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Train in Simulation Directly Deploy in the Real World
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Figure 1: Left: Our controller is trained only in simulation on simple cylindrical objects of different
sizes and weights. Right: Without any real world fine-tuning, the controller can be deployed to
a real robot on a diverse set of objects with different shapes, sizes and weights (object mass and
the shortest/longest diameter axis length along the fingertips are shown in the figure) using only
proprioceptive information. Website: Emergence of natural stable finger gaits can be observed in the
learned control policy.

Abstract: Generalized in-hand manipulation has long been an unsolved challenge
of robotics. As a small step towards this grand goal, we demonstrate how to design
and learn a simple adaptive controller to achieve in-hand object rotation using
only fingertips. The controller is trained entirely in simulation on only cylindrical
objects, which then — without any fine-tuning — can be directly deployed to a real
robot hand to rotate dozens of objects with diverse sizes, shapes, and weights over
the z-axis. This is achieved via rapid online adaptation of the robot’s controller
to the object properties using only proprioception history. Furthermore, natural
and stable finger gaits automatically emerge from training the control policy via
reinforcement learning. Code and more videos are available at our Website.
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1 Introduction

Humans are remarkably good at manipulating objects in-hand — they can even adapt to new objects of
different shapes, sizes, mass and materials with no apparent effort. While several works have shown
in-hand object rotation with real-world multi-fingered hands for a single or a few objects [1, 2, 3, 4],
truly generalizable in-hand manipulation remains an unsolved challenge of robotics.

In this paper, we demonstrate that it is possible to train an adaptive controller capable of rotating
diverse objects over the z-axis with the fingertips of a multi-fingered robot hand (Figure 1). This task
is a simplification of the general in-hand reorientation task, yet still quite challenging for robots since
at all times the fingers need to maintain a dynamic or static force closure on the object to prevent it
from falling (as it can not make use of any other supporting surface such as the palm).
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Our approach is inspired by the recent advances in legged locomotion [5, 6] using reinforcement
learning. The core of these works is to learn a compressed representation of different terrain properties
(called extrinsics) for walking, which is jointly trained with the control policy. During deployment,
the extrinsics is estimated online and the controller can perform rapid adaptation to it. Our key
insight is that, despite the diversity of real-world objects, for the task of in-hand object rotation, the
important physical properties such as local shape, mass, and size as perceived by the fingertips can
be compressed to a compact representation. Once such a compressed representation (extrinsics) of
different objects is learned, the controller can estimate it online from proprioception history and use
it to adaptively manipulate a diverse set of objects.

Specifically, we encode the object’s intrinsic properties (such as mass and size) to an extrinsics vector,
and train an adaptive policy with it as an input. The learned policy can robustly and efficiently rotate
different objects in simulation environments. However, we do not have access to the extrinsics when
we deploy the policy in the real world. To tackle this problem, we use the rapid motor adaptation [6]
to learn an adaptation module which estimate the extrinsic vector, using the discrepancy between
observed proprioception history and the commanded actions. This adaptation module can also be
trained solely in simulation via supervised learning. The concept of estimating physical properties
using proprioceptive history has been widely used in locomotion [5, 6, 7] but has not yet been
explored for in-hand manipulation.

Experimental results on a multi-finger Allegro Hand [8] show that our method can successfully
rotate over 30 objects of diverse shapes, sizes (from 4.5 cm to 7.5 cm), mass (from 5 g to 200 g), and
other physical properties (e.g., deformable or soft objects) in the real world. We also observe that an
adaptive and smooth finger gait emerges from the learning process. Our approach shows the surprising
effectiveness of using only proprioception sensory signals for adaptation to different objects, even
without the usage of vision and tactile sensing. To further understand the underlying mechanisms
of our approach, we studied the estimated extrinsics when manipulating different objects. We find
interpretable extrinsic values that correlate to mass and scale changes, and that a low-dimensional
structure of the embedding does exist, both of which are critical to our generalization ability.

