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Abstract

Measurement error is ubiquitous in many
variables – from blood pressure recordings
in physiology to intelligence measures in
psychology. Structural equation models
(SEMs) account for the process of measure-
ment by explicitly distinguishing between la-
tent variables and their measurement indica-
tors. Users often fit entire SEMs to data, but
this can fail if some model parameters are
not identified. The model-implied instru-
mental variables (MIIVs) approach is a more
flexible alternative that can estimate subsets
of model parameters in identified equations.
Numerous methods to identify individual
parameters also exist in the field of graph-
ical models (such as DAGs), but many of
these do not account for measurement ef-
fects. Here, we take the concept of “latent-
to-observed” (L2O) transformation from the
MIIV approach and develop an equivalent
graphical L2O transformation that allows
applying existing graphical criteria to latent
parameters in SEMs. We combine L2O trans-
formation with graphical instrumental vari-
able criteria to obtain an efficient algorithm
for non-iterative parameter identification in
SEMs with latent variables. We prove that
this graphical L2O transformation with the
instrumental set criterion is equivalent to
the state-of-the-art MIIV approach for SEMs,
and show that it can lead to novel identifi-
cation strategies when combined with other
graphical criteria.
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1 INTRODUCTION

Graphical models such as directed acyclic graphs
(DAGs) are currently used in many disciplines for
causal inference from observational studies. How-
ever, the variables on the causal pathways modelled
are often different from those being measured. Imper-
fect measures cover a broad range of sciences, includ-
ing health and medicine (e.g., blood pressure, oxygen
level), environmental sciences (e.g., measures of pol-
lution exposure of individuals), and the social (e.g.,
measures of socioeconomic status) and behavioral sci-
ences (e.g., substance abuse).

Many DAG models do not differentiate between the
variables on the causal pathways and their actual mea-
surements in a dataset (Tennant et al., 2019). While
this omission is defensible when the causal variables
can be measured reliably (e.g., age), it becomes prob-
lematic when the link between a variable and its mea-
surement is more complex. For example, graphical
models employed in fields like Psychology or Edu-
cation Research often take the form of latent variable
structural equation models (LVSEMs, Figure 1; Bollen
(1989)), which combine a latent level of unobserved
variables and their hypothesized causal links with a
measurement level of their observed indicators (e.g., re-
sponses to questionnaire items). This structure is so
common that LVSEMs are sometimes simply referred
to as SEMs. In contrast, models that do not differen-
tiate between causal factors and their measurements
are traditionally called simultaneous equations or path
models1.

Once a model has been specified, estimation can be
performed in different ways. SEM parameters are
often estimated all at once by iteratively minimizing
some difference measure between the observed and
the model-implied covariance matrices. However,
this “global” approach has some pitfalls. First, all

1Path models can be viewed as LVSEMs with all noise
set to 0; some work on path models, importantly by Sewall
Wright himself, does incorporate latent variables.
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Figure 1: SEM based on the Industrialization and Polit-
ical Democracy model (Bollen, 1989) with latent vari-
ables l1 (industrialization), and l2 (political democ-
racy). The model contains 3 indicators for l1: (1)
gross national product (y1), (2) energy consump-
tion (y2), and (3) labor force in industry (y3), and
4 indicators for l2: (1) press freedom rating (y4),
(2) political opposition freedom (y5), (3) election
fairness (y6), and (3) legislature effectiveness (y7).
λ11 . . . λ13, λ24 . . . λ27, and β11 are the path coefficients.
ϵ1, . . . , ϵ7, and ζ1 represent noise/errors.

model parameters must be algebraically identifiable
for a unique minimum to exist; if only a single model
parameter is not identifiable, the entire fitting proce-
dure may not converge (Boomsma, 1985) or provide
meaningless results. Second, local model specification
errors can propagate through the entire model (Bollen
et al., 2007). Alternatively, Bollen (1996) introduced
a “local”, equation-wise approach for SEM parame-
ter identification termed “model-implied instrumen-
tal variables” (MIIVs), which is non-iterative and ap-
plicable even to models where not all parameters are
simultaneously identifiable. MIIV-based SEM identi-
fication is a mature approach with a well-developed
underlying theory as well as implementations in mul-
tiple languages, including R (Fisher et al., 2019).

Of all the model parameters that are identifiable in
principle, any given estimator (such as the MIIV-based
approach) can typically only identify parameters in
identified equations and identified parameters in un-
deridentified equations. Different identification meth-
ods are therefore complementary and can allow more
model parameters to be estimated. Having a choice
of such methods can help users to keep the stages of
specification and estimation separated. For example, a
researcher who only has access to global identifica-
tion methodology might be tempted to impose model
restrictions just to “get a model identified” and not
because there is a theoretical rationale for the restric-
tions imposed. With more complementary methods to
choose from, researchers can instead base model spec-
ification on substantive theory and causal assump-
tions.

The development of parameter identification method-
ology has received intense attention in the graphical

modeling field. The most general identification algo-
rithm is Pearl’s do-calculus, which provides a com-
plete solution in non-parametric models (Huang and
Valtorta, 2006; Shpitser and Pearl, 2006). The back-
door and front-door criteria provide more convenient
solutions in special cases (Pearl, 2009). While there is
no practical general algorithm to decide identifiabil-
ity for models that are linear in their parameters, there
has been a flurry of work on graphical criteria for this
case, such as instrumental sets (Brito and Pearl, 2002),
the half-trek criterion (Foygel et al., 2012), and auxil-
iary variables (Chen et al., 2017). Unfortunately, these
methods were all developed for the acyclic directed
mixed graph (ADMG) framework and require at least
the variables connected to the target parameter to be
observed – which is rarely the case in SEMs. Likewise,
many criteria in graphical models are based on “sep-
arating” certain paths by conditioning on variables,
whereas no such conditioning-based criteria exist for
SEMs.

