
Supplementary for Learning Agile Skills via Adversarial1

Imitation of Rough Partial Demonstrations2

A Training Details3

A.1 Training Parameters4

The learning networks and algorithm are implemented in PyTorch 1.10 with CUDA 11.3. Adam5

is used as the optimizer for the policy and value function with an adaptive learning rate with a KL6

divergence target of 0.01. The optimizer for the discriminator is SGD for LSGAN and RMSprop7

for WASABI. The discount factor γ is set to 0.99, the clip range ε is set to 0.2, and the entropy8

coefficient α is set to 0.01. The policy runs at 50 Hz. All training is done by collecting experiences9

from 4096 uncorrelated instances of the simulator in parallel. Most of the experiments are executed10

on the cluster of Max Planck Institute for Intelligent Systems with NVIDIA A100 and Tesla V10011

GPUs. In this setting, one run with 5000 iterations with the specified compute settings and devices12

completes within 2 hours. The information is summarized in Table S1.

Table S1: Training parameters
Parameter Symbol Value

step time seconds − 0.02
max episode time seconds − 20
max iterations − 5000
steps per iteration − 24
policy learning epochs − 5
policy mini-batches − 4
KL divergence target − 0.01
discount factor γ 0.99
clip range ε 0.2
entropy coefficient α 0.01
discriminator weight decay wdD 0.001
discriminator momentum − 0.05
discriminator gradient penalty coefficient − 5.0
discriminator learning epochs − 1
discriminator mini-batches − 80
Wasserstein loss weight wD 0.5
gradient penalty weight wGP 5.0
parallel training environments − 4096
number of seeds − 5
approximate training hours − 2

policy learning rate lrπ grid-searched
discriminator learning rate lrD grid-searched
discriminator observation horizon H grid-searched
imitation reward relative importance wI grid-searched

13

Note that policy learning rate, discriminator learning rate, discriminator observation horizon, and14

imitation reward relative importance are grid-searched and optimized in different tasks. We report the15

value used for evaluation in Sec. 4 in Table S2.16

A.2 Network Architecture17

The network architecture is detailed in Table S3, where H denotes the discriminator observation18

horizon.19

1



Table S2: Task-specific parameters

Section Task Method lrπ lrD H wI

Sec. 4.1 SOLOBACKFLIP LSGAN 1.0× 10−6 1.0× 10−4 2 0.8
(Sim) WASABI 1.0× 10−7 1.0× 10−7 16 4.0

Sec. 4.2 SOLOLEAP LSGAN 1.0× 10−4 1.0× 10−4 2 0.8
(Sim) WASABI 1.0× 10−7 5.0× 10−8 2 8.0

SOLOWAVE LSGAN 1.0× 10−6 1.0× 10−4 4 0.8
WASABI 1.0× 10−6 5.0× 10−8 4 0.8

SOLOSTANDUP LSGAN 1.0× 10−4 1.0× 10−4 2 0.8
WASABI 1.0× 10−7 1.0× 10−7 4 4.0

SOLOBACKFLIP LSGAN 1.0× 10−6 1.0× 10−4 2 0.8
WASABI 1.0× 10−7 1.0× 10−7 16 4.0

SOLOSTANDUP† LSGAN 5.0× 10−5 5.0× 10−5 8 0.8
WASABI 1.0× 10−7 5.0× 10−7 2 4.0

SOLOSTANDUP∗ LSGAN 1.0× 10−4 1.0× 10−5 8 0.8
WASABI 5.0× 10−7 1.0× 10−7 2 4.0

SOLOBACKFLIP† LSGAN 5.0× 10−5 1.0× 10−5 8 0.8
WASABI 1.0× 10−7 5.0× 10−8 2 4.0

SOLOBACKFLIP∗ LSGAN 1.0× 10−4 1.0× 10−5 8 0.8
WASABI 1.0× 10−7 5.0× 10−8 2 0.8

Sec. 4.3 SOLOLEAP WASABI 1.0× 10−3 5.0× 10−7 2 0.1
(Real) SOLOWAVE WASABI 1.0× 10−3 5.0× 10−7 2 0.1

SOLOBACKFLIP WASABI 1.0× 10−3 5.0× 10−7 2 0.4

Table S3: Network architecture
Network Symbol Type Shape Activation

policy π MLP 68, 128, 128, 128, 8 Exponential Linear Unit (ELU)
value function V MLP 68, 128, 128, 128, 1 Exponential Linear Unit (ELU)
discriminator D MLP 10H, 512, 256, 1 Rectified Linear Unit (ReLU)

