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Abstract

Graph Neural Networks (GNNs) require a rela-
tively large number of labeled nodes and a reli-
able/uncorrupted graph connectivity structure to
obtain good performance on the semi-supervised
node classification task. The performance of
GNNs can degrade significantly as the number
of labeled nodes decreases or the graph connec-
tivity structure is corrupted by adversarial attacks
or noise in data measurement/collection. There-
fore, it is important to develop GNN models that
are able to achieve good performance when there
is limited supervision knowledge—a few labeled
nodes and a noisy graph structure. In this paper,
we propose a novel Dual GNN learning frame-
work to address this challenging task. The pro-
posed framework has two GNN based node pre-
diction modules. The primary module uses the
input graph structure to induce typical node em-
beddings and predictions with a regular GNN
baseline, while the auxiliary module constructs a
new graph structure through fine-grained spectral
clustering and learns new node embeddings and
predictions. By integrating the two modules in a
dual GNN learning framework, we perform joint
learning in an end-to-end fashion. This general
framework can be applied on many GNN base-
line models. The experimental results show that
the proposed dual GNN framework can greatly
outperform the GNN baseline methods and yield
superior performance over many state-of-the-art
methods when the labeled nodes are scarce and
the graph connectivity structure is noisy.
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1 INTRODUCTION

Graph Neural Networks (GNNs) have been successfully
employed to solve multiple tasks such as node classifica-
tion, graph completion, and edge prediction across a vari-
ety of application domains, including computational chem-
istry (Shi et al., 2020), protein-protein interactions (Zit-
nik and Leskovec, 2017) and knowledge-base completion
(Schlichtkrull et al., 2018). In particular, many GNN ad-
vancements have addressed the typical node classification
task in a semi-supervised learning setting where only a
subset of nodes in the graph are labeled, including the
well known Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2017), Graph Attention Networks (GATs)
(Veličković et al., 2018), Topology Adaptive Graph Con-
volutional Networks (TAGs) (Du et al., 2017), and Dy-
namic Neighborhood Aggregation networks (DNAs) (Fey,
2019). These GNN models have achieved great results on
the benchmark GNN learning datasets. However, they typ-
ically require a relatively large number of labeled nodes
as well as a reliable/uncorrupted graph structure to obtain
good performance. Their performance can degrade signif-
icantly as the number of labeled nodes decreases (Li et al.,
2018; Lin et al., 2020) or when the graph structures are
noisy or corrupted (Wang et al., 2020; Chen et al., 2020).

The performance drop of GNNs with severely limited la-
beled data can be explained by the inability of GNNs to
propagate the label information from the labeled nodes to
the rest of the graph. That is, while it is known that deep
GNN architectures can cause over-smoothing problems (Li
et al., 2018), a relatively shallow GNN architecture can fail
to propagate messages across the whole graph and cause
the classifier to overfit the small neighborhoods of the la-
beled nodes. When there are very small number of la-
beled nodes, this will induce a serious overfitting prob-
lem and degrade the classification performance (Li et al.,
2018; Sun et al., 2020; Lin et al., 2020). In addition, GNNs
learn discriminative node embeddings for effective node
classification by propagating messages across the edges of
the graph. Hence noisy or corrupted graph structures can
greatly impair the message passing process and degrade the
ultimate node classification performance (Li et al., 2018;
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Wang et al., 2020). The dependence of GNN models on a
relatively large number of labeled nodes and reliable graph
structures can seriously limit their applications, since pro-
viding sufficient numbers of labeled nodes and reliable
clean graph structures usually requires substantial expert-
level supervision knowledge and effort, which can induce
unendurable high cost in many domains. Moreover, it is
also very difficult to guarantee reliable/uncorrupted graph
structures given the numerous sources of noise that could
damage the graph connectivity structures, ranging from
adversarial attacks on the graph structures to data collec-
tion or measurement noise (Wang et al., 2020; Chen et al.,
2020). Therefore, it is important to develop GNN models
that can learn efficiently with limited labeled nodes and ro-
bustly with corrupted/unreliable graph structures.

In this work, we propose a novel dual GNN learning frame-
work that is resilient to very low label rates and cor-
rupted/noisy graph structures. The proposed framework is
made up of two node prediction modules. The first module
can be treated as a standard primary GNN model, which
takes the original graph data as input. It suffers from the
aforementioned message propagation drawbacks when la-
beled nodes are scarce and graph structures are noisy. To
address this problem, the second GNN module employs a
fine-grained spectral clustering method based on the node
embedding results of the first module to construct a new
adjacency matrix and hence a new graph structure, aim-
ing to alleviate graph noise, enable effective information
propagation across the graph, and facilitate the subsequent
node embedding and node classification learning. The two
modules coordinate with each other within the integrated
dual learning framework to perform end-to-end training
with a joint objective function. This general dual learning
framework can be applied on many standard GNN base-
line models. We conduct experiments with four baseline
graph neural network learning models. The experimental
results show that the proposed framework can significantly
improve the baseline models as well as outperform many
state-of-the-art methods when the labeled nodes are very
scarce and the graph structure is noisy/corrupted across
multiple benchmark datasets.

2 RELATED WORKS

Graph Neural Network (GNN) learning has received a lot
of attention in the research community. Many early works
developed spectral approaches for GNN learning based on
graph Laplacians (Defferrard et al., 2016; Niepert et al.,
2016; Kipf and Welling, 2017). For example, Defferrard
et al. (2016) employed the Chebyshev polynomials to pa-
rameterize the learned filters and localize them in the spec-
tral domain. Kipf and Welling (2017) proposed a Graph
Convolutional Network (GCN) model that uses a first-
order approximation of the Chebyshev polynomial with a
re-normalization trick to ensure numerical stability during

training. Another set of works operate directly in the spatial
domain by defining novel message-passing and message-
aggregation functions (Veličković et al., 2018; Du et al.,
2017; Fey, 2019). Veličković et al. (2018) proposed a
Graph Attention Network (GAT) that uses a self-attention
mechanism to assign importance weights to the edges of
graphs. Du et al. (2017) proposed a Topology Adaptive
Graph Convolutional Network (TAG) that aggregates mes-
sages from different powers of the adjacency matrix to en-
large the receptive field of the nodes. Fey (2019) proposed
a Dynamic Neighborhood Aggregation (DNA) model that
defines dynamic receptive fields for each node by allow-
ing some nodes to aggregate global information from the
graph while other nodes focus on local information. Hamil-
ton et al. (2017) proposed an inductive approach, Graph-
SAGE, that employs neighborhood sampling and several
different neighborhood aggregators to learn node represen-
tations. Wu et al. (2019a) proposed an efficient GNN vari-
ant (SGC) that drops the non-linear functions between the
GNN layers and collapses the weight matrices of the net-
work into a single weight matrix. Most of these previous
works have focused on developing powerful GNNs with
a greater representation power to solve challenging graph-
related tasks, including node classification.