The present paper aims to make identification meth-
ods from the graphical model literature available to
the SEM field. We offer the following contributions:

• We note that Bollen (1996)’s latent-to-observed
(L2O) transformation that transforms a latent
variable SEM into a model with only observed
variables can be used more generally in models
containing arbitrary mixtures of latent and ob-
served variables (Section 3).

• We present a graphical equivalent of L2O trans-
formation that allows us to apply known graphi-
cal criteria to SEMs (Section 4).

• We prove that Bollen’s MIIV approach (Bollen,
1996; Bollen and Bauer, 2004; Bollen et al., 2022)
is equivalent to a graphical L2O transformation
followed by the application of the graphical in-
strumental set criterion (Brito and Pearl (2002);
Section 5).

• We give examples where the graphical L2O trans-
formation approach can identify more param-
eters compared to the MIIV approach imple-
mented in the R package MIIVsem (Fisher et al.
(2019); Section 6).

Thus, by combining the L2O transformation idea from
the SEM literature with identification criteria from the
graphical models field, we bridge these two fields –
hopefully to the benefit of both.
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2 BACKGROUND

In this section, we give a brief background on basic
graphical terminology and define SEMs.

2.1 Basic Terminology

We denote variables using lowercase letters (xi), sets
and vectors of variables using uppercase letters (X),
and matrices using boldface (Λ). We write the car-
dinality of a set V as |V|, and the rank of a matrix Λ
as rk(Λ). A mixed graph (or simply graph) G = (V,A)
is defined by sets of variables (nodes) V = {x1, . . . , xn}

and arrows A, where arrows can be directed (xi → x j)
or bi-directed (xi ↔ x j). A variable xi is called a parent
of another variable x j if xi → x j ∈ A, or a spouse of x j if
xi ↔ x j ∈ A. We denote the set of parents of xi in G as
PaG(xi).

Paths: A path of length k is a sequence of k variables
such that each variable is connected to its neighbours
by an arrow. A directed path from xi to x j is a path on
which all arrows point away from the start node xi.
For a pathπ, letπ[xi ∼ x j] denote its subsequence from
xi to x j, in reverse order when xi occurs after x j; for ex-
ample, if π = x1 ← x2 → x3 then π[x2 ∼ x3] = x2 → x3
and π[x1 ∼ x2] = x2 → x1. Importantly, this definition
of a path is common in DAG literature but is different
from the SEM literature, where “path” typically refers
to a single arrow between two variables. Hence, a
path in a DAG is equivalent to a sequence of paths in
path models. An acyclic directed mixed graph (ADMG)
is a mixed graph with no directed path of length ≥ 2
from a node to itself.

Treks and Trek Sides: A trek (also called open path)
is a path that does not contain a collider, that is, a
subsequence xi → x j ← xk. A path that is not open is a
closed path. Letπ be a trek from xi to x j, thenπ contains
a unique variable t called the top, also written as π↔,
such thatπ[t ∼ xi] andπ[t ∼ x j] are both directed paths
(which could both consist of a single node). Then we
call π← := π[t ∼ xi] the left side and π→ := π[t ∼ x j] the
right side of π.2

Trek Intersection: Consider two treks πi and π j, then
we say thatπi andπ j intersect if they contain a common
variable v. We say that they intersect on the same side
(have a same-sided intersection) if v occurs on π←i
and π←j or π→i and π→j ; in particular, if v is the top of
πi or π j, then the intersection is always same sided.
Otherwise, πi and π j intersect on opposite sides (have an
opposite-sided intersection).

2In the literature, treks are also often represented as tu-
ples of their left and right sides.

t-separation: Consider two sets of variables, L and
R, and a set T of treks. Then we say that the tuple
(L,R) t-separates (is a t-separator of) T if every trek
in T contains either a variable in L on its left side
or a variable in R on the right side. For two sets of
variables, A and B, we say that (L,R) t-separates A and
B if it t-separates all treks between A and B. The size
of a t-separator (L,R) is |L| + |R|.

2.2 Structural Equation Models

We now define structural equation models (SEMs) as
they are usually considered in the DAG literature (e.g.,
Sullivant et al., 2010). This definition is the same as the
Reticular Action Model (RAM) representation (McAr-
dle and McDonald, 1984) from the SEM literature. A
structural equation model (SEM) is a system of equations
linear in their parameters such that:

X = BX + E

where X is a vector of variables (both latent and ob-
served), B is a |X| × |X| matrix of path coefficients, and
E = {ϵ1, . . . , ϵ|X|} is a vector of error terms with a posi-
tive definite covariance matrix Φ (which has typically
many or most of its off-diagonal elements set to 0)
and zero means.3 The path diagram of an SEM (B,Φ)
is a mixed graph with nodes V = X ∪ E and arrows
A = {ϵi → xi | i ∈ 1, . . . , |X|} ∪ {xi → x j | B[i, j] ,
0} ∪ {ϵi ↔ ϵ j | i , j,Φ[i, j] , 0}. We also write βxi→x j

for the path coefficients in B and ϕϵi for the diag-
onal entries (variances) in Φ. Each equation in the
model corresponds to one node in this graph, where
the node is the dependent variable and its parent(s)
are the explanatory variable(s). Each arrow represents
one parameter to be estimated, i.e., a path coefficient
(e.g., directed arrow between latents and observed
variables), a residual covariance (bi-directed arrow), or
a residual variance (directed arrow from error term to la-
tent or indicator). However, some of these parameters
could be fixed; for example, at least one parameter per
latent variable needs to be fixed to set its scale, and co-
variances between observed exogenous variables (i.e.,
observed variables that have no parents) are typically
fixed to their observed values. In this paper, we focus
on estimating the path coefficients. We only consider
recursive SEMs in this paper – i.e., where the path di-
agram is an ADMG – even though the methodology
can be generalized.

