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Abstract

We study the sample complexity of causal struc-
ture learning on a two-variable system with obser-
vational and experimental data. Specifically, for
two variables X and Y , we consider the classical
scenario where either X causes Y , Y causes X ,
or there is an unmeasured confounder between X
and Y . Let m1 be the number of observational
samples of (X,Y ), and let m2 be the number of
interventional samples where either X or Y has
been subject to an external intervention. We show
that if X and Y are over a finite domain of size
k and are significantly correlated, the minimum
m2 needed is sublinear in k. Moreover, as m1

grows, the minimum m2 needed to identify the
causal structure decreases. In fact, we can give a
tight characterization of the tradeoff between m1

and m2 when m1 = O(k) or is sufficiently large.
We build upon techniques for closeness testing
when m1 is small (e.g., sublinear in k), and for
non-parametric density estimation when m1 is
large. Our hardness results are based on carefully
constructing causal models whose marginal and
interventional distributions form hard instances
of canonical results on property testing.

1 Introduction

Reichenbach’s Common Cause Principle states that if two
variables X and Y are correlated, then either X causes Y ,
or Y causes X , or there is a common hidden variable U that
causes both. We focus on the three situations depicted in
Figure 1, with the goal being to discover which of the three
alternatives is true.
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Figure 1: Three causal relationships between X and Y .

If the causal structure is X −→ Y , then (X,Y ) is gener-
ated by the assignments: X := NX and Y := fY (X,NY )
where NX , NY are independent random variables and fY
is some (deterministic) function. The roles of X and Y
are interchanged if the structure is X ←− Y . If the causal
structure is X ←− U −→ Y , then (X,Y ) is generated
as: U := NU , X := fX(U,NX), and Y := fY (U,NY ),
where fX , fY are functions and NX , NY , NU are indepen-
dent random variables. In this formalism, an intervention
corresponds to setting one of the variables to a fixed value
and examining the distribution of the other. For example, if
the structure is X −→ Y and the intervention of fixing X
to x is performed, then Y is generated as fY (x,NY ). We
denote this intervention by do(X = x).

How would one distinguish between the three possibilities
shown in Figure 1? Observationally, they are impossible
to distinguish as the joint distribution of (X,Y ) may be
exactly the same in all three cases. But a fundamental
insight of Fisher (1925) was that they can be distinguished
if interventions are allowed. For example, if the true causal
structure was X −→ Y , then intervening on X should have
an effect on Y , while intervening on Y should have no effect
on X . The situation is vice versa for X ←− Y . On the
other hand, if the causal structure was X ←− U −→ Y ,
intervention on neither X nor Y would affect the other.

In this work, we revisit the problem of recovering the correct
causal structure from a quantitative point of view. While
it is clear that a nonzero number of samples from inter-



Sample Complexity of Distinguishing Cause from Effect

ventional distributions are necessary, what is the minimum
number of such samples needed? More precisely, given
m1, what is the minimum m2 such that m1 observations
and m2 samples from interventions suffice to distinguish
between the possibilities in Figure 1? While there is a long
line of work on causal structure learning while minimizing
the number of experiments (e.g., Eberhardt (2007, 2008);
Hauser and Bühlmann (2012); Shanmugam et al. (2015);
Kocaoglu et al. (2017); Greenewald et al. (2019); Squires
et al. (2020)), most of these works ignore the issue of finite
sample complexity that this work addresses.

We uncover a non-trivial tradeoff between m1 and m2 that
shows that as the number of observations increases, we
need fewer and fewer (but of course, positive) number of
samples from interventions. Our study holds in the setting
where X and Y are random variables over a finite domain
of size k and are known to be “significantly correlated”.
For example, we show that if m1 ∼ kc for 2/3 6 c 6 1,
then m2 ∼ k1−c/2 samples are sufficient, while if m1 is
sufficiently large, m2 can be completely independent of k.
Furthermore, the tradeoffs we establish are nearly tight, in
several interesting parameter regimes.

Organization We will define our problem statement in
Section 1.1 and state our results precisely in Section 1.2.
Related work will be discussed in Section 1.3. We present
an overview of our technique in Section 1.4. Due to the
page limit, we focus on the regime where m1 = O(k) in
the main paper and present the algorithm and lower bound
in Section 2 and Section 3 respectively. We present detailed
analysis of other regimes in the supplementary material.

1.1 Problem formulation

We will work in the semantic framework of structural causal
models (SCMs) (Pearl, 2009). Below we provide a complete
formulation of the problem statement by tailoring SCMs to
our setting.

Our goal is to test causal relationships between two corre-
lated discrete random variables X and Y over a domain Σ
of size k. We use a distance from independence as a notion
of correlation below.

Definition 1 (TV-correlation). For discrete random vari-
ables X and Y define their total variation correlation as

ρTV(X,Y ) := dTV (P [X,Y ], P [X]P [Y ])

= EX [dTV (P [Y ], P [Y | X])

where dTV (., .) is the total variation distance defined for
any discrete distributions p and q over a domain Σ of size k
as

dTV (p, q) := sup
S⊆Σ

p(S)− q(S) =
1

2

∑
x∈Σ

|px − qx| .

Let X and Y be two correlated random variables with
ρTV(X,Y ) > ε with a causal structure given in Figure 1.
We are given access to two types of samples:

– Observational samples. These are draws from the
joint distribution P [X,Y ].

– Interventional samples. We can intervene by setting
X = x for some x ∈ Σ (resp. Y = y) and observe
samples of Y (resp. X) under the intervention. We
denote the interventional distribution as

P x[Y ] = P [Y | do (X = x) ],

and resp. as P y[X].

Note the distinction between “intervention" and “interven-
tional samples"; the former corresponds to fixing, say X ,
to a certain value x whereas the latter corresponds to draw-
ing multiple samples from the interventional distribution
P x[Y ]. In practice, an intervention corresponds to setting
up a certain medical trial and the number of interventional
samples correspond to the number of people participating
in the trial.

As discussed in the introduction, suppose we intervene
do (X = x), if we are in Figure 1(a), the samples of Y
we obtain satisfies

P x[Y ] = fY (X,NY ) = P [Y | X]

whereas if we are in Figure 1(b) or Figure 1(c) then we just
obtain samples from P [Y ] as there is no causal influence
from X to Y .

We now define our Causal Structure Identification problem.

Definition 2 (Causal Structure Identification). Suppose an
SCM on two observable random variables X,Y supported
over Σ of size k satisfies ρTV(X,Y ) > ε. Given m1 ob-
servational and m2 interventional samples, an algorithm
solves Causal Structure Identification problem (CSI(k, ε))
if with probability at least 2/3, the algorithm outputs:

X −→ Y if the true causal structure is Figure 1(a),

Y −→ X if the true causal structure is Figure 1(b),
and

X ←− U −→ Y if the true causal structure is Fig-
ure 1(c).

Note that while the above definition is for the case of con-
stant probability, we can boost the success of our algorithms
to 1 − δ for an arbitrary δ > 0 by the median trick, i.e.,
repeating a testing algorithm log (1/δ) times and outputting
the median response which incurs only a logarithmic in-
crease in the sample complexity.
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Figure 2: An illustration of the tradeoffs between m1 and m2 for CSI(k, ε) for ε > 1/k1/4. The curves in bold are tight up
to logarithmic factors. For ε < 1/k1/4, the curve is flat at

√
k/ε2 until m1 approaches k2/ε2 and then becomes O

(
1/ε2

)
.

The x-axis is scaled such that all regimes of interest appear equal in length.