More recently, a number of methods have been proposed
to address some notable limitations of the standard GNN
models, including the vulnerability to adversarial attacks
(Elinas et al., 2020; You et al., 2020; Zhang and Zit-
nik, 2020; Geisler et al., 2020; Wang et al., 2020), over-
smoothing (Li et al., 2018; Rong et al., 2020; Min et al.,
2020), and performance degradation with scarce labels
(Zhou et al., 2019; Wang et al., 2020; Calder et al., 2020;
Lin et al., 2020). In particular, the label scarcity prob-
lem has been addressed by using various strategies, includ-
ing self-supervision (Sun et al., 2020), self-training (Zhou
et al., 2019), and metric learning (Lin et al., 2020). Lin
et al. (2020) proposed a new framework that employs met-
ric learning to improve the performance of GNNs under
very low label rates. Zhou et al. (2019) used dynamic self-
training to increase the size of the training set and alleviate
overfitting problems when the labels are scarce. Sun et al.
(2020) used self-supervision and self-training to augment
the training set with confidently labeled nodes, whose self-
supervised labels match their predicted pseudo-labels, to
increase the number of labeled samples. Wan et al. (2021)
proposed a new framework, named as Graph Contrastive
Graph Poisson Network (CGPN-GCN), which integrates
a contrastive learning objective with a novel message-
passing model—Graph Poisson Network (GPN)—to help
propagate the label information across the graph.

In addition, several works have proposed methods to induce
robustness to noisy or corrupted graph structures. Zhu et al.
(2019) proposed a RGCN model, where Gaussian distribu-
tions are used to represent the embeddings of nodes in order
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to absorb the negative effect of the adversarial attacks to the
covariance of the distributions. Wu et al. (2019b) proposed
a preprocessing method, GCN-Jaccard, to defend against
adversarial attacks by deleting edges that connect nodes
with low Jaccard similarities. Entezari et al. (2020) pro-
posed a pre-processing method, GCN-SVD, to obtain low-
rank estimates for the attacked graph structures using trun-
cated SVD. Jin et al. (2020) presented a Pro-GNN model
that learns a clean graph structure jointly with the GNN
model by optimizing the low-rank, sparsity and homophily
properties of the estimated graph structure. A few other
works have proposed to defend against adversarial attacks
on graph structures by using iterative deep graph learning
frameworks (Chen et al., 2020), novel message aggregation
functions (Geisler et al., 2020), and variational inferences
(Elinas et al., 2020).

3 METHOD

3.1 Problem Setup

We consider the following transductive semi-supervised
node classification setting. The input is a graph G =
(V,E), where V is the set of nodes with size |V | = N
and E is the set of edges. E is typically represented by
an adjacency matrix A of size N × N , which can be ei-
ther symmetric (for undirected graphs) or asymmetric (for
directed graphs), with either binary indicator values or real-
valued weights. This adjacency matrixA encodes the input
graph structure, which can be corrupted. Each node in the
graph G is associated with a corresponding feature vector
of size D. The feature vectors of all the nodes in the graph
are represented by an input feature matrix X ∈ RN×D. In
the context of transductive semi-supervised node classifi-
cation, the nodes in V are split into two subsets: a subset of
labeled nodes V` and a subset of unlabeled nodes Vu. The
labels for V` are represented using a label indicator matrix
Y ` ∈ {0, 1}N`×C , where C is the number of classes and
N` is the number of labeled nodes.

3.2 Dual GNN Learning Framework

In this section, we present the proposed Dual GNN learning
framework for semi-supervised node classification, which
empowers a given standard GNN base model to handle the
difficult learning scenarios with scarce labeled nodes and
noisy graph structures. The framework, as shown in Figure
1, is made up of two GNN based node prediction modules,
each of which consists of its own node embedding encoder
f and node classifier g. The first module can be treated
as a standard primary GNN model, which takes the initial
node feature matrix X and adjacency matrix A as input. It
produces the primary node classifier, which aims to learn
discriminative node embeddings by propagating messages
from the labeled nodes to the rest of the graph using the

Input Graph Constructed Graph

Node Embedding Encoder

Node Classifier  

Node Classification Loss

Node Embedding Encoder

Node Classifier 

Node Classification Loss

Fine-grained Spectral
Clustering   

Spectral Clustering
Loss
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Figure 1: An illustration of the proposed Dual GNN learn-
ing framework. The framework contains two modules: The
primary module is on the left side, and the auxiliary module
is on the right side.

input adjacency matrix. However, as aforementioned, due
to the scarcity of labeled nodes and the noisy input graph
structure, the first GNN module may only be able to prop-
agate the messages to the local neighbourhoods of the la-
beled nodes while failing to propagate messages to a larger
portion of the graph. The second GNN module is designed
to address this issue by constructing a new graph adjacency
matrix with a fine-grained spectral clustering method based
on the node embedding results of the first module. The new
adjacency matrix aims to enable effective message propa-
gation across the whole graph to induce new node embed-
dings and classifier. It can be treated as an auxiliary mod-
ule. The two GNN modules are trained in a joint learning
framework, where the learned node embedding of the pri-
mary GNN module is updated based on both the local and
global information obtained from the primary node classi-
fier and auxiliary node classifier, respectively. Below we
present the details of the two modules and the fine-grained
clustering component.

3.2.1 Primary GNN Module for Node Prediction

This module maintains the learning capacity of a standard
GNN baseline with the original graph information. It takes
the initial node feature matrixX and adjacency matrixA as
input to learn node embeddings and class prediction prob-
abilities as follows:

H = fΘ(X,A), P = gΩ(H) (1)

where fΘ denotes the GNN encoder that takes the adja-
cency matrixA and the initial node featuresX as input and
uses message passing and message aggregation to learn a
new embedding matrix H ∈ RN×d for the nodes; gΩ de-
notes the node classifier, which takes the learned node em-
beddingH as input and outputs class prediction probability
matrix P of the nodes. Θ and Ω denote the model parame-
ters for f and g, respectively. In general, this module can be
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any GNN model developed in the literature that performs
standard graph neural network learning. It can be trained
by minimizing the following supervised node classification
loss (i.e., cross-entropy loss):

LCE =
∑

i∈V`

`CE(Pi, Y
`
i ) (2)

where `CE denotes the cross-entropy function, Pi and Y `
i

denote the predicted class probability vector and the true
label indicator vector for node i, respectively.

