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Abstract

This paper presents an approach for iden-
tifying the root causes of collective anoma-
lies given observational time series and an
acyclic summary causal graph which depicts
an abstraction of causal relations present
in a dynamic system at its normal regime.
The paper first shows how the problem of
root cause identification can be divided into
many independent subproblems by group-
ing related anomalies using d-separation.
Further, it shows how, under this setting,
some root causes can be found directly from
the graph and from the time of appearance
of anomalies. Finally, it shows, how the rest
of the root causes can be found by compar-
ing direct effects in the normal and in the
anomalous regime. To this end, an adjust-
ment set for identifying direct effects is in-
troduced. Extensive experiments conducted
on both simulated and real-world datasets
demonstrate the effectiveness of the pro-
posed method.

1 INTRODUCTION

The need for high availability of information systems
requires efficient monitoring tools and a new gener-
ation of AIOps software to automate the identifica-
tion of actionable root causes of anomalies in an IT
monitoring system that can be used to eliminate the
anomalies. In recent years, many approaches have
been developed to identify the root causes of anoma-
lies in multivariate time series. The most common
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direction that is explored considers discovering the
causal graph (Pearl, 2000; Spirtes et al., 2000) that rep-
resents the anomalous regime of the dynamic sys-
tem (Wang et al., 2018; Meng et al., 2020) using ob-
servational time series. Causal discovery methods
are known to rely on strong assumptions which im-
ply that they necessitate validation by an expert es-
pecially when there is no guarantee that these as-
sumptions are satisfied. In addition, causal discov-
ery methods usually need large sample sizes (Malin-
sky and Danks, 2018; Glymour et al., 2019; Assaad
et al., 2022a). However, in many domains, the size of
anomalous data depends on the sampling rate of the
system. Thus systems with low sampling rates will
collect a small size of anomalous data compared to
systems with high sampling rates. In consequence,
sometimes, it is difficult to have enough data for
causal discovery methods. And even if a sufficient
amount of data is collected, the process of validation
of the causal graph by an expert is time consuming
and can delay the elimination of anomalies.

To tackle this issue, we follow a different approach for
root cause analysis which consists of discovering and
reasoning about the summary causal graphs (Assaad
et al., 2022a) which depicts an abstraction of causal
relations present in a dynamic system at its normal
regime. Usually, the size of data collected in the nor-
mal regime is significantly greater than the size of
data collected in the anomalous regime since anoma-
lies are supposed to be rare. In addition, system ex-
perts can have sufficient time to validate the graph
long before the appearance of anomalies. Note that
in this work, we do not adress the problem of causal
discovery of the summary causal graph of the nor-
mal regime and we assume that the graph is already
learned and validated by a system expert.

This paper presents a new method for root cause
identification, which we call EasyRCA, which con-
sists of using a summary causal graph of the normal
regime in order to divide the problem of root cause



Root Cause Identification for Collective Anomalies in Time Series given an Acyclic Summary Causal Graph with Loops

identification into many independent subproblems
by grouping related anomalies using d-separation.
Then for each group, EasyRCA finds the root causes
either directly from the graph and the time of appear-
ance of anomalies or by comparing direct effects in
the normal and anomalous regime. To this end, an
adjustment set for identifying direct effects is intro-
duced.

The remainder of the paper is organized as follows:
Section 2 introduces some terminology and formal-
izes the problem. Section 3 describes related work.
Section 4 presents our method EasyRCA which is
evaluated on simulated and real datasets in Section 5.
Finally, Section 6 concludes the paper.

2 Problem setup

In this section, we first introduce some terminology,
tools, and assumptions which are standard for the
major part. Then, we formalize the problem we are
going to solve.

Suppose that a dynamic system can be represented
by a structural causal model (SCM) (Pearl, 2000) in
which each point in a time series is given by a func-
tion (so-called causal mechanism) of its parents and
an unobserved noise:

Yt := f y
t (Parents(Yt), ξ

y
t ) (1)

where the noise variables are jointly statistically in-
dependent so that there are no hidden confounding ,
i.e., causal sufficiency is satisfied (Spirtes et al., 2000).
The qualitative causal relations induced by such SCM
can be represented by a causal graph in which, under
the causal Markov condition (Spirtes et al., 2000) each
vertex is independent of all other vertices given its
parents, except for its descendants. In dynamic sys-
tems, these causal graphs are referred to as full-time
causal graphs. An example of such a graph is pre-
sented in Figure 1a. The main difficulty in working
with this type of graph is that it is infinite and so in
practice, inferring it is unfeasible. However, it is very
likely that causal relations between two time series
will hold throughout time as such relations are gen-
erally associated with underlying physical processes.
Thus we can assume consistency throughout time.
Assumption 1 (Consistency throughout time, (As-
saad et al., 2022a)). A full time causal graph is said to
be consistent throughout time if all the causal relation-
ships remain constant in direction throughout time.

