptation set has cyclist trajectories with
an average speed in the range of 4 to 8 pixels per second. We use Ntarget = {20} trajectories for
adaptation. Given our setup, the dominant underlying style factor that changes across domains is
the agent speed distribution (the scene context and the type of agent are fixed). We benchmark the
performance of Y-Net-Mod given the five modularization strategies described in the main text. Rank
of MoSA is set to 2.

Fig. 1 illustrates the performance of various modular adaptation strategies. The generalization error
is very high as the error accumulates quickly for fast-moving agents. Using just 20 samples, updating
only the agent motion module [A] leads to the best performance, while including the scene context
module [S] during adaptation worsens performance.

A.3 Modularized Adaptation across Scenes on inD

In the main text, we demonstrated the efficacy of modularized adaptation strategy by training on
pedestrian data from {scene2, scene3, scene4} and testing on unseen scene scene1. Different scene
combinations can help to corroborate the efficacy of our modular adaptation strategy. Therefore, as
shown in Fig. 2, we provide the results of our strategy for a different setup of scene generalization.
We train on {scene1, scene3, scene4} and test on unseen scene scene2. We observe the same trend

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



Table 1: Importance of the low-rank constraint.

Lyft Level 5

Ntarget (batches) 8 15 36

Finetuning 41.76 ± 0.45 33.90 ± 0.89 31.83 ± 1.89
No-Rank Constraint 42.37 ± 0.72 34.12 ± 0.51 30.37 ± 2.19
Rank Constraint 29.43 ± 0.70 25.96 ± 0.47 25.06 ± 1.26

Table 2: Varying the rank r of MoSA.

Stanford Drone

Ntarget 10 20 30

Rank 1 51.84 ± 1.41 46.68 ± 1.32 42.53 ± 1.19
Rank 3 49.98 ± 1.05 45.55 ± 0.77 41.69 ± 0.88
Rank 10 51.44 ± 0.66 46.48 ± 0.84 42.44 ± 0.72

S A S+F A+F S+A+F
 

64

66

68

70

72

74

76

FD
E

Generalization
Fine-tuning

Figure 1: Agent Motion Transfer from slow
cyclists to fast cyclists on death circle SDD
scene with Ntarget = 20 samples using dif-
ferent MoSA configurations. [A] performs
best while [S] worsens performance.

S A S+F A+F S+A+F
 

30

32

34

36

38

40

FD
E

Generalization
Fine-tuning

Figure 2: Scene Transfer from scene1, scene3,
scene4 to scene2 on InD pedestrians with
Ntarget = 20 samples using different MoSA
configurations. [S+F] performs best while
[A] worsens performance.

as Fig. 9 of main text: updating the scene module [S] is more effective than updating all the modules
[S+A+F], and adapting of agent motion module [A] deteriorates performance.

B Additional visualizations

Motion Style Transfer across Scenes on inD. In this experiment, the Y-Net model is trained on
pedestrians in {scene2, scene3, scene4} and tested on unseen scene scene1. We qualitatively show
the goal decoder output difference of three examples in Fig. 3. We can observe that the adapted model
learns to cross at a particular location, even though this behavior is not present in the training data.

Motion Style Transfer across Scenes on Level 5. In this experiment, we divide the L5 dataset
into two splits based on the data collection locations thereby, constructing a scene style shift scenario
(see Fig.7). In addition to the examples provided in the main text, Fig. 4 qualitatively illustrates the
improvement of the attention heatmaps of the last layer of ViT post model adaptation using MoSA.
MoSA helps to better focus on the different possible future routes and the vehicles in front.

C Dataset Preparation

We use a total of three datasets to study the performance of motion style adapters: Stanford Drone
Dataset (SDD) [2], the Intersection Drone Dataset (InD) [3], and Level 5 Dataset (L5) [4].

C.1 Stanford Drone Dataset (SDD)

SDD comprises 20 top-down scenes on the Stanford campus with various agent types (i.e., pedestrians,
bicyclists, car, skateboarders, buses, golf carts). We perform short-term prediction where we give 3.2
seconds trajectories and output the future 4.8 seconds. Following the same pre-processing procedure
in Mangalam et al. [5], we filter out short trajectories below 8 seconds in duration, split temporally
discontinued trajectories, and then use a sliding window approach without overlap to split the cleaned
trajectories. After those steps, the dataset contains 14860 pedestrian trajectories and 5152 bicyclist
trajectories. The semantic segmentation has 6 classes, namely pavement, terrain, structure, tree, road,
and others [6].

2



observation
groundtruth

(a) Sample 1

observation
groundtruth

(b) Sample 2

observation
groundtruth

(c) Sample 3

Figure 3: Illustration of the difference in goal decoder output of Y-Net on the scene style transfer on
InD using our motion style adapters (Red is positive, blue is negative). Observe that in the adapted
scene, pedestrians tend to cross at a particular segment of the road. This behavior did not occur
during the pre-training. MoSA learns this novel behavior using just 30 samples of adaptation.