1.2 Our results

We provide sample complexity bounds for solving CSI(k, ε)
with the number of interventional samples sublinear in k.
The upper bounds we obtain have interesting phase tran-
sitions on the trade-offs between the number of interven-
tional and observational samples in different regimes. We
also show that the obtained upper bounds are tight when
m1 = O(k) and m1 > k2/ε2. While our main tradeoffs
are in terms of the interventional samples, we view it as a
positive that the number of distinct interventions that our
algorithms need is independent of the domain size.

Based on the number of observational samples available,
we present our results in the following four regimes: (1)
Zero (few) observational samples: m1 = O(k2/3/ε4/3)

(2) Sublinear observational samples: m1 = Ω(k2/3/ε4/3)
and m1 = O(k); (3) Superlinear observational samples:
m1 = Ω(k) and m1 = O(k2/ε2); (4) Sufficient observa-
tional samples: m1 = Ω(k2/ε2). The bounds we obtain are
shown in Figure 2. The above regimes are separated when
ε > 1/k1/4, which is the regime where interesting phase
transitions happen. We note that all described results hold
for all regimes of ε but regimes (1)-(3) will overlap and lead
to the same sample for m2 when ε < 1/k1/4.

Zero (few) observational samples: m1 = O(k2/3/ε4/3).
Here we discuss the case when the number of observational
samples is small. The next theorem shows that we can solve
CSI(k, ε) with m2 = O(k2/3/ε4/3) even when the number
of observational samples m1 is zero.

Theorem 1.1. There exists an algorithm that
uses zero observational samples and m2 =

O
(

max(k2/3/ε4/3,
√
k/ε2)

)
samples from interven-

tions to solve CSI(k, ε). Moreover, the number of distinct
interventions for the algorithm is O

(
(1/ε) log2 (1/ε)

)
.

Interestingly, as we will see in Theorem 1.3, the requirement
on m2 cannot be improved even when m1 = Θ(k2/3/ε4/3).
This shows that the above interventional complexity is opti-
mal.

Sublinear observational samples: m1 = O(k). In
this case, we show that the tradeoff between observa-
tional samples and interventional samples largely resembles
the tradeoff for asymmetric closeness testing (see Defini-
tion 3)(Acharya et al., 2014a; Bhattacharya and Valiant,
2015; Diakonikolas and Kane, 2016; Diakonikolas et al.,
2021).
Theorem 1.2. When m1 = Ω(k2/3/ε4/3), there exists
an algorithm that takes m1 observational samples and
m2 = O

(
max(k/(

√
m1ε

2
)
,
√
k/ε2)) interventional sam-

ples and solves CSI(k, ε). The number of distinct interven-
tions the algorithm makes is O

(
(1/ε) log2 (1/ε)

)
.

The algorithm we use relies on asymmetric closeness testing
between conditional distributions P [Y | x] (or P [X | y])
and interventional distributions P x[Y ] (or P y[X]). While
asymmetric closeness testing only deals with two distribu-
tions, the causal structure identification problem involves
k conditional distributions and interventional distributions,
which makes it trickier to handle. To resolve this, we use
Levin’s investment strategy(Levin, 1985; Goldreich, 2014)
to select a sequence of conditional and interventional distri-
butions to conduct closeness tests. See Section 1.4 for an
overview of the technique.

We also prove a lower bound showing that the result is tight
in the sublinear regime m1 = O(k).
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Theorem 1.3. For m1 = Ω(k2/3/ε4/3) and m1 = O(k),
any algorithm that takes m1 observational samples must
take m2 = Ω(max(k/(

√
m1ε

2),
√
k/ε2)) interventional

samples to solve CSI(k, ε).

Superlinear observational samples: m1 = Ω(k) and
m1 = O(k2/ε2). In this regime, we obtain a sample com-
plexity upper bound of O(

√
k/ε2), which doesn’t improve

as m1 increases. The result follows immediately from Theo-
rem 1.2 as the upper bound in Theorem 1.2 doesn’t improve
when m1 > k. As we will see when m1 is sufficiently large
Ω(k2/ε2), the interventional complexity can be further re-
duced. We leave improving the interventional complexity in
the superlinear regime or proving hardness results as future
work.

Sufficient observational samples: m1 = Ω̃(k2/ε2). In
this regime, we have enough observational samples to get
near-"perfect" estimates of P [Y ] and P [Y | x] for some x
with dTV (P [Y ], P [Y | x]) = Ω(ε). Hence the problem can
be solved using simple hypothesis testing between P x[Y ] =
P [Y | x] or P x[Y ] = P [Y ], for which O(1/ε2) samples
would be enough. The result is stated below.

Theorem 1.4. When m1 = Ω̃(k2/ε2), there exists an al-
gorithm that takes m1 observational samples and m2 =
O(1/ε2) interventional samples and solves CSI(k, ε).
Moreover, the algorithm only needs to make one distinct
intervention.

We also show that this simple hypothesis testing approach
is optimal with the following lower bound, showing that
increasing m1 beyond k2/ε2 does not help reducing the
intervention complexity up to logarithmic factors.

Theorem 1.5. Any algorithm that solves CSI(k, ε) requires
m2 = Ω(1/ε2) interventional samples.

1.3 Related Work

Causal discovery from observational and experimental data
has been subject to intense study, both from the potential out-
comes (Rubin, 1974; Rosenbaum and Rubin, 1983) and the
graphical model (Pearl, 2009) schools of causality. For the
particular case of two variables, there is also a newer line of
research (Peters et al., 2017) that constrain the mechanisms
underlying parent-child relationships in the causal model,
allowing the causal direction to be identifiable solely from
observations. A high-level account of different approaches
to learn the causal direction from observations can be found
in Guyon et al. (2019). The effect of sample size on causal
structure discovery has been empirically studied in several
contexts Mooij et al. (2016). Compton et al. (2022) ob-
tain finite-sample results for the two-variable system under
the assumption of causal sufficiency and an assumption on
the entropy of the exogenous variable. Wadhwa and Dong
(2021) study the sample complexity of causal discovery

with multiple nodes by applying finite-sample conditional
independence testers Canonne et al. (2018) to the inferred
causation algorithm Pearl and Verma (1991). Bello and Hon-
orio (2018) study the sample complexity of causal discovery
for discrete causal Bayesian networks but have a negative
dependence on a parameter quantifying the minimal causal
effect that can be arbitrarily small for our setting. With
access to interventions Eberhardt et al. (2010) and Yang
et al. (2018) experimentally demonstrated how the sample
complexity affects structure learning. Both these studies
compared perfect interventions (the notion used here) with
soft interventions; in the future, we hope to extend our the-
ory also to soft interventions.

Some of the techniques we use were developed in the con-
text of distribution property testing; see Canonne (2020b)
for an excellent survey. Specifically, we rely on existing
work for the asymmetric closeness testing problem, where
given sample access to two distributions p and q, the ques-
tion is for a given m1 number of samples from p, how
many samples m2 are required from q such that the hy-
pothesis p = q can be distinguished from dTV (p, q) > ε
with probability at least 2/3. The problem interpolates
between the case when p is known (identity testing) and
when p is not known (closeness testing). Sample com-
plexity bounds for asymmetric closeness testing were first
studied by Acharya et al. (2014b) who showed that it is
sufficient to have m2 = O

(
max

{
k log k
ε3
√
m1
,
√
k log k
ε2

})
sam-

ples from q, where k is the size of the support of p and
q. The relation between m1 and m2 was made tight by
the work of Bhattacharya and Valiant (2015); Diakoniko-
las et al. (2021), where they showed that it is sufficient to
have m2 = O

(
max

{
k√
m1ε2

,
√
k
ε2

})
, and that in fact, this

is optimal.