A.3 Domain Randomization20

Two types of domain randomization techniques are applied during training to improve policy perfor-21

mance when transferring from simulation to the real system.22

On the one hand, the base mass of the parallel training instances is perturbed with an additional weight23

m′ ∼ U(−0.5, 1.0), where U denotes uniform distribution. On the other hand, random pushing is24

also applied every 15 seconds on the robot base by forcing its horizontal linear velocity to be set25

randomly within vxy ∼ U(−0.5, 0.5).26

B Model Representation27

B.1 Discriminator Observation28

Table S4 lists the extracted features sent to the discriminator.29

For discriminator observation horizon H > 1, the entries are concatenated to a vector of size 10H .30

The resulting features are then normalized and used as inputs to the discriminator network.31

B.2 Policy Observation and Action Space32

In our work, we use a universal set of states as the policy observations for all tasks. It has 6833

dimensions and consists of the same set of state measurements of two consecutive steps as detailed in34
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Table S4: Discriminator observation space
Entry Symbol Dimensions

base linear velocity v 0:3
base angular velocity ω 3:6
projected gravity g 6:9
base height z 9:10

Table S5: Policy observation space
Entry Symbol Dimensions noise level b

base linear velocity v 0:3 0.2
base angular velocity ω 3:6 0.05
projected gravity g 6:9 0.05
base height z 9:10 0.01
joint positions q 10:18 0.01
joint velocities q̇ 18:26 0.75
last actions a′ 26:34 0.0

Table S5. The observation space is composed of base linear and angular velocities v, ω in the robot35

frame, measurement of the gravity vector in the robot frame g, base height z, joint positions q and36

velocities q̇, and the most recent actions a′.37

The noise level b denotes the artificial noise added during training to increase the policy robustness.38

Note again that the policy receives the observation collection for two consecutive steps. This is not39

necessarily optimal for all the tasks as less information would suffice for easier tasks. For simplicity,40

we use this fixed set of observations for all experiments.41

The action space is of 8 dimensions and encodes the target joint position for each of the 8 actuators.42

The PD gains are set to 5.0 and 0.1, respectively.43

C Regularization Reward Functions44

The regularization reward functions contain only regularization terms whose formulation is detailed45

below. A universal set of involved hyperparameters is used across different motions and is summarized46

in Table S6.47

C.1 Action Rate48

rar = war‖a′ − a‖22, (S1)

where war denotes the weight of the action rate reward, a′ and a denote the previous and current49

actions.50

C.2 Joint Acceleration51

rqa = wqa

∥∥∥∥ q̇′ − q̇∆t

∥∥∥∥2
2

, (S2)

where wqa denotes the weight of the joint acceleration reward, q̇′ and q̇ denote the previous and52

current joint velocity, ∆t denotes the step time interval.53

Table S6: Regularization reward hyperparameters
Hyperparameter war wqa wqT wφ̇ wψ̇ wẏ

Value −0.005 −1.25× 10−8 −1.25× 10−6 −0.001 −0.001 −0.001

3



C.3 Joint Torque54

rqT = wqT ‖T‖
2
2 , (S3)

where wqT denotes the weight of the joint torque reward, T denotes the joint torques.55

C.4 Angular Velocity x56

rφ̇ = wφ̇

∥∥∥φ̇∥∥∥2
2
, (S4)

where wφ̇ denotes the weight of the angular velocity x reward, φ̇ denotes the base roll rate.57

C.5 Angular Velocity z58

rψ̇ = wψ̇

∥∥∥ψ̇∥∥∥2
2
, (S5)

where wψ̇ denotes the weight of the angular velocity z reward, ψ̇ denotes the base yaw rate.59

C.6 Linear Velocity y60

rẏ = wẏ ‖ẏ‖22 , (S6)

where wẏ denotes the weight of the linear velocity y reward, ẏ denotes the base lateral velocity.61