(a) Input sample (b) Pre-adaptation (c) Post-adaptation

Figure 4: Attention heatmaps of the last layer of ViT before and after model adaptation on
unseen route in Level 5. Post adaptation, the attention maps are more refined. The ego (in
green box) better focuses on the different possible future routes and the vehicles in front.

3



Figure 5: Car and truck trajectory distribution
in inD scene1. The two agents share the same
scene context, differing in the motion style.

0 1 2 3 4 5
0.00

0.05

0.10

0.15

Pr
ob

ab
ilit

y

Cars

0 1 2 3 4 5
Velocity (in pixels / sec)

0.00

0.05

0.10

0.15

Pr
ob

ab
ilit

y

Trucks

Figure 6: Velocity distribution of car and
truck in inD scene1. Static samples removed.

C.2 Intersection Drone Dataset (inD)

The inD Dataset comprises four distinct road intersections, namely scene1, scene2, scene3, and
scene4, with various agent types, i.e., cars, pedestrians, bicyclists, trucks and buses. We perform
both short-term and long-term predictions. The short-term prediction outputs 4.8 seconds trajectories
given 3.2 seconds observation, while the long-term prediction generates 30 seconds future trajectories
given 5 seconds of observed ones. We use similar pre-processing steps as for SDD. Additionally,
we convert the data from the real-world coordinates to pixel coordinates using the provided scaling
factors [3]. After the pre-processing steps, inD contains 1396 long-term pedestrian trajectories, 1508
short-term car trajectories, and 157 short-term trucks trajectories.

C.3 Lyft Level 5 Dataset (L5)

Lyft Level 5 Prediction is a self-driving dataset, containing over 1,000 hours of real-world vehicle
data, where each scene lasts 25 seconds. We perform long-term motion forecasting where the ego
vehicle moves in a closed loop for the entirety of the scene for 25 seconds, while the surrounding
agents follow log-replay [4]. In the real-world, ego vehicles can come across novel scene contexts,
for example, road constructions.

In summary, SDD and inD with different heterogeneous agents provide the ideal setup to validate
motion style transfer techniques. L5 dataset provides long sequences of ego vehicle to study the
effects of style transfer on long-term self-driving settings.

D Pre-trained Models

We utilize the state-of-the-art model Y-Net [5] for experiments on SDD and inD. We further propose
an alternate design of Y-Net termed Y-Net-Mod to demonstrate the efficacy of our modular adaptation
strategy. Finally, we utilize the ViT-Tiny [7] architecture for experiments on L5.

D.1 Y-Net

Y-net [5] comprises three sub-networks: the scene heatmap encoder, the waypoint heatmap decoder,
and the trajectory heatmap decoder. Specifically, the encoder is designed as a U-net encoder which
consists of one center convolutional layer, four intermediate blocks where each uses max pooling and
two convolutional layers, and one final max pooling layer. It takes as input the concatenation of the
scene semantic map and past trajectory heatmap.

D.2 Y-Net-Mod

We construct Y-Net-Mod on top of the original Y-Net architecture. The modification treats the scene
context and agent motion independently before fusing their representations together. As shown in
Fig. 2 of main text, the first three layers of the original encoder are decoupled into scene context and
past agent motion modules in order to learn their representations independently. Subsequently, the

4



Figure 7: Train-adaptation split for Level
5 dataset [4]. Model is trained on the green
route and adapted on the blue route.

Table 3: Generalization performance of Y-Net and Y-
Net-Mod on the modularization setups of inD. Errors
reported are Top-20 ADE/FDE in pixels. Y-Net-Mod
does not degrade performance in comparison to Y-Net.

Experiment Y-Net Y-Net-Mod

Scene transfer 6.44 / 10.72 6.60 / 11.17
Agent motion transfer 24.48 / 33.54 24.56 / 29.07

representations are fused together using the fusion encoder, that is similar in design to the last two
layers of Y-Net. The original number of channels in each encoder layer of Y-Net are evenly divided
between each module in Y-Net-Mod encoder so that the latter is compatible with the Y-Net decoders.

Benchmarking Y-Net and Y-Net-Mod: To illustrate that our modification to Y-Net does not result
in severe drop in performance, we benchmark the performance of Y-Net and Y-Net-Mod on inD for
the modularization setups presented in main draft: 1) scene transfer of pedestrians, 2) agent motion
transfer from cars to trucks. Table. 3 illustrates that modularization of the Y-Net encoder does not
lead to a significant drop in the performance.

D.3 Vision Transformer

We utilize the official ViT-Tiny architecture [7] for the Level 5 dataset. We only modify the last layer
to output the forecasting predictions in the form of x, y coordinates for Tpred time-steps.

E Implementations Details

We present implementation details and hyperparameters for each method and model training. For
each experiment, the best model is chosen based on the performance on the validation set. All model
pretraining follows the training, validation and test split of 7:1:2. During adaptation, all experiments
utilize Adam optimizer and a batch size of 10, unless mentioned otherwise. Learning rate for FT is
5e-5, 5e-4 for ET, 5e-5 for PA, 1e-4 for BN, and 5e-3 for MoSA, unless mentioned otherwise. The
details for our designed experiments are listed as below.