2 Related Work

Classic Control for In-Hand Manipulation. Dexterous in-hand manipulation has been an active
research area for decades [9]. Classic control methods usually need an analytical model of the object
and robot geometry to perform motion planning for object manipulation. For example, [10, 11] rely
on such a model to plan finger movement to rotate objects. [12] assumes objects are piece-wise
smooth and use finger-tracking to rotate objects. [13, 14] demonstrate reorientation of different
objects in simulation by generating trajectories using optimization. There have been also attempts to
deploy systems in the real-world. For example, [15] calculates precise contact locations to plan a
sequence of contact locations for twirling objects. [16] plans over a set of predefined grasp strategies
to achieve object reorientation using two multi-fingered hands. [17, 18] use throwing or external
forces to perturb the object in the air and re-grasp it. Recently, works such as [19, 20] do in-grasp
manipulation without breaking the contact. [4] demonstrates complex object reorientation skills using
a non-anthropomorphic hand by leveraging the compliance and an accurate pose tracker. The diversity
of the objects they can manipulate is still limited due to the intrinsic complexity of the physical
world. In contrast to traditional control approaches which may use heuristics or simplified models to
solve this task, we instead use model-free reinforcement learning to train an adaptive policy, and use
adaptation to achieve generalization.

Reinforcement Learning for In-Hand Manipulation. To get around the need of an accurate object
model and physical property measures, in the last few years, there has been a growing interest in
using reinforcement learning directly in the real-world for dexterous in-hand manipulation. [21]
learns simple in-grasp rolling for cylindrical objects. [22, 23] learns a dynamics model and plan
over it for rotating objects on the palm. [24, 25] use human demonstration to accelerate the learning
process. However, since reinforcement learning is very sample inefficient, the learned skills are rather
simple or have limited object diversity. Although complex skills such as re-orientating a diverse set
of objects [26, 27, 28] and tool use [29, 30] can be obtained in simulation, transferring the results to
real-world remains challenging. Instead of directly training a policy in the real world, our approach
learns the policy entirely in the simulator and aims to directly transfer to the real world.

Sim-to-Real Transfer via Domain Randomization. Several works aim to train reinforcement
learning policies using a simulator and directly deploy it in a real-world system. Domain randomiza-
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Figure 2: An overview of our approach at different training and deployment stages. In Base Policy
Learning, we jointly optimize p and 7 using PPO [33]. The observation o, only contains three past
joint positions and commanded actions. Next, in Adaptation Module Learning, we freeze the policy
7 and use supervised learning to train ¢ which uses proprioception and action history to estimate
the extrinsics vector z;. During Deployment, the base policy 7 uses the extrinsics 2; estimated and
updated online by ¢.

tion [31] varies the simulation parameters during training to expose the policy to diverse simulation
environments so that they can be robustly deployed in the real-world. Representative examples are [1]
and [2]. They leverage massive computational resources and large-scale reinforcement learning
methods to learn an agile object reorientation skills and solve Rubik’s Cube with a single robot hand.
However, they still focus only on manipulating a limited number of objects. [3] learns a finger-gaiting
behavior efficiently and transfers to a real robot when hand facing downwards, but they do not only
use fingertips and the objects considered are all cubes. Our approach focuses on generalization to a
diverse set of objects and can be trained within a few hours.

Sim-to-Real via Adaptation. Instead of relying on domain randomization which is agnostic to
current environment parameters, [32] performs system identification via initial calibration, or online
adaptive control to estimate the system parameters for Sim-to-Real Transfer. However, learning the
exact physical values and alignment between simulation and real-world may be sub-optimal because
of the intrinsic inaccuracy of physics simulations. An alternative way is to learn a low dimensional
embedding which encodes the environment parameters [5, 6] which is then used by the control
policy to act. This paradigm has enabled robust and adaptive locomotion policies. However, it is
not straightforward to apply it on the in-hand manipulation task. Our approach demonstrates how to
design the reward and training environment to enable a natural and stable controller that can transfer
to the real world.

3 Rapid Motor Adaptation for In-Hand Object Rotation

An overview of our approach is shown in Figure 2. During deployment (Figure 2, bottom), our policy
infers a low-dimensional embedding of object’s properties such as size and mass from proprioception
and action history, which is then used by our base policy to rotate the object. We first describe how
we train a base policy with object property provided by a simulator, then we discuss how to train an
adaptation module that is capable of inferring these properties.