Under this assumption, the full time causal graph can
be contracted to give a finite graph which is called
a window causal graph. It is a representation of the
causal relations through a time window, the size of

which depends on the maximum lag between a cause
and an effect in the full time causal graph. An exam-
ple of a window causal graph is given in Figure1b.
This said, it is usually difficult for an expert to val-
idate, analyze let alone provide a window causal
graph because it is difficult to determine the tempo-
ral lag between a cause and an effect. Thus, experts
usually rely on the so-called summary causal graph
which is a compact version of the window causal
graph that represents the causal relations between
time series without giving any information about the
temporal lags of these relations. In this work, we as-
sume that the summary causal graph is acyclic but
loops are allowed to represent temporal dependen-
cies within the same time series. An example of such
graph is given in Figure 1c and formally it is defined
as follows:

Definition 1 (Acyclic summary causal graph with
loops). Consider G = (V , E) is a summary causal
graph. The set of vertices in that graph consists of the
set of time series. The arcs E of the graph are defined as
follows: ∀X, Y ∈ V , X causes Y if and only if there exists
some time lag γ such that Xt−γ causes Yt such that γ ≥ 0
for X ̸= Y and γ > 0 for X = Y. If G = (V , E) has no di-
rected cycles other than the edges going from one vertex to
itself, then G = (V , E) is said to be an acyclic summary
causal graph with loops (ASCGL).

In this work, we suppose that the ASCGL is given
either using experts knowledge or learned directly
from observational time series (Peters et al., 2013; As-
saad et al., 2021, 2022b) or by first discovering a win-
dow causal graph1 (Runge et al., 2019; Runge, 2020)
and then deduce the ASCGL from it. The correctness
of such learned graphs usually rests on untestable as-
sumptions and depends on the quality of the data so
it is important to validate it by an expert or to simplify
the problem of causal discovery by providing some
background knowledge.

Now, we turn our focus on anomalies. In this work,
we assume that anomalies are collective.

Definition 2 (Collective anomaly, Chandola et al.
(2009)). In time series, a collective anomaly is a sequence
of data instances that is anomalous with respect to the en-
tire time series.

Point anomalies are disregarded because we are inter-
ested in finding actionable root causes that can elim-
inate anomalies. If an anomaly appears for one time
instant and then disappears this means it was elimi-
nated on its own and do not require any action to re-

1In our framework, if one decides using a causal discov-
ery algorithm that learns a window causal graph, then one
needs to carefully incorporate to these algorithms the con-
straint that the summary causal graphs should be acyclic.
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Figure 1: Different causal graphs that one can infer from three time series: full time causal graph (1a), window
causal graph (1b) and summary causal graph (1c). Note that the first one gives more information but cannot
be inferred in practice, the second one is a schematic viewpoint of the full behavior, whereas the last one is an
abstraction and can be deduced from the window causal graph.

solve it. However, we also consider that those collec-
tive anomalies have a limited size since information
systems are expected to be highly available (with-
out anomalies). In addition, we assume that each
anomaly can be eliminated by removing the interven-
tion that caused it directly or via a causal path. This
is given by the following assumption:

Assumption 2. All anomalies are propagated from an ex-
ternal intervention through the structural causal model.

Given the definition of ASCGL and collective anoma-
lies, we define root causes2 as follows:

Definition 3 (Root causes). Given an ASCGL and a set
of anomalous vertices A, the set of root causes C of A is a
set of vertices that were affected by an external intervention
which led to marginal distribution change in A.

In the literature, there exists two sorts of interventions
(Eberhardt and Scheines, 2007) and both are crucial to
root cause analysis. The first is known as parametric
intervention and it is defined as follows:

Definition 4 (Parametric intervention). Consider an
ASCGL G = (V , E). An intervention on a vertex Y ∈ V
is parametric if the causal mechanism before intervention
is different than after the intervention but Parents(Y,G)
remains unchanged.

The second type of intervention is known as struc-
tural intervention3 and it is defined as follows:

Definition 5 (Structural intervention). Consider an
ASCGL G = (V , E). An intervention on a vertex Y ∈ V

2The ”root causes” are relative to the set of observed
time series.

3Our definition of structural intervention is less restric-
tive than the classical definition which states that the inter-
vention alone completely determines the probability distri-
bution of the variable that underwent the intervention, i.e.,
this variable becomes independent of all of its parents.

is structural if ∃X ∈ V such that X ∈ Parents(Y,G)
before the intervention and X ̸∈ Parents(Y,G) after the
intervention.

Structural interventions can be regarded as a special
case of parametric interventions. But we distinguish
between them because an expert might want to dif-
ferentiate between interventions that provoke a dis-
ruption in the system from the ones that do not. As it
will be shown in Section 4, to find these two types of
interventions we will estimate the direct effects in the
normal and anomalous regime. In consequence, we
assume that causal mechanisms are fixed throughout
time within the same regime (e.g., in Equation 1, f y(.)
is fixed for all t) and we assume the minimality condi-
tion4 (Spirtes et al., 2000) which implies that adjacent
vertices in the ASCGL are statistically dependent in
the normal regime. Finally, to simplify the problem
we assume linear SCMs.