Motion Style Transfer across Agents on SDD. We pretrain Y-Net network for 100 epochs and
learning rate of 5e-5. Rest of the hyper-parameters are kept the same as [5]. We adapt the pretrained
model using Ntarget = {10, 20, 30} trajectories and utilize 80 trajectories for validation. We adapt
the pretrained model for 100 epochs with an early stop value of 30 epochs. For MoSA, the rank value
is set to 3.

Motion Style Transfer across Scenes on inD. In this experiment, we utilize the pretrained model
provided by Y-Net paper [5]. We adapt this model using Ntarget = {20} trajectories and use 40
trajectories for validation. The pretrained model is 100 epochs. Fig. 3 illustrates the adaptation
performance of MoSA using 30 samples. MoSA learns the unseen behavior of pedestrians crossing
at a particular segment of the road, that was unobserved in the training scenes of inD.

Motion Style Transfer across Scenes on L5. To simulate a scene context transfer scenario, we
split the dataset as shown in Fig. 7. The ViT-Tiny model is trained on the majority route shown
in green and adapted to the blue route that was not seen during training. We follow the training
strategy provided in Houston et al. [4]: specifically, the network is trained to accept BEV rasters of
size 224× 224 pixels (centered around the SDV) to predict future (x, y) positions over a 1.2 second
horizon. The hyper-parameters of the ViT-Tiny architecture are kept the same as in [7]. We train the
model on the training data corresponding to the majority route for 15 epochs using batch size of 64.

To simulate low-resource settings during adaptation, the network is shown the unseen route only
once, sampled at different rates. As a result, we adapt for Nbatches = {4, 8, 15, 24, 36} with a batch

5



size of 64. We benchmark the following four cases: 1) Full model fine-tuning with learning rate of
1e-4, 2) Final layer fine-tuning with learning rate of 3e-4, 3) Adaptive layer normalization with a
learning rate of 1e-4, 4) MoSA (ours) with rank value of 8 and learning rate of 3e-3. We apply MoSA
across the query and value matrices of each attention layer. We observe that applying MoSA across
the feed-forward layers deteriorated performance. We adapt all the methods for 250 epochs using a
one-cycle learning rate scheduler.

Motion Style Transfer across Agents on inD with Modular Adaptation. We perform style
transfer from cars to trucks in scene1 of inD. Cars and trucks data have different speed distribution
(see Fig. 6) but share the same context as shown in Fig. 5. Trajectories with an average speed less than
0.2 pixels per second are filtered out. We train a Y-Net-Mod model on cars and adapt the model to
trucks in which Ntarget = {20} trajectories are used for adaptation and 40 trajectories for validation.

Motion Style Transfer across Scenes on inD with Modular Adaptation. We pretrained Y-Net-
Mod model using pedestrian data from scene ids = {2, 3, 4} and transferred to pedestrian data from
scene1 following the setup in [5]. The adaptation uses Ntarget = {20} for fine-tuning and 20
trajectories for validation.

Motion Style Transfer across Agent Motion on SDD with Modular Adaptation. We pretrain a
Y-Net-Mod model using slow cyclists from deathCircle 0 scene and adapt to fast cyclists from the
same scene. The pretraining set has 1213 trajectories. The adaptation set has 381 trajectories where
50 trajectories are used for validation.

E.1 Initialization of Motion Style Adapters

Matrices A and B are initialized such that the original network is not affected when training starts.
Specifically, we use a random Gaussian initialization for A and zero for B. This initialization scheme
allows these modules to be ignored at certain layers if there is no need for a change in activation
distribution.

6



References
[1] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow, and

S. Levine. Residual reinforcement learning for robot control. 2019 International Conference on
Robotics and Automation (ICRA), pages 6023–6029, 2019.

[2] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese. Learning social etiquette: Human
trajectory understanding in crowded scenes. In ECCV, 2016.

[3] J. Bock, R. Krajewski, T. Moers, S. Runde, L. Vater, and L. Eckstein. The ind dataset: A
drone dataset of naturalistic road user trajectories at german intersections. 2020 IEEE Intelligent
Vehicles Symposium (IV), pages 1929–1934, 2020.

[4] J. L. Houston, G. C. A. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. I. Iglovikov, and
P. Ondruska. One thousand and one hours: Self-driving motion prediction dataset. In CoRL,
2020.

[5] K. Mangalam, Y. An, H. Girase, and J. Malik. From goals, waypoints & paths to long term
human trajectory forecasting. 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 15213–15222, 2021.

[6] H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and stuff classes in context. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1209–
1218, 2018.

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference on Learning Representations, 2020.

7


	Additional Experiments
	Importance of Low-Rank constraint
	Modularized Adaptation across Agent Motion on SDD
	Modularized Adaptation across Scenes on inD

	Additional visualizations
	Dataset Preparation
	Stanford Drone Dataset (SDD)
	Intersection Drone Dataset (inD)
	Lyft Level 5 Dataset (L5)

	Pre-trained Models
	Y-Net
	Y-Net-Mod
	Vision Transformer

	Implementations Details
	Initialization of Motion Style Adapters


