
Last-Iterate Convergence with Full and Noisy Feedback
in Two-Player Zero-Sum Games

Kenshi Abe Kaito Ariu
CyberAgent, Inc. CyberAgent, Inc., KTH Royal Institute of Technology

Mitsuki Sakamoto Kentaro Toyoshima Atsushi Iwasaki
University of Electro-Communications

Abstract

This paper proposes Mutation-Driven Multi-
plicative Weights Update (M2WU) for learning
an equilibrium in two-player zero-sum normal-
form games and proves that it exhibits the last-
iterate convergence property in both full and
noisy feedback settings. In the former, players
observe their exact gradient vectors of the util-
ity functions. In the latter, they only observe the
noisy gradient vectors. Even the celebrated Mul-
tiplicative Weights Update (MWU) and Opti-
mistic MWU (OMWU) algorithms may not con-
verge to a Nash equilibrium with noisy feedback.
On the contrary, M2WU exhibits the last-iterate
convergence to a stationary point near a Nash
equilibrium in both feedback settings. We then
prove that it converges to an exact Nash equilib-
rium by iteratively adapting the mutation term.
We empirically confirm that M2WU outperforms
MWU and OMWU in exploitability and conver-
gence rates.

1 INTRODUCTION

This paper considers learning algorithms for finding an
(approximate) equilibrium in two-player zero-sum games.
Motivated by the training for Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014) and multi-agent
reinforcement learning (Busoniu et al., 2008), many al-
gorithms have been developed to find a near-optimal so-
lution to minimax problems (Blum and Monsour, 2007;
Daskalakis et al., 2018) in the form of minx maxy f(x, y).
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In this context, no-regret learning, which minimizes re-
gret in repeated decisions, has been extensively stud-
ied (Banerjee and Peng, 2005; Zinkevich et al., 2007;
Daskalakis et al., 2011). These algorithms, including the
well-known Multiplicative Weights Update (MWU), ex-
hibit the average-iterate convergence by minimizing the
regret of each player; that is, the averaged strategies over
iterations converge to the minimax solution (the Nash equi-
librium). Still, it has been shown that the actual trajec-
tory of updated strategies diverges or cycles (Mertikopou-
los et al., 2018; Bailey and Piliouras, 2018). This fea-
ture is unsatisfactory because averaging may require non-
negligible amounts of memory and computation for large
games, or averaging introduces additional error when the
nonlinear function approximation is used, as in the case of
training GANs.

This paper focuses on whether the actual sequence of up-
dated strategies converges to an equilibrium, i.e., the last-
iterate convergence, which is inevitably a stronger notion
than the average-iterate convergence. A series of optimistic
no-regret learning algorithms is proven to exhibit the last-
iterate convergence (Daskalakis et al., 2018; Mertikopoulos
et al., 2019). In particular, the Optimistic MWU (OMWU)
algorithm is guaranteed to converge to a Nash equilibrium
at an exponential rate (Daskalakis and Panageas, 2019; Wei
et al., 2021b). However, existing guarantees require that
players observe the exact gradient vectors of their utility
functions at each iteration, which we call full feedback.

We generalize the full feedback setting to the noisy feed-
back setting, where players can only observe the gradi-
ent vectors with additive noise at each iteration; this set-
ting is also called semi-bandit feedback. For this setting,
the celebrated OMWU is not guaranteed to have the last-
iterate convergence and may diverge or enter a limit cycle,
as shown in Figure 5d. It has been so far guaranteed only
in some restricted games, such as those with a strict Nash
equilibrium, in the noisy feedback setting (Cohen et al.,
2017; Giannou et al., 2021a).
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(a) RD (b) RMD (µ = 0.01) (c) RMD (µ = 0.1) (d) RMD (µ = 1.0)

Figure 1: Learning dynamics of RD and RMD in biased Rock-Paper-Scissors (the game matrix is given by
[[0,−3, 1], [3, 0,−1], [−1, 1, 0]]. The red star represents the Nash equilibrium point of the game.

To this end, we propose Mutant MWU1 (M2WU) as the
first learning algorithm that enjoys the last-iterate con-
vergence with noisy feedback. M2WU is inspired by
the fact that MWU is tantamount to replicator dynam-
ics (RD), which is widely used in evolutionary game the-
ory (Börgers and Sarin, 1997; Bloembergen et al., 2015).
Our M2WU is designed so that it corresponds to replicator-
mutator dynamics (RMD) (Hofbauer and Sigmund, 1998;
Hofbauer et al., 2009; Zagorsky et al., 2013; Bauer et al.,
2019), where each player may mutate his/her action. RMD
has a unique stationary point that is asymptotically sta-
ble. Then, introducing mutation stabilizes the dynamics
and empirically makes numerical errors in computation
small (Zagorsky et al., 2013). Figure 1 demonstrates that
RMD clearly converges to a near-equilibrium in a biased
Rock-Paper-Scissors game, while RD oscillates around an
equilibrium. Our M2WU inherits these advantages via an
additional mutation term.

Starting with the full feedback case, we show that M2WU
with a constant learning rate converges to a stationary
point of RMD, which is known to be an approximate Nash
equilibrium. The amount of approximation is specified
by the mutation rates. Convergence occurs at an expo-
nentially fast rate. Although OMWU achieves a similar
convergence rate, it requires that the equilibrium in un-
derlying games must be unique to establish convergence
at that rate (Daskalakis and Panageas, 2019; Wei et al.,
2021b). The convergence guarantee of M2WU holds with
noisy feedback under mild conditions for noise influenc-
ing the player’s observations (zero-mean martingale noise
with tame second-moment tails). Specifically, M2WU con-
verges to the stationary point almost surely. We utilize the
fact that M2WU forms a continuous-time dynamics (RMD)
and the existence of its Lyapunov function. In contrast,
the existing convergence proof of OMWU depends on the
path length of the observed gradient vectors (Mertikopou-
los et al., 2019; Wei et al., 2021b), making such a guarantee

1An implementation of our method is available at https:
//github.com/CyberAgentAILab/m2wu.

with noise difficult.

Surprisingly, in both feedback settings, we successfully es-
tablish convergence to an exact Nash equilibrium via itera-
tively adapting the mutation term according to the recently
maintained strategy by M2WU. To the best of our knowl-
edge, the proposed M2WU with an appropriate choice of
the update interval is the first to exhibit the last-iterate con-
vergence to an exact Nash equilibrium with noisy feedback.
We further empirically demonstrate that M2WU outper-
forms MWU and OMWU in several games in exploitability
and convergence rate, regardless of which feedback is ap-
plied.

2 RELATED LITERATURE

Last-Iterate Convergence with Full Feedback. Re-
cently, various optimistic learning algorithms (Rakhlin and
Sridharan, 2013a,b) such as optimistic Follow the Regu-
larized Leader (FTRL) and optimistic Mirror Descent have
been proposed, and their last-iterate convergence guaran-
tees are proven with full feedback. In particular, last-iterate
convergence for OMWU (Daskalakis and Panageas, 2019;
Wei et al., 2021b; Lei et al., 2021; Farina et al., 2022),
Optimistic Gradient Descent Ascent (OGDA) (Daskalakis
et al., 2018; Mertikopoulos et al., 2019; Daskalakis and
Panageas, 2018; Liang and Stokes, 2019; Golowich et al.,
2020a; Wei et al., 2021b; de Montbrun and Renault, 2022),
and extra-gradient algorithms (Golowich et al., 2020b;
Mokhtari et al., 2020; Cai et al., 2022) have been proven in
various settings such as minimax optimization and mono-
tone games. Some studies have proposed alternative ap-
proaches that exhibit last-iterate convergence by perturb-
ing each player’s utility function via strongly convex func-
tions (Cen et al., 2021; Perolat et al., 2021; Liu et al., 2022;
Bernasconi et al., 2022) or by utilizing the asymmetric in-
formation assumption (Nguyen et al., 2021). Notably, Abe
et al. (2022) analyze a continuous-time version of M2WU.
However, the last-iterate convergence properties are guar-
anteed only with full feedback, not with noisy feedback.

https://github.com/CyberAgentAILab/m2wu
https://github.com/CyberAgentAILab/m2wu
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Last-Iterate Convergence with Noisy Feedback. A few
studies have been done to prove last-iterate convergence
with noisy feedback. Most existing studies discuss last-
iterate convergence under the assumption that the game’s
equilibrium is a pure (or strict). Cohen et al. (2017) prove
the convergence of an MWU-based algorithm with noise
for the potential game, in which the game always has a pure
Nash equilibrium, with the help of the stochastic approx-
imation technique. There are also analyses with FTRL-
based algorithms with noise (Giannou et al., 2021a,b).
Such results have been obtained under other strong assump-
tions, such as strict (or strong) monotonicity (Bravo et al.,
2018; Hsieh et al., 2019; Kannan and Shanbhag, 2019; Az-
izian et al., 2021), strict variational stability (Mertikopou-
los et al., 2019; Mertikopoulos and Zhou, 2019), and un-
constrained action set (Hsieh et al., 2022). Another ap-
proach is to use a two-time scaling, i.e., fixing the strategies
of the two players to obtain sufficient samples for accurate
estimates of the expected value of the utility, e.g., Wei et al.
(2021a).

3 PRELIMINARIES

3.1 Two-Player Zero-Sum Normal-Form Game

A two-player normal-form game is defined as
⟨A1, A2, u1, u2⟩, where Ai and ui : A1 × A2 →
[−umax, umax] denote the finite action set for each
player i ∈ {1, 2} and a utility function for player i,
respectively. In a two-player zero-sum normal-form
game, there are conditions on the utility function:
u1(a1, a2) = −u2(a1, a2) for all a1 ∈ A1 and a2 ∈ A2.
We denote ∆(Ai) = {p ∈ ∆(Ai) | ∀a ∈ Ai, p(a) ≥ 0}
as a probability simplex on Ai and πi ∈ ∆(Ai) as
a mixed strategy for player i. Further, we denote by
π = (π1, π2) the strategy profile. For a given strategy
profile π, the expected value of the utility for player i is
written as follows vπi = Ea∼π [ui(a1, a2)]. We also define
the conditional expected utility with action ai ∈ Ai as
qπi (ai) = Ea−i∼π−i [ui(ai, a−i)|ai], where −i represents
the opponent to the player i. We denote qπi = (qπi (a))a∈Ai

as the conditional expected utility vector.

3.2 Nash Equilibrium and Exploitability

A Nash equilibrium (Nash, 1951) is a widely used solution
concept for games. In a Nash equilibrium, no player can
improve his/her expected utility by deviating from his/her
specified strategy. In two-player zero-sum normal-form
games, a strategy profile π∗ = (π∗

1 , π
∗
2) is called a Nash

equilibrium if for any π1 ∈ ∆(A1) and π2 ∈ ∆(A2),

v
π∗
1 ,π2

1 ≥ vπ
∗
1 ,π

∗
2

1 ≥ vπ1,π
∗
2

1 .

We denote the set of Nash equilibria by Π∗. An ϵ-Nash
equilibrium (π1, π2) is an approximation of a Nash equi-

librium, which satisfies the following inequality:

max
π̃1∈∆(A1)

vπ̃1,π2

1 + max
π̃2∈∆(A2)

vπ1,π̃2

2 ≤ ϵ.

