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Abstract

Correlation clustering is a ubiquitous paradigm
in unsupervised machine learning where address-
ing unfairness is a major challenge. Motivated by
this, we study fair correlation clustering where
the data points may belong to different protected
groups and the goal is to ensure fair representation
of all groups across clusters. Our paper signifi-
cantly generalizes and improves on the quality
guarantees of previous work (Ahmadi et al., 2020;
Ahmadian et al., 2020) as follows.

• We allow the user to specify an arbitrary
upper bound on the representation of each
group in a cluster.

• Our algorithm allows individuals to have
multiple protected features and ensure fair-
ness simultaneously across them all.

• We prove guarantees for clustering quality
and fairness in this general setting. Further-
more, this improves on the results for the
special cases studied in previous work.

Our experiments on real-world data demonstrate
that our clustering quality compared to the opti-
mal solution is much better than what our theoret-
ical result suggests.

1 Introduction

Machine learning algorithms are used in many sensitive
applications such as awarding home loans (Khandani et al.,
2010; Malhotra and Malhotra, 2003) and predicting re-
cidivism (Angwin et al., 2016; Dressel and Farid, 2018;
Chouldechova, 2017). Therefore, it is crucial to ensure these
algorithms are fair and are not biased towards or against
some specific groups in the population. Defining and prac-
ticing fairness in machine learning and optimization has
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been a major trend in recent years (Kamishima et al., 2011,
2012; Joseph et al., 2016; Celis et al., 2018b,a; Chierichetti
et al., 2019; Yang and Stoyanovich, 2017). Clustering is
one such learning paradigm with a line of work in fairness,
starting with Chierichetti et al. (2017) and continuing with
Bera et al. (2019), Ahmadian et al. (2019), Ahmadi et al.
(2020), and Ahmadian et al. (2020), to name a few.

Correlation clustering is a popular unsupervised learn-
ing problem that has gained a lot of attention from both
theory (Bansal et al., 2004; Ailon et al., 2008; Ji et al.,
2020; Cohen-Addad et al., 2022) and applied communi-
ties (Van Gael and Zhu, 2007; Zheng et al., 2011; Cohen
and Richman, 2002; McCallum and Wellner, 2003) (see sur-
vey by Wirth (2010) and references therein). In this problem,
the input is a graph on a set of vertices (or nodes) corre-
sponding to data entries along with similar(+)/dissimilar(−)
labels on all pairs of nodes (i.e. labeled edges in a complete
graph). The goal is to partition the nodes into so-called
clusters in a way that respects the given similarities the best:
minimizing the clustering cost defined as the total number
of + edges crossing clusters, in addition to − edges inside
clusters.

Ahmadi et al. (2020) and Ahmadian et al. (2020) studied a
variant of fair correlation clustering where each node has
a color, and each color encodes a value of a protected fea-
ture, e.g., red encodes woman for gender. In the case of
` colors and color 1 being the rarest one, pi is defined as
the ratio of nodes of color i to color 1. Then the goal is to
ensure the color distribution in clusters is the same as the
entire data, while minimizing the clustering cost. Ahmadi
et al. (2020) and Ahmadian et al. (2020) design approxi-
mation algorithms for this problem where a β-approximate
clustering is one with cost at most β times the cost of the
optimal fair clustering. In particular, Ahmadi et al. (2020)
presented an O(`2 maxi p

2
i )-approximation algorithm and

Ahmadian et al. (2020) presented an O(`2)-approximation
when pi’s are 1. If the fairness constraint was instead, to
ensure no cluster has a dominant color, one that takes over
at least half of the cluster, Ahmadian et al. (2020) present a
256-approximation algorithm.

There are two main short-comings in both the previous
work on Fair Correlation Clustering: (1) They do not
cover the case where each node has multiple protected at-
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tributes (e.g., gender, race, and age group), whereas, it is
shown by Bera et al. (2019) that ensuring fairness with
respect to only one attribute and oblivious to others, can
produce clusters that are extremely unfair with respect to
the rest of the protected features; similar to when a standard
color-oblivious clustering algorithm can output extremely
unfair clusters (Chierichetti et al., 2017; Ahmadian et al.,
2020); (2) Ahmadi et al. (2020) and Ahmadian et al. (2020)
do not cover many natural and important settings of fair-
ness constraints such as allowing general thresholds that
do not necessarily align with the distribution of the input
data e.g., a uniform threshold of 80% in disparate impact
doctrine (EEOC., 1979).

We address these issues by designing an algorithm that
allows the user to specify arbitrary upper bounds on the
representation of each group in a cluster, where each indi-
vidual node can have multiple protected features. We output
clusters that are essentially fair across all these features si-
multaneously and bound the clustering cost of our algorithm
with respect to the optimal solution, considerably improving
the approximation ratios for the special cases studied in
previous work.

1.1 Our Result

Our main contribution can be summarized as follows: We
design an LP-rounding algorithm that given parameters 0 <
αi ≤ 1 for colors i ∈ {1, · · · , `}, and any small constant
ε > 0, returns a clustering with cost at most O( 1

εmini αi
)

times that of the optimal fair solution. The clusters consist
of singletons (that violate fairness by additive +1) and non-
singleton clustersC, for which the number of points of color
i in C is at most (1 + ε)αi|C| for any i. To be more precise,
we allow a max{1, ε|C|maxi αi} additive violation of the
fairness constraints (See Theorem 1 for details).

Additive violation in group fairness is a recurring theme in
metric clustering (Bera et al., 2019; Ahmadian et al., 2019;
Bercea et al., 2019; Charikar et al., 2001). We suspect for
achieving our low approximation ratio, fairness violation is
necessary due to to NP-hardness of special cases, similar
to what is proved by Bera et al. (2019). Comparing with
Ahmadi et al. (2020) and Ahmadian et al. (2020) for the
special cases addressed therein, in the case of αi = 1/` our
approximation ratio is better by a factor of ` (Corollary 1).
For α’s all equal to 1/2 we get a (4 + 1

ε )-approximation,
a smaller constant compared to the 256-approximation of
Ahmadian et al. (2020) for ε > 1/252 (Corollary 2).

Our empirical results in Section 5 demonstrate that our clus-
tering cost is considerably better than the proven approxima-
tion ratio, namely, at most 15% more than the optimal cost
even for ε = 0.01. Furthermore, our approximation ratio
captures the tension between getting a low-cost clustering
and having strict bounds on representation of points, due to
small ε and α’s. This relation of clustering cost with ε and

α’s is also apparent from our experiments in Section 5.