Our setting is also related to the problem of testing against
a collection of distributions Levi et al. (2013); Diakonikolas
and Kane (2016), where given sample access to a collection
of distributions p1, p2, . . . , ps, the goal is to test whether
they are identical or there doesn’t exist a distribution p such
that (1/s)

∑s
i=1 dTV (p, pi) 6 ε. Our algorithm for the

zero observation case (Theorem 1.1) can be viewed as a
modified version the algorithm proposed in Diakonikolas
and Kane (2016) in the query model in the setting where the
distribution mixture is not necessarily uniform.

1.4 Our technique

In this section, we give an overview of our algorithms and
the lower bound constructions. We will focus mostly on
the sublinear regime where m2 = O(k) as it exhibits the
main intuition on how sublinear interventional complexity
can be achieved. We briefly elaborate on the techniques em-
ployed in the zero(few) and sufficient observational samples
cases and refer the reader to the supplementary material for
details.
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1.4.1 Sublinear Observational Samples

Our algorithm. Consider the testing problem of whether
X −→ Y , which corresponds to Figure 1(a), or X 6−→ Y ,
which corresponds to Figure 1(b) and Figure 1(c). By sym-
metry, whether Y −→ X or Y 6−→ X can be distinguished
similarly. By definition, the testing problem reduces to
distinguishing the following two cases.

X −→ Y if and only if ∀x ∈ Σ, P x[Y ] = P [Y | X =
x].

X 6−→ Y if and only if ∀x ∈ Σ, P x[Y ] = P [Y ].

Observe that ρTV (X,Y ) = dTV (P [X,Y ], P [X]P [Y ]) >
ε implies

Ex∼P [X] [dTV (P [Y | X = x], P [Y ])] > ε. (1)

Hence there must exist x ∈ Σ such that
dTV (P [Y | X = x], P [Y ]) > ε. A naive algorithm
would be to intervene on all x ∈ Σ and use existing
techniques on asymmetric closeness testing to test whether
P x[Y ] = P [Y ] or dTV (P x[Y ], P [Y ]) > ε. Clearly, this
would result in a sample complexity at least linear in k.
We resolve this issue by using different methods in two
regimes: (1) m1 = O

(
k2/ε2

)
; (2) m1 = Ω

(
k2/ε2

)
.

When m1 = O
(
k2/ε2

)
, our algorithm takes advantage of

the fact that we can sample from P [X]. Consider a sim-
ple case where Ex∼P [X] [dTV (P x[Y ], P [Y ])] = Θ(ε) and
all x satisfy either dTV (P [Y | X = x], P [Y ]) = 0 (trivial
element) or dTV (P [Y | X = x], P [Y ]) = τ > ε (infor-
mative element). When we sample from P [X], we see an
informative element with probability Θ(ε/τ) and can use
Θ(max{k/τ2√m1,

√
k/τ2}) interventional samples from

P x[Y ] to test whether P x[Y ] = P [Y ] or not using existing
algorithms on closeness testing.

This shows that if τ is large, we see an informative element
less often and it takes less samples to test. While if τ is small,
we see an informative element more often but it also takes
more samples to test. However, without knowing τ , it is hard
to “invest" the right amount of samples to test P x[Y ] for
each x. In the general case, we resolve this by using Levin’s
investment strategy (Lemma 1) which shows that it is suffi-
cient to design a collection of τ ’s that form a geometric se-
quence and do as well as if τ is fixed and known . The upper
bound we obtain recovers the O(max{k/ε2√m1,

√
k/ε2})

rate similar to asymmetric closeness testing. See details in
Section 2.

Lower bound construction. Our construction for m1 =
O(k) uses the lower bound construction of Bhattacharya
and Valiant (2015) for asymmetric closeness testing as a
primitive. They showed that there exist distributions p and q
such that given access to O(m1) samples from p any asym-
metric closeness tester, requires Ω

(
min

{
k√
m1ε2

,
√
k
ε2

})

samples from q to distinguish p = q versus dTV (p, q). We
construct q−, a slight modification of q, such that a uniform
mixture of q and q− is p.

Using p, q, and q− we construct SCMs with marginal and
conditional distributions as follows. For simplicity, we take
X as a binary random variable while Y takes values from Σ.
The marginal probabilities P [X = 0] = P [X = 1] are 1/2.
The conditional distributions are P [Y | X = 0] = q and
P [Y | X = 1] = q−, thus obtaining P [X,Y ]. Note that the
marginal distribution P [Y ] is p by construction. Note that
there exists two SCMs, under Figure 1(a) and Figure 1(c)
that could generate P [X,Y ]. We show that it is impos-
sible to distinguish these two figures using the available
samples from P [Y | X = 0], P [Y | X = 1], PX=0[Y ]
and PX=1[Y ]. To do this, we extend the wishful thinking
theorem Valiant (2011) to distinguishing a collection of four
distributions and show that their fourth-order moments are
close. See Section 3 for details.

1.4.2 Zero(few) observational samples

Again consider testing X −→ Y versus X 6−→ Y . We use
a similar strategy as that of the sublinear observational sam-
ples algorithm with a modification. Instead of finding sym-
bols to intervene by sampling x from P [X] to test whether
P x[Y ] and P [Y ] are far, we show that ρTV (X,Y ) > ε
implies that it is sufficient to test if two distinct interven-
tional distributions P x1

[Y ] and P x2
[Y ] are far apart where

(x1, x2) are sampled i.i.d. from P [X]. This holds since if
ρTV (X,Y ) > ε,

Ex1,x2∼P [X] [dTV (P [Y | X = x1], P [Y | X = x2])] > ε.

While we do not have access to the observational marginal
P [X], if X −→ Y , we can instead simulate P [X] by sam-
pling from P y[X] for an arbitrary y. Note that if X 6−→ Y ,
then the interventional distributions P x1

[Y ] and P x2
[Y ] are

identical.

1.4.3 Sufficient observational samples

We show that a single intervention is sufficient when we
observe Ω̃(k2/ε2) observational samples. The crux of the
algorithm in this regime is to identify the symbol to inter-
vene upon. Assume that we want to test if X −→ Y or
X 6−→ Y . By a similar reasoning as Section 1.4.1, we want
to find a x ∈ Σ such that dTV (P [Y | X = x], P [Y ]) > ε.

A folklore result states that for a discrete distribution of
domain size k, the optimal sample complexity of estimating
the distribution up to total variation distance ε is θ

(
k
ε2

)
Canonne (2020a). Therefore, given Ω̃(k2/ε2) samples from
the joint distribution P [X,Y ], empirical estimates of the
marginals are O(ε)-close in total variation distance. How-
ever, not all conditional distributions are guaranteed to be
ε-close since it is possible that if P [X] is small enough,
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the number of samples to empirically estimate P [Y | X]
might not be sufficient. We claim that there exists a symbol
x∗ ∈ Σ such that with a high probability there are sufficient
samples to obtain ε-close estimates of P [Y | X = x∗] and
P [Y ] and ensure dTV

(
P̂ [Y | X = x∗], P̂ [Y ]

)
> ε which

in turn implies dTV (P [Y | X = x∗], P [Y ]) > ε. There-
fore, a simple hypothesis test with O

(
1/ε2

)
samples from

P x∗ [Y ] suffices.

2 Sublinear Observational Samples:
Algorithm

Here we discuss trade-offs between m1 and m2 when m1 is
sublinear in k. We show Theorem 1.2 in this section, where
we present an almost optimal algorithm that solves CSI(k, ε)

for m1 = Ω
(
k2/3/ε4/3

)
. For m1 = O

(
k2/3/ε4/3

)
, a

modification of this algorithm combined with further analy-
sis results in Theorem 1.1, which is included in supplemen-
tary material.

The following lemma is critical to our analysis.

Lemma 1. Levin (1985); Goldreich (2014) Let D be a
probability distribution, q : supp(D) 7→ [0, 1], and ε ∈
(0, 1]. Suppose that E[q(s)] > ε, and let ` = dlog2(2/ε)e.
Then, there exists j ∈ [`] such that Prs∼D[q(s) > 2−j ] >
2jε/(`+ 5− j)2.

