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Abstract: We present a framework for specifying tasks involving spatial relations
between objects using only ∼5-10 demonstrations and then executing such tasks
given point cloud observations of a novel pair of objects in arbitrary initial poses.
Our approach structures these rearrangement tasks by assigning a consistent local
coordinate frame to the task-relevant object parts, localizing the corresponding
coordinate frame on unseen object instances, and executing an action that brings
these frames into alignment. We propose an optimization method that uses multiple
Neural Descriptor Fields (NDFs) and a single annotated 3D keypoint to assign
a set of consistent coordinate frames to the task-relevant object parts. We also
propose an energy-based learning scheme to model the joint configuration of the
objects that satisfies a desired relational task. We validate our pipeline on three
multi-object rearrangement tasks in simulation and on a real robot. Results show
that our method can infer relative transformations that satisfy the desired relation
between novel objects in unseen initial poses using just a few demonstrations.
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1 Introduction
Many tasks we want robots to perform – e.g., stacking bowls and plates to declutter a table, putting
objects together to build an assembly, and hanging mugs on a rack with hooks – involve rearranging
objects relative to one another. Such tasks can be described in terms of spatial relations between part
features of a set of objects, where a local coordinate frame is attached to the task-relevant part of the
object, and the relation is achieved by transforming the objects to bring these coordinate frames into
a specified alignment. For example, hanging a mug on a rack is a relation between the mug’s handle
and the rack’s hook, while stacking a bowl on a mug involves aligning the bottom of the bowl with
the top of the mug (see Fig. 1).

Specifying and solving tasks in this way requires the ability to (i) assign a consistent local coordinate
frame to the task-relevant object parts, and (ii) detect the corresponding coordinate frames on
new object instances. Prior works have demonstrated these capabilities using techniques such as
supervised keypoint detection [1, 2], but the use of large task-specific datasets labeled by humans
limits easy deployment for a wide diversity of tasks. Neural Descriptor Fields (NDFs) [3] have also
been used to perform these abilities, with the added benefit of requiring just a small set (∼ 5-10) of
task demonstrations. They achieve this by combining task-agnostic self-supervised pretraining and
a few labeled examples of objects with consistent coordinate frames attached to their task-relevant
parts, effectively performing few-shot learning for task-relevant part localization on new instances.

Despite these benefits, it can be tedious to label the relevant part of each demonstration object with a
consistent pose (e.g., label the “handle” of each mug with a consistent orientation). Prior work [3]
reduced this burden by permitting the user to label a single coordinate frame near the task-relevant part
of a known secondary object, and use the demonstrations to associate the frame with the task-relevant
part of each unknown object (e.g., label a frame on the “hook” of a known rack once, and associate
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Figure 1: Given a point cloud of a pair of unseen objects in aritrary initial configurations (top left), Relational
Neural Descriptor Fields (R-NDFs) obtain relative transformations that satisfy a relational task objective, such as
“placing the mug upright on the table” (middle) and “stacking the bowl upright on top of the mug” (right). Our
framework obtains these transformations by inferring the 6D pose of local coordinate frames at the task-relevant
parts of the objects using just a small handful (�5-10) of demonstrations of each relational task.

this frame with each mug’s “handle” based on the final mug placements). This labeled frame also
specifies the alignment target for test-time objects once their relevant parts are localized. While this
enables generalization to unseen objects in diverse poses [3], assuming a known secondary object is
limiting – for the hanging example, the system generalizes to scenarios with unseen mugs, but fails
with both an unseen mug and a rack with a new shape. In this paper, we address this limitation. In
particular, we present Relational Neural Descriptor Fields (R-NDFs), a framework, using ∼ 5-10
demonstrations, that takes as input 3D point clouds of a pair of unseen objects in arbitrary initial
poses and outputs a relative transformation between them that satisfies a relational task objective.

The central difficulty in applying NDFs to scenarios with changing pairs of objects is to assign a set
of consistent local coordinate frames to the task-relevant parts of the objects in the demonstrations,
which may be both unaligned and differently shaped. We propose an optimization method that uses
two NDFs (one per object) and a single 3D keypoint label in just one of the demonstrations, to assign
a set of local coordinate frames that are consistently posed relative to the task-relevant parts of the
objects. We then apply NDFs to localize the corresponding coordinate frames for unseen pairs of
objects presented in arbitrary initial poses, and solve for the relative transformation between them that
satisfies the desired relation. However, errors can accumulate when inferring a relative transformation
based on a pair of coordinate frames that have been independently localized. To mitigate this effect,
we also propose a learning approach that directly models the joint configuration of the pair of objects
and helps refine the transformation for satisfying the relation.