Our algorithm is based on rounding a linear program (LP)
formulation of Fair Correlation Clustering, similar to the
work of (Ji et al., 2020) on approximating other variants
of correlation clustering. Our technical contribution is for
cases where carving out low-cost clusters is at odds with
ensuring fairness. This happens when fairness constraints in
LP are not effective due to integrality issues or when there
are no clear cut fair and low-cost clusters in that region of
the graph (See Section 4.2 for details).

1.2 Related Work

Fairness in machine learning and clustering. Fairness in
machine learning has received a lot of attention and is a
fast growing literature (survey by Caton and Haas (2020)
and references therein). The efforts can be categorized into
two main groups: (i) defining notions of fairness , and (ii)
devising fair algorithms. Our work falls into the latter cate-
gory and we concentrate on the notion of disparate impact
which informally asks that the decisions made (by an algo-
rithm) should not be disproportionately different for appli-
cants in different protected classes. Under this notion, there
are works spanning from fair classification (Feldman et al.,
2015; Zafar et al., 2017), to fair ranking problems (Celis
et al., 2018b), and to fair matroid optimization (Chierichetti
et al., 2019). Chierichetti et al. (2017) introduced fair clus-
tering problem based on this notion.

Chierichetti et al. Chierichetti et al. (2017) mainly defined
fair clustering for two colors and later Rösner and Schmidt
(2018) extended this definition to multiple colors. Both
work required the distribution of colors in clusters to match
the distribution of colors in the data and this definition was
relaxed in Ahmadian et al. (2019) by allowing arbitrary
distribution of colors in different clusters as long as pres-
ence of each color in each cluster was bounded. Bera et al.
(2019) further generalized this notion by allowing lower
and upper bounds per groups and also allowing overlapping
groups. Other closely related problems to fair clustering
are clustering with diversity constraints (Li et al., 2010),
fair center selection (Chen et al., 2019), and clustering with
proportionality constraints (Kleindessner et al., 2019).

Correlation clustering. Bansal et al. (2004) introduced
and gave the first constant factor approximation for com-
plete graphs with the current best being close to 1.994 by
Cohen-Addad et al. (2022). Variants of the problem in-
clude complete signed graph (Bansal et al., 2004; Ailon
et al., 2008), and weighted graphs (generalizing incomplete
signed graph) (Charikar et al., 2005; Demaine et al., 2006).
The problem is shown to be APX-hard in the former case
(Demaine et al., 2006) and Unique-Games hard in the latter
case (Chawla et al., 2006). The integrality gap1 of the LP
formulation of the problem for complete graphs is shown to

1The maximum ratio between the solution quality of the integer
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be 2 (Charikar et al., 2005). Correlation clustering is also
studied in the constraint setting. The most relevant is the
upper-bounded correlation clustering, where each cluster is
required to have size at most M for a given input parameter
M . Ji et al. (2020) presents a bicriteria algorithm for this
version.

2 Problem Definition and Preliminaries

The input of a Correlation Clustering problem is a com-
plete undirected graph G = (V,E) with each edge uv labeled
either + or − based on whether u and v are similar or dis-
similar, respectively. LetE+ denote the set of positive edges
and E− denote the set of negative edges, so E = E+ ∪E−.
For subsets S, T ⊆ V , E(S, T ) denotes the set of edges be-
tween vertices in S and T , i.e., let E(S, T ) = E ∩ (S × T ).
We simplify this notation by defining E(S) := E(S, S) and
using u instead of {u} when applicable, e.g., E(u, v) =
E({u}, {v}). For a subset of edges F ⊆ E, let F+ and
F− denote the intersection of edges in F with E+ and
E− respectively, hence, E+(S, T ) = E+ ∩ E(S, T ), and
E−(S, T ) = E− ∩ E(S, T ).

In a clustering problem, the goal is to find a partition C of
points such that points inside each cluster are similar and
points in different clusters are dissimilar. In the Correlation
Clustering problem, this notation is naturally extended so
the goal is to minimize the total number of disagreements
where a disagreement happens when two similar vertices
are separated, i.e, a positive inter-cluster edge, or when two
dissimilar vertices are clustered together, i.e., a negative
intra-cluster edge.

Definition 1. Given complete graphG(V,E+∪E−), find a
partition C of V that minimizes the correlation cost defined
as follows

corr(C) =

∣∣∣∣∣ ⋃
C∈C

E−(C)

∣∣∣∣∣+
∣∣∣∣∣∣

⋃
C,C′∈C:C 6=C′

E+(C,C ′)

∣∣∣∣∣∣ .
For a subset F of edges and a given clustering, we define

corr(F ) =

∣∣∣∣∣ ⋃
C∈C

E−(C) ∩ F

∣∣∣∣∣+
∣∣∣∣∣∣

⋃
C,C′∈C:C 6=C′

E+(C,C′) ∩ F

∣∣∣∣∣∣ .
The Fair Correlation Clustering is a generalization of

Correlation Clustering problem where points may belong
to groups corresponding to multiple protected features and
there are constraints on representation of each group in each
cluster. In this work, we consider the most general case
with multiple features and different upper bound thresholds
(suggested by Bera et al. (2019)) defined as follows.

Definition 2. In addition to the Correlation Clustering
input, we are given a set of ` colors V1, V2, . . . , V` ⊆ V that

program and its relaxation is called integrality gap of an LP.

may overlap. Given fairness parameters α1, α2, . . . , α` ∈
[0, 1], the goal is to find a clustering C minimizing the
Correlation Clustering cost while satisfying the fairness
constraint that for any C ∈ C and color i ∈ {0, · · · , `},
|Vi ∩ C| ≤ αi|C|.

3 The Fair Correlation Clustering
Algorithm

In this section, we present our algorithm for solving Fair
Correlation Clustering. The main idea is to first solve
a linear program (LP) relaxation of the problem to obtain
a fractional solution and then use this fractional solution
to form as many “almost fair clusters” as possible without
sacrificing approximation factor by too much. Our aim is to
get a bicriterion approximation factor, i.e., solution which
will violate the fairness constraint mildly (say, (1+ε) factor)
with cost at most β times the optimal fractional solution
which itself is at most the optimal cost. More precisely, for
any input ε > 0, we can show that each cluster C of our
algorithm is either of size 1 or is ε-fair, meaning |Vi ∩C| ≤
(1 + ε)αi|C| for any color class Vi, with approximation
factor β = O( 1

εmini αi
).