Now that we have introduced the needed tools and
assumptions, the problem we are trying to solve is
formalized as follows:
Problem. Given an ASCGL G = (V , E), a set of anoma-
lous vertices A ⊂ V , the distribution of the time series in
the normal regimeN and in the anomalous regime N̄ , and
the maximal lag between a cause and an effect γmax, we
want to find the smallest set of root causes C of A.

3 RELATED WORKS

Recently, there has been an increase in the popular-
ity of automating the process of root cause analysis.
Among the most popular unsupervised methods that
deal with time series is CloudRanger (Wang et al.,

4The minimality condition is usually assumed by causal
discovery methods either directly or by assuming a
stronger assumption called faithfulness which implies the
minimality condition (Glymour et al., 2019).
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2018) which is decomposed into two steps. First, it
discovers the summary causal graph between anoma-
lous time series using the PC algorithm (Spirtes et al.,
2000) which was introduced for non-temporal data.
Then, identifies root causes through random walk
based on a transition matrix computed using the cor-
relation between time series. As one might expect, the
main limitation of this method is that it uses a non-
temporal algorithm that does not take into account
temporal lags that might exist between two time se-
ries. In addition, correlation does not necessarily rep-
resent the causal effect of one variable on another. To
fix these issues, Meng et al. (2020) proposed a simi-
lar method, called MicroCause, where the causal dis-
covery is done using the PCMCI5 (Runge et al., 2019;
Runge, 2020) algorithm, an extension of the PC algo-
rithm for time series which infers a window causal
graph. Then, MicroCause deduces from the inferred
window causal graph a summary causal graph. Fur-
thermore, to compute the transition matrix for the
random walk, MicroCause estimates the partial corre-
lation between each causally related time series given
their parents in the graph. Conditioning on the par-
ents is a sufficient condition to eliminate all spuri-
ous correlations when there are no hidden common
causes. Note that PC and PCMCI use conditional
independencies to infer the causal graph and such
methods are known to be correct when the faithful-
ness condition is satisfied. Closer to our proposal,
Budhathoki et al. (2021) introduced a formal method,
that we will denote as WhyMDC, to detect the root
cause of a change in a marginal distribution from non
temporal data. WhyMDC considers that a directed
acyclic causal graph is given and as far as we know, it
is the first method to identify root causes by searching
for changes in causal mechanisms.

There exist other root cause identification methods
which are beyond the scope of this paper. For exam-
ple, Budhathoki et al. (2022) proposed a root cause
analysis framework to detect the root cause of a point
anomaly using non-temporal structural causal mod-
els and Zhang et al. (2022) proposed a supervised
learning approach to find root causes.

4 ROOT CAUSE IDENTIFICATION
USING ASCGLs

4.1 Grouping related anomalies

We first give an extension of the concept of d-
seperation to ASCGL and then show how it can be

5There exists two versions of PCMCI, one that allows for
instantaneous relations (Runge, 2020) and one that does not
(Runge et al., 2019). In the experimentation section, we use
the version that allows instantaneous relations.

used to divide the root cause identification problem
into many independent subproblems.

A path is said to be blocked by a set of verticesZ ∈ V if
it contains a chain X →W → Y or a fork X ←W → Y
and W ∈ Z , or it contains a collider X → W ← Y
such that no descendant of W is in Z . A path is said
to be active if it is not blocked. Using blocked paths,
the notion of d-separation is defined as follows:
Definition 6 (d-separation, Pearl (2000)). Given a
DAG G = (V , E) and disjoint sets X ,Y ,Z ⊆ V , X and
Y are d-separated by Z if every path between a vertex in
X and a vertex in Y is blocked by Z . We write d-separated
as X |= GY | Z .

Note that d-separation was introduced for directed
acyclic graph (DAG), so it is directly applicable for
full time graphs and window causal graphs but not
for summary causal graphs. However, it turned out
that the extention to ASCGL is simple. If there are
no loops, d-separation in an ASCGL is equivalent to
the one in Definition 6. For example, in Figure 1c, if
we omit the loops then it is obvious that X |= GW | Z.
If there are loops, at first glance, Definition 6 might
seem to fail. However, The following proposition
shows how Definition 6 can still be used for ASCGL.
Proposition 1. Given an ASCGL G = (V , E) and
disjoint sets X ,Y ,Z ⊆ V , X |= GY | Z if Z =
Parents(X ,G) ∪ Parents(Y ,G) and X |= G ′Y | Z ′ such
that G ′ is a DAG identical to G but loops are omitted and
Z ′ = Parents(X ,G ′) ∪ Parents(Y ,G ′).

Proof. Consider a DAG G ′ without loops. Suppose
X ,Y ⊆ V ′, Z x = Parents(X ,G ′) and Zy =
Parents(Y ,G ′) such that X |= G ′Y | Z x ∪ Zy. Now
consider an identifical graph G but with loops.
∀Xt−γxy , Yt such that γxy ∈ N, the set Z x,t =
Z x

t−γxy
∪ · · · ∪ Z x

t−γxy−γmax
contains all parents of

Xt−γ in Z x and none of its decedants, thus Z x,t

blocks all active paths going into Xt−γxy that does
not pass by the past Xt−γxy . It follows that Z x,t ∪
Xt−γxy−1, · · · , Xt−γxy−γmax blocks all active paths go-
ing into Xt−γxy . Similarly, Zy

t ∪ · · · ∪ Z
y
t−γmax

∪
Yt−1, · · · , Yt−γmax blocks all active paths going into Yt.
Therefore, X |= GY | Z x ∪ Zy in G.