Furthermore, we define explt(π) = maxπ̃1∈∆(A1) v
π̃1,π2

1 +

maxπ̃2∈∆(A2) v
π1,π̃2

2 as exploitability of the strategy pro-
file π. Exploitability is widely used to assess how close π
is to Nash equilibrium in two-player zero-sum games and
always takes a non-negative value (Johanson et al., 2011,
2012; Lockhart et al., 2019; Timbers et al., 2022; Abe and
Kaneko, 2021). A strategy profile π has exploitability of 0
if and only if π is a Nash equilibrium.

3.3 Problem Setting

In this study, we consider a setting where the following pro-
cess is repeated: 1) At each iteration t ∈ N, each player
i ∈ {1, 2} determines the (mixed) strategy πt

i ∈ ∆(Ai)
based on the previously observed feedback; 2) Each player
i observes the new feedback q̂π

t

i with respect to the gradient
vector of the expected utility function ∇πt

i
vπ

t

i = qπ
t

i . This
study considers two feedback settings: full feedback and
noisy feedback. In the full feedback setting, each player i
observes the conditional expected utility vector qπ

t

i as feed-
back, i.e., q̂π

t

i = qπ
t

i . In the noisy feedback setting, at each
iteration t, each player observes the noisy conditional ex-
pected utility vector

q̂π
t

i (a) = qπ
t

i (a) + ξt(a) for a ∈ Ai,

where the sequence of the noise vectors (ξt(a))a∈Ai is in-
dependent over a and t. This type of noise-additive setting
is standard in recent research (Cohen et al., 2017; Bravo
et al., 2018; Giannou et al., 2021a,b).

Multiplicative Weights Update (MWU) is a widely used al-
gorithm for learning a Nash equilibrium. In MWU, each
player i updates her strategy πt

i at iteration t as follows:

πt+1
i (a) =

πt
i(a) exp

(
ηtq̂

πt

i (a)
)

∑
a′∈Ai

πt
i(a

′) exp
(
ηtq̂π

t

i (a′)
) ,

where ηt > 0 is a learning rate.

3.4 Other Notations

We denote the interior of ∆(Ai) by ∆◦(Ai) = {p ∈
∆(Ai) | ∀a ∈ Ai, p(a) > 0}. The Kullback-Leibler diver-
gence is defined by KL(x, y) =

∑
i xi ln

xi

yi
. Besides, with

a slight abuse of notation, we denote the sum of Kullback-
Leibler divergences as KL(π, π′) =

∑2
i=1 KL(πi, π

′
i).

4 MUTANT MWU

This section proposes a mutant Multiplicative Weights Up-
date (M2WU) algorithm. M2WU is a variant of MWU,
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which adds a mutation (perturbation) term to the gradient
vector. Specifically, M2WU updates each player’s strategy
by the following update rule:

πt+1
i (a) =

πt
i(a) exp

(
ηtq

µ,t
i (a)

)∑
a′∈Ai

πt
i(a

′) exp
(
ηtq

µ,t
i (a′)

) , (1)

qµ,ti (a) = q̂π
t

i (a) +
µ

πt
i(a)

(
ri(a)− πt

i(a)
)
,

where µ ∈ (0, 1] is the mutation rate, and ri ∈ ∆◦(Ai) is
the reference strategy. We call qµ,ti = (qµ,ti (a))a∈Ai the
mutation gradient.

The pseudo-code of M2WU is Algorithm 1 with N =∞.

The mutation gradient qµ,ti is inspired by RMD, which is
governed by the following ordinary differential equation:

d

dt
πt
i(a) =π

t
i(a)

(
qπ

t

i (a)− vπ
t

i

)
+ µ

(
ri(a)− πt

i(a)
)
.

(RMD)

RMD is the continuous-time version of M2WU and has
been reported to stabilize the learning dynamics (Bomze
and Burger, 1995; Bauer et al., 2019). Intuitively, the muta-
tion term µ (ri(a)− πt

i(a)) of RMD has the role of slightly
shifting the trajectory of strategies from one of RD. This al-
lows the trajectory to escape from the cyclic orbits and al-
lows it to converge to an approximate Nash equilibrium as
a stationary point of RMD. Figure 1 illustrates the trajecto-
ries of RD and RMD with µ ∈ {0.01, 0.1, 1.0} in a biased
version of the Rock-Paper-Scissors game. From Figure 1a,
the trajectory of RD cycles and fails to converge to a Nash
equilibrium since the equilibrium is a mixed strategy with
full support. On the other hand, as depicted in Figures 1b-
1d, RMD’s trajectory converges to a unique stationary point
in this game. In fact, Abe et al. (2022) proved this con-
vergence property of RMD for any two-player zero-sum
normal-form games.

We note that M2WU with a constant learning rate can
be viewed as an instantiation of the discrete-time Mutant
FTRL algorithm with entropy regularization (Abe et al.,
2022). The squared ℓ2-norm regularization, as used in
OGDA (Daskalakis and Panageas, 2018; Wei et al., 2021b),
cannot be used with the mutation term since it allows strate-
gies to run into the boundary of ∆(Ai) where the mutation
term is undefined. It is interesting future work to find ap-
propriate mutation terms for other regularizers as well.

5 CONVERGENCE TO AN
APPROXIMATE NASH EQUILIBRIUM

This section mainly shows that the updated strategy profile
πt converges to a stationary point of (RMD). We denote the
stationary point of (RMD) with fixed µ and r = (ri)

2
i=1 by

πµ,r.

Algorithm 1 M2WU for player i. The algorithm withN =
∞ corresponds to M2WU with a fixed reference strategy.

Require: Learning rate sequence {ηt}t≥0, mutation rate
µ, update frequency N , initial strategy π0

i , initial ref-
erence strategy r0i

1: k ← 0, τ ← 0
2: for t = 0, 1, 2, · · · do
3: Observe the (noisy) gradient vector q̂π

t

i .
4: for a ∈ Ai do
5: Compute next action probability πt+1

i (a) by

πt+1
i (a) =

πt
i(a) exp(ηtq

µ,t
i (a))∑

a′∈Ai
πt
i(a

′) exp(ηtq
µ,t
i (a′))

,

6: where qµ,ti (a) = q̂π
t

i (a) + µ
πt
i(a)

(
rki (a)− πt

i(a)
)

7: end for
8: τ ← τ + 1
9: if τ = N then

10: k ← k + 1, τ ← 0
11: rki ← πt

i

12: end if
13: end for

5.1 Full Feedback Setting

First, we establish the last-iterate convergence rate of
M2WU with full feedback. Recall that in the full feed-
back setting, each player i observes the conditional ex-
pected utility vector q̂π

t

i = qπ
t

i as feedback. The following
convergence result for M2WU with a constant learning rate
ηt = η is obtained in the full feedback setting:

Theorem 5.1. Let πµ,r ∈
∏2

i=1 ∆(Ai) be a stationary
point of (RMD). If we use the constant learning rate se-
quence in M2WU, ∀t ≥ 0 : ηt = η ∈ (0,min( µα

µ2β+γ , ζ)),
the strategy πt updated by M2WU satisfies that for any ini-
tial strategy profile π0 ∈

∏2
i=1 ∆

◦(Ai) and t ≥ 0:

KL(πµ,r, πt) ≤ KL(πµ,r, π0)(1− η(µα− η(µ2β + γ)))t,

where α, β, γ, and ζ are constants that depend only on π0,
πµ,r, and r.

This result means that for a fixed µ and r, πt converges to
πµ,r exponentially fast. From this theorem, πt converges
to a 2µ-Nash equilibrium because πµ,r is a 2µ-Nash equi-
librium (Bauer et al., 2019):

Corollary 5.2. For any constant learning rate ηt =
η ∈ (0,min( µα

µ2β+γ , ζ)), the exploitability for M2WU is
bounded as:

explt(πt) ≤ explt(πµ,r) + 2umax

√
KL(πµ,r, π0)(1− C) t

2

≤ 2µ+ 2umax

√
KL(πµ,r, π0)(1− C) t

2 ,

where C = η(µα− η(µ2β+ γ)), and α, β, γ and ζ are the
same constants used in Theorem 5.1.



Kenshi Abe, Kaito Ariu, Mitsuki Sakamoto, Kentaro Toyoshima, Atsushi Iwasaki

The proof of this corollary is shown in Appendix C. We
note that from the upper bound on the learning rate µα

µ2β+γ
in Theorem 5.1 and Corollary 5.2, η should decrease in pro-
portion to the decrease of µ. We will demonstrate this fact
empirically in Figure 3 in Section 7.

5.1.1 Proof Sketch of Theorem 5.1

We sketch below the proof of Theorem 5.1. Complete
proofs for the theorem and associated lemmas are presented
in Appendix B.

(1) Decomposing Single-Step Variation of KL(πµ,r, ·).
First, we derive the following difference equation for the
Kullback-Leibler divergence between πµ,r and πt:

KL(πµ,r, πt+1)−KL(πµ,r, πt) = (2)

η

2∑
i=1

(
v
πt
i ,π

µ,r
−i

i +µ−µ
∑
a∈Ai

ri(a)
πµ,r
i (a)

πt
i(a)

)
︸ ︷︷ ︸

(A)

+KL(πt, πt+1)︸ ︷︷ ︸
(B)

.

Equation (2) stems from the fact that for any π ∈∏2
i=1 ∆(Ai), KL(π, πt) =

∑2
i=1(η⟨

∑t−1
s=1 q

µ,s
i , πt

i−πi⟩−
ψi(π

t
i)+ψi(πi)), where ψi(p) =

∑
a∈Ai

p(a) ln p(a). For
the details of the proof, see Appendix B. Hereafter, we
quantify the terms (A) and (B), respectively.

(2) Equivalence Notation of (A) in Quasi-Metric Form.
First, we prove that the term (A) can be rewritten by the
(pseudo) metric between πµ,r and πt.
Lemma 5.3. Let πµ,r ∈

∏2
i=1 ∆(Ai) be a stationary point

of (RMD). Then, πt updated by M2WU satisfies that:

2∑
i=1

(
v
πt
i ,π

µ,r
−i

i + µ− µ
∑
a∈Ai

ri(a)
πµ,r
i (a)

πt
i(a)

)

= −µ
2∑

i=1

∑
a∈Ai

ri(a)

(√
πt
i(a)

πµ,r
i (a)

−

√
πµ,r
i (a)

πt
i(a)

)2

.

This result can be shown by using Lemma 5.6 in Abe et al.
(2022).

(3) Quasi-Metric Upper Bound on the Term (B). Next,
we upper bound the Kullback-Leibler divergence between
πt and πt+1 by the (pseudo) metric between πµ,r and πt:
Lemma 5.4. For any fixed learning rate ηt = η ∈ (0, ζ),
M2WU ensures for any t ≥ 0:

KL(πt, πt+1) ≤ 8η2u2max

2∑
i=1

∥πt
i − π

µ,r
i ∥

2
1

+ 8η2µ2
2∑

i=1

∑
a∈Ai

ri(a)
2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

,

where ζ is the same constant in Theorem 5.1.

(4) Putting It All Together. By combining (2), Lemma
5.3, and Lemma 5.4, we get:

KL(πµ,r, πt+1)−KL(πµ,r, πt)

≤− ηµ
2∑

i=1

∑
a∈Ai

ri(a)

(√
πt
i(a)

πµ,r
i (a)

−

√
πµ,r
i (a)

πt
i(a)

)2

+ 8η2µ2
2∑

i=1

∑
a∈Ai

ri(a)
2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

+ 8η2u2max

2∑
i=1

∥πt
i − π

µ,r
i ∥

2
1.