We validate R-NDFs on three relational rearrangement tasks in both simulation and the real world.
Our simulation results show that R-NDFs outperform a set of baseline approaches, and our proposed
optimization and learning-based refinement schemes benefit overall task success. Finally, our real
world results exhibit the effectiveness of R-NDFs on pairs of diverse real world objects in tabletop
pick-and-place, and highlight the potential for applying our approach to multi-step tasks.

2 Background: Neural Descriptor Fields
A Neural Descriptor Field (NDF) [3] represents an object using a function f that maps a 3D coordinate
x ∈ R3 and an object point cloud P ∈ R3×N to a spatial descriptor in Rd:

f(x|P) : R3 × R3×N → Rd: (1)
The function f is parameterized as a neural network constructed to be SE(3)-equivariant, such that if
an object is subject to a rigid body transform T ∈ SE(3) its spatial descriptors transform accordingly*:

f(x|P) ≡ f(Tx|TP): (2)
This enables NDFs to behave consistently for the same object, regardless of the underlying pose.
NDFs are also trained to learn correspondence over objects in the same category, so that points
near similar geometric features of different instances (e.g., a point near the handle of two different
mugs) are mapped to similar descriptor values. The equivariance property is obtained by using
SO(3)-equivariant neural network layers [4] and mean-centered point clouds, while the category-level
correspondence is obtained by training f on a category-level 3D reconstruction task [3, 5].

*We use homogeneous coordinates for ease of notation, i.e., Tx denotes Rx+t where T = (R; t) 2 SE(3).
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NDFs can also be redefined to model a field over full SE(3) poses, rather than individual points. This
is achieved by concatenating the descriptors of the individual points in a rigid set of query points
X ∈ R3×Nq , i.e., a set of three or more non-collinear points xi; i = 1:::Nq, that are constrained to
transform together rigidly. This construction allows NDFs to represent an SE(3) pose T via its action
on X , i.e., via the coordinates of the transformed query point cloud TX :

Z = F (T|P) =
M

xi∈X
f(Txi|P) (3)

Thus, F maps a point cloud P and an SE(3) pose T to a category-level pose descriptor Z ∈ Rd×Nq ,
where F inherits the same SE(3)-equivariance from f .

3 General Problem Setup and Preliminaries

Our high level goal is to enable a user to specify a task involving a geometric relationship between a
pair of rigid objects, and enable a robot to perform this task on unseen object instances presented in
arbitrary initial poses. Examples of relations we consider include “mug hanging on a rack”, “bowl
stacked upright on a mug”, and “bottle placed upright on a tray”.

Concretely, our goal is to build a system that takes as input two (nearly complete) 3D point clouds
PA and PB (each segmented out from the overall scene) of objects OA and OB , and outputs an
SE(3) transformation TB for transforming OB into a configuration that satisfies a desired relation
between OA and OB . We represent the relation as an alignment between a pair of local coordinate
frames attached to task-relevant geometric features of the objects, and break down the problem of
obtaining TB into (i) assigning a set of consistent coordinate frames to the task-relevant local object
parts and (ii) localizing these coordinate frames on the relevant parts of the new objects.

Furthermore, we assume a user specifies the relational task by providing a small handful of K task
demonstrations {Di}Ki=1, such that it’s intuitive and efficient to specify a wide diversity of tasks with
minimal engineering effort. A demonstration D consists of point clouds P̂A and P̂B (of objects ÔA

and ÔB) and relation-satisfying transformation T̂B .
NDFs for Encoding Single Unknown Object Relations. Prior work on NDFs may be applied to
a simplified version of this task, where the geometry and state of OA is known. Given that OA is
known, we can initialize a set of query points XA near the task-relevant part of OA and use the query
points to encode the relative pose T̂B via Equation (3). Thus, a demonstration D is mapped to a
target pose descriptor Ẑ = F (T̂−1

B |P̂B) representing the (inverse of the) final pose of ÔB relative
to OA. In practice, pose descriptors from multiple demonstrations {Di}Ki=1 are averaged to obtain
an overall descriptor Ẑ = 1

K

PK
i=1 Ẑi for the whole set, which has important implications in the

version of the task with two unknown objects (see Section 4.1 for further discussion).

Given a novel object instance represented by point cloud PB , we can compute a transformation TB

such that transforming OB by TB satisfies the demonstrated relation between OA and OB . This is
achieved by minimizing the L1 distance to the target pose descriptor Ẑ:

T−1
B = argmin

T
∥F (T|PB) − Ẑ∥: (4)

Intuitively, Equation (4) performs well across different objects due to the fact that NDFs are pretrained
to enable reconstruction across a large dataset of 3D shapes. As a result, shared descriptors are
discovered across different instances in a shape category. In contrast, training a model directly on the
few demonstrations (e.g., for regressing pose TB) would be more susceptible to overfitting.