D Method Comparison62

In this section, we highlight the connections and differences between our work and the AMP work [1],63

in particular, how the LSGAN formulation in our setting relates to AMP.64

D.1 AMP Adapted for Task Learning Termed as LSGAN65

It is acknowledged that both WASABI and AMP utilize generative adversarial learning methods to66

learn motions from reference demonstrations. However, from a high-level view, WASABI aims to67

solve fundamentally different tasks as opposed to AMP.68

Note that AMP itself does not target task reward learning. In AMP, the GAN model is employed69

to shape the styles of a learning agent while performing some other tasks, which are relatively70

straightforward and motivated by additional task reward functions (e.g. moving forward, reaching a71

target). This can be viewed as learning the regularization of motions. Indeed, we can adapt AMP72

to enable it to directly learn complex tasks by providing the desired motions as the reference and73

removing the original task reward. In addition, to alleviate the mode collapse issue as described in74

Sec. 3.2, the capability of the discriminator is extended to encompass longer observation horizons.75

With these adaptations, AMP is referred to as LSGAN in our work.76

Typically, AMP learns demonstrated motions with sufficient exploration enabled by reference state77

initialization (RSI), where the agent is initialized randomly along the reference trajectories. However,78

in the setting of legged skill learning from only base information, RSI is not applicable due to the79

missing joint reference. This makes the robot difficult to directly imitate highly dynamic motions. And80

as shown in Table 1, the robot fails to adopt complex skills (e.g. SOLOSTANDUP, SOLOBACKFLIP)81

with the LSGAN implementation.82

D.2 WASABI Designed for Task Learning83

In contrast, WASABI is proposed to learn task rewards directly for agile motions from limited data.84

This becomes especially meaningful for tasks where the reward function is challenging to design and85

a decent expert is not immediately accessible. WASABI provides solutions to cases where we want86

to quickly develop a complex skill for robot learning, allowing us to hand-hold a robot (or an object)87

without actuating it and to learn directly from the demonstrated trajectories.88
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E Handcrafted Task Reward89

Experts trained on handcrafted task rewards are used as a baseline to prove that WASABI is capable90

of extracting sensible task rewards. The policies learned using LSGAN and WASABI use 100091

sampled trajectories generated by the experts in simulation as reference.92

E.1 Upright Stand for SOLOSTANDUP93

The robot is encouraged to stand up by rewarding the pitch angle of the base, the base height, and the94

standing on only the two hind legs.95

rβ = wθzθz + wzz + wgcg, (S7)

where θz denotes the pitch angle with respect to the global z-axis, wθz = 1.0 denotes its weight. z96

denotes the base height and wz = 3.0 denotes its weight. cg is a binary variable that takes 1 if the97

front legs have no contact with the ground, wg = 2.0 denotes its weight.98

E.2 Traversed Angle for SOLOBACKFLIP99

The robot is encouraged to perform back-flipping by rewarding its traversed angle around the y-axis100

while in the air. This reward will be given only when the robot lands.101

rθ = wθθJs ∈ LK, (S8)

where wθ = 5.0 denotes the weight of the traversed angle reward, θ denotes the traversed angle102

around y-axis while in the air. L is the set of robot landing states, and J·K is the Iverson bracket.103

F Sim-to-Real Transfer104

To deploy the learned policy on the real system, the following adaptations are made to reduce the105

sim-to-real gap.106

F.1 Observation Space Adaptation107

Generally, policies trained in simulation suffer from poor performance when transferred to the real108

system. One primary reason for such failures is the incorrectly modeled system dynamics. As a109

result, the state transitions observed in simulation may divert from reality. On account of this, instead110

of using two consecutive steps of the observation collection in Suppl. B.2, only the observation at111

the current time step is used. The resulting policy observation space has thus only 34 entries and is112

detailed in Table S5.113

F.2 Training Hyperparameter Adaptation114

Some training hyperparameters are further refined and specifically adapted for the deployment on the115

real system as detailed in Table S2.116

F.3 Reward Adaptation117

To generate stable joint actuation and achieve task-specific high performance, a feet air time regular-118

ization reward is introduced to motivate higher off-ground steps during robot movement.119

rtf = wtf

4∑
i=1

tfiJfi ∈ CK, (S9)

where wtf denotes the weight of the feet air time reward, tfi denotes the time foot i stays in the air. C120

is the set of foot states touching the ground, and J·K is the Iverson bracket. The resulting task-specific121

regularization reward setting is provided in Table S7.122
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Table S7: Regularization reward adaptation
Task war wqa wqT wφ̇ wψ̇ wẏ wtf