3.1 An LP Formulation

The standard LP for Correlation Clustering has been stud-
ied extensively and heuristic approaches have been devel-
oped for solving it Downing et al. (2010). Our linear pro-
gramming relaxation is just the extension of this LP with
fairness constraints and is the LP relaxation (denoted by
FCC-LP) of the following integer program (IP)

min
∑

uv∈E+

xuv +
∑

uv∈E−
(1− xuv) (FCC-IP)

∑
v∈Vi

(1− xuv) ≤ αi
∑
v∈V

(1− xuv) ∀i ∈ [`],∀u ∈ V,

(LP-fair)

xuv + xvw ≥ xuw ∀u, v, w ∈ V,
(4-ineq)

xuv = xvu ∀u, v ∈ V,
xuu = 0, ∀u ∈ V,
xuv ∈ {0, 1} ∀u, v ∈ V,

Here, the indicator variable xuv denotes whether vertices
u and v are assigned to different clusters or not; 0 and
1 values indicate same and different cluster respectively.
Constraint (LP-fair) captures the fairness requirement as∑
v∈V (1 − xuv) is the size of cluster containing vertex u

and
∑
u∈Vi

(1 − xuv) is the number of vertices of color i
in this cluster. The rest of the constraints ensure that x de-
fines a distance metric (encoding three axioms for defining
a metric). In particular, constraint (4-ineq) also known
as triangle inequality captures that if vertex v and w are
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assigned to different clusters then u cannot be in the same
cluster as both v and w at the same time.

As mentioned, we solve the LP relaxation of this IP, called
FCC-LP, where for all u, v ∈ V we allow xuv to take any
(possibly fractional) value from 0 to 1. Observe that for
any clustering, we can define a feasible x that satisfies the
constraints and the objective will be equal to the clustering
cost, i.e., number of disagreements. Hence the optimal LP
cost lower bounds the optimal IP cost. In fact, we get the
claimed approximation by bounding the cost of our solution
in terms of the optimal LP cost.

For a subset of the edges F ⊆ E, we use the notation LP(F )
to denote the FCC-LP cost-share of F . That is

LP(F ) :=
∑

uv∈F+

xuv +
∑

uv∈F−
(1− xuv),

which we simplify to LP(uv) when F = {uv}.

3.2 The Algorithm

Our algorithm is based on rounding an optimal solution x
of the Fair Correlation Clustering LP (FCC-LP) which
defines a metric on the vertices. It takes as input three
parameters: ε > 0, the allowed degree of violation in the
fairness constraint, and parameters 0 < ρ ≤ 1/2 and 0 <
σ ≤ ρ/2 which will be fixed later. The high-level idea of the
algorithm is to carve out ε-fair clusters as much as possible
and then return all the remaining uncovered (unclustered)
vertices as singleton clusters. We use the term degenerate
to refer to such singleton clusters which will be collected in
the set C1 and we use the term non-degenerate to refer to
non-singleton clusters, i.e., all ε-fair clusters.

For carving out a non-degenerate cluster, the algorithm relies
on the distance metric defined by x and only takes points
that are in close proximity of each other. We basically look
for a central point for which all the unclustered points at
maximum distance ρ from it, form an ε-fair cluster and
have average distance of at most σ. We refer to the latter
condition as density condition and use the term sparse when
this condition is not satisfied for a (prospective) cluster. This
concludes the high-level idea of our algorithm presented in
Algorithm 1.

3.3 The Main Result

To prove Algorithm 1 produces an approximately optimal
solution, we bound the cost of edges by the LP cost. Our
main result is the following:

Theorem 1. There is an LP rounding algorithm that given
an instance of Correlation Clustering and an ε > 0, re-
turns clustering C such that for each C ∈ C either |C| = 1
or |Vi ∩ C| ≤ (1 + ε)αi|C| for all i ∈ [`]. This algorithm

Algorithm 1 Fair-CC algorithm

1: Input: G = (V,E+ ∪ E−), parameters ε, σ, ρ ∈ R+

s.t. 2σ ≤ ρ ≤ .5, FCC-LP solution {xuv : u, v ∈ V }
2: Output: Clustering C including singletons in C1
3: C ← ∅
4: U ← V
5: while U 6= ∅ do
6: Tu ← {v ∈ U : xuv ≤ ρ}, ∀u ∈ U
7: if ∃u ∈ U : (

∑
v∈Tu

xuv)/|Tu| ≤ σ and (|Vi ∩
Tu|)/|Tu| ≤ (1 + ε)αi,∀i then

8: C ← C ∪ Tu
9: U ← U\Tu

10: else
11: C1 ← U
12: C ← C ∪

⋃
u∈U{u}

13: U ← ∅
14: end if
15: end while

produces a β-approximation for

β := max
{ 1

εα∗
, 4 +

1

ε

}
,

where α∗ := mini∈[`] αi/(1− αi).

Note that for special cases studied previously (Ahmadi et al.,
2020; Ahmadian et al., 2020), we get the following improve-
ments on approximation ratio modulo the fairness violation.

Corollary 1. For the special case of αi = pi∑
i pi

for
color classes V1, · · · , Vl with p1 = 1 and arbitrary choice
of pi for i ≥ 2, our algorithm gets an ε-fair solution
within O(ε−1

∑
i pi) times optimum which is bounded by

O(ε−1`maxi pi) factor of the optimal cost.

Corollary 2. For the special case of αi = 1
2 for color

classes V1, · · · , Vl, our algorithm gets an ε-fair solution
within (4 + 1

ε )-factor of the optimal cost.

In the next section, we prove Theorem 1, a direct followup
of Theorems 2 and 3.

4 Analysis

In this section, we present the required ingredients for prov-
ing Theorem 2 and Theorem 3 for bounding the cost of non-
degenerate and degenerate clusters in C. Roughly speaking
non-degenerate clusters are more well-behaved and using
the density property, i.e., bounded average distance, we can
charge the correlation cost to the optimal LP cost comfort-
ably. The degenerate clusters require more building argu-
ments based on various insights such as using the density of
cluster around a point at the time of removal, and charging to
points of the color class that violates the fairness constraint.
The main idea is to charge the cost of a disagreement edge,
a negative intra-cluster edge or a positive inter-cluster edge
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σρ
1− σ

Tu

u

v

(a) The case in
Lemma 1 when
xuv ≥ 1− σ.

σρ
1− σ

Tu

u

v

(b) The case in
Lemma 2 when
xuv < 1− σ

σ
ρ

Tu

u

v

w

(c) The case in
Lemma 3 when
xuv, xuw ≤ σ.

σ
ρ

Tu

u

v

(d) The case in
Lemma 4 when
xuv > σ.