3.1 Base Policy Training

Privileged Information. In this paper, privileged information refers to the object’s properties such
as position, size, mass, coefficient of friction, center of mass of the object. This information, denoted
by a 9-dim vector e; € R? at timestep ¢, can be accurately measured in simulation. We provide



this as an input to the policy, but instead of using e; directly, we use an 8-dim embedding (called
extrinsics in [6]) z; = p(e;) which gives better generalization behavior as we show in Section 5.

Base Policy. Our control policy 7 takes the current robot joint positions q; € R'6, the predicted
action a;_, € R!6 at the last timestep, together with the extrinsics vector z; € R® as input, and
outputs the target of the PD Controller (denoted as a;). We also augment the observation to include
two additional timesteps to have the velocity and acceleration information. Formally, the base policy
output a; = (0, z;) where 0y = (q;_2.¢, a;_3.4_1) € R,

Reward Function. We jointly optimize the policy 7 and the embedding ¢ using PPO [33]. The
reward function depends on several quantities: w is the object’s angular velocity. k is the desired
rotation axis (we use the z-axis in the hand coordinate system). ginit is the starting robot configuration.
T is the commanded torques at each timestep. v is the object’s linear velocity. Our reward function r
(subscript ¢ omitted for simplicity) to maximize is then

r= Trot + )\pose T'pose + )\linvel Tlinvel + )\work Twork 1 )\torque Ttorque (1)

where 7o = max(min(w - I::, Tmax); Tmin) 18 the rotation reward, rpose = — |lg — qinit||§ is the
hand pose deviation penalty, rorque = — ||7'||§ is the torque penalty, ryo = —77 ¢ is the energy

consumption penalty, and 7,01 = — ||v\|§ is the object linear velocity penalty. Note that in contrast
to [28] which explicitly encourages at least three fingertips to always be in contact with the object,
we do not enforce any heuristic finger gaiting behaviour. Instead, a stable finger gaiting behaviour
emerges from the energy constraints and the penalty on deviation from the initial pose.

Object Initialization and Dynamics Randomization. A good training environment has to provide
enough variety in simulation to enable generalization in the real world. In this work we find that
using cylinders with different aspect ratios and masses provides such variety. We uniformly sample
different diameters and side lengths of the cylinder.

We initialize the object and the fingers in a stable precision grasp. Instead of constructing the fingertip
positions as in [28], we simply randomly sample the object position, pose, and robot joint position
around a canonical grasp until a stable grasp is achieved. We also randomize the mass, center of mass,
and friction of these objects (see appendix for the details).

3.2 Adaptation Module Training

We cannot directly deploy the learned policy 7 to the real world because we do not directly observe
the vector e; and hence we cannot compute the extrinsics z;. Instead, we estimate the extrinsics
vector 2, from the discrepancy between the proprioception history and the commanded action history
via an adaptation module ¢. This idea is inspired by recent work in locomotion [5, 6] where the
proprioception history is used to estimate the terrain properties. We show that this information can
also be used to estimate the object properties.

To train this network, we first collect trajectories and privileged information by executing the policy
a; = w(oy, 2;) with the predicted extrinsic vectors 2; = ¢(qi—k:t, @t—k—1.t—1). Meanwhile we also
store the ground-truth extrinsic vector z; and construct a training set
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Then we optimize ¢ by minimizing the ¢5 distance between z; and 2; using Adam [34]. The process is
iterative until the loss converges. We apply the same object initialization and dynamics randomization
setting as the above section.

4 Experimental Setup and Implementation Details

Hardware Setup. We use an Allegro Hand from Wonik Robotics [8]. The Allegro hand is a dexterous
anthropomorphic robot hand with four fingers, with each finger having four degrees of freedom.
These 16 joints are controlled using position control at 20 Hz. The target position commands are
converted to torque using a PD Controller (K, = 3.0, K4 = 0.1) at 300 Hz.

Simulation Setup. We use the IsaacGym [35] simulator. During training, we use 16384 parallel
environments to collection samples for training the agent. Each environment contains a simulated
Allegro Hand and an cylindrical object with different shape and physical properties (the exact
parameters are in the supplementary material). The simulation frequency is 120 Hz and the control
frequency is 20 Hz. Each episode lasts for 400 control steps (equivalent to 20 s).