Our algorithm uses the asymmetric closeness tester in Di-
akonikolas et al. (2021) as a primitive.

Definition 3 (Closeness Testing). Given sample access to
unknown discrete distributions p and q over domain [k], a
closeness tester CT (m1,m2, ε, δ) draws m1 samples from
p, m2 samples from q and outputs "YES" if p = q and
"NO" if dTV (p, q) > ε with probability atleast 1− δ where
ε, δ > 0.

Lemma 2 (Theorem 1.5 in Diakonikolas et al. (2021)). For
discrete distributions p and q over [k], there exists a compu-
tationally efficient closeness tester CT (m1,m2, ε, δ) where

m1 > k2/3 log(1/δ)1/3

ε4/3
and

m2 = O

(
k
√

log(1/δ)
√
m1ε2

+

√
k log(1/δ)

ε2
+

log(1/δ)

ε2

)
.

Theorem 1.2. When m1 = Ω(k2/3/ε4/3), there exists
an algorithm that takes m1 observational samples and
m2 = O

(
max(k/(

√
m1ε

2
)
,
√
k/ε2)) interventional sam-

ples and solves CSI(k, ε). The number of distinct interven-
tions the algorithm makes is O

(
(1/ε) log2 (1/ε)

)
.

Proof. We analyze Algorithm 1 in two parts to prove the
theorem. In the first part, we test whether X −→ Y or
X 6−→ Y . If this test doesn’t return X −→ Y , we move
to the second part and use essentially the same steps to test

Algorithm 1:
Input :ε > 0, sample access to

P [X,Y ], P x[Y ], P y[X].
Output :Return the underlying graph in

{X → Y, Y → X,X ← U → Y }.
Let ` = log

(
2
ε

)
, `j = (`+ 5− j) , δj =

2`−j

20`4j
, sj = 2jε

`2j
;

Let nj1 = m1 · 24(j−`)/3, nj2 = k

2−2j
√
nj
1

;

for j ∈ [`] do

for i ∈
[

20

sj

]
do

Sample xi ∼ P [X];
For distributions P [Y ], P xi [Y ], if
CT
(
nj1, n

j
2

√
log(1/δj), 2

−j , δj

)
= “NO"

then return X −→ Y
end

end
for j ∈ [`] do

for i ∈
[

20

sj

]
do

Sample yi ∼ P [Y ].;
For distributions P [X], P yi [X], if

CT
(
nj1, n

j
2

√
log(1/δj), 2

−j , δj

)
= “NO"

then return X ←− Y
end

end
return X ←− U −→ Y .

whether Y −→ X or Y 6−→ X . Finally, if this test doesn’t
return Y −→ X , we return X ←− U −→ Y .

Test whether X −→ Y or X 6−→ Y .

1. If X −→ Y , then P x[Y ] = P [Y | x] and P y[X] =
P [X].

2. If X 6−→ Y , then P x[Y ] = P [Y ].

Define q(x) := dTV (P [Y | x], P [Y ]) for x ∈ [k]. Then,
Ex∼P [X][q(x)] = ρTV(X,Y ) > ε.

We apply Levin’s investment strategy (Lemma 1), for the
above choice of q. Let `j := (`+ 5− j)2 and sj :=(
2jε
)
/ (`j)

2. Lemma 1 guarantees the existence of j∗ ∈ [`]
such that:

Pr
x∼P [X]

(dTV (P [Y | x], P [Y ]) > 2−j
∗
) > sj∗ .

Therefore, in 20/sj∗ samples from P [X], by Chernoff
bound, with probability at least 1 − e−10, there exists a
sample xi that satisfies dTV (P [Y | x], P [Y ]) > 2−j

∗
.

If X −→ Y , there exists j∗ ∈ [`] and a sample xi that
satisfies dTV (P xi [Y ], P [Y ]) > 2−j

∗
with probability 1−

e−10. In contrast, if X 6−→ Y , P x[Y ] = P [Y ] for every x.
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Consider the following test: for every j ∈ [`], Algorithm 1
samples xi, 20/sj times from P [X] to distinguish

P xi
[Y ] = P [Y ] and dTV (P xi

[Y ], P [Y ]) > 2−j .

For nj1 = Ω
(
k2/3/2−4j/3

)
and nj2 = O(k/

√
nj12−2j),

each closeness test requires nj1 samples from P [Y ] and
nj2
√

log(1/δj) samples from P x[Y ] to succeed with prob-
ability 1 − δj . If any of the tests output “NO”, then the
algorithm returns X −→ Y .

Test whether Y −→ X or Y 6−→ X . If all tests return
“YES” then with a high probability, X 6−→ Y and the al-
gorithm proceeds to distinguish Y −→ X and Y 6−→ X
using the same steps as before. Similar to the previous part,
each individual test requires nj1 samples from P [X] and
nj2
√

log(1/δj) samples from P y[X] to succeed with prob-
ability 1 − δj . The algorithm returns Y −→ X if one of
the tests outputs “NO”. If all tests return “YES”, then the
algorithm returns X ←− U −→ Y .

Indeed, if X ←− U −→ Y , P x[Y ] = P [Y ] and P y[X] =
P [X], and hence all of the previous closeness tests are
“YES" instances.

Sample complexity. The number of samples we take
from P [Y ] or P [X] is

∑
j∈`

20`2j
2jε

m124(j−`)/3 6 2m1

∑
j∈[`]

`2j
2j−`

2(j−`)/3

= 2m1

∑
j∈[`]

`2j2
j−`
3 = O(m1).

Similarly, the total number of interventional samples taken
by the algorithm in the first stage is

∑
j∈`

20`2j
2jε

k

2−2j

√
nj1

√
log(1/δj)

6
2k

√
m1ε2

·
∑
j∈[`]

`2j2
4(j−`)

3 log
20`4j
2j−`

6
2k

√
m1ε2

·
∑
j′∈[`]

(j′ + 5)22−
4j′
3 log(20(j′ + 5)42j

′
)

= O

(
k

√
m1ε2

)
.

Error analysis. Now we analyze the error probabil-
ity. The total number of tests performed is at most
O
(∑`

j=1 (20/sj)
)

. Hence by union bound the probability
of failure of these tests is at most

O

∑̀
j=1

20δj
sj

 =
1

100
·
∑̀
j=1

O

(
1

(`+ 5− j)2

)
< 1/300.

When X −→ Y , the probability of the algorithm failing to
find a sample x satisfying dTV (P x[Y ], P [Y ]) > 2−j is at
most 1/300. The analysis is the same for graph X ←− Y .
Hence the algorithm returns the correct graph with error
probability at most 1/150.

Number of interventions. The number of interventions
taken by the algorithm is upper bounded by the number of
xi’s and yi’s drawn, which is:∑
j∈`

20`2j
2jε

6
40

ε
·
∑
j∈[`]

`2j2
−j = O

(
`2

ε

)
= O

(
log(1/ε)2

ε

)
.

3 Sublinear Observational Samples:
Hardness

We now prove Theorem 1.3, which establishes an almost
optimal lower bound on the tradeoff between m1 and m2

when m1 is O (k), through a reduction to canonical results
on property testing. We construct causal models under dif-
ferent structures (see Figure 1) with the same observational
distribution. We base our construction on the hard instance
for asymmetric closeness testing in Bhattacharya and Valiant
(2015).