From Pinsker’s inequality (Tsybakov, 2009), we can

upper bound
∑2

i=1

∑
a∈Ai

ri(a)
2
(

1
πµ,r
i (a)

− 1
πt
i(a)

)2
and∑2

i=1 ∥πt
i − πµ,r

i ∥21 by KL(πµ,r, πt), respectively. Fur-
thermore, from Jensen’s inequality, we can lower

bound
∑2

i=1

∑
a∈Ai

ri(a)
(√

πt
i(a)

πµ,r
i (a)

−
√

πµ,r
i (a)

πt
i(a)

)2
by

KL(πµ,r, πt). Therefore, for η ∈ (0, µα
µ2β+γ ), we have:

KL(πµ,r, πt+1)≤
(
1−η(µα−η(µ2β + γ))

)
KL(πµ,r, πt).

Thus, by mathematical induction, the statement of the the-
orem is concluded.

5.2 Noisy Feedback Setting

Next, we consider a noisy feedback setting, where each
player’s observation is affected by noise. We assume the
following mild condition on the noise distribution. Let
Ft be the σ-algebra generated by the random sequence
(πs

i , (q̂
πs

i (a))a∈Ai
)s=1,...,t.

Assumption 5.5. For all player i ∈ {1, 2}, the noise pro-
cess (ξt(a))a∈Ai

satisfies the following two conditions:
(i) Zero-mean: E[ξt(a) | Ft−1] = 0,∀a ∈ Ai,∀t ≥ 1,

almost surely.
(ii) Moderate tails: For any x > 0, P[|ξt(a)|2 ≥ x |
Ft−1] ≤ C/xκ,∀a ∈ Ai,∀t ≥ 1, almost surely, with
some constants C > 0 and κ > 2.

Assumption 5.5 (i) means that the observation is unbiased:
E[q̂πt

i (a) | Ft−1] = qπ
t

i (a), almost surely. Assump-
tion 5.5 (ii) is a relatively weak assumption on the noise
and is satisfied by a wide range of distributions, including
bounded, sub-Gaussian, and sub-exponential distributions
(Cohen et al., 2017). Assumption 5.5 (ii) also implies that
the variance of the noise is upper bounded by some con-
stant. The following convergence results are obtained in
the noisy feedback setting.

Theorem 5.6. Suppose that there exists a constant D > 0
such that πt

i(ai) > D for all i ∈ {1, 2}, ai ∈ Ai, and
t ≥ 0. Under Assumption 5.5, the strategy πt updated
by M2WU with the step size ηt ∝ t−λ for some constant
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λ ∈ (1/κ, 1] converges to the stationary point πµ,r almost
surely.

For the noise process that can take an arbitrarily large value
of κ, the value of λ can be arbitrarily close to 0. This sug-
gests that learning is possible with a nearly-constant learn-
ing rate sequence for sub-Gaussian, sub-exponential, and
bounded distributions. The proof of Theorem 5.6 is based
on the method of stochastic approximation (Benaı̈m, 1999;
Borkar, 2009). Here, we only present a sketch of the proof
of Theorem 5.6. A complete proof is presented in Ap-
pendix D.

5.2.1 Proof Sketch of Theorem 5.6

First, we show that the update rule of the strategy πt
i by

M2WU is an approximate Robbins-Monro algorithm (Rob-
bins and Monro, 1951; Benaı̈m, 1999). For this purpose,
we use Taylor’s theorem to rewrite the strategy update for-
mula as the following equation.

πt+1
i (ai) = πt

i(ai) + ηt(F (π
t
i) + Ut + ϕ̂t).

It is relatively easy to check that F (πt
i) is a continuous

function and Ut is a martingale difference sequence. The
fact that the Hessian of the logit function is bounded by a
constant indicates that ϕ̂t is on the order of ηt∥q̂µ,ti ∥22. Us-
ing Assumption 5.5, we can show that ϕt = O(ηttp)→ 0,
almost surely, where p ∈ (0, 1/κ). Thus, we can conclude
that {πt

i}t≥1 is an approximate Robbins-Monro algorithm
and an asymptotic pseudo-trajectory of the replicator mu-
tator dynamics (RMD).

From Theorem 5.2 in Abe et al. (2022), there exists a strict
Lyapunov function of (RMD), and the stationary point of
(RMD) is unique. These conditions allow us to apply the
results of Benaı̈m (1999) and conclude that πt

i converges to
the stationary point almost surely.

Remark 5.7 (Comparison to optimistic algorithms). In the
previous work on optimistic algorithms such as OMWU
and OGDA (Mertikopoulos et al., 2019; Wei et al.,
2021b), the proofs for the last-iterate convergence de-
pend heavily on the path length of the gradient vectors∑T

t=1

∑2
i=1 ∥qπ

t

i − qπ
t−1

i ∥2. In the full feedback setting,
this term can be canceled out by the path length of strategy
profiles

∑T
t=1

∑2
i=1(−1/η2t )∥πt

i−π
t−1
i ∥2 with the univer-

sal constant learning rate. However, in the noisy feedback
setting, the term

∑T
t=1

∑2
i=1 ∥q̂π

t

i − q̂π
t−1

i ∥2 appears in-
stead of

∑T
t=1

∑2
i=1 ∥qπ

t

i −qπ
t−1

i ∥2, and it would grow lin-
early in T even if πt is fixed. Therefore, providing the last-
iterate convergence results for optimistic algorithms with
noisy feedback is challenging. In contrast, the proof of last-
iterate convergence with M2WU does not rely on the path
length of the gradient vectors. Specifically, it exploits the
existence of continuous-time dynamics (RMD) for M2WU
and its Lyapunov function.

6 CONVERGENCE TO AN EXACT NASH
EQUILIBRIUM

Sections 4 and 5 presented the M2WU with a fixed ref-
erence strategy profile r and its convergence results. As
shown in Corollary 5.2, πt updated by M2WU converges
to the stationary point πµ,r. Therefore, if the exploitabil-
ity of the stationary point πµ,r goes to zero, the exact Nash
equilibrium of the original game can be obtained. To this
end, we control the exploitability of πµ,r by adapting the
reference strategy r. That is, we copy the updated strat-
egy profile πt to the reference profile r every N iterations.
This technique is similar to the direct convergence method
by Perolat et al. (2021). The pseudo-code of M2WU with
this technique corresponds to Algorithm 1 with finite N .

Let us define rk as the k-th reference strategy profile. From
Theorem 5.1, πt converges to πµ,r when N is set to a
sufficiently large value. In this case, the following refer-
ence strategy rk+1 is set to the stationary point πµ,rk of
the (RMD) dynamics with reference strategy rk. In the re-
maining part of this section, we show that the sequence of
stationary points {πµ,rk}k≥0 = {rk}k≥1 converges to Π∗

of the original game.

Theorem 6.1. For any start point r0 ∈
∏2

i=1 ∆
◦(Ai), the

sequence of stationary points {πµ,rk}k≥0 = {rk}k≥1 con-
verges to the set of equilibria Π∗ of the original game.

This result means that the exploitability of πµ,rk converges
to 0 because explt(πµ,rk) ≤O

(√
KL(π⋆, πµ,rk)

)
, where

π⋆ = arg min
π∈Π∗

KL(π, πµ,rk). We explain the proof sketch

here; the complete proof of Theorem 6.1 is in Appendix E.

Proof Sketch of Theorem 6.1 Let F :
∏2

i=1 ∆
◦(Ai) →∏2

i=1 ∆
◦(Ai) be a function which maps the reference

strategies r to the associated stationary point πµ,r. We also
define rk+1 = F (rk), and r0 ∈

∏2
i=1 ∆

◦(Ai) as the start-
ing reference strategy profile. Note that the function F is
well-defined because the stationary point πµ,r of (RMD) is
unique for each r ∈

∏2
i=1 ∆

◦(Ai) (Abe et al., 2022). First,
we prove that the distance between Π∗ and rk decreases
monotonically as k increases:

Lemma 6.2. For any k ≥ 0, if rk ∈
∏2

i=1 ∆
◦(Ai) \ Π∗,

then:

min
π∗∈Π∗

KL(π∗, rk+1) < min
π∗∈Π∗

KL(π∗, rk).

Otherwise, if rk ∈ Π∗, then rk+1 = rk ∈ Π∗.

We also show that F (·) is a continuous function:

Lemma 6.3. Let F (r) :
∏2

i=1 ∆
◦(Ai) →

∏2
i=1 ∆

◦(Ai)
be a function which maps the reference strategies r to the
associated stationary point πµ,r of (RMD). Then, F (·) is a
continuous function on

∏2
i=1 ∆

◦(Ai).
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Figure 2: Exploitability of πt for M2WU, MWU, and OMWU with full feedback.

For these lemmas, we can use Lyapunov arguments to ob-
tain a convergence result for {πµ,rk}k≥0.

Remark 6.4. One might think that a simple annealing ap-
proach that gradually decrease mutation parameter µ, leads
dynamics to reach an exact Nash equilibrium. While this
is indeed the case, Theorem 5.1 indicates that the learning
rate η must also be significantly reduced. The annealing
approach would make the convergence speed very slow.

7 EXPERIMENTS

We here abbreviate M2WU with a fixed reference strat-
egy profile (Algorithm 1 with N = ∞) as M2WU-F,
while M2WU with adaptive reference strategy profiles as
M2WU-A. This section conducts a series of experiments to
demonstrate how the four algorithms, i.e., MWU, OMWU,
M2WU-F, and M2WU-A, including ours, perform.

We focus on four games: Biased Rock-Paper-Scissors
(BRPS), Multiple Nash Equilibria (M-Ne), and two ran-
dom utility games with 25 and 100 actions. Note that we
borrow the M-Ne game from Wei et al. (2021b). Tables 1
and 2 provide the payoff matrices for BRPS and M-Ne, re-
spectively.

Table 1: Biased RPS game matrix

R P S
R 0 −1 3
P 1 0 −1
S −3 1 0

Table 2: M-Ne game matrix
y1 y2 y3 y4 y5

x1 0 1 −1 0 0
x2 −1 0 1 0 0
x3 1 −1 0 0 0
x4 1 −1 0 −2 1
x5 1 −1 0 1 −2

BRPS has the unique Nash equilibrium Π∗
i =

{(1/5, 3/5, 1/5)}. M-Ne has the following set of
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Figure 3: Exploitability of πt for M2WU-F with varying
µ ∈ {0.1, 0.01} and η ∈ {0.1, 0.01, 0.001} in BRPS with
full feedback.

Nash equilibria:

Π∗
1 = {(1/3, 1/3, 1/3, 0, 0)} ,

Π∗
2=
{
y ∈ ∆5 | y1 = y2 = y3; y5/2 ≤ y4 ≤ 2y5

}
.

Let us proceed to random utility games to consider how our
algorithms perform in relatively large games whose num-
bers of actions are 25 or 100. We draw each utility (or
payoff) component from the standard Gaussian distribution
N (0, 1) in an i.i.d. manner.

For each game, we average exploitability over 100 in-
stances with different random seeds. We also set the initial
strategy profile π0 uniformly at random in

∏2
i=1 ∆

◦(Ai) in
each instance for BRPS and M-Ne with full feedback. In
other instances, the initial strategy is set to (1/|Ai|)a∈Ai

for i ∈ {1, 2}.

7.1 Full Feedback

This section examines the algorithms with full feedback.
Unless noticed, we use the learning rate η of 0.1 and the
mutation rate µ of 0.1. For M2WU-F, we also assume the
reference strategy profile r0i is fixed at (1/|Ai|)a∈Ai

. For
M2WU-A, we update it every N = 100 iterations.
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Figure 4: Exploitability of πt for M2WU, MWU, and OMWU with noisy feedback.
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Figure 5: Trajectories of πt for M2WU, MWU and OMWU in BRPS with noisy feedback. We set the initial strategy to
π0
i = (1/|Ai|)a∈Ai

for i ∈ {1, 2}. The black point represents the equilibrium strategy. The blue/red points represent the
initial/final points, respectively.