Figure 1: Analysis of inter-cluster edges incident with ver-
tices covered by non-degenerate clusters. First two figures,
positive edges and last two figures, negative edges.

in C, to the LP cost of a set of edges. As long as we can
ensure that no edge gets charged too many times, we can
bound the total cost of C by the maximum factor an edge is
charged.

4.1 Non-degenerate Clusters

In this section, we look at non-degenerate clusters in C and
prove the following theorem which can be found in Ji et al.
(2020) with minor changes in notation. But for the sake
of completeness and making a gentler introduction to our
contributions, we bring an outline of the proofs here and
include full proofs in Appendix A.

Theorem 2. For C output of Algorithm 1, the correla-
tion cost of the set of edges incident to non-degenerate
clusters, i.e., F =

⋃
C∈C E(C) ∪ E(C, V \C) is at most

max{ 1
ρ−σ ,

1
1−ρ−σ}LP(F ).

We fix a non-degenerate cluster C and use U to denote the
set of uncovered vertices at the time C is formed. Let Tu be
the set corresponding to C which includes all vertices in U
with maximum distance ρ from u. Refer to Figure 1 for an
accompanying diagram. We start with positive inter-cluster
edges and do case analysis based on whether their endpoint
outside of Tu is close to the central vertex u or not (see
Figure 1). Note that for any v ∈ U\Tu, we have xuv > ρ,
but this is not enough for bounding the length of crossing
edge between vertices in Tu to v. We first look at the case
that the endpoint is “far enough” from u.

Lemma 1. For any vertex v ∈ U\Tu with xuv ≥ (1− σ),
|E+(v, Tu)| ≤ 1

1−ρ−σLP(E+(v, Tu)).

The remaining set of positive inter-cluster edges correspond
to vertices that are not “far enough” from u. Here the length
of a crossing edge may be short and so we rely on the fact
that the cluster Tu is dense, i.e.,

∑
w∈Tu

xuw ≤ σ|Tu|, and
so on average the length of crossing edges are long. In the
following lemma, the number of these “short” positive edges
from a v to Tu are bounded by the LP cost of all edges from
v to Tu, including the negative ones.

Lemma 2. For any vertex v ∈ U\Tu with xuv < (1− σ),
|E+(v, Tu)| ≤ 1

ρ−σLP(E(v, Tu)).

For negative edges inside the cluster Tu, we do a similar
case analysis based on whether the endpoints are close or
far from u (see accompanying diagram in Figure 1). Let us
start with the case where endpoints are close and hence the
length of the negative edge is short by4-ineq.

Lemma 3. Let Ns := {vw ∈ E−(Tu) : xuv, xuw ≤ ρ
2},

then |Ns| ≤ 1
1−ρLP(Ns).

To complete the cost analysis of the edges incident to Tu,
it remains to bound the cost of negative intra-cluster edges
where at least one endpoint is far from u. In order to not
overcharge any edge, we need to fix an ordering on the
vertices of Tu. For v, w ∈ Tu, define v < w if xuv ≤ xuw
(break ties consistently) and T<u (v) = {w ∈ Tu : w < v}.
Again the proof relies on the density of Tu and a counting
argument.

Lemma 4. For any v ∈ Tu with ρ/2 < xuv,
|E−(v, T<u (v))| ≤ 1

1−ρ−σLP(E(v, T<u (v))).

4.2 Degenerate Clusters

In this section, we focus on proving the following theorem
for the cost of degenerate clusters. Here, the only disagree-
ment edges are positive edges to other clusters and since we
already counted the inter-cluster edges to non-degenerate
clusters (Lemma 1 and Lemma 4), we just need to focus
on bounding the cost of positive edges between degenerate
clusters with respect to the cost that LP pays.

Theorem 3. For C output of Algorithm 1, the correlation
cost of the set of edges between degenerate clusters, i.e.,
F =

⋃
u,u′∈C1{uu′} is at most

[
max{1

ρ
+

1− ρ
ερ

,
1

σ
,
1

2σ
+

1

2εα∗
,

1

εα∗
}
]
LP(F )

+
1

2ε
· 1− ρ

ρ
LP(E(C1, V \C1)),

where α∗ := mini∈[`] αi/(1− αi).

Recall in Algorithm 1, degenerate cluster {u} is added to
C when at least one of the conditions in the if statement
in Line 7 is not satisfied. At this time, all degenerate clus-
ters, i.e.,

⋃
u∈C1{u} are added to C. Note that, unlike non-

degenerate clusters, here Tu and Tu′ for degenerate clusters
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{u}, {u′} ∈ C may overlap. Positive edges crossing Tus are
easy to charge using the following Fact.

Fact 1. The correlation clustering cost of any (u, v) ∈ E+,
for any ρ > 0, is at most LP(uv)/ρ if xuv > ρ.

So our focus throughout this section is on edges inside Tu’s,
starting with sparse Tu’s (Lemma 5 and then moving to
dense Tu’s. We conclude by using these lemmas to prove
Theorem 2.

Lemma 5. For a degenerate cluster {u} ∈ C with a sparse
Tu, i.e., (

∑
v∈Tu

xuv)/|Tu| > σ,

|Tu| ≤
1

σ
LP(E(v, Tu)). (1)

Proof. This just follows from rearranging density definition
to |Tu| ≤ σ

∑
uv∈E(u,Tu)

xuv and applying Fact 2.

Fact 2. For any F ⊆ E(u, Tu),
∑
uv∈F xuv ≤ LP(F ).

Proof. Take any uv ∈ F . If uv ∈ E+ then xuv ≤ LP(uv).
Now if uv ∈ E−, since xuv ≤ ρ ≤ 0.5, xuv ≤ 1− xuv =
LP(uv).

It remains to bound the cost of edges in E(u, Tu) for a
degenerate cluster u with dense Tu.
Lemma 6. For a degenerate cluster {u} ∈ C with a dense
Tu, i.e., (

∑
v∈Tu

xuv)/|Tu| ≤ σ,

|Tu| ≤
1

ε
[
1

α∗
LP(F1) +

1− ρ
ρ

LP(F2) + (1 +
1

ρ− σ )LP(F3)],

(2)
where F1 = E(u, Tu), F2 = E(u, C1\Tu), F3 =
E(u, V \C1), and α∗ := mini∈[`] α

′
i = mini∈[`] αi/(1 −

αi).