Sullivant et al. (2010) established an important con-
nection between treks and the ranks of submatrices of
the covariance matrix, which we will heavily rely on
in our paper.

3This can be extended to allow for non-zero means, but
our focus here is on the covariance structure, so we omit
that for simplicity.
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Theorem 1. Trek separation; (Sullivant et al., 2010, The-
orem 2.8) Given an SEM G with an implied covariance
matrix Σ, and two subsets of variables A,B ⊆ X,

rk(Σ[A,B]) ≤ min
{
|L| + |R| | (L,R) t-separates A and B

}
where the inequality is tight for generic covariance matrices
implied by G.

In the special case A = {x1},B = {x2}, Theorem 1 im-
plies that x1 and x2 can only be correlated if they are
connected by a trek. Although the compatible covari-
ance matrices of SEMs can also be characterized in
terms of d-separation (Chen and Pearl, 2014), we use
t-separation for our purpose because it does not re-
quire conditioning on variables, and it identifies more
constraints on the covariance matrix implied by SEMs
than d-separation (Sullivant et al., 2010).

3 LATENT-TO-OBSERVED
TRANSFORMATIONS FOR SEMS

A problem with IV-based identification criteria is that
they cannot be directly applied to latent variable pa-
rameters. The MIIV approach addresses this issue
by applying the L2O transformation to these model
equations, such that they only consist of observed
variables. The L2O transformation in Bollen (1996)
is presented on the LISREL representation of SEMs
(see Supplementary Material). In this section, we first
briefly introduce “scaling indicators”, which are re-
quired for performing L2O transformations. We then
use it to define the L2O transformation on the RAM
notation (defined in Section 2.2) and show that with
slight modification to the transformation, we can also
use it to partially identify equations. We will, from
here on, refer to this transformation as the “algebraic
L2O transformation” to distinguish it from the purely
graphical L2O transformation that we introduce later
in Section 4.

3.1 Scaling Indicators

The L2O transformation (both algebraic and graphi-
cal) uses the fact that any SEM is only identifiable if
the scale of each latent variable is fixed to an arbitrary
value (e.g., 1), introducing new algebraic constraints.
These constraints can be exploited to rearrange the
model equations in such a way that latent variables
can be eliminated.

The need for scale setting is well known in the SEM
literature and arises from the following lemma (since
we could not find a direct proof in the literature –
perhaps due to its simplicity – we give one in the
Appendix).

Lemma 1. (Rescaling of latent variables). Let xi be a vari-
able in an SEM (B,Φ). Consider another SEM (B′,Φ′)
where we choose a scaling factor α , 0 and change the
coefficients as follows: For every parent p of xi, β′p→xi

=

α−1 βp→xi ; for every child c of xi, β′xi→c = α βxi→c; for every
spouse s of xi, ϕ′xi↔s = α

−1ϕxi↔s; and ϕ′xi
= α−2ϕxi . Then

for all j, k , i, Σ[ j, k] = Σ′[ j, k].

If xi is a latent variable in an SEM, then Lemma 1
implies that we will get the same implied covariance
matrix among the observed variables for all possible
scaling factors. In other words, we need to set the scale
of xi to an arbitrary value to identify any parameters
in such a model. Common choices are to either fix
the error variance of every latent variable such that its
total variance is 1, or to choose one indicator per latent
and set its path coefficient to 1. The latter method is
often preferred because it is simpler to implement.
The chosen indicators for each latent are then called
the scaling indicators. However, note that Lemma 1
tells us that we can convert any fit based on scaling
indicators to a fit based on unit latent variance, so this
choice does not restrict us in any way.

3.2 Algebraic L2O Transformation for RAM

The main idea behind algebraic L2O transformation
is to replace each of the latent variables in the model
equations by an observed expression involving the
scaling indicator. As in Bollen (1996), we assume that
each of the latent variables in the model has a unique
scaling indicator. We show the transformation on a
single model equation to simplify the notation. Given
an SEM G on variables X, we can write the equation
of any variable xi ∈ X as:

xi = ϵi +
∑

x j∈Co(xi)

βx j→xi x j

where Co(xi) = {Col(xi),Coo(xi)} is the set of covariates
in the equation for xi. Col(xi) and Coo(xi) are the latent
and observed covariates, respectively. Since each la-
tent variable x j has a unique scaling indicator xs

j, we
can write the latent variable as x j = xs

j − ϵxs
j
. Replacing

all the latents in the above equation with their scaling
indicators, we obtain:

xi = ϵi +
∑

x j∈Col(xi)

βx j→xi (x
s
j − ϵxs

j
) +

∑
xk∈Coo(xi)

βxk→xi xk

If xi is an observed variable, the transformation is com-
plete as the equation only contains observed variables.
But if xi is a latent variable, we can further replace xi
as follows:
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xs
i = ϵi + ϵxs

i
+
∑

x j∈Col(xi)

βx j→xi (x
s
j − ϵxs

j
) +

∑
xk∈Coo(xi)

βxk→xi xk

As the transformed equation now only consists of ob-
served variables, IV-based criteria can be applied to
check for identifiability of parameters.