Figure 2 averages the exploitability of the last-iterate strat-
egy πt for the four algorithms in the four games. We
observe that, in any game, MWU and M2WU-F do not
converge to an equilibrium and the exploitability reaches
around 0.1 at best. Both OMWU and M2WU-A ex-
hibit clear convergence. M2WU-A converges faster than
OMWU, which may converge to the same exploitability in
the long run.

Note that the quick convergence of M2WU-F to a constant
value lower than 2µ = 0.2 supports Corollary 5.2 in the up-
per bound on the exploitability of πt. The best performance
of M2WU-A supports Theorem 6.1 and Lemma 6.2, which
imply that the sequence of stationary points of (RMD) con-
verges to the Nash equilibrium.

We have so far fixed the learning rate at 0.1 and the mu-
tation rate at 0.1. Figure 3 exhibits the exploitability of
M2WU-F in BRPS with varying η ∈ {0.1, 0.01, 0.001}
and µ ∈ {0.1, 0.01}. The tendencies in the other games
are qualitatively similar. We observe that the lower muta-
tion rate makes exploitability low, while the larger muta-
tion rate makes convergence fast. When the mutation rate
is low (e.g., 0.01), the learning rate must be lower to enjoy
the last-iterate convergence. Otherwise, agents do not prop-
erly learn equilibrium (See the green line with η = 0.1 and
µ = 0.01 in Figure 3). This is why we chose η = 0.1 and
µ = 0.1 as a baseline. With them, M2WU-F quickly con-
verges, though the exploitability can be tuned. This result
highlights the relationship between µ and the upper bound

on η in Theorem 5.1.

7.2 Noisy Feedback

This section turns to the noisy feedback case, where pay-
offs observed in each period are perturbed. Players ob-
serve noisy estimates q̂π

t

i (ai) = qπ
t

i (ai) + ξt(ai) of the
gradient vectors at each period, where the noise ξt(ai)
is drawn from the Gaussian distribution N (0, 0.12) for
i ∈ {1, 2}, ai ∈ Ai and t ≥ 0 in an i.i.d. manner. We
here use the learning rate η of 0.001 and the mutation rate
µ of 0.1 for M2WU-F and 0.5 for M2WU-A. We also up-
date it every N = 20, 000 period in Algorithm 1, which
is much longer than the full feedback case to handle noisy
estimates. Note that, for OMWU, we use the noisy gradi-
ent vector q̂π

t−1

i at the previous step t− 1 as the prediction
vector.

Figure 4 averages the exploitability for the four algorithms
in the four games. In all of the games, M2WU-F and -A
always outperform MWU and OMWU. The two existing
algorithms first oscillate, do not improve much, and re-
main far from equilibrium. As in the full feedback case,
although M2WU-A converges less rapidly than M2WU-
F, it admits significantly low exploitability. This tendency
does not change even when the action space is larger and
even when the learning rate is decayed. We provide ad-
ditional experimental results when using different learning
rates η ∈ {0.1, 0.05, 0.01, 0.005} in Appendix F.1. Also,
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the case with the decayed learning rate, formally, ηt = t−
3
4 ,

is placed in Appendix F.2.

Figure 5 demonstrates the trajectories of πt of each algo-
rithm in BRPS. We fix the initial strategy to be uniform.
Both M2WU-F and M2WU-A exhibit a clear convergence
near the equilibrium (red) point, while MWU and OMWU
do not at all. This result strongly supports Figure 4(a). Note
that M2WU-A obtains the strategy with lower exploitabil-
ity than M2WU-F as Theorem 6.1 suggests.

8 CONCLUSION

In this paper, we proposed M2WU, an algorithm that uti-
lizes a simple idea of stabilizing learning dynamics through
mutation with a reference strategy. We proved that in
both full and noisy feedback settings, the last-iterate strat-
egy converges to the stationary point of RMD. In partic-
ular, we showed that such convergence occurs exponen-
tially fast with a constant learning rate in the full feedback
setting. Furthermore, last-iterate convergence to an exact
Nash equilibrium was also proven by iteratively reusing the
converged stationary point as a subsequent reference strat-
egy. The numerical experiments showed that, even with the
presence of noise, the strategy updated by M2WU exhibits
a lower exploitability than MWU and OMWU. Future re-
search could examine the convergence rate with noisy feed-
back and extend M2WU and its analyses to extensive-form
games.
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A NOTATIONS

In this section, we summarize the notations we use in Table 3.

Table 3: Notations

Symbol Description
Ai Action set for player i
ui Utility function for player i
πi Strategy for player i
π Strategy profile
vπi Player i’s expected utility for a given strategy profile π
qπi Player i’s conditional expected utility vector for a given strategy profile π
q̂π

t

i Player i’s noisy conditional expected utility vector at iteration t
ξt Noise vector at iteration t
π∗ Nash equilibrium
Π∗

i Set of Nash equilibria for player i
∆(Ai) Probability simplex on Ai

∆◦(Ai) Interior of ∆(Ai)
KL(·, ·) Kullback-Leibler divergence
ηt Learning rate at iteration t
µ Mutation rate
ri Reference strategy

qµ,ti

(
q̂π

t

i (a) + µ
πt
i(a)

(ri(a)− πt
i(a))

)
a∈Ai

πµ,r Stationary point of (RMD) for given µ and r
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B PROOFS FOR THEOREM 5.1

B.1 Proof of Theorem 5.1

Proof of Theorem 5.1. Let us define the following notation:

Ωµ,r =

{
π ∈

2∏
i=1

∆(Ai) | KL(πµ,r, π) ≤ KL(πµ,r, π0)

}
,

ρ = min
π∈Ωµ,r

min
i∈{1,2},a∈Ai

πi(ai) > 0,

ζ =
1

2umax +
1
ρ maxi∈{1,2},a∈Ai

ri(a)
> 0,

α = min
i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

> 0,

β =
16

ρ2

(
max

i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

)2

> 0,

γ = 16u2max > 0.

We prove the statement by mathematical induction. Clearly, for t = 0, we have KL(πµ,r, πt) ≤ KL(πµ,r, π0) and
π0 ∈ Ωµ,r. Let us assume that πt ∈ Ωµ,r, i.e., KL(πµ,r, πt) ≤ KL(πµ,r, π0). Under the assumption that KL(πµ,r, πt) ≤
KL(πµ,r, π0), we have πt

i(a) ≥ ρ for all i ∈ {1, 2} and a ∈ Ai.

We first derive the difference equation for KL(πµ,r, πt):

Lemma B.1. Let πµ,r ∈
∏2

i=1 ∆(Ai) be a stationary point of (RMD). Then, πt updated by M2WU satisfies that:

KL(πµ,r, πt+1)−KL(πµ,r, πt) =ηt

2∑
i=1

(
v
πt
i ,π

µ,r
−i

i + µ− µ
∑

ai∈Ai

ri(ai)
πµ,r
i (ai)

πt
i(ai)

)
+KL(πt, πt+1).

Moreover, under the assumption that ηt = η ∈ (0,min( µα
µ2β+γ , ζ)), the statement of Lemma 5.4 holds. By combining

Lemmas 5.3, 5.4, and B.1, we get:

KL(πµ,r, πt+1)−KL(πµ,r, πt) ≤− ηµ
2∑

i=1

∑
a∈Ai

ri(a)

(√
πt
i(a)

πµ,r
i (a)

−

√
πµ,r
i (a)

πt
i(a)

)2

+ 8η2µ2
2∑

i=1

∑
a∈Ai

ri(a)
2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

+ 8η2u2max

2∑
i=1

∥πt
i − π

µ,r
i ∥

2
1. (3)

We prove the lower bound on
∑2

i=1

∑
a∈Ai

ri(a)
(√

πt
i(a)

πµ,r
i (a)

−
√

πµ,r
i (a)

πt
i(a)

)2
as follows:

2∑
i=1

∑
a∈Ai

ri(a)

(√
πt
i(a)

πµ,r
i (a)

−

√
πµ,r
i (a)

πt
i(a)

)2

=

2∑
i=1

∑
a∈Ai

ri(a)

πµ,r
i (a)

(πt
i(a)− π

µ,r
i (a))

2

πt
i(a)

≥
(

min
i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

) 2∑
i=1

∑
a∈Ai

(πt
i(a)− π

µ,r
i (a))

2

πt
i(a)

≥
(

min
i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

) 2∑
i=1

ln

(
1 +

∑
a∈Ai

(πt
i(a)− π

µ,r
i (a))

2

πt
i(a)

)



Last-Iterate Convergence with Full and Noisy Feedback in Two-Player Zero-Sum Games

=

(
min

i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

) 2∑
i=1

ln

(∑
a∈Ai

πµ,r
i (a)

πµ,r
i (a)

πt
i(a)

)

≥
(

min
i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

) 2∑
i=1

∑
a∈Ai

πµ,r
i (a) ln

(
πµ,r
i (a)

πt
i(a)

)
=

(
min

i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

)
KL(πµ,r, πt), (4)

where the second inequality follows from x ≥ ln(1 + x) for all x > 0, and the third inequality follows from the concavity

of the ln(·) function and Jensen’s inequality for concave functions. Next,
∑2

i=1

∑
a∈Ai

ri(a)
2
(

1
πµ,r
i (a)

− 1
πt
i(a)

)2
is upper

bounded as follows:

2∑
i=1

∑
a∈Ai

ri(a)
2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

=

2∑
i=1

∑
a∈Ai

(
ri(a)

πµ,r
i (a)πt

i(a)

)2 (
πµ,r
i (a)− πt

i(a)
)2

≤ 1

ρ2

(
max

i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

)2 2∑
i=1

∥πµ,r
i − πt

i∥22

≤ 1

ρ2

(
max

i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

)2 2∑
i=1

∥πµ,r
i − πt

i∥21

≤ 2

ρ2

(
max

i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

)2

KL(πµ,r, πt), (5)

where the last inequality follows from Pinsker’s inequality (Tsybakov, 2009). Similarly,
∑2

i=1 ∥πt
i − πµ,r

i ∥21 is upper
bounded as

2∑
i=1

∥πt
i − π

µ,r
i ∥

2
1 ≤ 2KL(πµ,r, πt). (6)

By combining (3), (4), (5), and (6), we have:

KL(πµ,r, πt+1)−KL(πµ,r, πt)

≤ −ηµ
(

min
i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

)
KL(πµ,r, πt) + 16η2

(
µ2

ρ2

(
max

i∈{1,2},a∈Ai

ri(a)

πµ,r
i (a)

)2

+ u2max

)
KL(πµ,r, πt)

=
(
−ηµα+ η2(µ2β + γ)

)
KL(πµ,r, πt).

Thus, we get:

KL(πµ,r, πt+1) ≤ (1− (ηµα− η2(µ2β + γ)))KL(πµ,r, πt),

and then, for η ∈ (0,min( µα
µ2β+γ , ζ)):

KL(πµ,r, πt+1)−KL(πµ,r, πt) ≤ 0.