Proof. Let i ∈ [`] be the color that violates the fairness
constraint, i.e., |Vi ∩ Tu| > (1 + ε)αi|Tu|. Note, this i
exists, since u is a degenerate cluster (the if condition in
Algorithm 1 is false for u) but Tu is dense. Using these facts
in addition to the LP fairness constraints gives Claim 1. The
last step is to plug in Claim 2.

Claim 1. εα′i|Tu| ≤ LP(Vi ∩Tu)+α′i
∑
v∈(V \Tu)\Vi

(1−
xuv) where α′i =

αi

1−αi
.

Proof. Since x is a feasible solution to FCC-LP:∑
v∈Vi

(1− xuv) ≤ αi
∑
v∈V

(1− xuv)⇒∑
v∈Vi

(1− xuv) ≤
αi

1− αi

∑
v∈V \Vi

(1− xuv).

For ease of notation, let us refer to αi

1−αi
as α′i so we have

∑
v∈Vi

(1− xuv) ≤ α′i
∑

v∈V \Vi

(1− xuv)⇒

∑
v∈Vi∩Tu

(1− xuv) ≤ α′i
∑

v∈V \Vi

(1− xuv)⇒

|Vi ∩ Tu| −
∑

v∈Vi∩Tu

xuv ≤ α′i
∑

v∈V \Vi

(1− xuv)

= α′i
∑

v∈Tu\Vi

(1− xuv) + α′i
∑

v∈(V \Tu)\Vi

(1− xuv)

≤ α′i|Tu\Vi|+ α′i
∑

v∈(V \Tu)\Vi

(1− xuv)⇒

|Vi ∩ Tu| − α′i|Tu\Vi|

≤
∑

v∈Vi∩Tu

xuv + α′i
∑

v∈(V \Tu)\Vi

(1− xuv)

≤By Fact 2 LP(Vi ∩ Tu) + α′i
∑

v∈(V \Tu)\Vi

(1− xuv).

Using the fact that fairness constraint is violated for Vi,
meaning, |Vi ∩ Tu| > (1 + ε)αi|Tu| and consequently
|Tu\Vi| < (1− (1 + ε)αi)|Tu| we have

(1 + ε)αi|Tu| − α′i(1− (1 + ε)αi)|Tu| ≤

LP(Vi ∩ Tu) + α′i
∑

v∈(V \Tu)\Vi

(1− xuv).

Recall, α′i = αi/(1− αi) so the coefficient of |Tu| on the
LHS can be simplified to εα′i. So we get

εα′i|Tu| ≤ LP(Vi ∩ Tu) + α′i
∑

v∈(V \Tu)\Vi

(1− xuv).

The last step is to plug in Claim 2 into Claim 1 to get the
lemma statement.

Claim 2.
∑
v∈(V \Tu)\Vi

(1 − xuv) is at most
(1−ρ)
ρ LP((C1\Tu)\Vi) +

(
1

ρ−σ + 1
)
LP(V \C1).

Proof. We bound the sum by breaking it into two cases
based on whether v is in C1 or not.

Case v ∈ (C1\Tu)\Vi. since v /∈ Tu, xuv > ρ and so 1 −
xuv < (1− ρ) ≤ (1−ρ)

ρ xuv , therefore,
∑
v∈(C1\Tu)\Vi

(1−
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xuv) equals∑
v∈(C1\Tu)\Vi:

v∈E+

(1− xuv) +
∑

v∈(C1\Tu)\Vi:

v∈E−

(1− xuv)

≤ (1− ρ)
ρ

∑
v∈(C1\Tu)\Vi:

v∈E+

xuv +
∑

v∈(C1\Tu)\Vi:

v∈E−

(1− xuv)

≤ (1− ρ)
ρ

LP((C1\Tu)\Vi). (3)

Case v ∈ (V \C1)\Vi. Note that, V \C1 is already parti-
tioned into non-degenerate clusters in C. Just for the sake of
this proof, for any v ∈ (V \C1), let C(v) denote the center
of v’s cluster. That is, v ∈ TC(v) ∈ C. Now using this
new notation, let us divide the set (V \C1)\Vi into three
parts. The first part, is simply members with negative edges
to u, that is, N = {v ∈ (V \C1)\Vi : (u, v) ∈ E−}. For
v ∈ (V \C1) with (u, v) ∈ E+, it falls into either the second
or third part, depending on xuC(v) where C(v) is the center
of v’s cluster. That is, the second part is defined as Pl =
{v ∈ (V \C1)\Vi : (u, v) ∈ E+ and xuC(v) ≥ (1 − σ)}
and the third part is Ps = {v ∈ (V \C1)\Vi : (u, v) ∈
E+ and xuC(v) < (1− σ)}.∑

v∈(V \C1)\Vi

(1− xuv)

=
∑
v∈N

(1− xuv) +
∑
v∈Pl

(1− xuv) +
∑
v∈Ps

(1− xuv)

≤ LP(N) + |Pl|+ |Ps|.

Take any non-degenerate cluster centered at a w, that is,
Tw ∈ C. Tw could intersect at most one of Pl or Ps based
on xuw, and depending on which, we use Lemmas 1 and 2
from w’s perspective to bound |Pl| and |Ps| respectively.∑
v∈(V \C1)\Vi

(1− xuv)

≤(Lemma 1) LP(N) +
1

1− ρ− σ
LP(Pl) + |Ps| ≤(Lemma 2)

LP(N) +
1

1− ρ− σ
LP(Pl) +

1

ρ− σ
∑
C∈C:

C∩Ps 6=∅

LP(C)

≤
( 1

ρ− σ
+ 1
)
LP(V \C1).

This concludes the proof of the lemma.

We now have the required ingredients for proving Theo-
rem 3.

Proof of Theorem 3. This proof is obtained by combining
three sets of inequalities: (i) inequalities for long positive

edges by Fact 1, (ii) inequalities in Lemma 5 for degen-
erate u with sparse Tu, and (iii) inequalities in Lemma 6
for for degenerate u with dense Tu. We use the size of
Tu as an upper-bound on E(u, Tu). Take any two degen-
erates u, v ∈ C1 with a short edge uv, i.e., xuv < ρ. Note
that in this case, Tu and Tv intersect so using either of the
bounds in Lemma 5 or Lemma 6 counts this edge twice,
once from each of its endpoints. Therefore, we use a coeffi-
cient of .5 for Equation (1)(of Lemma 5) and Equation (2)(of
Lemma 6). Putting all these together, each edge between
degenerate clusters is counted exactly once on the left hand
side and we only have edges incident to degenerate clusters
on the right hand side, i.e., edge uu′ for u, u′ ∈ C1 or uv
for u ∈ C1, v ∈ V \C1. So let us summarize how we bound
the cost of an edge uu′ for u, u ∈ C1, based on the length
of the edge and condition of endpoints. All these terms can
be bounded by the max term in the lemma:

xuu′ > ρ : 1
ρ
+ 1

ε
1−ρ
ρ

Fact 1 & Eq. 2 for u, u′2,
Tu&Tu′ sparse : 1

σ
Eq. 1 for u, u′,

Tu ⊕ Tu′ 3sparse : 1
2σ

+ 1
2ε

1
α∗ Eq. 1 & 2 for u, u′,

Tu&Tu′ dense : 1
ε

1
α∗ Eq. 2 for u, u′,

For an edge uv for u ∈ C1, v ∈ V \C1, it can only get
charged if Tu is dense and since we only consider .5 of
Equation 2, it gets charged at most 1

2ε ·
1−ρ
ρ . Combining

results for the discussed two cases, we get the statement of
the lemma.