Note that we focused on parents and excluded ances-
tors to avoid separation sets of infinite size. For ex-
ample, in Figure 1c, we can explain why X ̸ |= GW | Z
by looking at the compatible full-time causal graph in
Figure 1a where Xt ̸ |= GWt | Zt−1, Xt−1, Wt−1.

Assumption 2 and Definition 3 imply that root causes
of anomalous verticesA is a subset ofA. So in the fol-
lowing, we consider that A = C ∪ C̄. Such that C rep-
resents root causes and C̄ represents non root causes.
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Proposition 2. Given an ASCGL G = (V , E) and
anomalous vertices A ⊆ V such that A = C ∪ C̄, ∀S ⊆
V\A, C ̸ |= G C̄ | S .

Proof. Consider anomalous vertices A = C ∪ C̄, such
that C is the set of root causes of C̄. If ∃S ⊆ V\A such
that C |= G C̄ | S then by definition of d-separation all
paths between C and C̄ are blocked given S which
means all directed paths from C to C̄ are blocked given
S . In this case, ∀X ∈ C, ∀Y ∈ C̄, there exists no di-
rected path π from X to Y such that each vertex on π
belongs toA. It follows that C̄ is not propagated from
C which contradicts Assumption 2. Hence it must be
the case that ∀S ⊆ V\A, C ̸ |= G C̄ | S .

Definition 7 (Linked anomalous graph). Given an AS-
CGL G = (V , E) and a set of anomalous vertices A ⊂ V .
L = {L1, · · · ,Lm} is a set of linked anomalous graphs if
∀i ∈ {1, · · · , m} Li = (Ai, E i) is a subgraph of G such
that Ai ⊂ A and there exists a set of vertices S ⊂ V\A
such that Ai |= GA\Ai | S .

For example, consider the ASCGL in Figure 2:
B, C, D, W, X, Y, Z are anomalous vertices and A is a
normal vertex. Since B, C, D |= GW, X, Y, Z | A and
B, C, D and W, X, Y, Z are respectively d-connected
given A, then B, C, D and W, X, Y, Z form two linked
anomalous graphs.
Proposition 3. Given an ASCGL G = (V , E) if the set
of linked anomalous graphs is L = {L1, · · · ,Lm}, then
∀i, j ∈ {1, · · · , m},Li ∩ Lj = ∅.

Proof. Consider two different linked anomalous
graphs L1 = (A1, E1) and L2 = (A2, E2) such that
A1 |= GA\A1 | S1 and A2 |= GA\A2 | S2 such that
S1,S2 ⊆ V\A. It follows that if L1 ∩ L2 ̸= ∅ then
∃X ∈ V such that X ∈ A1 and X ∈ A2. In conse-
quence, ̸ ∃S ⊆ V\A such that A1 ̸ |= GA2 | S . Which
means according to Definition 7,A1 andA2 belong to
the same linked anomalous graph.

Proposition 4. Given an ASCGL G = (V , E) if the set
of linked anomalous graphs is L = {L1, · · · ,Lm}, then
∀i, j ∈ {1, · · · , m}, Ci ∩ Cj = ∅ such that Ci is the set of
root causes of Li and Cj is the set of root causes of Lj.

Proof. This follows from Proposition 3.

Propositions 3 and 4 suggest that linked anoma-
lous graphs are modular with respect to each other,
which implies that the set of root causes of each linked
anomalous graph can be identified independently of
the rest of the anomalies in the graph.

Next, we will show how to detect a subset of the root
causes uniquely by looking at the graph and the time
of the first appearance of anomalies on each vertex.

X

Z

W

Y

AB

C

D

Figure 2: An ASCGL with two linked anomalous
graphs. White vertices represents normal vertices and
orange vertices represents anomalous vertices.

4.2 Identifying root causes from the graph

Definition 8 (Sub-root vertex). A sub-root vertex is root
vertex in a linked anomalous graph.

Definition 9 (Time defying vertex). Consider a linked
anomalous graph Li = (Ai, E i). Y is a time defying vertex
if and only if ∀X ∈ Parents(Y,Li) the appearance time
of the anomaly on Y precedes the appearance time of the
anomaly on X.

Proposition 5. Given a linked anomalous graph Li =
(Ai, E i), its set of sub-root vertices Ri, and its set of time
defying vertices T i, thenRi ∪ T i ⊆ C i such that C i is the
true set of root causes in Li.