For testing causal models, extra care is needed to prove
hardness since the adversary has sample access to multi-
ple interventional distributions. To handle this, we extend
Valiant (2008, 2011)’s wishful thinking theorem (see The-
orem 4.6.9 in Valiant (2008)) which distinguishes two dis-
tribution pairs to the case of distinguishing two distribution
quadruplets. While the extension is immediate, we remark
that the constants become much larger for the quadruplet
case. For completeness, we state the extension below and
defer the proofs to the supplementary material.

3.1 Wishful thinking for quadruplets

For the rest of this section we denote the sequence
x1, x2, x3, x4 by x1:4.
Definition 4. For integers n1:4 > 0, the (n1:4)-based mo-
ment m (a1:4) of the distribution quadruplet (p1:4) is de-
fined as

m(a1:4) :=

(
4∏
i=1

naii

)
k∑
i=1

pa11 (i) pa22 (i) pa33 (i) pa44 (i) .

Proposition 1. Given integers n1:4 > 0, and two distri-
bution quadruplets

(
p+

1:4

)
and

(
p−1:4

)
, where p+

i , p
−
i have

frequencies at most 1
cni

, for constant c > 0. If m+ and m−

are the (n1:4)-based moments of
(
p−1:4

)
and

(
p−1:4

)
respec-

tively that satisfy∑
a1+a2+a3+a4>0

|m+ (a1:4)−m− (a1:4)|√
1 + max {m+ (a1:4) ,m− (a1:4)}

<
1

c′
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for some constant c′ > 0, then
(
p−1:4

)
cannot be distin-

guished from
(
p−1:4

)
with probability greater than 0.5 using

a tester that takes Poi(ni) samples from
(
p+
i , p

−
i

)
for each

i ∈ [4].

3.2 Lower Bound

Theorem 1.3. For m1 = Ω(k2/3/ε4/3) and m1 = O(k),
any algorithm that takes m1 observational samples must
take m2 = Ω(max(k/(

√
m1ε

2),
√
k/ε2)) interventional

samples to solve CSI(k, ε).

Proof Sketch. We present a proof sketch and defer the de-
tails to the supplementary material.

Some definitions. Let π be a permutation of [k] chosen
uniformly at random. Let A = {π(1), π(2), . . . , π(a)} and
B = {π(a+1), π(a+2), . . . , π(a+ b)} be disjoint subsets
of [k] of size a = (3/4)m1 and b = k/C, where C is a
constant. For S ⊆ [k], let 1S be the indicator function of
set S. For permutation π, define distributions p, q and q−

over [k] as following:

p(i) := (1/m1)1A + (1/4)(1/b)1B ∀i ∈ [k].

q(i) :=

{
(1/m1)1A + (1/4)(1/b)(1 + 4ε)1B ∀i even
(1/m1)1A + (1/4)(1/b)(1− 4ε)1B ∀i odd.

q−(i) :=

{
(1/m1)1A + (1/4)(1/b)(1− 4ε)1B ∀i even
(1/m1)1A + (1/4)(1/b)(1 + 4ε)1B ∀i odd.

Construction. Consider an SCM on variables X and Y
over support {0, 1} and [k] resp. with

1. X ∼ Bernoulli (0.5)

2. P [Y | X = 0] = q and P [Y | X = 1] = q−.

Note that ρTV(X,Y ) = ε because each pair of the three
distributions p, q, q− has TV distance ε and the marginal
distribution P [Y ] is p.

Analysis. Let n1 = n2 = cm1, n3 = n4 = ckε−2/
√
m1

for a sufficiently small c. Let
(
p+

1:4

)
:= (q, q−, p, p) and(

p−1:4

)
:= (q, q−, q, q−). Suppose, for contradiction, there

exists an algorithm A that solves CSI(k, ε) that uses n1 ob-
servational samples and n3 interventional samples. A single
sample from each of the two conditionals simulates one sam-
ple of P [X,Y ]. Hence, we consider quadruplets of the form
(P [Y | X = 0], P [Y | X = 1], PX=0[Y ], PX=1[Y ]). It is
sufficient to show that

(
p+

1:4

)
cannot be distinguished from(

p−1:4

)
with probability greater than 0.5 by any tester that

takes Poi(ni) samples from
(
p+
i , p

−
i

)
. We show this in

the supplementary material by bounding the difference in
moments∑

a1+a2+a3+a4>0

|m+ (a1:4)−m− (a1:4)|√
1 + max {m+ (a1:4) ,m− (a1:4)}

for the choices of n1, n2, n3, n4, which by Proposition 1
prove the theorem.

4 Discussion

We view our work as the first to provide finite sample com-
plexity guarantees for the simplest causal structure identi-
fication problem, namely categorical two-variable systems.
We parameterize the system using a quantitative notion of
correlation between the two variables and quantify the trade-
off between observational and interventional data. Our sam-
ple complexity bounds on interventional samples, m2, as
a function of observation samples, m1, exhibit interesting
phase transitions and are tight when m1, as a function of
the domain size k, is either sublinear O(k) or sufficient
Ω̃
(
k2/ε2

)
. In addition the number of interventional sam-

ples is always sublinear in k.

There are several directions for future work. The most
immediate is improving upon the sample complexity of the
superlinear regime and proving hardness results for the same.
While the simplest property testing algorithms have only
recently been studied for synthetic data Gupta and Price
(2022), validating our proposed algorithms on real-world
data is an important next step.
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A Zero(few) Observational Samples

Here we look at the case when the number of observational samples m1 is small. The algorithmic strategy is similar
to the one discussed in Section 2 for sublinear observations. For Algorithm 1 because we had access to a large number
of observational samples, we were able to estimate the marginals P [X] and P [Y ] and test if the marginals are far from
interventions. Since m1 is small here, we may not have access to the marginals. The idea here is to check if there exists
interventions that are far apart, which is aided by the following lemma.

Lemma 3. Let X and Y be two random variables with joint distribution P [X,Y ] such that ρTV(X,Y ) > ε. Then,

E(x1,x2)∼(P [X],P [X])[dTV (P [Y | x1], P [Y | x2])] > ε,

E(y1,y2)∼(P [Y ],P [Y ])[dTV (P [X | y1], P [X | y2])] > ε.

Proof.

E(x1,x2)∼(P [X],P [X]) [dTV (P [Y | x1], P [Y | x2])]

> Ex1∼P [X]

[
dTV

(
P [Y | x1],Ex2∼P [X][P [Y | x2]]

)]
(By Jensen’s inequality)

= Ex1∼P [X]

[
dTV

(
P [Y | x1],

∑
x2

P [x2]P [Y | x2]

)]
= Ex1 [dTV (P [Y | x1], P [Y ])]

= ρTV(X,Y )

> ε.

Similarly, E(y1,y2)∼(P [Y ],P [Y ])[dTV (P [X | y1], P [X | y2])] > ε.

Algorithm 2:
Input :ε > 0, sample access to P [X,Y ], P x[Y ], P y[X].
Output :Return the underlying graph in {X −→ Y, Y −→ X,X ←− U −→ Y }.

Let ` = log
(

2
ε

)
, δj = 2`−j

20(`+5−j)4 , s(j) =
20(`+ 5− j)2

ε2j
;

Let nj =
(

k2/3

2−(4j/3) + k1/2

2−(2j)

)√
log
(

1
δj

)
;

for j ∈ [`] do

for i ∈ [s(j)] do

For an arbitrary y, sample (x1, x2) ∼ (P y[X], P y[X]) ;
For distributions P x1

[Y ], P x2
[Y ], if CT

(
nj , nj , 2

−j , δj
)

= “NO" ;
then return X → Y ;

end
end
for j ∈ [`] do

for i ∈ [s(j)] do
For an arbitrary x, sample (y1, y2) ∼ (P x[Y ], P x[Y ]) for arbitrary x
For distributions P y1 [X], P y2 [X], if CT

(
nj , nj , 2

−j , δj
)

= “NO" ;
then return Y → X;

end
end
return X ← U → Y .