4.3 Proof of Theorem 1

proof of Theorem 1. For the choice of ρ = .5 and σ =
.25, we get that an edge incident to an endpoint in a non-
degenerate cluster is charged at most 4 by Theorem 2 and 1

2ε

by Theorem 3, so the total of 4 + 1
2ε . For an edge between

degenerate clusters, it is charged by at most

max{2 + 1

ε
, 4, 2 +

1

2εα∗
,

1

εα∗
} ≤ max{4 + 1

ε
,

1

εα∗
}. �

So an edge is charged at most max{ 1
εα∗ , 4 +

1
ε }.

5 Experiments

In this section, we present the results of our experiments,
designed to measure the quality of our algorithm. Our key
findings are: (1) Our clustering cost is considerably better
than our proven approximation ratio, namely, at most 15%
more than the optimal cost even for ε = 0.01. (2) The maxi-
mum fairness violation of our algorithm on non-singleton
clusters is often much less than ε. On some datasets, with
varying ε, violation is fixed on a small constant as early
as ε = 0.3. Our codes are publicly available on GitHub.4

2This is in the worst case that both Tu and Tu′ are dense.
3This symbol denotes exclusive or, meaning that exactly one

of Tu and Tu′ is sparse.
4github.com/moonin12/improved_fair_

correlation_clustering

github.com/moonin12/improved_fair_correlation_clustering
github.com/moonin12/improved_fair_correlation_clustering
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We start the section by describing our datasets, followed by
quality measures and benchmarks. Additional comparison
to these work is listed in Appendix B.1.

Datasets. We use the datasets from Ahmadian et al. (2020).
amazon dataset (Leskovec et al., 2007) is publicly available
on SNAP5 that corresponds to 2,441,053 items on Amazon
with + edges between co-reviewed items and − edges for
the rest. We also use datasets publicly available on the UCI
repository6, reuters (Liu) and victorian (Gungor,
2018)7 text data corresponding to up to 16 authors, 50 to 100
texts for each. The text is embedded into a 10 dimensional
space using Gensim’s Doc2Vec (Řehůřek and Sojka, 2010)
then set the top θ = {0.25, 0.5, 0.75} fraction of edges in
terms of cosine similarity as positive. See Appendix B.2 for
additional datasets with overlapping colors.

Quality Measures. We report cost ratio which is the ratio
of clustering cost to |E|. For the LP, this is the LP ob-
jective divided by |E|. For fairness analysis, we measure
maximum fairness violation defined as maxC∈C,i∈[`] |Vi ∩
C|/(αi|C|) − 1 of non-degenerate clusters (note, this is
bounded by ε).

Benchmarks. We compare with the fair clustering algo-
rithm of Ahmadian et al. (2020) as well as results they
report on two fairness-oblivious Correlation Clustering
algorithms Loc, their internal local search algorithm for
Correlation Clustering, as well as Piv(Ailon et al., 2008).
Since their reported cost ratios are relative to problem size,
we use the numbers without implementing their algorithm.
As for Ahmadi et al. (2020) published on arXiv, their code is
not available and their plots are not re-usable in this fashion.

To compare with Ahmadian et al. (2020), we set α’s uni-
formly to 1/`. To experiment on datasets with overlapping
colors, used in Ahmadi et al. (2020), Bera et al. (2019), and
Chierichetti et al. (2017), we set α’s uniformly to 0.8 in ac-
cordance with the disparate impact doctrine (EEOC., 1979).
To tune the parameters ρ and σ, for each dataset, we try 5
different values for ρ from 0.1 to 0.5, and 10 different values
for σ from 0.1× ρ/2 to ρ/2. Also, we shuffle the points 20
times, re-run the algorithm, and report the result with the
best clustering cost. We solve the LP using CPLEX (IBM,
2021).

5.1 Cost Analysis

We compare our clustering cost to the LP objective which is
a lower bound on the cost of the optimal solution. Our
results demonstrate that we are much closer to the op-
timal solution than our theoretical results suggest. We

5snap.stanford.edu/data/
6archive.ics.uci.edu/ml/datasets/
7The datasets are available at archive.ics.

uci.edu/ml/datasets/Reuter_50_50 and
archive.ics.uci.edu/ml/datasets/Victorian+
Era+Authorship+Attribution

experiment once with varying ε and once with varying
αmin := mini∈[`] αi, scaling all others αs accordingly (see
Figure 2). Figure 2 suggests that allowing the algorithm
to violate fairness, our cost can even beat the optimal cost
(which is constrained by fairness). As stated in Theorem 1,
the approximation ratio of our algorithm drops significantly
by increasing ε. Figure 2 depicts how the LP costs drop by
relaxing fairness through increasing αmin and that our cost
almost matches the optimal cost even for ε = 0.01. See
Appendix B.3 for the full set of experiments.

Figure 2: Cost ratio of our algorithm (Fair-CC) and the fair
LP for amazon , 10 sub-samples of 200 each. The first
plot uses varying ε from 0.01, to 0.5. The second plot is for
ε = 0.01, varying αmin from its original value 0.5 to 1 (no
fairness), scaling other α’s accordingly.

Furthermore, we compare our cost ratio with that of Ahma-
dian et al. (2020). The LP solutions allows us to compare
with optimum, but in contrast, Ahmadian et al. (2020) do
not have any proxy for the optimal cost and just compare
their cost ratio against popular fairness-oblivious correlation
clusterings, i.e., Piv and Loc. For the sake of completeness,
we also compare our results to that of Ahmadian et al. (2020)
and algorithms therein. Table 1 demonstrates that even for ε
as small as 0.01, our cost ratios are considerably better.