3.2.2 Fine-grained Spectral Clustering

To build the auxiliary module, we deploy a fine-grained
spectral clustering component to construct a new adjacency
matrix on the input graph. The spectral clustering function
h is a multi-layer perceptron that takes the node embedding
matrix H learned from the primary GNN module as input
and returns a fine-grained soft-clustering assignment on the
graph nodes:

S = hΨ(H) (3)

where S ∈ RN×K is the node soft clustering assignment
matrix, K is the number of clusters, and Ψ denotes the pa-
rameters of the spectral clustering function h. As each class
could contain multiple clusters, we consider fine-grained
clustering with a K value that is much larger than the num-
ber of classes C.

The fine-grained clustering function hΨ is learned by min-
imizing the following relaxed min-cut spectral clustering
loss function Lsc:

Lsc = −Tr(S
T ÃS)

Tr(ST D̃S)
+

∥∥∥∥ STS

‖STS‖F
− IK√

K

∥∥∥∥
F

(4)

where ‖.‖F denotes the Frobenius norm, IK is the identity
matrix of size K × K, Ã = D−

1
2AD−

1
2 is the normal-

ized input adjacency matrix, and D and D̃ are the degree
matrices of A and Ã respectively, which are calculated as
follows:

Dii =
∑

j
Aij , D̃ii =

∑
j
Ãij (5)

We adopt a commonly used relaxed min-cut loss func-
tion Lsc to learn fine-grained clustering through hΨ. This
formulation offers several advantages over the traditional
spectral clustering approach. First, it does not require
the expensive eigen-decomposition of the graph Laplacian.
Second, it takes both the node embedding matrix H and
the original graph connectivity structure A into account.
Minimizing the first term of Lsc pushes strongly connected
nodes to be clustered together while enforcing the cluster
assignment to be learnable from H with function hΨ. The
second term of Lsc is a regularization term that penalizes
degenerated clustering assignments and pushes hΨ to gen-
erate non-overlapping orthogonal clusters with relatively

similar sizes. This fine-grained spectral clustering module
is not directly useful but serves as a base for building our
auxiliary GNN module below.

3.2.3 Auxiliary GNN Module for Node Prediction

To deploy an auxiliary dual module, we first use the learned
clustering assignment matrix S to construct a new adja-
cency matrix Asc as follows:

Asc(i, j) =

{
r(Si,:, Sj,:), if r(Si,:, Sj,:) ≥ α
0, otherwise

(6)

where r(., .) is the Pearson correlation function that mea-
sures the similarity between the clustering assignment vec-
tors on a pair of nodes, and α is a hyper-parameter that
controls the sparsity of the constructed adjacency matrix.
We expect the fine-grained spectral clustering function can
capture the global geometric information of the original
graph structure A and the learned node embedding H . By
constructing the adjacency matrix Asc from the clustering
assignment matrix S, we aim to address the problems of
scarce labeled nodes and noisy edges in the original graph
structure. Specifically, as a pair of nodes that are either con-
nected in A or have similar embeddings in H tend to have
similar clustering assignments through the spectral cluster-
ing function, it enables Asc not only to maintain the con-
nectivity of the originalA, but also to add more edges based
on the embedding similarities of the nodes. This helps
propagate the local messages and node label information
to a larger portion of the graph, addressing the underlying
local overfitting problem caused by scarce labeled nodes
and corrupted graph structures with many deleted edges.

Given the new adjacency matrix Asc, the auxiliary GNN
node prediction module has a standard architecture with a
GNN encoder f̃ and a classifier g̃. The encoder f̃ takes
the node embedding H from the primary module and the
new constructed adjacency matrix Asc as input and outputs
a node embedding matrix H̃ , while the node classifier g̃
further predicts the classification probability matrix P̃ on
all the nodes:

H̃ = f̃Θ̃(H,Asc), P̃ = g̃Ω̃(H̃) (7)

where Θ̃ and Ω̃ denote the model parameters for the en-
coder and classifier respectively. Specifically we adopt
the encoder of the standard Graph Convolutional Networks
(GCN) (Kipf and Welling, 2017) as our encoder f̃ . We
choose to use the GCN encoder due to two reasons. First,
GCNs are simple and efficient with relatively fewer learn-
able parameters. Second, unlike other GNN models such
as GATs, GCNs allow us to utilize the weights of the con-
structed adjacency matrixAsc. This auxiliary GNN module
can be trained in a standard way by minimizing the node
classification loss (i.e., cross-entropy loss):

L̃CE =
∑

i∈V`

`CE(P̃i, Y
`
i ) (8)
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3.2.4 Joint Dual GNN Learning

Finally we can integrate the classification loss functions,
LCE and L̃CE , from the two modules and the clustering
loss, Lsc, together to form a joint dual GNN learning prob-
lem as follows:

min
Θ,Ω,Θ̃,Ω̃,Ψ

L = LCE + L̃CE + Lsc (9)

Note as the embedding matrix H from the primary module
is used as inputs for the spectral clustering and the auxiliary
module, the auxiliary loss L̃CE and the clustering loss Lsc

are also functions of the primary encoding parameters Θ.
With such a joint learning framework, the two modules can
interactively impact each other through the shared encoder
fΘ. The entire network is trained in an end-to-end manner
by minimizing the joint loss function L.

4 EXPERIMENTS

We tested the proposed Dual GNN learning framework by
applying it on multiple GNN baseline models and con-
ducted experiments with three different experimental se-
tups: learning with few labeled nodes, learning with noisy
graph structures, and learning with both few labeled nodes
and noisy graph structures.

4.1 Experiment Settings

4.1.1 Datasets & Baselines

We used the citation network datasets (Cora, CiteSeer)
(Sen et al., 2008) and the Wikipedia network dataset
(Chameleon) (Pei et al., 2019). The three datasets, Cora,
CiteSeer and Chameleon, have seven, six and five classes
respectively, and their average node degrees are 4.89, 3.73
and 28.55 respectively. For the citation datasets, we used
the same train/validation/test/unlabeled node splits as in
(Yang et al., 2016), where the training set consists of 20
nodes per class, the validation set consists of 500 nodes,
the test set consists of 1000 nodes, while the remain-
ing nodes in the graph are used as unlabeled nodes. For
the Wikipedia dataset, we randomly generated the valida-
tion and test sets with equal corresponding sizes to those
of the citation datasets. We applied our proposed Dual
GNN framework on four GNN baselines by using each of
them as our primary module: Graph Convolution Networks
(GCN) (Kipf and Welling, 2017), Graph Attention Net-
works (GAT) (Veličković et al., 2018), Topology Adaptive
Graph Convolutional Networks (TAG) (Du et al., 2017),
and Dynamic Neighborhood Aggregation in Graph Neural
Networks (DNA) (Fey and Lenssen, 2019).

