Do we use the Right Measure?
Challenges in Evaluating Reward Learning Algorithms
–Supplementary Material–

A Proofs

Theorem 1 (Unbounded Reward Difference). Let \(w^{\text{user}} \) be a user weight, and \(w' \) be an estimate, where the alignment is \(\delta \leq \alpha(w', w^{\text{user}}) < 1 \) for some \(\delta < 1 \). The difference in reward \(R(T^{\text{user}}, w^{\text{user}}) - R(T', w^{\text{user}}) \) is unbounded.

Proof. We consider a discrete planning problem with two features. Let there be only two solutions \(T^A \) and \(T^B \) with features \(\phi(T^A) = [-1, -M] \) and \(\phi(T^B) = [-N, 0] \) where \(M > 0 \) and \(N > 1 \). Further, let the user weights be \(w^{\text{user}} = [1, 0] \), and the estimate \(w' = [1, \epsilon] \), where \(\epsilon > 0 \). We notice that \(\alpha(w', w^{\text{user}}) \geq \delta \) as \(\epsilon \to 0 \) for any \(\delta < 1 \), that is, the alignment becomes arbitrarily close to 1 for small \(\epsilon \).

First, we calculate \(w^{\text{user}} \cdot \phi(T^A) = -1 \) and \(w^{\text{user}} \cdot \phi(T^B) = -N \). Since \(N > 1 \) the trajectory \(T^A \) collects the higher reward and hence is the optimal solution for \(w^{\text{user}} \). Further, we have \(w' \cdot \phi(T^A) = -1 - M \epsilon \) and \(w' \cdot \phi(T^B) = -N \). We construct the case where \(T^B \) is the optimal solution for the estimate \(w' \), i.e., the estimated weights result in a different, suboptimal trajectory:

\[
-1 - M \epsilon < -N. \tag{1}
\]

The difference in reward is

\[
R(T^{\text{user}}, w^{\text{user}}) - R(T', w^{\text{user}}) = w^{\text{user}} \cdot \phi(T^A) - w^{\text{user}} \cdot \phi(T^B) = -1 + N. \]

This is unbounded if we can pick an arbitrarily large \(N \) such that (1) is satisfied as \(\epsilon \to 0 \). Choosing \(M = N^2 / \epsilon \) simplifies (1) to \(N^2 > N - 1 \) which is satisfied for any \(N > 1 \). Hence, \(N \) has no upper bound, making the reward difference unbounded.

Theorem 2 (Unbounded Test Error). Let \(w^{\text{user}} \) be a user weight, and \(w' \) be an estimate. Further, let \(I^{\text{train}} \) be a training instance, where the relative reward \(R_{\text{rel}}^{\text{train}}(w', w^{\text{user}}) \) is taking values in \([\delta, 1] \) for some \(\delta < 1 \). There exist test instances \(I^{\text{test}} \) where the relative reward \(R_{\text{rel}}^{\text{test}}(w', w^{\text{user}}) \) has no tighter lower bound than 0.

Proof. Again we consider a discrete planning problem with two features. We construct a training instance \(I^{\text{train}} \) with only two solutions \(T^A \) and \(T^B \) with features \(\phi(T^A) = [-1, -2] \) and \(\phi(T^B) = [-5, 0] \). Further, let the user weights be \(w^{\text{user}} = [1, 1] \), and the estimate \(w' = [1, 0] \). For both weights,
\(T^A \) achieves the higher reward, i.e., is the respective optimal solution. Thus, we have relative reward
\(R_{\text{rel}}^{\text{train}}(w', w_{\text{user}}) = 1 \), the estimated weights yields an optimal solution.

Now, consider the test instance \(I_{\text{Test}} \) where we again have only two solutions \(T^C \) and \(T^D \) with
features \(\phi(T^C) = [-2, 0] \) and \(\phi(T^D) = [-1, -N] \) for some \(N > 1 \). Thus, \(w' \cdot \phi(T^C) = -2 \)
and \(w' \cdot \phi(T^D) = -1 \); the solution \(T^D \) is optimal for weights \(w' \). Further, \(w_{\text{user}} \cdot \phi(T^C) = -2 \)
and \(w_{\text{user}} \cdot \phi(T^D) = -1 - N \), implying that \(T^C \) is always the optimal solution for weights \(w_{\text{user}} \).

Hence, the relative reward is
\[
R_{\text{rel}}^{\text{test}}(w', w_{\text{user}}) = \frac{w_{\text{user}} \cdot \phi(T^C)}{w_{\text{user}} \cdot \phi(T^D)} = \frac{2}{1 + N}.
\]

By picking an arbitrarily large \(N \) the relative reward in the test scenario can become arbitrarily small, implying that no lower bound greater than 0 exists.

B Additional Simulation Results

Figure 1 provides example plots for the numerical experiments with the Server task, showing alignment against relative reward, as well as relative reward in training against testing.

(a) Alignment-reward relationship. (b) Training-Testing Relationship.

Figure 1: Examples for Server task.