5.2 Fairness Analysis

In this section, we report result of study on how relaxing the
allowed violation in fairness constraints affects the actual
final violation of fairness in our output clusters. Figure 3
shows a case where maximum fairness violation of our al-
gorithm is much less than ε (max allowed violation) and
bounded by 0.11. On some datasets like amazon in Fig-
ure 3, the maximum violation curve demonstrates a few
elbows for varying ε. See Appendix B.4 for the full set of

snap.stanford.edu/data/
archive.ics.uci.edu/ml/datasets/
 archive.ics.uci.edu/ml/datasets/Reuter_50_50
 archive.ics.uci.edu/ml/datasets/Reuter_50_50
archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution
archive.ics.uci.edu/ml/datasets/Victorian+Era+Authorship+Attribution
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Table 1: Cost ratio comparison for datasets in Ahmadian
et al. (2020) (AKEM) for the case of two colors, α1 =
α2 = .5, ε = 0.01. amazon is the average and standard
deviation reported on 20 sub-samples of size 200. Loc and
Piv are Correlation Clustering algorithms demonstrated to
be unfair on these datasets (Ahmadian et al., 2020)

FAIR ALGORITHMS UNFAIR ALGORITHMS

DATASET FAIR-CC AEKM LOC PIV

amazon 0.064± 0.013 0.064 0.010 0.011
reuters θ = 0.25 0.213 0.230 0.096 0.161
reuters θ = 0.50 0.297 0.350 0.181 0.231
reuters θ = 0.75 0.196 0.199 0.188 0.241
victorian θ = 0.25 0.217 0.212 0.109 0.158
victorian θ = 0.50 0.325 0.348 0.183 0.268
victorian θ = 0.75 0.232 0.237 0.203 0.280

experiments.

Figure 3: fairness violation of our algorithm (Fair-CC),
varying ε from 0.01 to 0.5 on reuters θ = 0.75 and
amazon .
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A Missing Proofs from Section 4

In this section, we restate Claims and Lemmas from Section 4 for which the proof is deferred to this section.

Lemma 1. For any vertex v ∈ U\Tu with xuv ≥ (1− σ), |E+(v, Tu)| ≤ 1
1−ρ−σLP(E+(v, Tu)).

Proof. Fix an edge vw ∈ E+(v, Tu) (w may or may not be equal to u). Roughly speaking, since v is far from u and w is
close to u (w belongs to Tu), the length of edge vw cannot be too short. Formally, by4-ineq,

xvw ≥ xuv − xuw ≥ 1− σ − ρ since xuw ≤ ρ,

and so the cost of this edge can be just charged to the LP cost the edge.

Lemma 2. For any vertex v ∈ U\Tu with xuv < (1− σ), |E+(v, Tu)| ≤ 1
ρ−σLP(E(v, Tu)).

Proof. Let P := E+(v, Tu) with p = |P | and let N := E−(v, Tu) with n = |N |. Analyzing the LP cost of all crossing
edges, we have

LP(E(v, Tu)) =
∑
vw∈P

xvw +
∑
vw∈N

1− xvw

≥
∑
vw∈P

xuv − xuw +
∑
vw∈N

1− xuv − xuw

= pxuv + n(1− xuv)−
∑
w∈Tu

xuw

> ρp+ σn− σ(p+ n) = (ρ− σ)p,

where the first inequality follows from4-ineq, and the final inequality uses ρ ≤ xuv ≤ 1− σ and density of Tu along with
|Tu| = |E(v, Tu)| = p+ n. As p = |E+(v, Tu)| this concludes the proof.

Lemma 3. Let Ns := {vw ∈ E−(Tu) : xuv, xuw ≤ ρ
2}, then |Ns| ≤ 1

1−ρLP(Ns).

Proof. Fix the edge vw ∈ Ns. Using (4-ineq), xvw ≤ xuv + xuw ≤ ρ thus 1− xvw ≥ 1− ρ and so the cost of the edge
can be charged to the LP cost of the edge.

Lemma 4. For any v ∈ Tu with ρ/2 < xuv , |E−(v, T<u (v))| ≤ 1
1−ρ−σLP(E(v, T<u (v))).

Proof. Let p and n be the number of vertices before v in the ordering with positive and negative edge to v, respectively, i.e.,
p = |E+(v, T<u (v))| and let n = E−(v, T<u (v)).

LP(E(v, T<u (v))) =
∑

vw∈E+(v,T<
u (v))

xvw +
∑

vw∈E−(v,T<
u (v))

(1− xvw)

≥
∑

vw∈E+(v,T<
u (v))

(xuv − xuw) +
∑

vw∈E−(v,T<
u (v))

(1− xuv − xuw) (using (4-ineq))

= pxuv + n(1− xuv)−
∑

w∈T<
u (v)

xuw

>
ρ

2
p+ (1− ρ)n−

∑
w∈T<

u (v)

xuw, (4)

Where the last inequality is by the given assumption ρ
2 < xuv ≤ ρ. To bound the last term, we use the fact that Tu is dense



Sara Ahmadian*, Maryam Negahbani*

(i.e.
∑
w∈Tu

xuw ≤ σ|Tu|), as follows.∑
w∈Tu

xuw ≤ σ|Tu| ⇒∑
w∈T<

u (v)

xuw ≤ σ|Tu| −
∑
w∈Tu:
w≥v

xuw

= σ(p+ n+ |{w ∈ Tu : w ≥ v}|)−
∑
w∈Tu:
w≥v

xuw

< σ(p+ n+ |{w ∈ Tu : w ≥ v}|)− ρ

2
|{w ∈ Tu : w ≥ v}| (definition of ordering)

and xuv > ρ/2)
≤ σ(p+ n). (since σ ≤ ρ/2)

Next, we substitute this into Equation (4).

LP(E(v, T<u (v))) >
ρ

2
p+ (1− ρ)n−

∑
w∈T<

u (v)

xuw

>
ρ

2
p+ (1− ρ)n− σ(p+ n) ≥ (1− ρ− σ)n,

since σ ≤ ρ/2.

This concludes the analysis of edges incident with non-degenerate clusters and enables the following proof.

Proof of Theorem 2. First, for any internal edge vw ∈ E(C) for some C := Tu ∈ C (u may be the same as v or w), it gets
charged either through Lemma 3 or Lemma 4. Based on the length of xuv and xvw and the defined ordering on vertices in
Tu, LP(vw) is charged at most by one of these lemmas and so it is charged at most by max{ 1

1−ρ ,
1

1−ρ−σ} =
1

1−ρ−σ as
σ > 0.