4.1.2 Implementation Details

For the Dual GNN framework and the baselines, the node
embedding encoders are made up of two message-passing

layers, while the node classifiers contain a single fully con-
nected layer. The spectral clustering function h is a one-
layer perceptron. The non-linear activation function ap-
plied on each message-passing layer is the exponential lin-
ear units (ELUs). We apply L2 regularization to all model
parameters, with a weight decay hyperparameter value of
1e−3 on the citation datasets and 1e−4 on Chameleon. GAT
has a single attention head with an attention dropout rate of
0.5. DNA has an additional single fully-connected layer
prior to the message-passing layers to project the initial
node embeddings to a lower dimensional space with size
32. All networks are trained for 500 training epochs us-
ing the Adam optimizer with a learning rate of 1e−2 and a
scheduler (step size = 50 training iterations) with a learning
rate decay factor of γ = 0.5. For the Dual GNN frame-
work, the number of clusters is set to K = 10 × C, where
C is the number of classes, and the sparsity threshold for
constructing the new adjacency matrix is α = 0.7. In the
case of learning with noisy additional edges, we first spar-
sify the input graph structure by dropping edges between
nodes with pairwise similarities below a similarity thresh-
old β before applying the proposed Dual GNN. The Pear-
son correlation function is used to measure the similarity
between each pair of nodes based on their input features.
The similarity threshold β takes value 0.1 for the two cita-
tion datasets (Cora and CiteSeer) and takes value 0.01 for
the Chameleon dataset.

4.2 Experiments with Few Labeled Nodes

In this set of experiments, we aim to investigate the
performance of the Dual GNN framework with signif-
icantly fewer labeled nodes. The public split of the
citation datasets contains 20 labeled training nodes per
class. We tested several much smaller label rates by us-
ing {2, 3, 5, 10} labeled nodes per class, respectively. On
the citation datasets, for each label rate, we generated 10
random subsets of labeled nodes from the training set in the
public split. For each random subset, we repeated 5 runs for
each comparison method. We report the mean test accuracy
results and the corresponding standard deviations over the
total 50 runs. We also conducted experiments by using all
the 20 labeled nodes per class in the public training split of
the citation datasets (Yang et al., 2016) and report the av-
erage results over 5 runs. For the Chameleon dataset, the
10 labeled subsets for each label rate are randomly selected
from the set of all graph nodes, excluding the validation set
and the test set.

We applied the Dual GNN framework over four baseline
models. The comparison results over each baseline model
and the corresponding Dual method are reported in Table
1. We can see that the performance of all four baselines
(GCN, GAT, TAG, DNA) degrades as the number of la-
beled nodes per class decreases. The performance of the
DNA baseline degrades more substantially compared to the



Learning Robust Graph Neural Networks with Limited Supervision

Table 1: Mean classification accuracy (standard deviation is within brackets) on the Cora (left part), CiteSeer (middle part)
and Chameleon (right part) datasets with a few labeled nodes per class (2, 3, 5, 10, 20).

Cora CiteSeer Chameleon
2 3 5 10 20 2 3 5 10 20 2 3 5 10 20

GCN 63.5(4.4) 69.2(3.5) 75.1(3.1) 78.8(0.9) 81.5(0.6) 48.1(7.9) 56.4(6.2) 62.2(3.5) 66.3(1.8) 68.5(0.7) 25.1(5.0) 24.5(4.3) 30.8(3.9) 35.5(4.4) 40.4(3.4)

Dual GCN 71.1(4.0) 74.8(2.4) 77.6(2.6) 79.9(1.0) 82.7(0.5) 56.5(9.1) 63.0(5.7) 65.4(4.1) 66.5(2.4) 70.0(1.5) 25.7(4.9) 26.6(4.0) 31.1(5.0) 35.9(4.7) 40.9(3.1)

GAT 63.5(3.9) 69.6(3.4) 74.0(3.5) 79.0(1.2) 81.3(0.5) 49.2(8.1) 56.0(6.6) 61.8(3.3) 65.2(1.9) 69.0(0.6) 25.5(4.7) 25.4(4.0) 30.1(4.5) 36.1(4.0) 42.2(3.2)

Dual GAT 65.7(5.2) 71.6(2.6) 75.4(2.7) 79.1(1.4) 81.6(0.3) 50.8(7.3) 58.5(5.3) 63.2(3.5) 65.9(2.0) 69.0(0.5) 26.3(5.0) 26.5(4.4) 30.5(4.5) 36.6(4.7) 43.3(2.2)

TAG 67.7(4.3) 73.0(2.7) 76.3(2.8) 79.9(1.2) 82.6(0.4) 50.7(9.8) 58.5(6.6) 63.6(3.1) 67.7(1.3) 70.0(0.9) 23.5(4.5) 24.1(3.7) 28.1(4.3) 32.2(4.5) 38.2(4.3)

Dual TAG 67.5(6.8) 75.2(3.5) 77.5(2.6) 80.0(1.5) 82.0(0.5) 49.0(1.1) 57.2(8.5) 61.9(4.3) 64.7(2.6) 67.9(1.2) 23.6(5.2) 24.2(4.3) 29.8(4.8) 35.8(5.2) 44.3(2.5)

DNA 56.7(5.3) 65.1(3.2) 70.3(3.3) 77.0(1.2) 81.3(0.5) 43.9(7.1) 53.0(5.8) 58.6(3.5) 64.4(2.1) 69.5(0.7) 25.3(3.7) 26.9(3.9) 29.0(4.5) 33.9(3.2) 35.0(2.9)

Dual DNA 62.8(5.0) 69.2(3.5) 74.0(3.0) 77.6(1.2) 81.0(0.3) 51.5(8.0) 60.8(5.0) 64.3(3.5) 67.1(2.1) 70.1(0.6) 24.3(4.1) 27.2(3.9) 30.2(4.5) 33.3(3.1) 34.6(3.0)

Dual GCN CGPN-GCN [2021] DSGCN [2019]

Self-training [2019]
Co-training [2019]GCN Shoestring L2 [2020]

GCN Shoestring Cos [2020]

(a) Cora (b) CiteSeer

Figure 2: Comparison results in terms of mean classifica-
tion accuracy for the proposed Dual GCN and several state-
of-the-art methods on the Cora and CiteSeer datasets with
a few labeled nodes.

other three baselines on Cora and CiteSeer, which can be
explained by its relatively large number of learnable pa-
rameters. The TAG baseline performs better than the other
baselines at low label rates on Cora and CiteSeer, which
can be attributed to its inherently large receptive field that
allows messages to be propagated to a larger portion of the
graph (Luan et al., 2019). This can also explain the rela-
tively similar performance between Dual TAG and TAG on
the citation datasets. The proposed framework nevertheless
consistently improves the performance of all the other three
base models, GCN, GAT and DNA, across all label rates on
the citation datasets. The performance gains achieved by
the Dual GNN framework are particularly remarkable with
smaller label rates. For example, Dual GCN outperforms
GCN by 7.6% and 8.4% on Cora and CiteSeer, respectively,
with two labeled nodes per class. On Chameleon, where the
graph is significantly more densely connected than the ci-
tation graphs, our Dual GNN framework still improves the
GCN, GAT and TAG baselines across all label rates. These
results suggest that the proposed Dual GNN framework is
very beneficial for GNN learning with smaller numbers of
labeled nodes.