3.3 Algebraic L2O Transformations for Partial
Equation Identification

In the previous section, we used the L2O transforma-
tion to replace all the latent variables in the equation
with their scaling indicators, resulting in an equation
with only observed variables. An IV-based estimator
applied to these equations would try to estimate all
the parameters together. However, there are cases (as
shown in Section 6) where not all of the parameters of
an equation are identifiable. If we apply L2O transfor-
mation to the whole equation, none of the parameters
can be estimated.

Here, we outline an alternative, “partial” L2O trans-
formation that replaces only some of the latent vari-
ables in the equation. Assuming Coi

l(xi) ⊂ Col(xi) as
the set of latent variables whose parameters we are
interested in estimating, we can write the partial L2O
transformation as:

xi = ϵi+
∑

x j∈Coi
l(xi)

βx j→xi (x
s
j − ϵxs

j
)+

∑
xk∈Col(xi)\Coi

l(xi)

βxk→xi xk +
∑

xl∈Coo(xi)

βxl→xi xl

Similar to the previous section, we can further apply
L2O transformation for xi if it is also a latent variable.
As the parameters of interest are now with observed
covariates in the transformed equation, IV-based cri-
teria can be applied to check for their identifiability
while treating the variables in Col(xi) \ Coi

l(xi) as part
of the error term.

4 GRAPHICAL L2O
TRANSFORMATION

Having shown the algebraic L2O transformation, we
now show that these transformations can also be done
graphically for path diagrams. An important differ-
ence is that the algebraic transformation is applied
to all equations in a model simultaneously by replac-
ing all latent variables, whereas we apply the graphi-
cal transform only to a single equation at a time (i.e.,
starting from the original graph for every equation).
Applying the graphical transformation to multiple
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Figure 2: Example L2O transformations for path co-
efficients (a) from a latent to an observed variable; (b)
from an observed to a latent variable; (c) between two
latent variables.

equations simultaneously results in a non-equivalent
model with a different implied covariance matrix.

Given an SEM G, the equation for any variable x j can
be written in terms of its parents in the path diagram
as: x j =

∑
xk∈PaG(x j) βxk→x j xk + ϵx j . Using this equation,

we can write the relationship between any latent vari-
able x j and its scaling indicator xs

j as (where βx j→xs
j

is
fixed to 1):

x j = xs
j − ϵxs

j
−

∑
xk∈PaG(xs

j)\x j

βxk→xs
j
xk (1)

We use this graphical L2O transformation as follows.
Our goal is to identify a path coefficient βxi→x j in a
model G. If both xi and x j are observed, we leave the
equation untransformed and apply graphical identi-
fication criteria (Chen and Pearl, 2014). Otherwise,
we apply the graphical L2O transformation to Gwith
respect to xi, x j, or both variables – ensuring that the
resulting modelG′ contains an arrow between two ob-
served variables x′i and x′j, where the path coefficient
βx′i→x′j in G′ equals βxi→x j in G.

We now illustrate this approach on an example for
each of the three possible combinations of latent and
observed variables.

Latent-to-observed arrow: Consider the arrow l1 →
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y3 in Figure 2a, and let β be the path coefficient of this
arrow. To perform the L2O transformation, we start
with the model equation involving β:

y3 = βl1 + βy5→y3 y5 + ϵ3

We then use Equation 1 to write the latent variable,
l1 in terms of its scaling indicator, y2 as: l1 = y2 −

ϵ2 + βy1→y2 y1, and replace it in the above equation to
obtain:

y3 = βy2 − ββy1→y2 y1 + βy5→y3 y5 − βϵ2 + ϵ3

The transformation has changed the equation for y3,
which now regresses on the observed variables y2, y1,
and y5, as well as the errors ϵ2 and ϵ3. We make the
same changes in the graphical structure by adding the
arrows y2 → y3, y1 → y3, ϵ2 → y3, and removing the
arrow l1 → y3.

Observed-to-latent arrow: Consider the arrow y1 →

l1 in Figure 2b with coefficient β. For L2O transforma-
tion in this case, we apply Equation 1 to replace l1 in
the model equation l1 = βy1 + ζ1 to obtain:

y4 = βy1 + βy3→y4 y3 + βy2→y4 y2 + ζ1 + ϵ4

The equivalent transformation to the path diagram
consists of adding the arrows y1 → y4, and ζ1 → y4,
and removing the arrows: l1 → y4 and y1 → l1.

Latent-to-latent arrow: Consider the arrow l1 → l2
in Figure 2c with coefficient β. In this case, we again
apply Equation 1 to replace both l1 and l2 in the model
equation for l2 = βl1+ζ2. This is equivalent to applying
two L2O transformations in sequence and leads to the
transformed equation:

y2 = βy1 − βϵ1 + ζ2 + ϵ2

Equivalently, we now add the arrows y1 → y2, ζ2 →

y2, and ϵ1 → y2. We also remove the arrows l2 → y2
and l1 → l2.