We now use this result prove that CSI(k, ε) can be solved using O
(
k2/3/ε4/3

)
samples from interventions even with zero

samples from observations.
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Theorem 1.1. There exists an algorithm that uses zero observational samples and m2 = O
(

max(k2/3/ε4/3,
√
k/ε2)

)
samples from interventions to solve CSI(k, ε). Moreover, the number of distinct interventions for the algorithm is
O
(
(1/ε) log2 (1/ε)

)
.

Similar to Algorithm 1, we analyze Algorithm 3 in two parts. In the first part, the algorithm tests whether X −→ Y or
X 6−→ Y . If this test doesn’t return X −→ Y , the second part tests between Y −→ X or Y 6−→ X . If this test doesn’t
return Y −→ X , then X ←− U −→ Y is returned.

Proof. For x1 ∈ [k] and x2 ∈ [k], define

q(x1, x2) := dTV (P [Y | x1], P [Y | x2]) .

Because ρTV(X,Y ) > ε, by Lemma 3, we get,

E(x1,x2)∼(P [X],P [X]) [q(x1, x2)] > ε.

We apply Levin’s investment strategy (Lemma 1), for the above choice of q. Therefore, there exists j∗ ∈ [`] such that:

Pr
(x1,x2)∼(P [X],P [X])

(
dTV (P [Y | x1], P [Y | x2]) > 2−j

∗
)
> s(j∗)

where s(j) := (2jε)/(`+ 5− j)2, for all j ∈ [`]. For such j∗, if we sample (x1, x2) from (P [X], P [X]), 20/s(j∗) times,
by Chernoff bound, with probability at least 1− e−10, there exists (x1, x2) in the samples satisfying,

dTV (P [Y | x1], P [Y | x2]) > 2−j
∗
. (2)

Part I. The first half of the algorithm considers testing whether X −→ Y or X 6−→ Y .

1. H0: X 6−→ Y , which implies P x[Y ] = P [Y ], for all x;

2. H1: X −→ Y , which implies P x[Y ] = P [Y | x] and P y[X] = P [X], for all x, y.

Consider the following test. For every j ∈ [`], the algorithm repeatedly samples (x1, x2), 20/s(j) times, from
(P y[X], P y[X]) for an arbitrary y ∈ [k], and tests whether

dTV (P x1
[Y ], P x2

[Y ]) = 0 versus dTV (P x1
[Y ], P x2

[Y ]) > 2−j .

It is shown in Diakonikolas et al. (2021) (see Lemma 2 and set m1 = m2) that the total number of (interventional) samples
to test whether dTV (P x1

[Y ], P x2
[Y ]) is zero versus greater than 2−j , with probability 1− δj , is

nj := O
(
k(2/3)24j/3 log(1/3)(1/δj) +

(
k1/2 log1/2(1/δ) + log(1/δ)

)
22j
)
.

ForH0, P y[X] is P [X] and P xi
[Y ] = P [Y | xi] for both i ∈ {1, 2}. Hence, with probability 1−e−10, there exists j∗ ∈ [`]

and a sample (x1, x2) that satisfies

dTV (P x1
[Y ], P x2

[Y ]) = dTV (P [Y | x1], P [Y | x2]) > 2−j
∗
.

ForH1, P xi [Y ] = P [Y ]. Hence, for any (x1, x2),

dTV (P x1
[Y ], P [x2 | Y ]) = dTV (P [Y ], P [Y ]) = 0.

IfH0, then the algorithm outputs X causes Y . Otherwise, the algorithm proceeds to Part II.

Part II If the algorithm does not output X −→ Y in Part I, then the underlying causal graph is either X ←− Y or
X ←− U −→ Y . The algorithm performs local tests similar to Part I to test whether Y −→ X or Y 6−→ X , to return the
correct graph.
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Number of interventions. The number of interventions performed by the algorithm corresponds to the number of samples
(x1, x2) drawn from P x[Y ], P y[X] is at most

∑
j∈`

20

s(j)
= 20

∑
j∈`

(`+ 5− j)2

2jε

=
20

ε

∑
j∈`

(`+ 5− j)22−j

' O
(

log2 ε

ε

)
.

Sample Analysis We now analyze the total number of interventional samples. Let t (j) = (`+ 5− j). The total number
of samples taken from interventions to perform the closeness tests in each part is:

∑
j∈`

20 · t (j)
2

2jε

k2/3

2−4j/3

√
log(1/δj) +

∑
j∈`

20 · t (j)
2

2jε

k1/2

2−2j

√
log(1/δj)

=
∑
j∈`

20t (j)
2

2jε

k2/3

2−4j/3

√
log

20 (`+ 5− j)4

2j−`
+
∑
j∈`

20 · t (j)
2

2jε

k1/2

2−2j

√
log

20 (`+ 5− j)4

2j−`

6
20k2/3

ε

∑
j∈`

t (j)
2

2−j/3

√
log

20 (`+ 5− j)4

2j−`
+ 6

20k1/2

ε

∑
j∈`

t (j)
2

2−j

√
log

20 (`+ 5− j)4

2j−`

6
20k2/3

ε

∑
j′∈`

(j′ + 5)2

2(j′−`)/3

√
log

20 (j′ + 5)
4

2−j′
+

20k1/2

ε

∑
j′∈`

(j′ + 5)2

2(j′−`)

√
log

20 (j′ + 5)
4

2−j′

6
20k2/32(`/3)

ε

∑
j′∈`

(j′ + 5)2

2(j′)/3

√
log

20 (j′ + 5)
4

2−j′
+

20k1/22`

ε

∑
j′∈`

(j′ + 5)2

2(j′)

√
log

20 (j′ + 5)
4

2−j′

6
20k2/3

ε4/3

∑
j′∈`

(j′ + 5)2

2(j′)/3

√
log

20 (j′ + 5)
4

2−j′
+

20k1/2

ε2

∑
j′∈`

(j′ + 5)2

2(j′)

√
log

20 (j′ + 5)
4

2−j′

= O

(
k2/3

ε4/3
+
k1/2

ε2

)

which implies m2 is O
(
k2/3

ε4/3
+ k1/2

ε2

)
.

Error Analysis. The total number of tests performed at Part I is at most O
(∑`

j=1 sj

)
where s(j) = 20(`+ 5− j)2/2jε.

Hence, by union bound, the probability of failure of these tests is at most

O

∑̀
j=1

sj
1

δj

 =
1

100
·
∑̀
j=1

O

(
1

(`+ 5− j)2

)
< 1/300.

Similarly, for Part II, the error probability of the algorithm is at most 1/300. Hence the algorithm returns the correct graph
with error probability at most 1/150.

B Super-quadratic Observations

Here we analyze the tradeof between m1 and m2 when m1 is Ω̃
(
k2/ε2

)
. We show that O(1/ε2) interventional samples are

sufficient and necessary to solve CSI(k, ε).
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Algorithm 3:
Input :ε > 0, sample access to P [X,Y ], P x[Y ], P y[X].
Output :Return the underlying graph in {X −→ Y , Y −→ X,X ←− U −→ Y }.