Within Training Distribution Out-of-Distribution
Method RotR (1) TTF (1) ObjVel () Torque ({) RotR (1) TTF (1) ObjVel () Torque ({)

+25.24 4001 4005 +0.19 +15.65 +0.04 +0.06 +0.16
Periodic | 43.62+252 0.44+012  0.72+021  1.77+040| 22.45+050 0.34+008  1.11+000  1.41+054
NoAdapt | 90.89+4s5 0.65+007  0.44+011  1.34+012| 54.50+301 0.51+006  0.63+013  1.34+0.
DR 1761242647 0.81+002  0.34+00s  1.42+006 | 140.80+1751 0.63+002  0.64+006  1.48+020
SysID 1744240331 0.81+002 0324003 1.29+072 | 132.56+1742 0.62+009  0.50+000  1.26+0.17
Ours 2222742120 0.82+002 0.29+005s  1.20+019 | 160.60+1022 0.68+007  0.47+007  1.20+0.17

Table 1: We compare our method to several baselines in simulation in two settings: 1) Within Training Distribu-
tion; 2) Out-of-Distribution. Our method with online continuously adaptation achieves the best performance
compared to all the baselines, closely emulating the performance of the Expert that has the privileged information
as the input.

Baselines. We compare our method to the baselines listed below. We also compare with the policy
with access to privileged information (Expert), as the upper bound of our method (Figure 2, top row).

1. A Robust Policy trained with Domain Randomization (DR): This baseline is trained with the same
reward function but without privileged information. This gives a policy which is robust, instead
of adaptive, to all the shape and physical property variations [1, 3, 2, 36].

2. Online Explicit System Identification (SysID): This baseline predicts the exact system parameters
e, instead of the extrinsic vector z; during training the adaptation module.

3. No Online Adaptation (NoAdapt): During deployment, the extrinsics vector 2, is estimated at the
first time step and stays frozen during the rest of the run. This is to study the importance of online
adaptation enabled by the adaptation module ¢.

4. Action Replay (Periodic): We record a reference trajectory from the expert policy with privi-
leged information and run it blindly. This is to show our policy adapts to different objects and
disturbances instead of periodically executing the same action sequence.

Metrics. We use the following metrics to compare the performance of our method to baselines.

1. Time-to-Fall (ITF). The average length of the episode before the object falls out of the hand.
This value is normalized by the maximum episode length (20s in simulation experiments and 30s
in the real world experiments).

2. Rotation Reward (RotR). This is the average rotation reward (w - 12:) of an episode in simulation.
Note that we do not train with this reward. Instead, we use a clipped version of this reward during
training.

3. Radians Rotated within Episode (Rotations). Since angular velocity of the object is hard to
accurately measure in the real world, we instead measure the net rotation of the object (in radians)
achieved by the policy with respect to the world’s z-axis. This metric is only used in the real
world experiments.

4. Object’s Linear Velocity (ObjVel). We measure the magnitude of the linear velocity to measure
the stability of the object. This is only measured in simulation. The value is scaled by 100.

5. Torque Penalty (Torque). We measure the average ¢1 norm of commanded torque per timestep
during execution to measure the energy efficiency.

S Results and Analysis

In this section, we compare the performance of our method to several baselines both in simulation
and in real-world deployment. We also analyze what the adaptation module learns and how it
changes during policy execution and as the objects change. Finally, we focus on training a policy for
rotating an object along the negative z-axis with respect to the world coordinate. We also explore the
possibility of training a multi-axis policy (£ z-axis) in the appendix. More qualitative results of our
method and several ablations of our method are in our Project Website and the supplementary.

5.1 Generalization via Adaptation

Comparison in Simulation. We first compare our method with the baselines mentioned in Section 4
in simulation. We evaluate all methods under two settings: 1) In the Within Training Distribution
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Figure 3: Quantitative Evaluation on a diverse set of Heavy Objects (Left). Our method which uses adaptation
performs the best in terms of total rotated angle (in radians), Time To Fall (TTF), and Energy efficiency (Torque).
The DR baseline has a conservative policy which results in a slower angular velocity. SysID has a more dynamic
and agile policy but very unstable as can be seen in a lower TTF compared to DR and ours. The NoAdapt
baseline fails on the task showing the importance of continuous online adaptation.

setting, we use the same object set and randomization setting as in RL training; 2) In the Out-of-
Distribution setting, we use objects with a larger range of physical randomization range. We also
change 20% of the objects to be spheres and cubes. We compute the average performance over 500K
episodes with different parameter randomizations and initialization conditions. We report the average
and standard deviation over five models trained with different seeds.