Proof. Consider a linked anomalous graph Li =
(Ai, E i). 1) By Definition 8, a sub-root vertex in Li

does not have any anomalous parent, it follows from
Assumption 2 and Propositions 3,4 that the anomaly
in this vertex cannot be propagated from other ver-
tices, which implies that it was itself directly affected
by an external intervention which means it is a root
cause. 2) Consider two anomalous vertices X, Y ∈ Ai

such that Parents(Y,Li) = {X}. According to As-
sumption 2, the anomaly in X which appeared at time
t was propagated to Y according to the lag γ ≥ 0
between X and Y of the SCM. It follows that if the
appearance time of the anomaly on Y is t′ such that
t′ < t ≤ t + γ then the anomaly on Y was not propa-
gated from X, which implies that Y was itself directly
affected by an external intervention which means it is
a root cause. Using induction, suppose this is true for
Parents(Y,Li) = {X1, · · · , Xp}. If Parents(Y,Li) =
{X1, · · · , Xp+1} such that t′ precedes the appearance
time of the anomalies on {X1, · · · , Xp} then if t′

does not precede the appearance time on Xp+1, then
the anomaly on Y could have been propagated from
Xp+1, otherwise, we conclude that Y was directly af-
fected by an external intervention which means it is a
root cause.

Proposition 5 states that if a vertex is a sub-root or a
time-defying vertex in a linked anomalous graph then
it belongs to the set of root causes. However, this does
not mean that every element in the set of root causes
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is necessarily a sub-root or a time-defying vertex.
Therefore, there might be a vertex X ∈ Ai\{Ri ∪ T i},
such that X ∈ C i.

4.3 Identifying root causes from data

To find root causes that are neither sub-roots nor
time-defying vertices, we search for changes in the
causal mechanisms. In some cases, we can find these
changes, for each X → Y in a given linked anomalous
graph, by estimating the total effect6 (Pearl, 2000) of
X on Y in the normal regime, defined as

TEN
Xt−γxy→Yt

=EN [Yt|do(Xt−γxy = x)] (2)

− EN [Yt|do(Xt−γxy = x′)]

and the total effect of X on Y in the anomalous regime,
defined as

TEN̄
Xt−γxy→Yt

=EN̄ [Yt|do(Xt−γxy = x)] (3)

− EN̄ [Yt|do(Xt−γxy = x′)],

where EN and EN̄ are respectivly the expectations in
the normal regime and in the anomalous regime and
the temporal lag γxy is between γ̄xy and γmax such
that γ̄xy can be found by the substracting the time of
appearance of anomalies on Y from the time of ap-
pearance of anomalies on X. If there is no directed
path from X to Y (other than X → Y) or if directed
paths between X and Y exist but we know that all
vertices (other than X and Y) on these paths cannot be
root causes, then if TEN

Xt−γxy→Yt
̸= TEN̄

Xt−γxy→Yt
we can

conclude that there is a change in the causal mecha-
nism of Y provoked by an external intervention on Y.

In order to estimate TEN
Xt−γxy→Yt

and TEN̄
Xt−γxy→Yt

from observational data we need to eliminate the do
from the total effect expression. This can be achieved,
when there is no hidden common causes, by the back-
door criterion (Pearl, 2000) which searches for an ad-
justment set of vertices, called back-door set, that
eliminates all spurious correlations between X and Y.
However, the back-door criterion cannot directly be
applied to ASCGL because of loops. In the following
we present an adjustment set for identifying total ef-
fects7 from ASCGLs:

Definition 10 (An adjustment set for total effects
in an ASCGL). Consider an ASCGL G = (V , E),
a maximal lag γmax, two vertices X and Y such that
X → Y in G, and the temporal lag γxy between

6The do operator represents an external intervention.
7A similar result was presented in (Eichler and Didelez,

2007) for summary causal graphs assuming there is no in-
stantaneous relations and allowing for sets of infinite size.

X and Y. The adjustment set for identifying the
total effect relative to (Xt−γxy , Yt) is Bt−γxy ∪ · · · ∪
Bt−γxy−γmax ∪X such that: 1. B = Parents(X,G)\{X};
2. X = {Xt−γxy−1, · · · , Xt−γxy−γmax} if there exists a
loop on X in G, otherwise X = {∅}.
Proposition 6. Given an ASCGL G = (V , E) and a
maximal lag γmax, if Bt−γxy ∪ · · · ∪ Bt−γxy−γmax ∪ X
satisfies Definition 10 in G relative to (Xt−γxy , Yt) then
Bt−γxy ∪ · · · ∪ Bt−γxy−γmax ∪X blocks all activated paths
between Xt−γxy and Yt going into Xt−γxy in every window
causal graph associated with G.

Proof Sketch. If X and Y have no loops in G, then
Bt−γxy ∪ · · · ∪ Bt−γxy−γmax is sufficient to block all
paths between Xt−γxy and Yt going into Xt−γxy since
all possible parents of Xt−γxy are in Bt−γxy ∪ · · · ∪
Bt−γxy−γmax . Given that G is acyclic, Bt−γxy ∪ · · · ∪
Bt−γxy−γmax cannot block any directed path nor cre-
ate any new activated path between Xt−γxy and Yt as
there cannot be any descendant of Xt−γxy in Bt−γxy ∪
· · · ∪ Bt−γxy−γmax . If X and Y have loops then adjust-
ing on B up to γmax cannot block all back-door paths
because there will always be an activated path pass-
ing by Bt−γxy−γmax−i such that i > 0. The only way
to block this path is to add the past of Xt−γxy to the
adjustment set.