Thus, if η ∈ (0,min( µα
µ2β+γ , ζ)), then KL(πµ,r, πt+1) ≤ KL(πµ,r, πt) ≤ KL(πµ,r, π0) and πt+1 ∈ Ωµ,r also hold. By

mathematical induction, if η ∈ (0,min( µα
µ2β+γ , ζ)), for all t ≥ 0:

KL(πµ,r, πt+1) ≤ (1− (ηµα− η2(µ2β + γ)))KL(πµ,r, πt) ≤ · · · ≤ (1− (ηµα− η2(µ2β + γ)))t+1KL(πµ,r, π0).

B.2 Proof of Lemma 5.3

Proof of Lemma 5.3. First, we introduce the following lemma from Abe et al. (2022):
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Lemma B.2 (Lemma 5.6 of Abe et al. (2022)). Let πµ,r
i ∈ ∆(Ai) be a stationary point of (RMD) for i ∈ {1, 2}. Then, for

any π′
i ∈ ∆(Ai):

v
π′
i,π

µ,r
−i

i = vπ
µ,r

i + µ− µ
∑

ai∈Ai

ri(ai)
π′
i(ai)

πµ,r
i (ai)

.

From this lemma, we have:

2∑
i=1

v
πt
i ,π

µ,r
−i

i + 2µ− µ
2∑

i=1

∑
ai∈Ai

ri(ai)
πµ,r
i (ai)

πt
i(ai)

=

2∑
i=1

vπ
µ,r

i + 4µ− µ
2∑

i=1

∑
ai∈Ai

ri(ai)

(
πt
i(ai)

πµ,r
i (ai)

+
πµ,r
i (ai)

πt
i(ai)

)

= 4µ− µ
2∑

i=1

∑
ai∈Ai

ri(ai)

(
πt
i(ai)

πµ,r
i (ai)

+
πµ,r
i (ai)

πt
i(ai)

)

= −µ
2∑

i=1

∑
ai∈Ai

ri(ai)

(√
πt
i(ai)

πµ,r
i (ai)

−

√
πµ,r
i (ai)

πt
i(ai)

)2

,

where the second equality follows from
∑2

i=1 v
πµ,r

i = 0 by the definition of zero-sum games.

B.3 Proof of Lemma 5.4

Proof of Lemma 5.4. Let us assume that η ∈ (0, ζ), where α, β, γ, and ζ are defined in Appendix B.1.

First, we have:

KL(πt, πt+1) =

2∑
i=1

∑
a∈Ai

πt
i(a) ln

πt
i(a)

πt+1
i (a)

= 2

2∑
i=1

∑
a∈Ai

1

2
πt
i(a) ln

πt
i(a)

πt+1
i (a)

≤ 2 ln

(
1

2

2∑
i=1

∑
a∈Ai

πt
i(a)

πt
i(a)

πt+1
i (a)

)
,

where the inequality follows from the concavity of the ln(·) function and Jensen’s inequality for concave functions. Here,
from the update rule (1):

πt
i(a)

πt+1
i (a)

=

∑
a′∈Ai

πt
i(a

′) exp
(
η
(
qπ

t

i (a′) + µ ri(a
′)

πt
i(a

′)

))
exp

(
η
(
qπ

t

i (a) + µ ri(a)
πt
i(a)

)) ,

and then we get:

KL(πt, πt+1) ≤ 2 ln

1

2

2∑
i=1

∑
a∈Ai

πt
i(a)

∑
a′∈Ai

πt
i(a

′) exp
(
η
(
qπ

t

i (a′) + µ ri(a
′)

πt
i(a

′)

))
exp

(
η
(
qπ

t

i (a) + µ ri(a)
πt
i(a)

))


= 2 ln

(
1

2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′) exp

(
η

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

)))
. (7)

Furthermore, from the assumption for the learning rate η < 1
2umax+

µ
ρ maxi∈{1,2},a∈Ai

ri(a)
≤ ζ, we have

η
(
qπ

t

i (a′) + µ ri(a
′)

πt
i(a

′)
− qπt

i (a)− µ ri(a)
πt
i(a)

)
≤ 1. Thus, we can use the fact that exp(x) ≤ 1 + x + x2 for x ≤ 1, and
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then:

1

2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′) exp

(
η

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

))

≤1

2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
1 + η

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

))

+
1

2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
η2
(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

)2
)

=1 +
η2

2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

)2

≤ exp

(
η2

2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

)2
)
, (8)

where the first equality follows from
∑

a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)
(
η
(
qπ

t

i (a′) + µ ri(a
′)

πt
i(a

′)
− qπt

i (a)− µ ri(a)
πt
i(a)

))
= 0, and

the last inequality follows from 1 + x ≤ exp(x) for x ∈ R. By combining (7) and (8), we get:

KL(πt, πt+1) ≤ 2 ln

(
exp

(
η2

2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

)2
))

= η2
2∑

i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

)2

. (9)

Here, by using the ordinary differential equation (RMD), we have for all i ∈ {1, 2} and a ∈ A:

qπ
µ,r

i (a) = vπ
µ,r

i − µ

πµ,r
i (a)

(ri(a)− πµ,r
i (a)) .

Thus,

qπ
t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

= qπ
µ,r

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

µ,r

i (a)− µ ri(a)
πt
i(a)

+ qπ
t

i (a′)− qπ
µ,r

i (a′)− qπ
t

i (a) + qπ
µ,r

i (a)

= µ

(
ri(a)

πµ,r
i (a)

− ri(a)

πt
i(a)

− ri(a
′)

πµ,r
i (a′)

+
ri(a

′)

πt
i(a

′)

)
+ qπ

t

i (a′)− qπ
µ,r

i (a′)− qπ
t

i (a) + qπ
µ,r

i (a).

Then,

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
qπ

t

i (a′) + µ
ri(a

′)

πt
i(a

′)
− qπ

t

i (a)− µ ri(a)
πt
i(a)

)2

=

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
µ

(
ri(a)

πµ,r
i (a)

− ri(a)

πt
i(a)

− ri(a
′)

πµ,r
i (a′)

+
ri(a

′)

πt
i(a

′)

)
+ qπ

t

i (a′)− qπ
µ,r

i (a′)− qπ
t

i (a) + qπ
µ,r

i (a)

)2

≤2µ2
2∑

i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

(
ri(a)

πµ,r
i (a)

− ri(a)

πt
i(a)

− ri(a
′)

πµ,r
i (a′)

+
ri(a

′)

πt
i(a

′)

)2

+ 2

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)
(
qπ

t

i (a′)− qπ
µ,r

i (a′)− qπ
t

i (a) + qπ
µ,r

i (a)
)2

≤4µ2
2∑

i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

((
ri(a)

πµ,r
i (a)

− ri(a)

πt
i(a)

)2

+

(
ri(a

′)

πµ,r
i (a′)

− ri(a
′)

πt
i(a

′)

)2
)
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+ 4

2∑
i=1

∑
a∈Ai

∑
a′∈Ai

πt
i(a)π

t
i(a

′)

((
qπ

t

i (a′)− qπ
µ,r

i (a′)
)2

+
(
qπ

t

i (a)− qπ
µ,r

i (a)
)2)

=8µ2
2∑

i=1

∑
a∈Ai

πt
i(a)ri(a)

2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

+ 8

2∑
i=1

∑
a∈Ai

πt
i(a)

 ∑
b∈A−i

(
πt
−i(b)− π

µ,r
−i (b)

)
ui(a

′, b)

2

≤8µ2
2∑

i=1

∑
a∈Ai

πt
i(a)ri(a)

2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

+ 8

2∑
i=1

∑
a∈Ai

πt
i(a)u

2
max∥πt

−i − π
µ,r
−i ∥

2
1

≤8µ2
2∑

i=1

∑
a∈Ai

ri(a)
2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

+ 8

2∑
i=1

u2max∥πt
−i − π

µ,r
−i ∥

2
1

=8µ2
2∑

i=1

∑
a∈Ai

ri(a)
2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

+ 8

2∑
i=1

u2max∥πt
i − π

µ,r
i ∥

2
1, (10)

where the first and second inequalities follow from (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R, and the third inequality follows
from Hölder’s inequality.

By combining (9) and (10), if η ∈ (0, ζ), for all t ≥ 0:

KL(πt, πt+1) ≤ 8η2

(
µ2

2∑
i=1

∑
a∈Ai

ri(a)
2

(
1

πµ,r
i (a)

− 1

πt
i(a)

)2

+ u2max

2∑
i=1

∥πt
i − π

µ,r
i ∥

2
1

)
.

B.4 Proof of Lemma B.1

Proof of Lemma B.1. We introduce the following lemma:

Lemma B.3. For any π ∈
∏2

i=1 ∆(Ai), πt updated by M2WU satisfies that:

KL(π, πt) =

2∑
i=1

(〈
t−1∑
s=1

ηsq
µ,s
i , πt

i

〉
− ψi(π

t
i)−

〈
t−1∑
s=1

ηsq
µ,s
i , πi

〉
+ ψi(πi)

)
,

where ψi(p) =
∑

a∈Ai
p(a) ln p(a).

From Lemma B.3, we have:

KL(πµ,r, πt+1)−KL(πµ,r, πt)

=

2∑
i=1

(〈
t∑

s=1

ηsq
µ,s
i , πt+1

i

〉
− ψi(π

t+1
i )−

〈
t∑

s=1

ηsq
µ,s
i , πµ,r

i

〉
+ ψi(π

µ,r
i )

)

−
2∑

i=1

(〈
t−1∑
s=1

ηsq
µ,s
i , πt

i

〉
− ψi(π

t
i)−

〈
t−1∑
s=1

ηsq
µ,s
i , πµ,r

i

〉
+ ψi(π

µ,r
i )

)

=

2∑
i=1

(〈
t∑

s=1

ηsq
µ,s
i , πt+1

i

〉
− ψi(π

t+1
i )−

〈
t∑

s=1

ηsq
µ,s
i , πt

i

〉
+ ψi(π

t
i)

)
− ηt

2∑
i=1

⟨qµ,ti , πµ,r
i − πt

i⟩

=KL(πt, πt+1)− ηt
2∑

i=1

⟨qµ,ti , πµ,r
i − πt

i⟩

=KL(πt, πt+1) + ηt

2∑
i=1

∑
a∈Ai

(
qπ

t

i (a) +
µ

πt
i(a)

(
ri(a)− πt

i(a)
)) (

πt
i(a)− π

µ,r
i (a)

)
=KL(πt, πt+1) + ηt

2∑
i=1

∑
a∈Ai

(
πt
i(a)− π

µ,r
i (a)

)(
qπ

t

i (a) + µ
ri(a)

πt
i(a)

)
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=KL(πt, πt+1) + ηt

2∑
i=1

(
vπ

t

i − v
πµ,r
i ,πt

−i

i + µ− µ
∑
a∈Ai

ri(a)
πµ,r
i (a)

πt
i(a)

)

=KL(πt, πt+1) + ηt

2∑
i=1

(
−vπ

µ,r
i ,πt

−i

i + µ− µ
∑
a∈Ai

ri(a)
πµ,r
i (a)

πt
i(a)

)

=KL(πt, πt+1) + ηt

2∑
i=1

(
v
πt
i ,π

µ,r
−i

i + µ− µ
∑
a∈Ai

ri(a)
πµ,r
i (a)

πt
i(a)

)
,

where the seventh equality follows from
∑2

i=1 v
πt

i = 0, and the last equality follows from −vπ
µ,r
1 ,πt

2

1 = v
πµ,r
1 ,πt

2

2 and

−vπ
t
1,π

µ,r
2

2 = v
πt
1,π

µ,r
2

1 by the definition of two-player zero-sum games.