We also compared the proposed Dual GNN framework
with a number of methods developed in the literature that

address the performance degradation of GNNs with few
labeled nodes, including Contrastive Graph Poisson Net-
works (CGPN-GCN) (Wan et al., 2021), two Shoestring
methods (GCN Shoestring L2, GCN Shoestring Cos) (Lin
et al., 2020), and three Dynamic self-training methods (Co-
training, Self-training, and DSGCN) (Zhou et al., 2019).
We used the reported results from (Wan et al., 2021), (Lin
et al., 2020) and (Zhou et al., 2019). We used GCN as the
primary module and compared our proposed Dual GCN
with these six comparison methods with different label
rates. The comparison results on the two citation datasets,
Cora and CiteSeer, are reported in Figure 2. We can see
that Dual GCN consistently outperforms all the other meth-
ods across all label rates with notable performance gains on
the Cora dataset – the average performance gain is about
+2%. On CiteSeer, although Dual GCN is outperformed by
DSGCN, the difference between them is very small, while
Dual GCN outperforms the other comparison methods.

4.3 Experiments with Noisy Graph Structures

In the second set of experiments, we investigate the
robustness of the proposed Dual GNN framework to
noisy/corrupted graph structures with missing or additional
edges. We simulate untargeted adversarial attacks by ran-
domly deleting edges or adding noisy edges in the input
graphs, which is similar to the adversarial setups in some
previous works (Elinas et al., 2020; Geisler et al., 2020;
Chen et al., 2020). To corrupt the input graph structure us-
ing missing edges, we randomly drop a portion of the exist-
ing edges in the adjacency matrix of the graph. We consid-
ered a set of different edge drop ratios, i.e., corruption rates,
in {0.25, 0.50, 0.75, 0.90, 0.95}. To corrupt the input graph
structure using noisy additional edges, we randomly add a
number of noisy edges to the adjacency matrix of the graph.
We considered the following set of different numbers of
noisy additional edges: {2000, 3000, 5000, 7000, 10, 000}.
For each corruption rate or each number of noisy additional
edges, we generate 10 corrupted input adjacency matrices
and experiment using each resulting graph for 5 times with
20 labeled nodes per class. We report the mean test classi-
fication accuracy and the corresponding standard deviation
across all runs for each case.
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Table 2: Mean classification accuracy (standard deviation is within brackets) on the Cora (left part), CiteSeer (middle part)
and Chameleon (right part) datasets with different edge corruption (deletion) rates (0.25, 0.5, 0.75, 0.9, 0.95).

Cora CiteSeer Chameleon
0.25 0.5 0.75 0.90 0.95 0.25 0.5 0.75 0.90 0.95 0.25 0.5 0.75 0.90 0.95

GCN 79.1(1.0) 74.7(1.5) 67.4(1.8) 60.1(1.7) 57.9(1.6) 67.2(1.1) 64.5(1.1) 58.7(1.7) 55.7(1.8) 54.9(1.7) 40.0(3.5) 39.6(3.6) 38.3(3.3) 36.7(3.0) 37.2(1.9)

Dual GCN 79.9(0.8) 75.9(1.5) 69.0(1.7) 64.1(2.0) 60.8(1.8) 67.7(1.4) 66.2(2.6) 64.2(3.1) 60.6(3.1) 61.4(2.1) 40.9(3.1) 40.2(3.3) 39.5(2.5) 37.8(2.3) 37.9(1.8)

GAT 78.7(1.1) 75.2(1.3) 68.9(1.8) 61.4(1.8) 58.2(1.6) 67.2(1.1) 65.1(1.2) 59.4(1.9) 56.4(2.3) 54.3(2.3) 42.6(2.8) 42.4(2.5) 40.5(2.0) 38.7(2.1) 38.0(1.3)

Dual GAT 78.9(0.8) 75.3(1.5) 68.9(1.6) 60.6(2.3) 59.3(2.3) 67.6(1.3) 65.2(1.6) 59.6(1.9) 57.3(2.7) 59.2(2.2) 41.6(2.5) 42.4(2.1) 40.2(1.9) 38.3(2.3) 38.0(1.2)

TAG 77.6(1.0) 70.6(1.6) 60.0(1.9) 55.3(1.6) 54.6(1.6) 66.3(1.1) 62.2(1.1) 55.3(0.9) 53.9(1.2) 53.9(0.8) 37.7(5.0) 37.6(4.3) 36.6(4.0) 37.1(4.5) 38.7(3.8)

Dual TAG 78.8(1.5) 72.4(1.7) 64.2(2.0) 57.4(1.6) 57.8(2.1) 65.0(1.8) 62.6(2.8) 57.7(3.3) 57.8(4.3) 60.6(2.5) 43.7(2.8) 43.2(2.8) 41.3(3.7) 40.5(2.9) 40.1(2.8)

DNA 78.7(0.7) 74.9(1.1) 68.9(1.5) 62.6(1.8) 60.3(1.0) 67.6(1.2) 65.5(1.1) 60.7(1.1) 57.9(1.3) 57.1(1.3) 34.9(2.7) 34.9(2.4) 36.4(3.5) 37.0(2.3) 37.6(2.5)

Dual DNA 79.0(1.3) 76.0(1.3) 70.2(1.3) 63.9(1.9) 61.6(1.5) 68.9(1.2) 67.6(1.1) 62.9(1.8) 60.0(2.2) 60.8(1.9) 35.5(3.9) 35.5(4.5) 37.3(3.5) 37.4(2.2) 37.8(2.2)

Table 3: Mean classification accuracy (standard deviation is within brackets) on the Cora (left part), CiteSeer (middle part)
and Chameleon (right part) datasets with different numbers of noisy additional edges (2000, 3000, 5000, 7000, 10,000).