SOLOLEAP −0.01 −2.5× 10−7 −2.5× 10−5 −0.05 −0.05 −0.05 0.10
SOLOWAVE −0.01 −2.5× 10−7 −2.5× 10−5 −0.01 −0.01 −0.01 0.05
SOLOBACKFLIP −0.01 −2.5× 10−7 −1.0× 10−5 −0.02 −0.02 −0.02 0.00

Figure S1: Hand-held motion demonstration for SOLOBACKFLIP. Note that the robot joints are not
actuated and only base information is recorded.

F.4 Policy Transfer123

In our work, the learned policies for SOLOLEAP, SOLOWAVE, and SOLOBACKFLIP successfully124

transfer to the real system. However, during the deployment of the policy for SOLOSTANDUP from125

either the handcrafted expert or obtained by WASABI, the robot fails to maintain balance after it126

manages to stand up. As Solo 8 does not have Hip Abduction Adduction (HAA) joints, it could be127

challenging to adapt against unexpected base rolling accordingly, which happens frequently after128

standing up. This makes this task especially difficult. In addition, the sim-to-real gap could also be129

potentially encoded in the inaccurate modeling of the point contacts between the feet and the ground,130

which the robot requires to adapt constantly to maintain its attitude.131

G Motions132

G.1 Data Collection133

The reference motions containing only the base information (as detailed in Sec. B.1) are performed by134

a human demonstrator and recorded using a Vicon motion capture system as illustrated in Figure S1.135

For each motion, 20 trajectories are recorded and used as the reference motion dataset. The number136

of frames in the recorded trajectories for each motion is detailed in Table S8.137

G.2 Motion Details138

We provide sequences of the respective motions that we learn in this work in Fig. S2.139

H Dynamic Time Warping Evaluation140

We make use of an imitation reward as outlined in Sec. 3.1 for learning policies from rough reference141

trajectories. Since the reference trajectories might not be completely achievable, either in terms of142

time consistency or the actual sequence of states that are infeasible, a simple evaluation metric such143

as the direct L2 distance between policy and reference trajectories is not applicable. Furthermore, a144

learned policy might replicate the demonstrated motion perfectly in a certain sub-sequence, however,145

in the absence of proper alignment and synchronization, it would incur a large penalty in terms of a146

simple distance metric.147

Table S8: Number of frames per recorded trajectory
SOLOLEAP SOLOWAVE SOLOSTANDUP SOLOBACKFLIP

Frames 130 130 100 60
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(a) SOLOLEAP

(b) SOLOWAVE

(c) SOLOSTANDUP

(d) SOLOBACKFLIP

Figure S2: Task motion sequences induced by the learned policies in simulation.

To account for the potential misalignment in the policy vs. reference trajectories, the policy trajectories148

need to be synchronized to the reference. Dynamic Time Warping (DTW) is an algorithm that149

computes an alignment between two sequences such that a distance measure between the elements of150

the sequences is minimized, under a set of matching constraints. This can be computed efficiently via151

dynamic programming, an example of such a matching is given for our case in Fig. 1.152

For the distance measure between the matched elements of the sequences we use the standard L2153

distance, and for the matching computation, we use the ‘dtw‘ Python package [2] with the Mori154

asymmetric step pattern [3] and open-ended matching. The asymmetric step pattern constrains the155

type of element matches that can happen between the trajectories and also makes it possible for some156

elements to be skipped, while open-ended matching allows for ends of trajectories to be matched to157

an earlier time point which is necessary to account for time shift. The resulting measure is denoted158

with dDTW.159

As clarified in Sec. 4, we calculate the expectation160

E
[
dDTW(Φ(τπ), τM)

]
(S10)

as the evaluation metric, where τπ ∼ dπ is a state trajectory drawn from a policy rollout distribution161

and τM ∼ dM denotes a reference motion from the dataset. With the same notation as in Sec. 3.2,162

the function Φ maps each state in the state trajectory of the policy to the reference observation space163

O. In practice, we estimate this by drawing 20 policy rollouts, comparing each of the 20 rollouts with164
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Figure S3: Performance of LSGAN (left) and WASABI (right) in terms of the handcrafted task
reward for SOLOSTANDUP with different discriminator observation horizons (light H = 2, middle
H = 4, dark H = 8). Solid lines indicate full information (∗) and dashed lines indicate partial
information (†).