B.5 Proof of Lemma B.3

Proof of Lemma B.3. From the definition of the Kullback-Leibler divergence, we have:

KL(π, πt) =

2∑
i=1

KL(πi, π
t
i) =

2∑
i=1

∑
a∈Ai

πi(a) ln
πi(a)

πt
i(a)

=

2∑
i=1

(∑
a∈Ai

(
πt
i(a)− πi(a)

)
lnπt

i(a)−
∑
a∈Ai

πt
i(a) lnπ

t
i(a) +

∑
a∈Ai

πi(a) lnπi(a)

)

=

2∑
i=1

(∑
a∈Ai

(
πt
i(a)− πi(a)

)
lnπt

i(a)− ψi(π
t
i) + ψi(πi)

)
. (11)

Here, the update rule (1) is equivalent to:

πt
i(a) =

exp
(∑t−1

s=1 ηsq
µ,s
i (a)

)
∑

a′∈Ai
exp

(∑t−1
s=1 ηsq

µ,s
i (a′)

) ,
and then we have:

∑
a∈Ai

(
πt
i(a)− πi(a)

)
lnπt

i(a) =
∑
a∈Ai

(
πt
i(a)− πi(a)

)(t−1∑
s=1

ηsq
µ,s
i (a)− ln

( ∑
a′∈Ai

exp

(
t−1∑
s=1

ηsq
µ,s
i (a′)

)))

=
∑
a∈Ai

(
πt
i(a)− πi(a)

) t−1∑
s=1

ηsq
µ,s
i (a)

=

〈
t−1∑
s=1

ηsq
µ,s
i , πt

i

〉
−

〈
t−1∑
s=1

ηsq
µ,s
i , πi

〉
. (12)

By combining (11) and (12), we get:

KL(π, πt) =

2∑
i=1

(〈
t−1∑
s=1

ηsq
µ,s
i , πt

i

〉
− ψi(π

t
i)−

〈
t−1∑
s=1

ηsq
µ,s
i , πi

〉
+ ψi(πi)

)
.
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C PROOF OF COROLLARY 5.2

Proof of Corollary 5.2. From the definition of exploitability, we have:

explt(πt) =

2∑
i=1

max
π̃i∈∆(Ai)

v
π̃i,π

t
−i

i

=

2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

µ,r
−i

i + max
π̃i∈∆(Ai)

v
π̃i,π

t
−i

i − max
π̃i∈∆(Ai)

v
π̃i,π

µ,r
−i

i

)

= explt(πµ,r) +

2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

t
−i

i − max
π̃i∈∆(Ai)

v
π̃i,π

µ,r
−i

i

)

≤ explt(πµ,r) +

2∑
i=1

(
max

π̃i∈∆(Ai)

(
v
π̃i,π

t
−i

i − vπ̃i,π
µ,r
−i

i

))

≤ explt(πµ,r) +

2∑
i=1

(
∥πµ,r

i − πt
i∥1 max

π̃−i∈∆(A−i)
∥qπ

t
i ,π̃−i

i ∥∞
)

≤ explt(πµ,r) +

2∑
i=1

(
umax

√
2KL(πµ,r

i , πt
i)

)

≤ explt(πµ,r) + umax

√
2

√√√√2

2∑
i=1

KL(πµ,r
i , πt

i)

= explt(πµ,r) + 2umax

√
KL(πµ,r, πt), (13)

where the second inequality follows from Hölder’s inequality, the third inequality follows from Pinsker’s inequality (Tsy-
bakov, 2009), and the fourth inequality follows from

√
a+
√
b ≤

√
2(a+ b) for a, b > 0. By combining (13) and Theorem

5.1, we have:

explt(πt) ≤ explt(πµ,r) + 2umax

√
KL(πµ,r, π0)(1− C2)

t
2 . (14)

Moreover, from Lemma 3.5 of Bauer et al. (2019), a stationary point πµ,r of (RMD) satisfies that for all i ∈ {1, 2} and
ai ∈ Ai, qπ

µ,r

i (ai)− vπ
µ,r

i ≤ µ. Therefore, the term of exploit(πµ,r) can be bounded as:

explt(πµ,r) =

2∑
i=1

max
π̃i∈∆(Ai)

v
π̃i,π

µ,r
−i

i

=

2∑
i=1

(
max

π̃i∈∆(Ai)
v
π̃i,π

µ,r
−i

i − vπ
µ,r

i

)

=

2∑
i=1

(
max
ai∈Ai

qπ
µ,r

i (ai)− vπ
µ,r

i

)
≤ 2µ, (15)

where the first equality follows from
∑2

i=1 v
πµ,r

i = 0 by the definition of zero-sum games. By combining (14) and (15),
we have:

explt(πt) ≤ 2µ+ 2umax

√
KL(πµ,r, πt),

This concludes the statement.

D PROOFS FOR THEOREM 5.6

D.1 Proof of Theorem 5.6

In preparation for the proof, we first define the notion of approximate Robbins-Monro algorithms (Robbins and Monro,
1951; Benaı̈m, 1999).
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Definition D.1. The stochastic approximation algorithm

z(t+ 1) = z(t) + ηt(F (z(t)) + Ut + βt)

is refer to as an approximate Robbins-Monro algorithm if the following conditions are satisfied.

• F : Rm → Rm is a continuous function
• (Ut)t≥1 s.t. Un ∈ Rm,∀n ∈ N is a martingale difference noise
• (ηt)t≥1 is a given sequence of numbers such that

∑∞
t=1 ηt =∞ and limt→∞ ηt = 0

• limt→∞ βt = 0 almost surely

We provide the definition of the asymptotic pseudo-trajectory.

Definition D.2 ((Benaı̈m and Hirsch, 1996)). A flow ϕ on a metric space (M,d) is a continuous mapping

ϕ : R×M 7→M, (t, x) 7→ ϕt(x) (16)

such that ϕ0(x) = x and ϕt+α = ϕt ◦ ϕα for all t, α ∈ R. For a metric space (M,d), a continuous function X : R 7→M
is an asymptotic pseudo trajectory for ϕ if

lim
t→∞

sup
s∈[0,T ]

d(X(t+ s), ϕs(X(t))) = 0, (17)

for every T > 0.

For each i ∈ {1, 2}, let we define the logit function gi : R|Ai| 7→ ∆(Ai) as

gi(zi) =

(
exp (zi(ai))∑

a′
i∈Ai

exp (zi(a′i))

)
ai∈Ai

. (18)

We write gi(zi)(ai) ∈ R be the ai-th element of gi(zi) and ∇gi(zi)(ai) ∈ R|Ai| be the gradient vector of gi(zi)(ai),
respectively. As a first result, we prove that the dynamics of the strategy {πt

i} updated by M2WU is an asymptotic pseudo
trajectory of a continuous dynamics.

Lemma D.3. Suppose that the sequence {ηt}t≥1 satisfy ηt ∝ t−λ for some λ ∈ (1/κ, 1], where κ is a constant defined
in Assumption 5.5 (ii). Then, for each i ∈ {1, 2}, the sequence of strategies {πt

i}t≥1 updated by M2WU is an asymptotic
pseudo trajectory for the replicator mutator dynamics:

d

dt
πt
i(ai) =π

t
i(ai)

(
qπ

t

i (ai)− vπ
t

i

)
+ µ

(
ri(ai)− πt

i(ai)
)
. (RMD)

We present the proof of Lemma D.3 in Appendix D.2. Furthermore, we have the following exponential convergence result
to the stationary point πµ,r

i in the noiseless continuous time setting in Abe et al. (2022).

Theorem D.4 (Theorem 5.2. of Abe et al. (2022)). Let πµ,r
i ∈ ∆(Ai) be a stationary point of (RMD) for all i ∈ {1, 2}.

Then, for all µ > 0, the continuous-time dynamics πt updated by (RMD) satisfies the following:

d

dt
KL(πµ,r, πt) = −µ

2∑
i=1

∑
ai∈Ai

ri(ai)

(√
πt
i(ai)

πµ,r
i (ai)

−

√
πµ,r
i (ai)

πt
i(ai)

)2

.

Furthermore, πt satisfies that:

d

dt
KL(πµ,r, πt) ≤ −µξKL(πµ,r, πt),

where ξ = mini∈{1,2},ai∈Ai

ci(ai)
πµ,r
i (ai)

.

It can be observed that the function KL(πµ,r, ·) is a strict Lyapunov function. Furthermore, the stationary point of (RMD)
is unique (Abe et al., 2022). Therefore, from Corollary 6.6 of Benaı̈m (1999), πt

i updated by M2WU converges to πµ,r
i ,

almost surely.
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D.2 Proof of Lemma D.3

For each i ∈ {1, 2}, for any ai, a′i, ãi ∈ Ai,

∂

∂zi(a′i)
(gi(zi)(ai)) = gi(zi)(ai)(1{ai=a′

i} − gi(zi)(a
′
i))

and

∂2

∂zi(ãi)∂zi(a′i)
(gi(zi)(ai))

= gi(zi)(ai)
(
1{ai=a′

i=ãi} − gi(zi)(ãi)1{ai=a′
i} − gi(zi)(a

′
i)
(
1{ai=ãi} + 1{a′

i=ãi} − 2gi(zi)(ãi)
))
. (19)

We write

q̂µ,ti =

(
q̂π

t

i (ai) +
µ

πt
i(ai)

(ri(ai)− πt
i(ai))

)
ai∈Ai

qµ,ti =

(
qπ

t

i (ai) +
µ

πt
i(ai)

(ri(ai)− πt
i(ai))

)
ai∈Ai

ϕ̂t =
ηt
2
(q̂µ,ti )⊤Hess(gi(ζ)(ai))q̂

µ,t
i .

By Taylor’s theorem, we get the following computations.

πt+1
i (ai) = gi(z

t+1
i )(ai)

= gi(z
t
i + ηtq̂

µ,t
i )(ai)

= gi(z
t
i)(ai) + ηt

(
(∇gi(zti)(ai))⊤q̂

µ,t
i +

ηt
2
(q̂µ,ti )⊤Hess(gi(ζ)(ai))q̂

µ,t
i

)
= gi(z

t
i)(ai) + ηt

(
(∇gi(zti)(ai))⊤(q

µ,t
i + q̂µ,ti − q

µ,t
i ) + ϕ̂t

)
,

where ζ is a point between zti and zt+1
i .

(∇gi(zti)(ai))⊤q
µ,t
i =

∑
a′
i∈Ai

gi(z
t
i)(ai)(1{ai=a′

i} − gi(z
t
i)(a

′
i))

(
qπ

t

i (a′i) +
µ

πt
i(a

′
i)
(ri(a

′
i)− πt

i(a
′
i))

)

= gi(z
t
i)(ai)

qµ,ti (ai)−
∑

a′
i∈Ai

gi(z
t
i)(a

′
i)q

µ,t
i (a′i)


= πt

i(ai)

qµ,ti (ai)−
∑

a′
i∈Ai

πt
i(a

′
i)q

µ,t
i (a′i)

 .