Let m1 > 20 log k · k
2

ε2 and S be m1 samples drawn from P [X,Y ];
Let Sx ← {(x∗, y∗) ∈ S : x∗ = x} and Sy ← {(x∗, y∗) ∈ S : y∗ = y};
Let P̂ [X] and P̂ [Y ] be the empirical distributions of P [X] and P [Y ] from S;
for j ∈ [k] : |Sxj

| is Ω̃
(
k/ε2

)
do

if T T
(
P̂ [Y ], P [Y | xj ], 8ε/10, 9ε/10, Sxj

, 1/(10k)
)

is ‘NO’ then
Let P̂ [Y | xj ] be the empirical distribution of P [Y | xj ] from Sxj

;
Find T such that |P̂ [Y ∈ T ]−|P̂ [Y ∈ T | xj ] > 6ε/10;
R← empirical distribution of O

(
1/ε2

)
samples from P xj

[Y ] with accuracy ε/100;
if |R[Y ∈ T ]− P̂ [Y ∈ T | xj ]| 6 3ε/10 then

return X −→ Y
end

end
end
for j ∈ [k] : |Syj | is Ω̃

(
k/ε2

)
do

if T T
(
P̂ [X], P [X | yj ], 8ε/10, 9ε/10, Syj , 1/(10k)

)
is ‘NO’ then

Let P̂ [X | yj ] be the empirical distribution of P [X | yj ] from Syj ;

Find T such that |P̂ [X ∈ T ]−|P̂ [X ∈ T | yj ] > 6ε/10;
R← empirical distribution of O

(
1/ε2

)
samples from P yj [X] with accuracy ε/100;

if |R[X ∈ T ]− P̂ [X ∈ T | yj ]| 6 3ε/10 then
return Y −→ X

end
end

end
return X ←− U −→ Y .

B.1 Algorithm

Proof. Let S be a set of m1 samples independently drawn from P [X,Y ]. For x ∈ Σ, let Sx := {(x∗, y∗) ∈ S : x∗ = x}
and τx := dTV (P [Y ], P [Y | x]). First we prove a claim that assures the existence of x ∈ Σ such that we get sufficient
samples on X = x and also τx is small.

Claim 1. With probability at least 2/3, there exists x ∈ [k] such that:

1. τx is at least ε/10;

2. |Sx| is Ω
(
m1 · ε

2

kτ2
x

)
. For m1 = Ω̃(k2/ε2), |Sx| is Ω̃

(
k
τ2
x

)
.

Proof. By Cauchy-Schwarz inequality,

∑
x

P (x)τ2
x =

(∑
x

P (x)

)
·

(∑
x

P (x)τ2
x

)
>

(∑
x

P (x) · τx

)2

> ε2. (3)

Also,

2
∑
x

P (x) · τ2
x · 1{τx6ε/10} 6

ε2

100
. (4)
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Combining Equations (3) and (4), ∑
x

P (x) (τx)
2 1{τx>ε/10} > 99ε2/100.

Hence, there exists x ∈ [k] that satisfies (i) τx > ε
10 and

(ii)P (x) · τ2
x >

99ε2

100k
=⇒ P (x) >

99ε2

100k · τx2
.

Applying Chernoff bound,

Pr

[
|Sx| 6 (1 + C)m1

99ε2

100k · τ2

]
6 Pr

[
|Sx| 6 (1 + C) · k log k

ε2
· 99ε2

100k · τ2

]
6 exp

(
−99(C)2 log k

2 · 100τ2
x

)
6

1

10k
. (For any C > 5.)

This proves the claim.

Let P̂ [Y ] be the empirical distribution of P [Y ] and P̂ [Y | x] be the empirical conditional distribution P [Y | X], using
sample sets S and Sx both estimated upto accuracy up to ε/100 with error probability 1/10.

When τx′ > ε/10, by triangle inequality,

dTV

(
P̂ [Y ], P [Y | x′]

)
> dTV (P [Y ], P [Y | x′])− dTV

(
P̂ [Y ], P [Y ]

)
> ε/10− ε/100 > 9ε/100.

Claim 1 indicates the existence of x′ ∈ Σ such that:

1. τx′ = dTV (P [Y ], P [Y | x′]) > ε/10; This implies dTV

(
P̂ [Y ], P [Y | x′]

)
> 9ε/100.

2. Sx′ is Ω̃
(
k/τx′

2
)
.

Hence we can find one such xi′ that satisfies the two conditions by filtering all x ∈ Σ with large |Sx| = Ω̃
(
k/ε2

)
. The

tolerant test T T
(
P̂ [Y ], P [Y | xj ], 8ε/10, 9ε/10, Sx, 1/(10k)

)
uses Sx and outputs

1. YES, if dTV

(
P̂ [Y ], P [Y | x]

)
6 8ε/100

2. NO, if dTV

(
P̂ [Y ], P [Y | x]

)
> 9ε/100

with probability 1− 1/(10k)1:

If dTV

(
P̂ [Y ], P [Y | x]

)
> 9

100ε , then take x′ = x.

We now have the following:

dTV

(
P̂ [Y ], P [Y | X]

)
> 9ε/10 (5)

dTV

(
P̂ [Y ], P [Y ]

)
6 ε/100 (6)

dTV

(
P̂ [Y | x], P [Y | x]

)
6 ε/100. (7)

1See (Valiant and Valiant, 2011, Theorem 3 and 4) for a constant probability version and the small error probability can be obtained
using the boosting trick.
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Combining Equations 5 and 6 and applying triangle inequality,

dTV (P [Y ], P [Y | X]) > 8ε/100. (8)

Also, by triangle inequality:

dTV

(
P̂ [Y ], P̂ [Y | x]

)
> dTV (P [Y ], P [Y | X])− dTV

(
P̂ [Y ], P [Y ]

)
− dTV

(
P̂ [Y | x], P [Y | x]

)
> 6ε/100. (9)

This implies, we can compute T ⊆ Σ such that

|P̂ [Y ∈ T ]− P̂ [Y ∈ T | x]| > 6ε/100

and T satisfies:

|P [Y ∈ T ]− P [Y ∈ T | x]| > |P̂ [Y ∈ T ]− P̂ [Y ∈ T | x]| − |P̂ [Y ∈ T ]− P [Y ∈ T ]|

− |P̂ [Y ∈ T | x]− P [Y ∈ T | x]|
> 6ε/100− ε/100− ε/100 = 4ε/100

We also have the following:

1. If X → Y , P xi′ [Y ] = P [Y | xi′ ].

2. If X 6−→ Y , P si′ [Y ] = P [Y ].

Thus we can estimate P xi′ [Y ] to test between P [Y ∈ T ] and P [Y ∈ T | x] on T usingO
(
1/ε2

)
samples (simple hypothesis

testing).

There are at most k tolerant tests performed by the algorithm and the error probability of each of those tests is at most
1/10k. The error probability of computing both empirical distributions P̂ [Y ] and P̂ [Y | x] is 1/10. Therefore, the total
error probability is at most 3/10.

Hardness. Next we show that even with infinite samples from observations, it requires at least Ω
(
1/ε2

)
samples from

interventions to solve CSI(k, ε).

Let P denote the set of all distributions P : [k]→ [0, 1] of the form

P (2i− 1) =
1− 3 · ziε

k

P (2i) =
1 + 3 · ziε

k

for all i ∈ [k/2], where zi is either −1 or +1. Let q0 be uniformly chosen at random from P . Let q1 be the distribution
obtained from q0 by swapping the probabilities of odd and even coordinates (i.e., q1(2i) = q0(2i− 1) and q1(2i− 1) =
q0(2i)).

Let the marginal distribution P [X] be P [X = 0] = P [X = 1] = 1/2 and the conditional distributions be P [Y | X = i] =
qi. Here E [dTV (unif(k), qi)] > ε. Also the marginal P [Y ] is unif[k] because (1/2) q0 + (1/2) q1 = unif[k].