20 collected reference trajectories, and taking the mean. Note that dDTW is not comparable across165

different tasks, thus we provide a pure standing reference in Table 1.166

I Ablation Studies167

To prevent mode collapse, we extend the capability of the discriminator by allowing more than one168

state transition as input. In this section, we aim to investigate how the length of the discriminator169

horizon may affect the learning process of the desired behaviors. Here we provide an evaluation170

in terms of the handcrafted reward of policies learned with discriminator observations of horizon171

H = 2, 4, 8 with LSGAN and WASABI in SOLOSTANDUP. The result is depicted in Fig. S3.172

Observe that a longer horizon tends to help the policy converge earlier and yield slightly better173

performance in terms of the handcrafted reward in both methods with either full or partial reference174

information, even if the LSGAN fails to learn the stand-up behavior. A similar pattern is also revealed175

in SOLOBACKFLIP, although it presents a weaker effect on policy convergence in comparison. The176

potential reason is that the policy learns to avoid producing state transitions that align with only a177

short sub-sequence of the reference motion. Such avoidance of mode collapse would prevent the178

policy from getting stuck at the local optima and thus increase the overall performance.179

However, the benefit brought about by a longer discriminator observation horizon is not identified180

in tasks with hand-held reference motions where a direct performance metric is not applicable.181

Sometimes a longer horizon may even result in failure of learning the desired motion which is182

attainable with shorter horizons. An evaluation of performance improvement in terms of DTW183

over iterations reveals no clear pattern on how different discriminator observation horizons affect184

policy convergence. This may result from the time and state inconsistency in the hand-held reference185

motions which may already alleviate mode collapse to some extent.186

J Extensions187

In this section, we present extensions of WASABI by small modifications to the adversarial imitation188

learning framework proposed in our work. Supplementary videos for these extensions are available at189

https://sites.google.com/view/corl2022-wasabi/home.190

J.1 Active Velocity Control191

In our work, the hand-held reference motions are recorded by a human demonstrator. For locomotion192

tasks, if the demonstration speed is uniformly high in the reference dataset, the corresponding193

recorded velocity terms are also high. During the training of the policy, the robot will try to mimic194

the recorded data and thus operate at a high locomotion speed.195

In contrast, if there is some variance in the velocity terms within the reference dataset, the policy196

will have larger freedom in choosing its locomotion velocity. For this reason, we take advantage of197
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the variance within the human demonstration and realize active velocity control by introducing a198

target-conditioned velocity tracking reward as follows199

rẋ = wẋe
−

(cẋ − ẋ)2

σ2
ẋ , (S11)

where wẋ = 0.5 denotes the weight of the velocity tracking reward, ẋ denotes the base longitudinal200

velocity, cẋ denotes the velocity command on the same direction, which is also observed by the201

control policy. And σ2
ẋ = 0.25 denotes a temperature scale for the tracking error.202

For SOLOLEAP and SOLOWAVE, we successfully enable active velocity control within the range203

cẋ ∈ [0.1, 0.5] by utilizing the diversity of the demonstration speed within the reference dataset.204

J.2 Single Flip in SOLOBACKFLIP205

Using the same reference motion in SOLOBACKFLIP, active execution of a single flip is achieved206

by including an additional variable in the observation space of the control policy indicating whether207

the robot has finished a backflip. After the robot finishes a flip, the control policy stops receiving208

imitation signals from the discriminator by fixing a constant imitation reward output to prevent from209

learning a consecutive flip.210

In the meanwhile, a stand-still reward term is imposed to regularize the joint configurations during211

landing and standing. The stand-still reward is formulated as follows212

rq0 = wq0 ‖q − q0‖
2
2 , (S12)

where wq0 = 0.01 denotes the weight of the stand-still reward, q denotes the current joint positions213

and q0 denotes the default joint positions when the robot stands.214
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