Cora CiteSeer Chameleon
2000 3000 5000 7000 10,000 2000 3000 5000 7000 10,000 2000 3000 5000 7000 10,000

GCN 76.0(0.9) 74.3(1.2) 70.6(1.1) 67.2(1.3) 63.3(1.6) 62.5(1.0) 59.4(1.5) 55.8(1.8) 51.5(1.1) 48.9(1.9) 40.5(2.2) 40.5(2.5) 39.2(2.6) 38.8(2.0) 38.6(2.2)

Dual GCN 75.1(1.1) 74.6(1.3) 73.3(1.2) 72.4(1.2) 70.5(1.1) 66.5(2.0) 66.3(1.8) 65.7(1.9) 65.6(2.1) 63.6(1.5) 39.2(2.3) 38.2(2.2) 37.9(2.6) 38.4(2.0) 38.1(1.7)

GAT 75.5(0.9) 73.3(1.4) 69.7(1.4) 66.4(1.3) 62.8(1.6) 60.9(1.8) 57.8(1.3) 53.2(1.6) 49.8(1.7) 46.1(2.4) 39.2(3.6) 39.9(2.9) 38.5(2.9) 38.4(3.0) 38.8(2.5)

Dual GAT 75.5(0.9) 74.5(1.0) 73.1(1.2) 72.0(1.2) 70.1(1.5) 66.6(1.1) 66.5(1.0) 66.0(1.1) 64.7(1.5) 63.3(1.6) 39.2(2.9) 39.5(3.4) 38.9(2.5) 39.3(2.8) 38.5(2.5)

TAG 76.6(1.0) 76.2(0.9) 73.4(1.2) 71.6(1.3) 69.7(1.2) 64.3(1.2) 63.1(1.4) 62.7(1.0) 61.9(0.8) 61.2(1.5) 40.5(3.1) 40.2(2.8) 39.5(2.5) 39.4(2.5) 39.9(2.2)

Dual TAG 76.2(1.2) 74.6(1.2) 73.7(1.5) 72.6(1.7) 71.6(1.8) 65.0(2.5) 62.9(2.7) 63.1(3.3) 63.1(3.2) 64.0(3.1) 41.8(3.1) 42.2(3.0) 42.1(2.8) 41.5(2.7) 41.9(3.0)

DNA 75.9(0.8) 74.2(1.1) 70.3(1.2) 67.2(1.6) 63.3(1.4) 64.5(1.0) 61.7(1.3) 58.3(1.6) 55.5(1.4) 51.6(2.0) 32.6(2.8) 33.1(3.1) 32.3(3.0) 31.9(2.9) 30.8(2.4)

Dual DNA 74.6(0.8) 73.9(1.1) 73.3(0.9) 72.3(1.3) 71.3(1.1) 67.9(1.2) 67.9(1.2) 68.1(1.3) 67.5(1.3) 66.4(1.5) 35.8(2.6) 35.4(2.6) 35.3(2.2) 35.9(2.1) 35.0(2.6)

GCN-SVD [2020]
Pro-GNN [2020] Dual GCN 

GCN-Jaccard [2019]
RGCN [2019]

(a) Cora (b) CiteSeer

Figure 3: Comparison results for the proposed Dual GCN
and several state-of-the-art methods for learning with noisy
graph structures on Cora and CiteSeer.

Again we applied the proposed framework on four base-
line models. The comparison results with corrupted miss-
ing edges on the three datasets are reported in Table 2. The
table shows the vulnerability of GNNs to edge deletion at-
tacks on the underlying graph structures; the performance
of all GNN baselines on the citation datasets declines sub-
stantially as the edge corruption rate increases. This is due
to the dependence of GNNs on the graph structures for
propagating messages/labels across the graph. The TAG
baseline is particularly sensitive to noise in graph structures
due to its large but static receptive field, which is clearly
demonstrated by its notably larger performance drop rela-
tive to the other baselines. Nevertheless, the proposed Dual
learning framework consistently improves the performance

of all four GNN baselines across all corruption rates on the
citation datasets. The performance gain of our framework
grows as the corruption rate increases. On the Chameleon
dataset, where the underlying graph is densely connected,
the GNN baselines are more robust to attacks on the graph
structure, while our Dual framework still improves the per-
formance of GCN, TAG and DNA.

We also compared the proposed Dual GNN framework
with several GNN defense methods in the literature that ad-
dress the performance degradation problem of GNNs in the
case of noisy/corrupted graph structures, including RGCN
(Zhu et al., 2019), GCN-SVD (Entezari et al., 2020), GCN-
Jaccard (Wu et al., 2019b) and Pro-GNN (Jin et al., 2020).
We used GCN as the primary module and compared our
proposed Dual GCN with these four comparison methods
under random adversarial attacks that delete random edges
from the graph structure with different edge deletion rates:
{20%, 40%, 60%, 80%, 90%, 95%}. The comparison re-
sults on the Cora and CiteSeer datasets are reported in Fig-
ure 3. The figure clearly shows that Dual GCN consistently
outperforms all the other comparison methods across all
the considered edge deletion rates on both Cora and Cite-
Seer. The performance gains are particularly remarkable
with higher edge deletion rates, exceeding 4% and 2% on
Cora and CiteSeer respectively.

For the experiment setting with noisy additional edges, we
compared the proposed Dual GNN framework with the four
baseline models and report the comparison results on the
three datasets in Table 3. The table clearly shows the vul-
nerability of GNNs to attacks of injecting noisy additional
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Table 4: Mean classification accuracy (standard deviation is within brackets) on Cora (left part), CiteSeer (middle part) and
Chameleon (right part) with few labeled nodes per class (3, 5, 10) and noisy graph structures with different edge corruption
(deletion) rates (0.25, 0.5, 0.75, 0.9, 0.95).

Cora CiteSeer Chameleon
0.25 0.5 0.75 0.9 0.95 0.25 0.5 0.75 0.9 0.95 0.25 0.5 0.75 0.9 0.95

3
L

ab
el

s GCN 65.6(3.5) 58.2(4.3) 48.4(3.6) 40.2(3.8) 39.4(3.9) 54.4(5.4) 50.5(5.7) 42.1(4.3) 40.9(2.9) 39.9(3.0) 25.5(3.9) 25.1(3.5) 25.6(3.9) 24.2(3.2) 26.0(3.4)

Dual GCN 72.4(2.3) 64.7(4.5) 54.3(4.8) 41.9(6.8) 40.0(7.3) 62.2(4.9) 55.0(8.8) 46.7(11.0) 41.8(8.9) 42.7(6.9) 25.7(3.3) 25.6(3.9) 26.1(3.7) 25.3(2.5) 26.7(3.0)

DNA 61.5(3.8) 54.9(4.6) 47.6(4.2) 41.7(4.0) 39.8(4.2) 52.6(4.6) 49.6(4.7) 43.4(4.5) 41.8(2.8) 40.8(3.8) 26.8(3.6) 27.3(3.3) 27.4(3.7) 27.6(4.2) 28.8(3.5)