4 Method

We now describe how we apply NDFs to infer relations between pairs of unknown objects. In
Section 4.1, we propose an iterative optimization method for assigning consistent task-relevant
coordinate frames to multiple objects. In Section 4.2, we discuss how we train a neural network on
top of NDF features to model the joint object configuration and refine an inferred transformation.
The system inputs consist of pretrained NDFs fA and fB for each object category, demonstra-
tions {Di}Ki=1 = {(P̂A; P̂B ; T̂B)i}Ki=1, and a single labeled 3D coordinate xAB for one of the
demonstrations, indicating approximately where the respective demonstration objects interact.
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Figure 2:Method Overview. (A) A demonstration (̂P A ; P̂ B ; T̂ B ) of a relation is encoded into a pair of pose
descriptors by randomly sampling a set of query pointsXA at the origin and transforming it bŷT X A to be
near the task-relevant interaction pointx AB . NDFsf A andf B are then used to obtain descriptorsẐ A andẐ B

representing coordinate frames near the task-relevant local parts on the objects.(B) Given point cloudP A of
a novel object, NDFf A , and pose descriptor̂Z A , poseT X A of the corresponding coordinate frame onP A is
found. (C). This procedure is then repeated withP B , f B , andẐ B to �nd poseT � 1

B of the relevant parts ofP B ,
relative to poseT X A found in the �rst inference step. (D) TransformingP B by T B satis�es the desired relation.

4.1 Multiple NDFs for Inferring Pairs of Task-Relevant Local Coordinate Frames

Consider a scenario whereOA andOB haveunknownunderlying shapes and con�gurations. We
now show how NDFs can be used for inferring apair of task-relevant local coordinate frames on both
objects and recovering a transformationT B that satis�es the relation. The key idea of our approach is
to formulate this problem as a bi-level optimization (illustrated in Figure 2), where we �rst optimize
to �nd a task-relevant portion ofOA , and subsequently optimize a relative transform of a local part
of OB with respect to the local region ofOA .

We begin with two pretrained NDFs,f A and f B , and query pointsXA in a canonical pose at
the world frame origin. We obtainXA by samplingNq points from a zero-mean Gaussian
and scaling such thatXA has scale similar to the salient object parts. We then use the key-
point xAB to transformXA near the task-relevant features in the demonstration associated with
xAB . Denote this transformation aŝT X A . Finally, we encodeworld-frame poseT̂ X A into
a descriptor conditioned on̂P A , as ẐA = FA (T̂ X A jP̂ A ), and relative poseT̂ � 1

B as ẐB =
FB (T̂ � 1

B T̂ X A jP̂ B ), conditioned onP̂ B . At test-time, we optimize both the world-frame pose
of the query pointsT X A and the (inverse of) poseT B relative to the initial pose found in the �rst step:

T X A = argmin
T

kFA (T jP A ) � ẐA k (5) T � 1
B = argmin

T
kFB (TT X A jP B ) � ẐB k (6)

Figure 2 shows an example of this pipeline, where the resultingT B is applied to the point cloudP B

of OB to satisfy the “hanging” relation.

Figure 3: Demo alignment. We align
the query points by minimizing the variance
across the descriptor set before averaging.

Minimizing Descriptor Variance . In practice, solv-
ing Equations (5) and (6) works better if pose descrip-
torsf Ẑ i gK

i =1 from multiple demonstrations are averaged
together to obtain an overall target descriptorẐ =
1
K

P K
i =1 Ẑ i (see Sec. 6.1 and [3]). The reason is that

a single demonstrationunderspeci�eswhich object parts
are relevant for the task, allowinĝZ to be sensitive to ob-
ject features which are not relevant to the desired relation.
Instead, a set of demonstrations using slightly different
objects (e.g., with different scales) reveals regions near lo-
cal interactions that aresharedacross the demonstrations,
which helps disambiguate between parts that are critical
vs. irrelevant for the speci�ed relation.

However, to avoid the pitfalls of averaging across a potentially multimodal or disjoint set, we want
descriptors in the setf Ẑ i gK

i =1 to be sensitive to nearby local geometry in a way that isconsistent(i.e.,
unimodal) across the demos. This only occurs if thequery pointsused to obtain the descriptors are
themselves consistently aligned relative to each respective object (see Figure 3). Therefore, we need
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