5 MODEL-IMPLIED INSTRUMENTAL
VARIABLES ARE EQUIVALENT TO
INSTRUMENTAL SETS

After applying the L2O transformations from the pre-
vious sections, we can use either algebraic or graphical
criteria to check whether the path coefficients are iden-
tifiable. In this section, we introduce the Instrumental
set criterion (Brito and Pearl, 2002) and the MIIV ap-
proach from Bollen (1996) that precedes it, and show
that they are equivalent. Importantly, even though we
refer to the MIIV approach as an algebraic criterion to
distinguish it from the graphical criterion, it is not a

purely algebraic approach and utilizes the graphical
structure of the model to infer correlations with error
terms.

We will first focus on the instrumental set criterion
proposed by Brito and Pearl (2002). We state the cri-
terion below in a slightly rephrased form that is con-
sistent with our notation in Section 2:
Definition 1 (Instrumental Sets (Brito and Pearl,
2002)). Given an ADMG G, a variable y, and a subset
X of the parents of y, a set of variables I fulfills the instru-
mental set condition if for some permutation i1 . . . ik of I
and some permutation x1 . . . xk of X we have:

1. There are no treks from I to y in the graphGX obtained
by removing all arrows between X and y.

2. For each j, 1 ≤ j ≤ k, there is a trek π j from I j to X j
such that for all i < j: (1) Ii does not occur on any trek
π j; and (2) all intersections between πi and π j are on
the left side of πi and the right side of π j.

Its reliance on permutation makes the instrumental set
criterion fairly complex; in particular, it is not obvious
how an algorithm to find such sets could be imple-
mented, since enumerating all possible permutations
and paths is clearly not a practical option. Fortunately,
we can rewrite this criterion into a much simpler form
that does not rely on permutations and has an obvious
algorithmic solution.
Definition 2 (Permutation-free Instrumental Sets).
Given an ADMG G, a variable y and a subset X of the
parents of y, a set of variables I fulfills the permutation-
free instrumental set condition if: (1) There are no treks
from I to y in the graphGX obtained by removing all arrows
leaving X, and (2) All t-separators (L,R) of I and X have
size ≥ k.
Theorem 2. The instrumental set criterion is equivalent
to the permutation-free instrumental set criterion.

Proof. This is shown by adapting a closely related ex-
isting result (van der Zander and Liśkiewicz, 2016).
See Supplement for details. □

Definition 3 (Algebraic Instrumental Sets (Bollen
(1996), Bollen (2012))). Given a regression equation y =
B · X + ϵ, where X possibly correlates with ϵ, a set of vari-
ables I fulfills the algebraic instrumental set condition
if: (1) I ⊥⊥ ϵ, (2) rk(Σ[I,X]) = |X|, and (3) rk(Σ[I]) = |I|

Having rephrased the instrumental set criterion with-
out relying on permutations, we can now establish a
correspondence to the algebraic condition for instru-
mental variables – which also serves as an alternative
correctness proof for Definition 1 itself. The proof of
the Theorem is included in the Supplementary Mate-
rial.
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Figure 3: (a) Example model following the structure
of Figure 1 with explicit error terms. (b) L2O trans-
formation for the model in (a) for identifying both
coefficients of the equation for y3 simultaneously. We
end up with the regression equation y3 ∼ y2 + y4 and
can identify both coefficients using y1 and y5 as in-
strumental variables.

Theorem 3. Given an SEM (B,Φ) with path diagram
G = (V,A) and a variable y ∈ V, let X be a subset of the
parents of y in G. Then a set of variables I ⊆ V fulfills
the algebraic instrumental set condition with respect to the
equation

y = B · X + ϵ; where ϵ =
∑

p∈PaG(y)\X

p + ϵy

if and only if I fulfills the instrumental set condition with
respect to X and y in G.

In the R package MIIVsem (Fisher et al., 2019) imple-
mentation of MIIV, all parameters in an equation of
an SEM are simultaneously identified by (1) applying
an L2O transformation to all the latent variables in
this equation; (2) identifying the composite error term
of the resulting equation; and (3) applying the alge-
braic instrumental set criterion based on the model
matrices initialized with arbitrary parameter values
and derived total effect and covariance matrices; see
Bollen and Bauer (2004) for details. Theorem 3 implies
that the MIIVsem approach is generally equivalent to
first applying the graphical L2O transform followed
by the instrumental set criterion (Definition 1) using
the set of all observed parents of the dependent vari-
able in the equation as X.

6 EXAMPLES

Having shown that the algebraic instrumental set cri-
terion is equivalent to the graphical instrumental set
criterion, we now show some examples of identifi-
cation using the proposed graphical approach and

compare it to the MIIV approach implemented in MI-
IVsem 4. First, we show an example of a full equation
identification where we identify all parameters of an
equation altogether. Second, we show an example of
partial L2O transformation (as shown in Section 3.3)
that allows us to estimate a subset of the parame-
ters of the equation. Third, we show an example
where the instrumental set criterion fails to identify
any parameters, but the conditional instrumental set
criterion (Brito and Pearl, 2002) can still identify some
parameters. Finally, we show an example where the
parameters are inestimable even though the equation
is identified.

6.1 Identifying Whole Equations

In this section, we show an example of identifying
a whole equation using the graphical criterion. Let
us consider an SEM adapted from Shen and Takeuchi
(2001), as shown in Figure 3a. We are interested in
estimating the equation y3 ∼ l1 + l2, i.e., parameters
λ13 and λ23. Doing a graphical L2O transformation
for both these parameters together adds the edges
y2 → y3, y4 → y3, ϵ2 → y3, and ϵ4 → y3, and re-
moves the edges l1 → y3, and l2 → y3, resulting in the
model shown in Figure 3b. Now, for estimating λ13
andλ23 we can use the regression equation y3 ∼ y2+y4,
with y1 and y5 as the IVs. As y1 and y5 satisfy Defi-
nition 2, both the parameters are identified. Both of
these parameters are also identifiable using MIIVsem.