Dual DNA 66.3(3.7) 60.3(4.4) 52.0(5.1) 43.2(4.6) 41.3(4.1) 59.1(4.8) 52.2(6.1) 45.6(5.5) 42.7(4.3) 42.2(4.0) 27.4(3.5) 27.6(4.1) 27.7(3.8) 27.9(4.2) 28.2(3.8)

5
L

ab
el

s GCN 71.4(3.2) 64.5(5.5) 56.1(3.3) 45.0(3.3) 42.0(3.0) 59.0(3.6) 53.6(4.5) 47.6(3.8) 44.3(3.8) 44.7(2.6) 30.4(3.5) 29.7(4.1) 30.1(4.1) 29.9(3.3) 28.3(3.2)

Dual GCN 74.9(3.0) 68.8(4.8) 60.9(3.2) 47.8(7.0) 44.1(6.9) 62.4(5.3) 58.8(6.6) 53.1(1.0) 45.7(9.7) 46.4(9.7) 29.6(4.0) 30.9(5.0) 30.8(4.2) 30.7(4.4) 29.2(3.1)

DNA 67.2(3.3) 61.4(5.1) 54.1(2.7) 46.2(2.6) 44.2(2.3) 57.1(2.9) 53.2(3.8) 48.2(3.4) 46.2(3.1) 45.2(2.6) 29.5(5.1) 29.4(5.5) 29.9(3.3) 30.2(3.7) 30.3(3.6)

Dual DNA 70.2(3.6) 65.8(4.9) 58.3(3.2) 48.4(4.6) 44.9(3.7) 62.0(4.0) 57.5(4.9) 50.9(4.8) 47.6(3.8) 47.7(3.8) 29.5(5.0) 30.1(4.8) 30.1(3.3) 31.2(3.5) 30.6(3.3)

10
L

ab
el

s GCN 76.2(0.9) 69.9(1.7) 62.1(2.5) 54.1(2.7) 52.7(2.6) 63.3(2.4) 59.4(3.6) 52.9(3.3) 50.1(3.5) 50.4(2.5) 34.2(4.8) 34.7(4.5) 33.2(3.4) 33.1(2.5) 32.1(2.6)

Dual GCN 77.7(1.1) 72.8(1.7) 65.4(2.7) 57.9(4.0) 56.6(4.0) 64.8(2.9) 62.9(3.7) 59.5(5.5) 54.0(6.5) 55.8(5.2) 35.1(3.9) 35.6(4.1) 34.3(3.7) 34.2(2.6) 32.4(2.4)

DNA 74.3(1.5) 69.2(1.2) 63.3(1.8) 56.5(1.9) 55.2(2.3) 62.6(2.5) 59.7(2.9) 54.1(3.2) 52.3(3.0) 52.1(2.3) 33.5(3.9) 33.2(3.7) 33.2(3.1) 34.3(2.2) 34.5(2.5)

Dual DNA 75.9(1.3) 71.0(1.3) 65.7(1.6) 58.2(2.2) 55.8(2.4) 66.0(2.3) 63.7(2.5) 56.8(3.0) 53.6(3.3) 55.1(3.0) 34.0(3.1) 34.1(3.1) 33.7(1.8) 34.1(2.6) 34.3(2.5)

edges into the input graph structure; the performance of all
the four GNN baselines on the citation datasets degrades
considerably as the number of noisy additional edges in-
creases. This is due to the fact that the noisy additional
edges corrupt the message passing process with a large
number of noisy messages being propagated across the ad-
ditional edges of the graph, causing the learned node em-
beddings to be noisy and less discriminative. The proposed
Dual GNN learning framework obtains consistent improve-
ment over the performance of the four GNN baselines
across all numbers of noisy additional edges on the citation
datasets. The improvement in the performance of the pro-
posed framework grows as the number of noisy additional
edges increases. In the case of the Chameleon dataset,
the underlying graph structure is significantly more densely
connected than those of the citation datasets. This dimin-
ishes the corrupting effect of the noisy additional edges,
which explains the relatively small performance drops for
the four baselines across all numbers of noisy additional
edges. Nevertheless, our proposed Dual framework im-
proves the performance of the DNA and TAG baselines and
obtains similar performance to the GCN and GAT base-
lines. These results demonstrate the wide applicability of
the proposed framework in alleviating the negative impact
of graph structure corruptions.

4.4 Experiments with Both Few Labeled Nodes and
Noisy Graph Structures

We conducted further experiments to investigate the per-
formance of the proposed Dual learning framework with
both few labeled nodes and noisy graph structures. We
used three label rates with 3, 5, and 10 labeled nodes per
class, respectively. For each label rate, we create 10 dif-
ferent training sets as before and test the performance of
the proposed Dual GNN framework using two baselines,
GCN and DNA, with different edge deletion rates from
{0.25, 0.50, 0.75, 0.90, 0.95}. We record the mean test
classification accuracy and standard deviation results for
each label rate across all the five considered edge corrup-

tion (deletion) rates.

Table 4 presents the comparison results on the three
datasets. It has three sections. The top section of the table
reports the comparison results with different edge deletion
ratios for 3 labeled nodes per class, the middle section re-
ports the comparison results for 5 labeled nodes per class,
and the bottom section reports the results for 10 labeled
nodes per class. We can see that the combination of small
label rates and large edge deletion ratios causes substantial
performance degradation on the baseline models. Our pro-
posed Dual GNN framework consistently and significantly
improves the performance of both GCN and DNA on the
citation datasets across all the three label rates and differ-
ent graph corruption ratios. On the Chameleon dataset, the
Dual GNN framework also improves the performance of
each baseline in most cases. This again validates the gen-
eral efficacy of the proposed Dual GNN framework.

4.5 Ablation Study

We also conducted an ablation study to investigate the con-
tribution of the two modules in the proposed Dual GNN
framework. Specifically, we consider two variants of the
Dual GNN learning framework: (1) Primary+Cluster. For
this variant, we drop the auxiliary module but keep the
primary module and the fine-grained spectral clustering
loss. That is, we perform training with the joint loss ob-
jective of LCE +Lsc. (2) Auxiliary+Cluster. For this vari-
ant, we drop the primary module but keep its encoder fΘ,
while performing training with the joint loss objective of
L̃CE + Lsc. We conducted experiments by using GCN
as the baseline model, and compared the full Dual GCN
model with the two variants and the base GCN under dif-
ferent label rates and various edge deletion based structure
corruption rates.

The comparison results with different label rates are re-
ported in Table 5. From the table, we can see that all
variants have performance drops from the full Dual GCN
model except the Primary+Cluster on Chameleon with
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Table 5: Ablation study results in terms of mean classification accuracy (standard deviation is within brackets) on Cora,
CiteSeer and Chameleon with a few labeled nodes per class (2, 3, 5, 10, 20). “Prim.+C” and “Aux.+C” are abbreviations
for the two variants “Primary+Cluster” and “Auxiliary+Cluster”, respectively.