When there exist directed path between X and Y the
total effect would no longer be reliable to detect exter-
nal interventions. For example, in Figure 2, if there’s
an external intervention on B then TEN

Ct−γcd→Dt
̸=

TEN̄
Ct−γcd→Dt

due to the change in the causal mecha-
nism of the mediator B of C and D. To avoid such
cases, for each X → Y in a given linked anomalous
graph, we need to estimate the direct effect (Pearl,
2000) of X on Y in the normal regime, defined as

DEN
Xt−γxy→Yt

=EN [Yt|do(Xt−γxy = x,W = w)] (4)

− EN [Yt|do(Xt−γxy = x′,W = w)]

and the direct effect of X on Y in the anomalous
regime, defined as

DEN̄
Xt−γxy→Yt

=EN̄ [Yt|do(Xt−γxy = x,W = w)] (5)

− EN̄ [Yt|do(Xt−γxy = x′,W = w)],

where W = Vt−γmax ∪ · · · ∪ Vt−γxy\{Xt−γxy} ∪ · · · ∪
Vt\{Yt}.

Assuming linearity, the do from the direct effect ex-
pression can be eliminated (i.e., direct effect can be
identifyed) using any adjustment set given by the
single-door criterion (Pearl, 2000) which is not appli-
cable in ASCGLs. In the following, we present an ad-
justment set for direct effects in ASCGLs:
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Definition 11 (An adjustment set for direct effects
in an ASCGL). Consider an ASCGL G = (V , E),
a maximal lag γmax, two vertices X and Y such that
X → Y in G, and the temporal lag γxy between X and
Y. An adjustment set for identifying the direct effect rel-
ative to (Xt−γxy , Yt) is Bt ∪ · · · ∪ Bt−γmax ∪ X ∪ Y
such that: 1. B = Parents(Y,G)\{X, Y};
2. X = {Xt, · · · , Xt−γmax}\{Xt−γxy} and
Y = {Yt−1, · · · , Yt−γmax} if there exists a loop on
Y in G, otherwise Y = {∅}.
Proposition 7. Given an ASCGL G = (V , E) and a
maximal lag γmax, if Bt ∪ · · · ∪ Bt−γmax ∪ X ∪ Y satis-
fies Definition 11 in G relative to (Xt−γxy , Yt) then Bt ∪
· · · ∪ Bt−γmax ∪ X ∪ Y blocks all activated paths between
Xt−γxy and Yt in every window causal graph associated
with G except the direct path Xt−γxy → Yt.

Proof Sketch. If X and Y have no loops in G, then
Bt ∪ · · · ∪ Bt−γmax is sufficient to block all paths from
Xt−γxy to Yt except Xt−γxy → Yt since and all possible
parents of Yt are in Bt ∪ · · · ∪ Bt−γmax . Given that G
is acyclic Bt ∪ · · · ∪ Bt−γmax cannot create any new ac-
tivated path that is not blocked by Bt ∪ · · · ∪ Bt−γmax

since no vertex in Bt ∪ · · · ∪ Bt−γmax is a descendant
of Yt. If X and Y have loops then adjusting on B up
to γmax cannot block all paths because there can be an
activated path passing by the future of Xt−γxy or by
the past of Yt. The only way to block these types of
paths is to add X ∪ Y to the adjustment set.

4.4 An algorithm for root cause identification

Here, we describe our main method called
EasyRCA8, in which the pseudocode is provided in
Algorithm 1. The algorithm starts by finding linked
anomalous graphs (line 1). Then for each linked
anomalous graph, it searches for the sub-roots and
time-defying vertices (line 3). Finally, it searches
for the rest of the root causes by comparing direct
effects in the normal regime with direct effects in
the anomalous regime (lines 4-16). The conditions
in lines 12 and 14 need the minimality condition
because if X and Y are statistically independent given
the adjustment set in the normal regime then an
intervention on Y might not imply any change to the
statistical distribution thus one cannot conclude on
the presence of interventions. The for-loop in line 2
can be parallelized since as showed in Proposition 3
and 4, linked anomalous graphs are modular.

Theorem 1. Given an ASCGL G = (V , E), a set anoma-
lous vertices A ⊆ V , the distribution of the time series in
the normal regimeN and in the anomalous regime N̄ , and

8Code available at https://github.com/ckassaad/
EasyRCA

the maximal lag between a cause and an effect γmax, under
Assumption 2 and the minimality condition, EasyRCA is
capable of identifying the set of root cause C of A.

Proof Sketch. It follows from Propositions 3, 4, 5, 7.

Note that we can also distinguish between para-
metric and structural interventions. Given that
DEN

Xt−γxy→Yt
̸= DEN̄

Xt−γxy→Yt
, if DEN̄

Xt−γxy→Yt
= 0, we

conclude that the intervention on Y is structural, oth-
erwise, we conclude that it is parametric.