6.2 Identifying Partial Equations

For this section, we consider a slightly modified ver-
sion of the model in the previous section. We have
added a correlation between ϵ1 and ϵ2, and have al-
lowed the latent variables, l1 and l2 to be uncorrelated,
as shown in Figure 4a. The equation y3 ∼ l1 + l2 is
not identified in this case, as y5 is the only available
IV (Figure 4b). However, using the partial graphical
transformation for l2 while treating l1 as an error term
(Figure 4c), the parameter λ23 can be identified by us-
ing y5 as the IV. As the R package MIIVsem always
tries to identify full equations, it is not able to iden-
tify either of the parameters in this case – although
this would be easily doable when applying the MIIV
approach manually.

6.3 Identification Based on Conditional IVs

So far, we have only considered the instrumental set
criterion, but many other identification criteria have

4In some examples, a manual implementation of the
MIIV approach can permit estimation of models that are
not covered by the implementation in MIIVsem
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Figure 4: (a) Adapted SEM from Shen and Takeuchi
(2001); modified by making l1 and l2 uncorrelated and
ϵ1 and ϵ2 correlated. (b) Transformed model for esti-
mating y3 ∼ l1 + l2. The equation is not identified as
y5 is the only IV. (c) With partial L2O transformation,
λ23 can be estimated using y5 as the IV.

been proposed for DAGs. For example, we can gener-
alize the instrumental set criteria to hold conditionally
on some set of observed variables (Brito and Pearl,
2002). There can be cases when conditioning on cer-
tain variables allows us to use conditional IVs. This
scenario might not occur when we have a standard
latent and measurement level of variables, but might
arise in specific cases; for example, when there are
exogenous covariates that can be measured without
error (such as the year in longitudinal studies), or in-
terventional variables in experimental settings (such
as complete factorial designs) which are uncorrelated,
and observed exogenous by definition. Figure 5a
shows a hypothetical example in which the latent vari-
ables l1 and l2 are only correlated through a common
cause y6, which could, for instance, represent an ex-
perimental intervention. Similar to the previous ex-
ample, a full identification for y3 ∼ l1+ l2+ y6 still does
not work. Further, because of the added correlation
between l1 and l2, partial identification is not possible
either. The added correlation between l1 and l2 opens
a path from y5 to y3, resulting in y5 no longer being
an IV for y3 ∼ y4. However, the conditional instru-
mental set criterion (Brito and Pearl, 2002) can be used
here to show that the parameter λ23 is identifiable by
conditioning on y6 in both stages of the IV regres-
sion. In graphical terms, we say that conditioning on
y6 d-separates the path between l1 and l2 (Figure 5b),
which means that we end up in a similar situation as
in Figure 4c. We can therefore use y5 as an IV for the
equation y3 ∼ y4 once we condition on y6. As the
MIIV approach does not consider conditional IVs, it
is not able to identify either of the parameters.
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Figure 5: (a) Modified version of the Figure 4a model,
where l1 and l2 share an observed cause y6. λ13 and
λ23 are still not simultaneously identified as no IVs
are available. (b) Even with partial transformation,
λ23 is no longer identified as y5 is not an IV because
of the open paths y5 ← l2 ← y6 → y3 and y5 ←

l2 ← y6 → l1 → y3. However, using the conditional
instrumental set criterion, we can identifyλ23 by using
y5 as a conditional IV for the equation y3 ∼ y4, as
conditioning on y6 blocks the open paths.

6.4 Inestimable Parameters in Identified
Equations

In the previous examples, the L2O transformation cre-
ates a new edge in the model between two observed
variables that has the same path coefficient that we
are interested in estimating. But if the L2O transfor-
mation adds a new edge where one already exists,
the new path coefficient becomes the sum of the exist-
ing coefficient and our coefficient of interest. In such
cases, certain parameters can be inestimable even if
the transformed equation is identified according to
the identification criteria.

In Figure 6a, we have taken a model about the eco-
nomic effects of schooling from Griliches (1977). All
parameters in the equation of y4 are identifiable by
using y1 and y2 as the IVs. However, we get an in-
teresting case if we add two new edges y1 → y3 and
y2 → y4 (Figure 6b): The L2O transformation for the
equation of y4 adds the edges ϵ3 → y4 and y3 → y4, as
shown in Figure 6c. But since the original model al-
ready has the edge y3 → y4, the new coefficient for this
edge becomesλ14+λ34. The regression equation for y4
is still: y4 ∼ y3+y2, and it is identified according to the
instrumental set criterion as y2 and y1 are the IVs for
the equation. But if we estimate the parameters, we
will obtain values for λ24 and λ14 +λ34. Therefore, λ24
remains identifiable in this more general case, but λ14
and λ34 are individually not identified. The graphical
L2O approach allows us to easily visualize such cases
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Figure 6: (a) An example model from Griliches (1977)
about the economic effects of schooling. The model
has 1 latent variable x1 (Ability) with 4 observed vari-
ables y1 (IQ), y2 (Schooling), y3 (knowing how the
world works), and y4 (Income). (b) A slightly modi-
fied version of the model in Figure 6a where we add
two new edges y1 → y2 and y3 → y4. (c) L2O trans-
formed model for the equation of y4. The transformed
regression equation for y4 is: y4 ∼ y3 + y2 but because
of the transformation, the coefficient of y3 has changed
to λ14 + λ34. Because of this changed coefficient, even
though the equation is identified, it is not possible to
estimate either λ14 or λ34 individually.

after transformation.