Cora CiteSeer Chameleon
2 3 5 10 20 2 3 5 10 20 2 3 5 10 20

GCN 63.5(4.4) 69.2(3.5) 75.1(3.1) 78.8(0.9) 81.5(0.6) 48.1(7.9) 56.4(6.2) 62.2(3.5) 66.3(1.8) 68.5(0.7) 25.1(5.0) 24.5(4.3) 30.8(3.9) 35.5(4.4) 40.4(3.4)

Dual GCN 71.1(4.0) 74.8(2.4) 77.6(2.6) 79.9(1.0) 82.7(0.5) 56.5(9.1) 63.0(5.7) 65.4(4.1) 66.5(2.4) 70.0(1.5) 25.7(4.9) 26.6(4.0) 31.1(5.0) 35.9(4.7) 40.9(3.1)

Prim.+C 63.1(5.0) 69.6(3.1) 75.1(3.3) 78.6(1.2) 81.6(0.4) 49.0(7.2) 57.2(5.7) 62.7(3.4) 66.0(1.9) 69.2(0.4) 25.4(4.3) 25.9(4.2) 30.5(4.8) 36.4(4.2) 41.3(3.1)

Aux.+C 25.6(9.1) 24.4(9.7) 25.3(11.0) 22.4(9.9) 24.6(8.9) 26.0(8.4) 27.1(9.1) 27.6(8.4) 28.7(10.1) 25.6(7.4) 20.3(1.6) 20.5(2.0) 20.9(3.3) 21.2(3.3) 21.2(3.1)

Table 6: Ablation study results in terms of mean classification accuracy (standard deviation is within brackets) on Cora,
CiteSeer and Chameleon with edge deletion corrupted graph structures (corruption rates: 0.25, 0.5, 0.75, 0.9, 0.95).
“Prim.+C” and “Aux.+C” are abbreviations for the two variants “Primary+Cluster” and “Auxiliary+Cluster”, respectively.

Cora CiteSeer Chameleon
0.25 0.5 0.75 0.9 0.95 0.25 0.5 0.75 0.9 0.95 0.25 0.5 0.75 0.9 0.95

GCN 79.1(1.0) 74.7(1.5) 67.4(1.8) 60.1(1.7) 57.9(1.6) 67.2(1.1) 64.5(1.1) 58.7(1.7) 55.7(1.8) 54.9(1.7) 40.0(3.5) 39.6(3.6) 38.3(3.3) 36.7(3.0) 37.2(1.9)

Dual GCN 79.9(0.8) 75.9(1.5) 69.0(1.7) 64.1(2.0) 60.8(1.8) 67.7(1.4) 66.2(2.6) 64.2(3.1) 60.6(3.1) 61.4(2.1) 40.9(3.1) 40.2(3.3) 39.5(2.5) 37.8(2.3) 37.9(1.8)

Prim.+C 78.9(0.8) 74.7(1.5) 67.2(1.7) 62.1(1.9) 59.9(1.1) 67.0(1.1) 64.7(1.3) 62.5(2.1) 60.1(1.5) 59.6(1.9) 41.1(2.8) 39.7(2.7) 38.0(2.4) 35.2(2.1) 31.8(3.1)

Aux.+C 26.2(1.1) 36.7(1.0) 39.4(7.7) 39.8(8.8) 36.1(7.6) 32.5(1.0) 42.4(8.9) 43.4(8.2) 44.3(8.8) 44.6(9.9) 21.5(2.9) 23.5(7.6) 23.6(5.7) 35.7(2.2) 34.5(2.2)

larger label rates of {10, 20} and the performance degra-
dation is substantial with smaller label rates. The variant
of Primary+Cluster has a similar performance as the base
model GCN. This suggests the fined-grained clustering loss
alone cannot help the primary module, while the auxiliary
module, which constructs new graph structures from the
fine-grained clustering, plays an essential role in promot-
ing message propagation across the graph and overcoming
the local overfitting problem caused by small label rates.
By dropping the primary module, the performance of Aux-
iliary+Cluster is significantly poorer than the full model.
This suggests that the auxiliary module can be easily mis-
led by its constructed dense adjacency matrix without using
the primary module to learn discriminative node embed-
dings from the original graph and labeled nodes. Overall
the results in Table 5 demonstrate that both the primary and
auxiliary modules make essential contributions to the ef-
fective performance of the joint Dual GNN learning frame-
work with a very limited number of labeled nodes.

The comparison results with different edge corruption rates
are reported in Table 6. From the table, we can see that
all variants have inferior performance to the full model ex-
cept the Primary+Cluster on Chameleon with a very low
edge corruption rate of 0.25, while the performance gap be-
tween the variants and the full model increases as the edge
corruption rate of the graph structure increases. The vari-
ant of Primary+Cluster has similar performance as the base
model at low edge corruption rates while obtaining better
performance than the base model at higher edge corruption
rates on the citation datasets. This suggests that the fined-
grained clustering loss is able to enhance node embedding
learning at high graph structure corruption rates, improv-
ing the performance of the base model. However, the per-
formance of Primary+Cluster cannot match that of the full
Dual framework, which highlights the importance of the

auxiliary module. This suggests constructing a new graph
structure from the fine-grained clustering is crucial for pro-
moting message propagation across the graph and counter-
ing the effect of edge deletion attacks on the input graph
structure. As for the Auxiliary+Cluster variant, its perfor-
mance is significantly inferior to that of the full model, sim-
ilar to the case with few labeled nodes, which indicates us-
ing the primary module to induce good node embeddings is
an important foundation for building the auxiliary module.
These results in Table 6 again validate the contribution of
each module in the proposed framework and highlight the
importance of the joint Dual learning framework.

5 CONCLUSION

In this paper, we proposed a novel Dual GNN learning
framework to address the drawbacks of standard GNN
models on handling scarce labeled nodes and noisy graph
structures for semi-supervised node classification. The pro-
posed framework consists of two modules. The primary
GNN module works on the original input graph, while the
auxiliary module employs a new adjacency matrix con-
structed using fine-grained spectral clustering to facilitate
message propagation across the graph. The two modules
and the spectral clustering are learned under a joint op-
timization framework. This dual learning framework can
be applied on many existing GNN baselines. We con-
ducted experiments with four GNN baseline models, and
the experimental results demonstrated that the proposed
framework is robust to scarce labels and noisy graph struc-
tures. Moreover, the proposed Dual GNN learning frame-
work significantly improves the GNN baselines and outper-
forms many state-of-the-art methods on benchmark graph
datasets, which validates the efficacy of the Dual GNN de-
sign with limited supervision.
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