Algorithm 1 EasyRCA

Require: ASCGL G = (V , E), distribution of the time
series in the normal regime N and in the anoma-
lous regime N̄ , maximal lag γmax, Anomalies A

1: L1, · · · ,Lm = list of linked anomalous graphs as
in Definition 7

2: for i ∈ {1, · · · , m} do
3: Identify sub-root vertices Ri and time defying

vertices T i using Definition 8 and 9
4: Let Di = []
5: Let Ai be the set of vertices in Li

6: for Y in Ai\{Ri ∪ T i} do
7: for X in Parents(Y,G) do
8: γ̄xy: anomaly lag between X and Y
9: for γxy in {γ̄xy, · · · , γmax} do

10: Identify Bt ∪ · · · ∪Bt−γmax ∪X ∪Y using
Definition 11

11: Estimate DEN
Xt−γxy→Yt

12: if DEN
Xt−γxy→Yt

̸= 0 then

13: Estimate DEN̄
Xt−γxy→Yt

14: if DEN
Xt−γxy→Yt

̸= DEN̄
Xt−γxy→Yt

then

15: Di = [Di, Y]
16: Break
17: ReturnR, T , D

5 EXPERIMENTS

We propose first an extensive analysis on simulated
data, generated from random causal graphs; then we
perform an analysis on a real word dataset.

5.1 Experimental Setup

In practice, to test if DEN
Xt−γxy→Yt

̸= DEN̄
Xt−γxy→Yt

, we

fit 11 multiple linear regressions:

Yt = âxXt−γxy + ∑
Bt−γby∈Bt∪···∪Bt−γmax∪X∪Y

âbBt−γby + ϵ
y
t ,
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such that Bt ∪ · · · ∪ Bt−γmax ∪ X ∪ Y is identified us-
ing Definition 11. One of them fitted on the anoma-
lous data and 10 fitted on different chunks of the nor-
mal data. Then using the Grubbs-test (Grubbs, 1950)
we check if the coefficient âx of the anomalous data is
significantly different than the 10 others âx from the
normal data. To test if TEN̄

Xt−γxy→Yt
= 0, we use a t-

test on the coefficient âx of the anomalous data.

Baselines: We compare EasyRCA with three other
methods9: CloudRanger, MicroCause and a naive
adaptation of WhyMDC to time series for which we
provide a window causal graph. Since CloudRanger
and MicroCause try to solve a harder problem com-
pared to EasyRCA by inferring the summary causal
graph from anomalous data (while EasyRCA con-
siders that the summary causal graph is given),
we also consider another version of EasyRCA, de-
noted as EasyRCA∗, where we suppose that the sum-
mary causal graph is not given. In the first step of
EasyRCA∗, we infer the window causal graph from
normal data using PCMCI (Runge, 2020), the same
causal discovery algorithm used by MicroCause, and
then we deduce the summary causal graph from it.
Note that the summary causal graph obtained from
the window graph that is inferred by PCMCI can be
cyclic even if the true summary causal graph is acyclic
(due to estimation errors). In such cases, we consider
that EasyRCA∗ does not identify any root cause.

Hyper-parameters: For EasyRCA, EasyRCA∗ and
MicroCause, we set the maximal lag γmax to 3 and for
all methods (even though the true γmax is smaller in
our simulation study), we set the significance thresh-
old to 0.01. For EasyRCA∗, CloudRanger and Micro-
Cause we use a Fisher-z-test (Kalisch and Bühlmann,
2007), which is commonly used for causal discovery
when linearity and gaussianity are satisfied. Further-
more, for CloudRanger and MicroCause we set the
walk length to 1000 and the backward step threshold
to 0.1. Lastly, other hyper-parameters in WhyMDC
were set to the default values in the DoWhy package.

Evaluation: To assess the quality of identifying root
causes, we use the F1-score. Since by construction
EasyRCA identifies sub-root and time defying ver-
tices as root causes we do not evaluate their detection.
This ensures a fair comparison with other methods.

5.2 Simulated Data

For simulated data, we start by randomly generating
30 different ASCGLs such that each graph contains 6
vertices, has a maximal degree between 4 and 5, and

9We implemented CloudRanger and MicroCause and
we adapted WhyMDC based on the DoWhy package.

has one root vertex. We consider that all lags in the
window causal graph associated with any of the gen-
erated ASCGL are equal to 1. So the generative pro-
cess (the SCM) is the following:

Yt = ∑
Xt−1∈Parents(Yt ,Gw)

aXt−1 + 0.1ξ
y
t

where a ∼ U{0.1, 1}, ξ
y
t ∼ N (0, 1), Yt denotes the

value of the vertex at time t, Parents(Yt) denotes the
direct parents of Yt in the window causal graph.