For any crossing edge vw ∈ E(C, V \C) with v /∈ C and C := Tu ∈ C (u may be the same as v), it can gets charged either
through Lemma 1 or Lemma 2. Based on the length of xuv , LP(vw) is charged at most by one of these lemmas and so it is
charged at most max{ 1

1−ρ−σ ,
1

ρ−σ}.

B Complimentary Experiments

B.1 Additional Comparison with Previous Work

In this section, we bring our comparison results with previous work for 4 and 8 colors in Tables 2 and 3 respectively.

Table 2: Cost ratio comparison for datasets in Ahmadian et al. (2020) (AKEM) for the case of four colors and all α’s equal
to .25. We use ε = 0.01. amazon and victorian are sub-sampled to 200 stratified on color combinations. We report the
average and standard deviation over 20 sub-samples. Loc is a Correlation Clustering algorithm demonstrated to be unfair
on these datasets Ahmadian et al. (2020).

FAIR ALGORITHMS UNFAIR ALGORITHM

DATASET FAIR-CC AEKM LOC

reuters θ = 0.25 0.250 0.244 0.120
reuters θ = 0.50 0.306 0.336 0.191
reuters θ = 0.75 0.218 0.227 0.211
victorian θ = 0.25 0.240± 0.012 0.210 0.141
victorian θ = 0.50 0.322± 0.014 0.311 0.228
victorian θ = 0.75 0.240± 0.007 0.245 0.225
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Table 3: Cost ratio comparison for datasets in Ahmadian et al. (2020) (AKEM) for the case of eight colors and all α’s equal
to .125. We use ε = 0.01. Datasets are sub-sampled to 200 stratified on color combinations. We report the average and
standard deviation over 20 sub-samples for each. Loc is a Correlation Clustering algorithm demonstrated to be unfair on
these datasets Ahmadian et al. (2020).

FAIR ALGORITHMS UNFAIR ALGORITHMS

DATASET FAIR-CC AEKM LOC

reuters θ = 0.25 0.250± 0.000 0.252 0.133
reuters θ = 0.50 0.5± 0.000 0.426 0.239
reuters θ = 0.75 0.244± 0.003 0.250 0.237
victorian θ = 0.25 0.250± 0.000 0.212 0.161
victorian θ = 0.50 0.370± 0.085 0.319 0.249
victorian θ = 0.75 0.242± 0.006 0.246 0.218

B.2 Experiments with Overlapping Colors

We use datasets publicly available on the UCI repository8(1) bank Sérgio Moro (2014) with 4,521 points, corresponding
to phone calls from a marketing campaign by a Portuguese banking institution. (2) census Kohavi (1996) with 32,561
points, representing information about individuals extracted from the 1994 US census. (3) diabetes Strack et al. (2014)
with 101,766 points, extracted from diabetes patient records.

bank , census , and diabetes are used in Ahmadian et al. (2019); Bera et al. (2019); Chierichetti et al. (2017) and
have 5, 7, and 8 colors respectively where each node has exactly two colors Table 4. These are sub-sampled to 200 stratified
on color combinations. Since the previous work does not handle overlapping colors, we only compare with the LP cost in
Table 5

Table 4: Detailed description of the datasets bank , census , and diabetes . For each dataset, the coordinates are the
numeric attributes used to determined the position of each record in the Euclidean space. The sensitive attributes determines
protected groups.

Dataset Coordinates
Sensitive
attributes Protected groups

bank age, balance, duration marital married, single, divorced

default yes, no

census age, education-num, sex female, male

final-weight, capital-gain, race Amer-ind, asian-pac-isl,
hours-per-week black, other, white

diabetes gender, age, race, gender female, male

time-in-hospital race 6 groups

8archive.ics.uci.edu/ml/datasets/

archive.ics.uci.edu/ml/datasets/
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Table 5: Cost ratio comparison with the LP cost for datasets with overlapping colors, used in Ahmadian et al. (2019); Bera
et al. (2019); Chierichetti et al. (2017). all α’s are set to 0.8 in accordance with the DI doctrine EEOC. (1979). We use
ε = 0.01. Datasets are sub-sampled to 200 stratified on color combinations.

DATASET FAIR-CC COST FAIR LP COST

bank θ = 0.25 0.249 0.248
bank θ = 0.50 0.498 0.497
bank θ = 0.75 0.749 0.746

census θ = 0.25 0.135 0.108
census θ = 0.50 0.226 0.190
census θ = 0.75 0.268 0.276

diabetes θ = 0.25 0.100 0.077
diabetes θ = 0.50 0.143 0.122
diabetes θ = 0.75 0.130 0.119
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B.3 Cost Analysis

In this section, we have the set of complete cost analysis experiments over all the datasets except amazon , which can be
found in Section 5. For each dataset we have a pair of figures depicting the cost ratio of our algorithm (Fair-CC) and the fair
LP for that dataset. On the left, varying ε from 0.01 (with completely fair clusters), to 0.5. On the right, for ε = 0.01 and
varying αmin from its original value 0.5 to 1 (no fairness), scaling other α’s accordingly.

Figure 4: reuters θ = 0.25, cost ratios of our algorithm (fair-CC) and fair LP for varying ε.

Figure 5: reuters θ = 0.5, cost ratios of our algorithm (fair-CC) and fair LP for varying ε.

Figure 6: reuters θ = 0.75, cost ratios of our algorithm (fair-CC) and fair LP for varying ε.
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Figure 7: victorian θ = 0.25, cost ratios of our algorithm (fair-CC) and fair LP for varying ε.

Figure 8: victorian θ = 0.5, cost ratios of our algorithm (fair-CC) and fair LP for varying ε.

Figure 9: victorian θ = 0.75, cost ratios of our algorithm (fair-CC) and fair LP for varying ε.
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B.4 Fairness Analysis

In this section we compare the fairness violation of our algorithm (Fair-CC) with the allowed fairness violation ε, varying
ε from 0.01 (with completely fair clusters) to 0.3. We have included all the datasets except amazon which is brought in
Section 5. reuters and victorian , each dataset has three plots associated with θ = 0.25, 0.5, and 0.75 on the top-left,
top-right, and bottom respectively. bank , census , and diabetes have trivial max violations for this range of ε as αmin

is too low for an increase in ε to be able to make a change in cluster structure. There are some colors that are extremely rare
in these datasets e.g. “Amer-ind” for race in census .

Figure 10: reuters , maximum violation of our algorithm for varying ε.

Figure 11: victorian , maximum violation of our algorithm for varying ε.
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