We can write the dynamics of πt
i(ai) as follows

πt+1
i (ai) = πt

i(ai) + ηt(F (π
t
i) + Ut + ϕ̂t),

where F (πt
i) = πt

i(ai)
(
qµ,ti (ai)−

∑
a′
i∈Ai

πt
i(a

′
i)q

µ,t
i (a′i)

)
is a continuous function and Ut = (∇gi(zti)(ai))⊤(q̂

µ,t
i −

qµ,ti ) is a martingale difference sequence from Assumption 5.5 and the bound on the utility function. Note that from the
assumption on (ηt)t≥1, limt→∞ ηt = 0 and

∑∞
t=1 ηt = ∞. From the form of (19), the elements of Hess(gi(ζ)(ai))

is bounded by some constant. Thus, the limit of ϕ̂t is determined by the term ∥q̂µ,ti ∥22. Let Et be an event such that
∥q̂µ,ti ∥22 ≥ tp with p < 1/κ, where κ is in Assumption 5.5 (ii) and p is a value satisfies ηt = o(t−p) (note that ηt ∝ t−κ and
1/κ < λ ≤ 1). Using Assumption 5.5, the assumption that πt

i(a) > D > 0, and the boundedness of the utility function,

∞∑
t=1

P(Et) =
∞∑
t=1

P(∥q̂µ,ti ∥
2
2 ≥ tp | Ft−1) =

∞∑
t=1

O
(
t−κp

)
<∞.
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From the Borel–Cantelli lemma, P(∩∞t=1 ∪∞s≥t Es) = 0. Therefore, the event Et occurs only for a finite number of t, almost
surely. Thus, as ηttp ∝ t−λ+p = o(1),

ϕ̂t = O(ηt∥q̂µ,ti ∥
2
2) = O(ηttp) = o(1),

almost surely. Therefore, from Definition D.1, the update of {πt
i}t≥1 is an approximate Robbins-Monro algorithm. From

Proposition 4.2 of Benaı̈m (1999), {πt
i}t≥1 is an asymptotic pseudo-trajectory of the replicator mutator dynamics.

E PROOFS FOR THEOREM 6.1

E.1 Proof of Theorem 6.1

Proof of Theorem 6.1. From Lemma 6.2, sequence {minπ∗∈Π∗ KL(π∗, rk)}k≥0 is a monotonically decreasing sequence
and is bounded from below by zero. Hence, {minπ∗∈Π∗ KL(π∗, rk)}k≥0 converges to some b ≥ 0. We show that b = 0
by a contradiction argument.

Suppose b > 0 and let us define B = minπ∗∈Π∗ KL(π∗, r0). Since minπ∗∈Π∗ KL(π∗, rk) monotonically decreases, rk

is in the set Ωb,B = {r ∈
∏2

i=1 ∆
◦(Ai) | b ≤ minπ∗∈Π∗ KL(π∗, r) ≤ B} for all k ≥ 0. Since minπ∗∈Π∗ KL(π∗, r)

is a continuous function on
∏2

i=1 ∆
◦(Ai), the preimage Ωb,B of the closed set [b, B] is also closed. Furthermore, since∏2

i=1 ∆
◦(Ai) is a bounded set, Ωb,B is a bounded set. Thus, Ωb,B is a compact set.

From Lemma 6.3, minπ∗∈Π∗ KL(π∗, F (r)) − minπ∗∈Π∗ KL(π∗, r) is also a continuous func-
tion. Since a continuous function has a maximum over a compact set, the maximum δ =
maxr∈Ωb,B

{minπ∗∈Π∗ KL(π∗, F (r))−minπ∗∈Π∗ KL(π∗, r)} exists. From Lemma 6.2 and the assumption that
b > 0, we have δ < 0. It follows that:

min
π∗∈Π∗

KL(π∗, rk) = min
π∗∈Π∗

KL(π∗, r0) +

k−1∑
l=0

(
min

π∗∈Π∗
KL(π∗, rl+1)− min

π∗∈Π∗
KL(π∗, rl)

)

≤ B +

k−1∑
l=0

δ = B + kδ.

This implies that minπ∗∈Π∗ KL(π∗, rk) < 0 for k > B
−δ , which is a contradiction because minπ∗∈Π∗ KL(π∗, r) ≥ 0.

Therefore, the sequence of minπ∗∈Π∗ KL(π∗, rk) converges to 0, and rk converges to some strategy profile in Π∗.

E.2 Proof of Lemma 6.2

Proof of Lemma 6.2. First, we prove the first statement of the lemma using following two lemmas:

Lemma E.1. Let πµ,r be a stationary point of (RMD) with the reference strategy profile r. Assuming that r ̸= πµ,r, for
any Nash equilibrium π∗ of the original game, we have:

KL(π∗, πµ,r)−KL(π∗, r) < 0.

Lemma E.2. Let πµ,r be a stationary point of (RMD) with the reference strategy profile r. If r = πµ,r, then r is a Nash
equilibrium of the original game.

From Lemma E.2, when r ∈
∏2

i=1 ∆
◦(Ai) \ Π∗, r ̸= πµ,r always holds. Let us define π⋆ = arg min

π∗∈Π∗
KL(π∗, r). From

Lemma E.1, if r ̸= πµ,r we have:

min
π∗∈Π∗

KL(π∗, r) = KL(π⋆, r) > KL(π⋆, πµ,r) ≥ min
π∗∈Π∗

KL(π∗, πµ,r).

Therefore, if r ∈
∏2

i=1 ∆
◦(Ai) \Π∗ then minπ∗∈Π∗ KL(π∗, πµ,r) < minπ∗∈Π∗ KL(π∗, r).

Next, we prove the second statement of the lemma. Assume that r ∈ Π∗ implies that πµ,r ̸= r. In this case, we can apply
Lemma E.1, so we have for all π∗ ∈ Π∗, KL(π∗, πµ,r) < KL(π∗, r). On the other hand, since r ∈ Π∗, there exists a
Nash equilibrium π⋆ such that KL(π⋆, r) = 0. Thus, we have KL(π⋆, πµ,r) < KL(π⋆, r) = 0, which contradicts that
KL(π⋆, πµ,r) ≥ 0. Therefore, if r ∈ Π∗ then πµ,r = r.
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E.3 Proof of Lemma 6.3

Proof of Lemma 6.3. For a given r ∈
∏2

i=1 ∆
◦(Ai), let us consider that πt follows the following (RMD) dynamics with a

reference strategy profile r ∈
∏2

i=1 ∆
◦(Ai):

d

dt
πt
i(ai) =π

t
i(ai)

(
qπ

t

i (ai)− vπ
t

i

)
+ µ

(
ri(ai)− πt

i(ai)
)
.

Therefore, we have for a given r′ ∈
∏2

i=1 ∆
◦(Ai) and the associated stationary point πµ,r′ :

d

dt
KL(πµ,r′ , πt)

=

2∑
i=1

∑
a∈Ai

πµ,r′

i (a)
d

dt
ln

(
πµ,r′

i (a)

πt
i(a)

)

=−
2∑

i=1

∑
a∈Ai

πµ,r′

i (a)
d

dt
lnπt

i(a)

=−
2∑

i=1

∑
a∈Ai

πµ,r′

i (a)

πt
i(a)

d

dt
πt
i(a)

=−
2∑

i=1

∑
a∈Ai

πµ,r′

i (a)

πt
i(a)

(
πt
i(ai)

(
qπ

t

i (ai)− vπ
t

i

)
+ µ

(
ri(ai)− πt

i(ai)
))

=

2∑
i=1

∑
a∈Ai

(
πµ,r′

i (a)
(
vπ

t

i − qπ
t

i (ai)
)
− µ

πt
i(a)

(
ri(ai)− πt

i(ai)
)
πµ,r′

i (a)

)

=

2∑
i=1

∑
a∈Ai

((
πt
i(a)− π

µ,r′

i (a)
)
qπ

t

i (a)− µ

πt
i(a)

(
ri(ai)− πt

i(ai)
)
πµ,r′

i (a) +
µ

πt
i(a)

(
ri(ai)− πt

i(ai)
)
πt
i(a)

)

=

2∑
i=1

∑
a∈Ai

(
qπ

t

i (a) +
µ

πt
i(a)

(
ri(a)− πt

i(a)
))(

πt
i(a)− π

µ,r′

i (a)
)

=

2∑
i=1

∑
a∈Ai

(
qπ

t

i (a) +
µ

πt
i(a)

(
r′i(a)− πt

i(a)
))(

πt
i(a)− π

µ,r′

i (a)
)

+

2∑
i=1

∑
a∈Ai

(
µ

πt
i(a)

(
ri(a)− πt

i(a)
)
− µ

πt
i(a)

(
r′i(a)− πt

i(a)
))(

πt
i(a)− π

µ,r′

i (a)
)
, (20)

where the sixth equality follows from vπ
t

i =
∑

a∈Ai
πt
i(a)q

πt

i (a) and
∑

a∈Ai

µ
πt
i(a)

(ri(ai)− πt
i(ai))π

t
i(a) =

µ
∑

a∈Ai
(ri(ai)− πt

i(ai)) = 0.

The first term of (20) can be written as:

2∑
i=1

∑
a∈Ai

(
qπ

t

i (a) +
µ

πt
i(a)

(
r′i(a)− πt

i(a)
))(

πt
i(a)− π

µ,r′

i (a)
)

=

2∑
i=1

∑
a∈Ai

(
πt
i(a)− π

µ,r′

i (a)
)(

qπ
t

i (a) + µ

(
r′i(a)

πt
i(a)

− 1

))

=

2∑
i=1

∑
a∈Ai

(
πt
i(a)− π

µ,r′

i (a)
)(

qπ
t

i (a) + µ
r′i(a)

πt
i(a)

)

=

2∑
i=1

(
vπ

t

i − v
πµ,r′
i ,πt

−i

i + µ− µ
∑
a∈Ai

r′i(a)
πµ,r′

i (a)

πt
i(a)

)
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=

2∑
i=1

(
−vπ

µ,r′
i ,πt

−i

i + µ− µ
∑
a∈Ai

r′i(a)
πµ,r′

i (a)

πt
i(a)

)

=

2∑
i=1

(
v
πt
i ,π

µ,r′
−i

i + µ− µ
∑
a∈Ai

r′i(a)
πµ,r′

i (a)

πt
i(a)

)
,

where the fourth equality follows from
∑2

i=1 v
πt

i = 0, and the last equality follows from −vπ
µ,r′
1 ,πt

2

1 = v
πµ,r′
1 ,πt

2

2 and

−vπ
t
1,π

µ,r′
2

2 = v
πt
1,π

µ,r′
2

1 by the definition of two-player zero-sum games. Here, from Lemma B.2, for all i ∈ {1, 2}:

v
πt
i ,π

µ,r′
−i

i = vπ
µ,r′

i + µ− µ
∑
a∈Ai

r′i(a)
πt
i(a)

πµ,r′

i (a)
,

and then we have:

2∑
i=1

∑
a∈Ai

(
qπ

t

i (a) +
µ

πt
i(a)

(
r′i(a)− πt

i(a)
))(

πt
i(a)− π

µ,r′

i (a)
)

=

2∑
i=1

vπ
µ,r′

i + 4µ− µ
2∑

i=1

∑
a∈Ai

r′i(a)

(
πt
i(a)

πµ,r′

i (a)
+
πµ,r′

i (a)

πt
i(a)

)

= 4µ− µ
2∑

i=1

∑
a∈Ai

r′i(a)

(
πt
i(a)

πµ,r′

i (a)
+
πµ,r′

i (a)

πt
i(a)

)

= −µ
2∑

i=1

∑
a∈Ai

r′i(a)

√ πt
i(a)

πµ,r′

i (a)
−

√
πµ,r′

i (a)

πt
i(a)

2

, (21)

where the second equality follows from
∑2

i=1 v
πµ,r′

i = 0 by the definition of zero-sum games.