For each ASCGL, we choose two root causes (two ver-
tices that will undergo an intervention): the first is
the root of the ASCGL and the second is a randomly
chosen vertex among the non-root vertices. We prop-
agate the effect of each intervention according to the
generating process toward all the descendants of the
vertex which underwent an intervention. We set the
starting time of each intervention according to the
generative process. For example, if the root vertex
X has an intervention at time t and a vertex Y ran-
domly selected to undergo an intervention is a child
of X then the starting time of the intervention on Y is
t + 1. In general, the starting time of the intervention
does not need to respect the generative process, but
we chose to respect it to avoid any time-defying ver-
tices which would give an advantage to our method.

In our experiments, we consider the two types of in-
terventions separately and we vary the anomaly size
between 100 and 2000. In the case of structural in-
terventions, values of the root vertex and values of
a randomly chosen non-root vertex in the anomalous
interval are replaced by data drawn form the distribu-
tion Exp(2). In the case of parametric interventions,
values of the root are set similarly to structural inter-
ventions. Then values of the non-root vertex are re-
generated with new coefficients from U(0.1, 1).

Results: In Figure 3, we report the performance
of each method at detecting structural interven-
tions with respect to the anomaly size. As one
can see, EasyRCA and EasyRCA∗ clearly outperform
other methods, and their performances increases (and
their variance decreases) significantly between the
anomaly of size 100 and the anomaly of size 2000
reaching an F1-score of 1 for both EasyRCA and
EasyRCA∗. The small difference in the performance
of EasyRCA and EasyRCA∗ shows that our method
is robust with respect to small errors in the ASCGL.
WhyMDC and MicroCause have similar results and
outperform CloudRanger. In Figure 4, we report the
performance of each method at detecting parametric
interventions with respect to the anomaly size. As
before, EasyRCA and EasyRCA∗ outperforms other
methods but now the difference between EasyRCA
and EasyRCA∗ is more visible and all other meth-
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ods suffer. However, it is worth noting, that unlike
CloudRanger, WhyMDC and MicroCause were able
to detect the root vertex of each graph as a root cause.

100 200 500 1000 2000
0

0.5

1

Anomaly size

F1

EasyRCA
EasyRCA∗

WhyMDC
MicroCause
CloudRanger

Figure 3: Mean and variance of F1-scores with respect
to structural interventions over 30 graphs containing
one linked anomalous graph with one sub-root vertex
and one structural intervention.
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1

Anomaly size

F1

EasyRCA
EasyRCA∗

WhyMDC
MicroCause
CloudRanger

Figure 4: Mean and variance of F1-scores with respect
to parametric interventions over 30 graphs containing
one linked anomalous graph with one sub-root vertex
and one parametric intervention.

5.3 Real Data

For real data, we consider a dataset10 which consists
of eight time series collected from an IT monitoring
system with a one-minute sampling rate provided by
EasyVista11 such that each of these time series is con-
sidered anomalous and all collective anomalies are
considered to have the same time of appearance and
of size 100. The corresponding ASCGL is provided
in Figure 5 where PMDB represents the extraction of
some information about the messages received by the
Storm ingestion system; MDB refers to an activity of a

10The real IT monitoring data is available at https://easy
vista2015-my.sharepoint.com/:f:/g/personal/aait-bachir
easyvista com/ElLiNpfCkO1JgglQcrBPP9IBxBXzaINrM5
f0ILz6wbgoEQ?e=OBTsUY

11https://www.easyvista.com/fr/produits/ev-observe

PMDB MDB

CMB

MB

LMB

RTMB

GSIB

ESB

Figure 5: ASCGL of the normal regime of an IT mon-
itoring system. All vertices are anomalous in the
anomalous regime. According to EasyVista’s system
experts, PMDB and ESB are expected to be the root
causes of these anomalies.

process that orient messages to other process with re-
spect to different types of messages; CMB represents
the activity of extraction of metrics from messages;
MB represents the activity of insertion of data in a
database; LMB reflects the updates the last values of
metrics in Cassandra; RTMB represents the activity of
searching to merge of data with information coming
from the check message bolt; GSIB represents the ac-
tivity of insertion of historical status in database. ESB
represents the activity of writing data in Elasticsearch.
According to EasyVista’s system experts, PMDB and
ESB are expected to be the root causes of these anoma-
lies.

EasyRCA inferred 3 roots causes, PMDB as a root ver-
tex, in addition to RTMB and ESB as structural inter-
ventions. EasyRCA∗ inferred 5 roots causes, PMDB,
GSIB and MB as root vertices, in addition to RTMB
and ESB as structural interventions. MicroCause in-
ferred that PMDB and MB are the root causes of the
anomalies. CloudRanger inferred that GSIB and MDB
are the root causes. We did not apply WhyMDC in
this real world application because the true window
causal graph is unknown. In terms of the trade-off
between false positives and false negatives, EasyRCA
gives the best result.

6 Conclusion

We adressed the problem of identifying root causes
of collective anomalies using observational time se-
ries and an ASCGL of the normal regime of a given
system. We showed that the problem can be divided
into many independent subproblems and that all root
causes can be identified using the graph and the data.
For future work, it would be interesting to extend this
method for cyclic summary causal graphs, for nonlin-
ear SCMs and to allow for hidden common causes.
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