7 DISCUSSION

In this paper, we showed the latent-to-observed (L2O)
transformation on the RAM notation and how to use
it for partial equation identification. We then gave
an equivalent graphical L2O transformation which
allowed us to apply graphical identification criteria
developed in the DAG literature to latent variable
parameters in SEMs. Combining this graphical L2O
transformation with the graphical criteria for param-
eter identification, we arrived at a generic approach
for parameter identification in SEMs. Specifically, we
showed that the instrumental set criterion combined
with the graphical L2O transformation is equivalent to
the MIIV approach. Therefore, the graphical transfor-
mation can be used as an explicit visualization of the
L2O transformation or as an alternative way to im-
plement the MIIV approach in computer programs.
To illustrate this, we have implemented the MIIV ap-
proach in the graphical-based R package dagitty (Tex-
tor et al., 2017) and the Python package pgmpy (Ankan
and Panda, 2015).

Our equivalence proof allows users to combine re-
sults from two largely disconnected lines of work. By
combining the graphical L2O transform with other
identification criteria, we obtain novel identification
strategies for LVSEMs, as we have illustrated using the

conditional instrumental set criterion. Other promis-
ing candidates would be auxiliary variables (Chen
et al., 2017) and instrumental cutsets (Kumor et al.,
2019). Conversely, the SEM literature is more de-
veloped than the graphical literature when it comes
to non-Gaussian models. For example, MIIV with
two-stages least squares estimation is asymptotically
distribution-free (Bollen, 1996), and our results imply
that normality is not required for applying the instru-
mental set criterion.
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Liśkiewicz, M., and Ellison, G. T. (2017). Robust
causal inference using directed acyclic graphs: the
r package ‘dagitty’. International Journal of Epidemi-
ology, page dyw341.

van der Zander, B. and Liśkiewicz, M. (2016). On
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A L2O Transformation for LISREL
Models

In this section, we show the LISREL notation of SEMs
and L2O transformation as presented in Bollen (1996).

A.1 LISREL Notation

The LISREL notation of SEMs was first introduced
in the LISREL (LInear Structural Relation) software
(Joreskog and Sorbom, 1993). This notation is based
on the assumption that the models have an underlying
latent structure and that the only observed variables
are those that act as the measurement variables for
these latents. This assumption allows us to split the set
of model equations into two subsets representing: the
latent model and the measurement model as follows:

Latent Model:
η = Bη + Γξ + ζ

Measurement Model:
Y = ΛYη + ϵ

X = ΛXξ + δ

(2)

Here, η (ξ) is the sets of endogenous (exogenous) latent
variables, and Y (X) is the set of observed measure-
ment variables for η (ξ). B, Γ, ΛY, and ΛX are the
parameter matrices specifying the path coefficients in
the model. ζ, ϵ, δ are the error vectors with the covari-
ance matrix Φζ, Φϵ, and Φδ respectively. An example
of an SEM in LISREL notation along with its path
model representation is shown in Figure 7.

From the model equations, it appears that many pos-
sible variable relations cannot be specified directly.
For example, it is not clear how to specify direct re-
lations between two observed variables, between an
observed and latent variable, or an error correlation
between ζ and ϵ terms. But these relations can be mod-
elled in the LISREL notation by making some simple
modifications to the model (Bollen, 1989). For exam-
ple, for adding a direct causal relation between two
observed variables, we can instead use two latent vari-
ables (with the same causal direction and path coeffi-
cient), and add the actual observed variables as single
measurement variables for each latent, fixing the mea-
surement errors for these relations to 0. This modifi-
cation transforms the model into having a latent and
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measurement levels which can be represented in the
LISREL notation.
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Figure 7: Example of an SEM in LISREL notation. The
parameters βi j and λi j are the so-called path coefficients
on latent-latent and latent-observed arrows, respec-
tively. The bi-directed arrow represents a correlation
between the error terms that is allowed to be nonzero,
reflecting our belief that η1 and η2 may be correlated.
(a) Model in equation form; (b) path diagram.

A.2 Algebraic L2O Transformation for LISREL
Models

We now introduce the L2O transformation as shown
in Bollen (1996). Let us assume that every latent vari-
able in the model has a unique scaling indicator that
is not an indicator of any other latent variable. Then
we can replace this latent variable by the difference of
its scaling indicator and the scaling indicator’s error
term. For instance, applying this to the latent vari-
able η1 with y1 as its scaling indicator in the model in
Figure 7 we would get

η1 = y1 − ϵ1

Applying this L2O transformation to all latent vari-
ables in the Equation 2 simultaneously, we get:

Y1 = BY1 + ΓX1 + ϵ1 −Bϵ1 − Γδ1 + ζ

Y2 = ΛY2 Y1 −ΛY2ϵ1 + ϵ2
X2 = ΛX2 X1 −ΛX2δ1 + δ2

(3)

where X1 and Y1 are the scaling indicators for η and
ξ respectively. X2 and Y2 are the remaining observed
variables, X2 = X \ X1 and Y2 = Y \ Y1. ΛX2 and
ΛY2 are submatrices of ΛX and ΛY with only rows
corresponding to X2 and Y2. Similarly, the error terms
ϵi and δi correspond to Yi and Xi respectively.