On the other hand, the second term of (20) is written as:

2∑
i=1

∑
a∈Ai

(
µ

πt
i(a)

(
ri(a)− πt

i(a)
)
− µ

πt
i(a)

(
r′i(a)− πt

i(a)
))(

πt
i(a)− π

µ,r′

i (a)
)

= µ

2∑
i=1

∑
a∈Ai

1

πt
i(a)

(ri(a)− r′i(a))
(
πt
i(a)− π

µ,r′

i (a)
)
≤ µ

2∑
i=1

∑
a∈Ai

1

πt
i(a)
|ri(a)− r′i(a)| . (22)

Combining (20), (21), and (22), we can obtain:

d

dt
KL(πµ,r′ , πt) ≤ −µ

2∑
i=1

∑
a∈Ai

r′i(a)

√ πt
i(a)

πµ,r′

i (a)
−

√
πµ,r′

i (a)

πt
i(a)

2

+ µ

2∑
i=1

∑
a∈Ai

1

πt
i(a)
|ri(a)− r′i(a)| .

Setting the start point as π0 = πµ,r, we have for all t ≥ 0, πt = πµ,r. In this case, for all t ≥ 0, we have d
dtKL(πµ,r′ , πt) =

0. Thus,

2∑
i=1

∑
a∈Ai

r′i(a)

√ πµ,r
i (a)

πµ,r′

i (a)
−

√
πµ,r′

i (a)

πµ,r
i (a)

2

≤
2∑

i=1

∑
a∈Ai

1

πµ,r
i (a)

|ri(a)− r′i(a)| .

Here, since ri is in interior of ∆(Ai), there exists ν1 > 0 such that ∀i,∀a ∈ Ai, ri(a) > ν1. Furthermore, from Lemma C.2
in Abe et al. (2022), πµ,r

i is also in interior of ∆(Ai). Thus, there exists ν2 > 0 such that ∀i,∀a ∈ Ai, π
µ,r
i (a) > ν2. For

a given ε > 0, let us define δ = ε2ν1ν2

4+ε2ν2

√
1∑2

i=1 |Ai|
. If ∥r′ − r∥2 < δ, then ∥r′ − r∥1 ≤ ∥r′ − r∥2

√∑2
i=1 |Ai| < ε2ν1ν2

4+ε2ν2
.
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Thus, ∀i,∀a ∈ Ai, r′i(a) >
(
1− ε2ν2

4+ε2ν2

)
ν1 > 0. So, if ∥r′ − r∥2 < δ, we have then:

2∑
i=1

∑
a∈Ai

r′i(a)

√πµ,r′

i (a)

πµ,r
i (a)

−

√
πµ,r
i (a)

πµ,r′

i (a)

2

=

2∑
i=1

∑
a∈Ai

r′i(a)

(
πµ,r′

i (a)

πµ,r
i (a)

+
πµ,r
i (ai)

πµ,r′

i (a)
− 2

)

=

2∑
i=1

∑
a∈Ai

r′i(a)

πµ,r′

i (a)

(πµ,r
i (a)− πµ,r′

i (a))2

πµ,r
i (a)

≥
(
1− ε2ν2

4 + ε2ν2

)
ν1

2∑
i=1

∑
a∈Ai

(πµ,r
i (a)− πµ,r′

i (a))2

πµ,r
i (a)

≥
(
1− ε2ν2

4 + ε2ν2

)
ν1

2∑
i=1

ln

(
1 +

∑
a∈Ai

(πµ,r
i (a)− πµ,r′

i (a))2

πµ,r
i (a)

)

=

(
1− ε2ν2

4 + ε2ν2

)
ν1

2∑
i=1

ln

(∑
a∈Ai

πµ,r′

i (a)
πµ,r′

i (a)

πµ,r
i (a)

)

≥
(
1− ε2ν2

4 + ε2ν2

)
ν1

2∑
i=1

∑
a∈Ai

πµ,r′

i (a) ln

(
πµ,r′

i (a)

πµ,r
i (a)

)

=

(
1− ε2ν2

4 + ε2ν2

)
ν1

2∑
i=1

KL(πµ,r′

i , πµ,r
i ),

where the second inequality follow from x ≥ ln(1 + x) for all x > 0, and the third inequality follows from the concavity
of the ln(·) function and Jensen’s inequality for concave functions. Moreover,

2∑
i=1

KL(πµ,r′

i , πµ,r
i ) ≥ 1

2

2∑
i=1

∥πµ,r′

i − πµ,r
i ∥

2
1 ≥

1

4
∥πµ,r′ − πµ,r∥21,

where we use Pinsker’s inequality (Tsybakov, 2009), and the fact that
∑2

i=1 x
2
i ≥ 1

2

(∑2
i=1 xi

)2
for xi ∈ R. Thus, we

get: (
1− ε2ν2

4 + ε2ν2

)
ν1
4
∥πµ,r′ − πµ,r∥21 ≤

2∑
i=1

∑
a∈Ai

1

πµ,r
i (a)

|ri(a)− r′i(a)| <
1

ν2
∥r′ − r∥1.

Therefore, if ∥r′ − r∥ < δ, we have then:

∥πµ,r′ − πµ,r∥2 ≤ ∥πµ,r′ − πµ,r∥1 <
√√√√ 4(

1− ε2ν2

4+ε2ν2

)
ν1ν2

∥r′ − r∥1

≤

√√√√√ 4(
1− ε2ν2

4+ε2ν2

)
ν1ν2

∥r′ − r∥2

√√√√ 2∑
i=1

|Ai|

<

√√√√√ 4(
1− ε2ν2

4+ε2ν2

)
ν1ν2

δ

√√√√ 2∑
i=1

|Ai|

=

√√√√ 4(
1− ε2ν2

4+ε2ν2

)
ν1ν2

ε2ν1ν2
4 + ε2ν2

=

√
4

1− ε2ν2

4+ε2ν2

ε2

4 + ε2ν2
= ε.
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Thus, for every ε > 0, there exists δ > 0 such that for all r′ ∈
∏2

i=1 ∆
◦(Ai), if ∥r′ − r∥2 < δ then ∥πµ,r′ − πµ,r∥2 < ε.

Therefore, F (·) is a continuous function on
∏2

i=1 ∆
◦(Ai).

E.4 Proof of Lemma E.1

Proof of Lemma E.1. First, we have:

KL(π∗, πµ,r)−KL(π∗, r) =

2∑
i=1

( ∑
ai∈Ai

π∗
i (ai) ln

π∗
i (ai)

πµ,r
i (ai)

−
∑

ai∈Ai

π∗
i (ai) ln

π∗
i (ai)

ri(ai)

)

=

2∑
i=1

∑
ai∈Ai

π∗
i (ai) ln

ri(ai)

πµ,r
i (ai)

≤ 2 ln

(
1

2

2∑
i=1

∑
ai∈Ai

π∗
i (ai)

ri(ai)

πµ,r
i (ai)

)
,

where the inequality follows from the concavity of the ln(·) function and Jensen’s inequality for concave functions. Since
ln(·) is strictly concave, the equality holds if and only if r = πµ,r. Therefore, from the assumption that r ̸= πµ,r, we have:

KL(π∗, πµ,r)−KL(π∗, r) < 2 ln

(
1

2

2∑
i=1

∑
ai∈Ai

π∗
i (ai)

ri(ai)

πµ,r
i (ai)

)
. (23)

Here, by using the ordinary differential equation (RMD), we have for all i ∈ {1, 2} and ai ∈ Ai:

πµ,r
i (ai)

(
qπ

µ,r

i (ai)− vπ
µ,r

i

)
+ µ (ri(ai)− πµ,r

i (ai)) = 0,

and then:

ri(ai)

πµ,r
i (ai)

= 1− 1

µ

(
qπ

µ,r

i (ai)− vπ
µ,r

i

)
. (24)

Combining (23) and (24), we have:

KL(π∗, πµ,r)−KL(π∗, r) < 2 ln

(
1

2

2∑
i=1

∑
ai∈Ai

π∗
i (ai)

(
1− 1

µ

(
qπ

µ,r

i (ai)− vπ
µ,r

i

)))

= 2 ln

(
1

2

2∑
i=1

(
1− 1

µ

(
v
π∗
i ,π

r
−i

i − vπ
µ,r

i

)))
.

Since
∑

ai∈Ai
π∗
i (ai)

ri(ai)
πµ,r
i (ai)

> 0, we have 1− 1
µ

(
v
π∗
i ,π

r
−i

i − vπµ,r

i

)
> 0. Also, since π∗ is the Nash equilibrium, we get:

2∑
i=1

(
1− 1

µ

(
v
π∗
i ,π

r
−i

i − vπ
µ,r

i

))
= 2 +

1

µ

2∑
i=1

(
vπ

µ,r

i − vπ
∗
i ,π

r
−i

i

)
= 2 +

1

µ

2∑
i=1

(
−vπ

∗
i ,π

r
−i

i − vπ
∗

i

)
= 2 +

1

µ

2∑
i=1

(
v
πµ,r
i ,π∗

−i

i − vπ
∗

i

)
≤ 2,

where the second equality follows from
∑2

i=1 v
πµ,r

i = 0 and
∑2

i=1 v
π∗

i = 0, and the last equality follows from−vπ
∗
1 ,π

r
2

1 =

v
π∗
1 ,π

r
2

2 and −vπ
r
1 ,π

∗
2

2 = v
πr
1 ,π

∗
2

1 by the definition of two-player zero-sum games. Thus, we get

KL(π∗, πµ,r)−KL(π∗, r) < 2(ln 1) ≤ 0.
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E.5 Proof of Lemma E.2

Proof of Lemma E.2. By using the ordinary differential equation (RMD), we have for all i ∈ {1, 2} and ai ∈ Ai:

πµ,r
i (ai)

(
qπ

µ,r

i (ai)− vπ
µ,r

i

)
+ µ (ri(ai)− πµ,r

i (ai)) = 0.

Since r = πµ,r, we have for all i ∈ {1, 2} and ai ∈ Ai:

ri(ai) (q
r
i (ai)− vri ) = 0.

From the definition of the reference strategy, we have ri(ai) > 0, and then vri = maxai∈Ai
qri (ai) for all i ∈ {1, 2}.

Therefore, each player i’s strategy ri is a best response to the other player −i’s strategy r−i. Thus, r is a Nash equilibrium
of the original game.
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F ADDITIONAL EXPERIMENTAL RESULTS WITH NOISE

F.1 Various Learning Rates

Figures 6 and 7 show the numerical results with varying learning rates η ∈ {0.1, 0.05, 0.01, 0.005, 0.001} in BRPS and
M-Ne with noisy-information feedback. We observe that M2WU exhibits lower exploitability than MWU and OMWU for
all η. Also, we can see that OMWU does not converge for all learning rates in both games (See also Remark 5.7).
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Figure 6: Exploitability of πt for M2WU, MWU, and OMWU with varying η ∈ {0.1, 0.05, 0.01, 0.005, 0.001} in BRPS
with noisy-information feedback.
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Figure 7: Exploitability of πt for M2WU, MWU, and OMWU with varying η ∈ {0.1, 0.05, 0.01, 0.005, 0.001} in M-Ne
with noisy-information feedback.

F.2 Decreasing Learning Rates

In this section, we investigate the performance of M2WU with decreasing learning rates under the noisy-information
feedback setting. We set the learning rates to ηt = t−

3
4 for all algorithms. Other settings are equivalent to the noisy-

information feedback experiments in Section 7.2. Figure 8 shows the average exploitability of πt on 100 instances. Even
with the decreasing learning rates, M2WU demonstrates better performance than MWU and OMWU.
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Figure 8: Exploitability of πt for M2WU, MWU, and OMWU with decreasing learning rates under the noisy-information
feedback setting.
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