The results in Table 1 show that our method with online adaptation achieves the best performance
compared to all the baselines. We see that adaptation to shape and dynamics of the object not
only enables a better performance in training, but also gives a much better generalization to out-
of-distribution object parameters compared to all the baseline methods. The Periodic baseline (i.e.,
simply playback of the expert policy) does not give a reasonable performance. Although it can rotate
the exact same object with the same initial grasp and dynamic parameters, it fails to generalize beyond
this very narrow setup. This baseline helps us understand the difficulty of the problem. The NoAdapt
also performs poorly compared to our method which uses continuous online adaptation. The weaker
performance of this baseline is explained by the fact that it does not update the extrinsics during the
episode. This shows the importance of continuous online adaptation. The DR baseline, although
roughly matches or performs better than the other baselines in terms of RofR and TTF;, it is worse
in other metrics related to object stability and energy efficiency. This is because the DR baseline is
unaware of the underlying object properties and needs to learn a single gait, instead of an adaptive
one, for all possible objects. The SysID baseline also performs worse than our method in both of the
evaluation distributions. This is because it is harder as well as unnecessary to learn the exact values
of the shape and dynamics parameters to adapt. This comparison shows the benefit of learning a
low-dimensional compact representation which has a coarse relative activation for different physical
properties instead of the exact value (see Figure 5 and Figure 6).

Real-World Comparisons. Next, we show real world comparisons of our policy to the baselines on
two set of challenging objects shown in Figure 3 and Figure 4. We exclude the Periodic baseline
because it does not work well even in Simulation and Expert because we cannot access privileged
information in the real world. We evaluate each method using 20 different initial grasping positions
and 6 different objects in each set. The maximum episode length is 30's.

We first study the behavior of our policy and different baselines in a set of heavy objects (more
than 100 g) including a baseball, different fruits, vegetables, and a cup (Figure 3). Our method
performs significantly better in all metrics. Our method can achieves consistent rotation for almost
all trials without falling down with an average Rotations of 23.96 (with a equivalent rotation velocity
0.8rads~1). We find the DR baseline is very slow and conservative in all the trials since it is unaware
of object properties and needs to learn a single gaiting behaviour for all objects. As a result, it
has the lowest Rotations, although the TTF is higher than the SysID baseline. We also find the DR
could perform reasonably well on objects of larger sizes because they are easier to rotate and forms
a reasonable chunk of training distribution. The SysID baseline learns a more dynamic and agile
behavior, having a better Rotations metric, but a lower TTF and Rotations showing that precise
estimation of system parameters is both unnecessary and difficult. We find that it is particularly hard
for it to generalize to the small cup and the slightly soft tomato. Lastly, we observe a similar behavior
as in [6] that the NoAdapt baseline does not transfer successfully to the real world, showing the
importance of continuous online adaptation for successful real-world deployment.

We perform the same comparisons on a collection of irregular objects (Figure 4). It contains a
container with moving COM, objects with concavity, a cylindrical kiwi fruit, a shuttlecock, a toy with
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Figure 4: Quantitative Evaluation on a diverse set of Irregular Objects (Left). Our method can successfully
generalize to rotating a diverse set of objects including objects with holes, soft and deformable objects (none of
these were included in the training). Our method outperforms the baselines on all the metrics. The DR baseline
has the second highest TTF but low Rotations because it outputs very conservative and slow trajectories. SysID
achieves slightly faster but a very unstable policy. The superior performance of our method over baselines shows
the importance of adaptation via a low dimensional extrinsics estimation for generalization in this task.
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Figure 5: Two of the 8-dim estimated extrinsics vector during one continuous run in which we change the
object in the hand every 30s for 6 objects. The top plot shows the extrinsic value z; o which responds to changes
in object diameter with smaller diameters leading to lower values. Since the perceived diameter of the object
changes during rotating an irregular shaped object, we see variations in this extrinsic value even within the same
object. The bottom plot shows the correlation between z: 2 and object mass: it attains higher values for lighter
objects and lower for heavier objects. See this link for the video.

holes, and a cube toy. Rotating the cube is particularly difficult because we only rely on usage of
fingertips. Although these variations are challenging for this task and are beyond what is seen during
training, our method still performs reasonably well, outperforming all the baselines. We see that
the DR baseline can perform stable but slow in-hand rotation for the container and the shuttlecock,
but largely fails for the other objects, indicating its difficulty in shape generalization. For the SysID
baseline, its stability is significantly lower than the DR baseline as well as our method, despite having
a higher angular velocity. The NoAdapt baseline performs similarly to what we observed in Figure 3.