As a result of applying L2O transformation to all the
latent variables, Equation 3 now only contains ob-
served variables and each of the individual equations
now resembles a standard regression equation. How-
ever, by construction, the error terms of these equa-
tions can be correlated with the covariates. This means
that applying a standard least-squares estimator will
provide biased estimates for the model parameters.
To get unbiased estimates we can instead use an In-
strumental Variable (IV) based estimator like 2-SLS
(Two-Stage Least Squares) (Bollen, 1996).

B Implied Covariance Matrix and Trek
Rule

In this section, we show how the implied covari-
ance matrix that we use in the paper is related to the
model parameters. We show this both in algebraic
and graphical terms.

SEMs can be rewritten to a canonical form that does
not require correlations between error terms. For this,
we introduce a new variable xi j for each upper trian-
gular nonzero entry Φ[i, j] and set βxi j→xi = βxi j→x j = 1
and ϕϵi j = Φ[i, j]. The implied covariance matrix Σ of a
canonical SEM is given by :

Σ = B−TΦB−1

The trek rule (Sullivant et al., 2010) allows us to express
covariances in SEMs in graphical terms:

Σ[i, j] =
∑

treks π from xi to x j

ϕπ↔
∏

arrows k→l on trek π

βk→l (4)

Here it is important to note that treks can contain the
same nodes twice; this is required for the trek rule to
work.

C Proofs

In this section, we give proofs for the theorems in the
paper.

C.1 Proof of Lemma 1

Proof. We assume that the SEM has been transformed
to canonical form with no bi-directed arrows. The
covariance of two variables variables u, v , xi, is given
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by the trek rule (Equation 4). Therefore Σ[u, v] will be
the same in G and G′ if no treks from u to v pass
through xi. Otherwise, let π be a trek in G′ from u to v
that includes xi. There are two cases. (1) xi is the top
of π. Then π differs between G and G′ in the sub-trek
x j ← xi → xk with path coefficient product in G′ of
αβxi→x j · α

−2ϕxi · αβxi→xk = βxi→x j · ϕxi · βxi→xk which is
the same as in G. (2) π has a sub-trek x j → xi → xk
with path coefficient product αβx j→xi ·α

−1βxi→xk , which
again is the same as in G. □

C.2 Proof of Theorem 2

Proof. The first conditions in both criteria are equal,
so we prove the equivalence between the second con-
ditions.

⇒: Suppose the condition (2) of the instrumental set
criterion (Definition 1) is satisfied. We need to show
that no two paths πi and π j can be t-separated by one
variable. Indeed, πi and π j can only be t-separated by
one variable if they have a same-sided intersection v.
But this would contradict condition (2) of Definition 1.
Consequently, we need k variables to t-separate all
paths, and since these paths are a subset of the paths
from X to Z, we cannot t-separate these variable sets
with fewer paths either.

⇐: Suppose condition (2) of the trek-based instrumen-
tal set criterion (Definition 2) is satisfied. Then there
must exist sets of k treks from I to X; let π1, . . . , πk be
one such set of treks with minimal total length. No
πi intersects any π j, i , j, on the same side, other-
wise we could separate all paths with k − 1 variables.
Therefore, all intersections between the πi are oppo-
site sided. Define an ordering ⪯ on the πi as follows:
πi ⪯ π j if πi and π j intersect at a variable k, which is
on the left side of πi and on the right side of π j (note
that k cannot be the top of πi or π j).

Suppose that the πi contain a cycle of length l with
respect to ⪯, that is, πi1 ⪯ . . . ⪯ πil ⪯ πi1 . Then we
can combine a prefix of each trek in the cycle with a
suffix of the next trek to create l other treks between
the same variables that cannot be separated by fewer
than l variables, since they do not have same-sided
intersections. But these new paths would be shorter
than the ones on the cycle, a contradiction (see Figure 1
for an example). Hence such a cycle cannot exist, and
the paths can be linearly ordered with respect to ⪯.
Any such ordering fulfills requirement (b) of condition
(2) in Definition 1.

Now assume requirement (a) is violated, that is, there
exist paths πi from Zi to Xi and π j from Z j to X j such
that i < j and Z j also occurs on πi. Then Z j cannot
be on the left side of πi because then Z j would be a

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

(a)

x1 x2 x4

y1 y2 y4

z1 z2 z4

(b)

Figure 8: (a) Paths π1 = x1 ← x2 ← x3 → z2 → x4,
π2 = y1 ← y2 ← y3 → x2 → y4 and π3 = z1 ←

z2 ← z3 → y2 → z4 where π1 ⪯ π2 ⪯ π3 ⪯ π1. (b)
By rearranging segments of these paths, we obtain
shorter paths π′1 = x1 ← x2 → y4, π′2 = y1 ← y2 → z4
and π′3 = z1 ← z2 → x4 between the same variables
that intersect less then the original paths and therefore
cannot be t-separated by fewer variables.

same-sided intersection of πi and π j. But if Z j is on
the right side of πi, then π j ⪯ πi, a contradiction. So
requirement (a) must be fulfilled as well.

□

C.3 Proof of Theorem 3

Proof. Condition 3 of the algebraic instrumental set
criterion holds by definition as we require the covari-
ance matrix Φ to be positive definite (in other words,
we do not allow deterministic relations). It remains to
be shown that the first two conditions of both criteria
are equivalent. For condition (1), assume that some
i ∈ I is not independent of some parent p of y, then
there must be a trek from i to p which can be extended
to y. Conversely, assume that there is a trek π from i
to y in GX. Then π ends with an arrow p → y where
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p < X, so I is not independent of the composite er-
ror term ϵ. For condition (2), the equivalence follows
directly from Theorem 1. □