Note that it is possible to generate this joint distribution P [X,Y ] = P [X]P [Y | X] over SCMs defined on Figure 1(b)
or Figure 1(c). In the former case PX=i[Y ] = P [Y | X = i] is qi, while in the later case PX=i[Y ] is P [Y ] which is the
uniform distribution unif[k]. Hence we would like to distinguish the following problem: Given three distributions q0 and q1

and unif([k]), distinguish

1. H0: When X → Y then PX=i[Y ] = qi.

2. H1: When X ← U → Y , PX=i[Y ] = unif([k]).
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by taking samples from PX=i[Y ]. LetA be an algorithm that distinguishes the above cases using the joint distribution and n
samples from interventions. Observe that samples from PX=0[Y ] can be simulated from PX=1[Y ] by swapping the samples
from the adjacent even and odd coordinates. Hence we can assume without loss of generality that A takes samples from
exactly one of the interventions PX=i[Y ]. This is equivalent to distinguishing unif[k] versus q0, which requires Ω

(
1/ε2

)
samples by standard lower bounds for hypothesis testing since the H2(unif[k], q0) = Θ(ε2), where H2(·, ·) denotes the
squared Hellinger distance.2.

C Proof of Theorem 1.3

We complete the proof of Theorem 1.3 by bounding the difference in moments m+ and m−.

For all r, s, t, u > 0, m+ (r, s, t, u) is

= nr1n
s
2n
t
3n
u
4

((
3

4

)(
1

m1

)r+s+t+u−1

+ h(ε, r, s)

(
1

4

)r+s+t+u(
C

k

)r+s+t+u−1
)

and similarly, m− (r, s, t, u) is

= nr1n
s
2n
t
3n
u
4

((
3

4

)
(1/m1)

r+s+t+u−1
+ h′(ε, r, s, t, u)

(
1

4

)r+s+t+u(
C

k

)r+s+t+u−1
)

where

h(ε, r, s) =
(1 + ε)

r
(1− ε)s + (1− ε)r (1 + ε)

s

2
and

h′(ε, r, s, t, u) =
(1 + ε)

r+t
(1− ε)s+u + (1− ε)r+t (1 + ε)

s+u

2
.

Then,

|m+ (n1, n2, n3)−m− (n1, n2, n3)|√
1 + max {m+ (n1, n2, n3) ,m− (n1, n2, n3)}

6
nr1n

s
2n
t
3n
u
4 (1/4)

r+s+t+u
(C/k)

r+s+t+u−1
(h′(ε, r, s, t, u)− h(ε, s, t))√

nr1n
s
2n
t
3n
u
4

(
(3/4) (1/m1)

r+s+t+u−1
+ (1/4)

r+s+t+u
(C/k)

r+s+t+u−1
)

6
nr1n

s
2n
t
3n
u
4 (1/4)

r+s+t+u
(C ′/k)

r+s+t+u−1√
nr1n

s
2n
t
3n
u
4

(
(3/4) (1/m1)

r+s+t+u−1
+ (1/4)

r+s+t+u
(C/k)

r+s+t+u−1
) for C ′ > C

6
nr1n

s
2n
t
3n
u
4 (1/4)

r+s+t+u
(C/k)

r+s+t+u−1√
nr1n

s
2n
t
3n
u
4

(
(3/4) (1/m1)

r+s+t+u−1
) (because m1 < k)

6 n
r/2
1 n

s/2
2 n

t/2
3 n

u/2
4 m1

(r+s+t+u−1)/2 (C/k)
r+s+t+u−1

6 c(r+s+t+u)/2 · m1
(r+s)/2

m1
(t+u)/4

· m1
(r+s+t+u−1)/2

(ε2)t/2+u/2
· C

r+s+t+u−1

kr+s+t+u−1 · k
(t+u)/2 (using n1, n2, n3, n4)

6 ĉ(r+s+t+u)/2m1
r+s

kr+s
·
(√

n1

ε2k

)t/2+u/2+1

(for small ĉ)

6 ĉ(r+s+t+u)/2m1
r+s

kr+s
·
(√

n1√
k

)t/2+u/2+1

(substituting ε2 > k−1/2)

6 ĉ(r+s+t+u)/2

which is small when ĉ is small.
2Mostly a folklore. See Bar-Yossef (2002) for a proof.



Sample Complexity of Distinguishing Cause from Effect

D Wishful thinking for quadruplets

For the sake of completeness, we state intermediate lemmas, that are immediate extensions of the results in Valiant (2008),
for the case of distinguishing quadruplets of distributions.

Poissonization. For a symmetric property of the distributions, it suffices to analyze the distribution of fingerprint of samples
from the quadruplets. We first consider a (n1, n2, n3, n4)-Poissonized tester that correctly classifies a symmetric property on
a distribution quadruplet (p1, p2, p3, p4) with probability 49

96 assuming Poisson sampling from each of the distributions. An
extension of (Valiant, 2008, Lemma 4.6.4) for quadruplets establishes existence of a (n1, n2, n3, n4)-sample tester without
assuming Poisson sampling.

Fingerprint distribution approximation by multivariate Poisson distributions. Like in (Valiant, 2008, Lemma 4.6.5),
the distribution of fingerprints of Poi(n1) samples from p1, Poi(n2) samples from p2, Poi(n3) samples from p3 and Poi(n4)
samples from p4 is a generalized multinomial distribution Mρ where ρ is a matrix with k rows and columns indexed by
fingerprint indices (a1, a2, a3, a4). We invoke Roos’s theorem to approximate the multinomial distribution by multivariate
Poisson distributions as in Valiant (2008).

Proposition 2. (Roos’s Theorem Roos (1999)) Given a matrix ρ, letting
−→
λ (a) =

∑
i ρ(i, a) be the vector of column sums,

dTV

(
Mρ,Poi(

−→
λ )
)
6 8.8

∑
a

∑
i ρ(i, (a))2∑
i ρ(i, (a))

.

For low-frequency distribution Lemma 4.6.6 in Valiant (2008) shows that the right-hand side above is small, thus enabling
the approximation of a generalized multinomial distribution by multivariate Poisson distributions. The same is easily
extended for quadruplets below.

Proposition 3 (Extension of Lemma 4.6.6 in Valiant (2008)). Given p1, p2, p3, p4, integers n1, n2, n3, n4 and a real
number 0 < c 6 0.5, such that for all i ∈ [k], j ∈ [4], pj(i) 6 c

nj
, if ρ is the matrix with (i, (a1, a2, a3, a4)) entry∏

j poi(aj ; kjpj(i)), then ∑
a1+a2+a3+a4>0

∑
i ρ(i, (a1, a2, a3, a4))2∑
i ρ(i, (a1, a2, a3, a4))

6 16c.

Moment-based bound. We can now extend (Valiant, 2008, Lemma 4.6.7) to show that if the total variation distance
between the multivariate Poisson distributions of a pair of quadruplets with low-frequency elements is small, then no tester
can distinguish between the pairs.

Proposition 4. For two distribution quadruplets
{
p+
j

}4

j=1
and

{
p−j
}4

j=1
, where p+

j , p
−
j have frequencies at most 1

30000nj

for j ∈ [4], if
−→
λ +(a1, a2, a3, a4) =

∑
i

∏
j poi(aj ; kjp+

j (i)) and
−→
λ −(a1, a2, a3, a4) =

∑
i

∏
j poi(aj ; kjp−j (i)) for

a1 + a2 + a3 + a4 > 0 and if

∑
a1+a+2+a3+a4>0

∣∣∣−→λ +(a1, a2, a3, a4)−
−→
λ −(a1, a2, a3, a4)

∣∣∣√
1 + max

{−→
λ +(a1, a2, a3, a4),

−→
λ −(a1, a2, a3, a4)

} <
1

200
,

then it is impossible to test any symmetric property that is true for
{
p+
j

}4

j=1
and false for

{
p−j
}4

j=1
in (n1, n2, n3, n4)

samples.

All that remains is converting the above expression in terms of the moments of distribution quadruplets (see Definition 4).
By the same proof as that of Theorem 4.6.9 in Valiant (2008), adapted for quadruplets, we have Proposition 1.
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