5.2 Understanding and Analysis

To understand how our method generalizes to a diverse set of objects, we design a few experiments
and visualization to help develop some insights.

Extrinsics over Time. We run one continuous evaluation episode in the real world in which we
replace the object in the hand every 30s for 6 objects. Note that during training, we never randomize
the objects within an episode. During the entire run, we record the estimated extrinsics and plot 2 out
of the 8-dim extrinsics vector in Figure 5. The top plot shows the extrinsic value z; o which responds
to changes in object diameter. It has a lower value for smaller diameters and higher value for larger
diameters. The bottom plot shows that the extrinsic value 2z 2 responds to variations in object mass.

Extrinsic Clustering. Another way to understand the estimated extrinsics 2 is by clustering the
extrinsics vector estimated while rotating different objects. In Figure 6, we visualize the estimated
extrinsics vector using t-SNE for rotating 6 different objects. We find that objects of different sizes
and different weights tend to occupy separate regions as explained in Figure 6.
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Figure 6: We visualize the estimated extrinsics vector 2; using t-SNE for rotating 6 different objects for 5
seconds each. We found that objects of different sizes and different weights tend to occupy separate regions. For
example, 2 corresponding to smaller objects tend to cluster on the bottom left. The object with ID 1 (shown
in the bottom left in the above figure) produces scattered 2 because of its irregular shape, which results in an
equivalently varying scale of the object. This locality leads to the scattering of the extrinsics across the t-SNE
plot, and this locality is also what gives us generalization as evaluated in Table 1, Figure 3 and Figure 4.

Emergent Finger Gaits. We find it important to use cylindrical objects for the emergence of a stable
and high-clearance gait. On our website, we compare the learned finger gaits when training with
cylindrical objects and with pure spherical objects. The latter training scheme leads to a policy with a
dynamic gait which works well on balls but fail to generalize to more complex objects.

5.3 Real World Qualitative Results

On our Project Website, we qualitatively compare our method with the baselines on 5 different objects
and further evaluate our method on 30 objects of different shapes and physical properties, including
porous objects and non-rigid objects. The diameter ranges from 4.5 cm to 7.5 cm and the mass ranges
from 5 g to 200 g. Note that we only use cylindrical objects of different sizes and aspect ratios during
training and show shape generalization in the real world with the use of rapid adaptation. The key
insight which allows this generalization is that the shape of the objects as perceived by the fingertips
of the hand can be compressed to a low dimensional space. We estimate this low dimensional space
from proprioceptive history, which allows us to generalize to objects which are seemingly different in
the real world but might look similar in the extrinsics space.

6 Discussion and Limitations

There are different levels of difficulty for general dexterous in-hand manipulation. The task considered
in this paper (in-hand object rotation over the z-axis) is a simplification of the general SO(3)
reorientation problem. However, it is not a limiting simplification. With three policies for rotation
along three principle axes, we can achieve rotating the object to any target pose. We view this task as
an important future extension of our work.

We show the feasibility of purely proprioceptive in-hand object rotation for a diverse set of objects.
We find most of our failure cases in the real-world experiments are due to incorrect contact points
which leads to unstable force closure. Since our method only relies on the proprioceptive sensing, it
is unaware of the precise contact positions between the objects and the fingertips. Another failure
case is when the object to be rotated is tiny (with diameter less than 4.0 cm). In this case the fingers
will frequently collide with each other, making the robot not able to maintain the grasp balance of
the object. More extreme and sophisticated shapes are also harder to manipulate. For those more
challenging tasks, it might be necessary to incorporate tactile or visual feedback.

We aim to study the generalization to the real world via adaptation, so we do not utilize real-world
experience to improve our policy. Incorporating real-world data to improve our policy (e.g. by using
meta-learning) will be an interesting and meaningful next step.
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