
Computing Abductive Explanations for Boosted Trees

Gilles Audemard Jean-Marie Lagniez Pierre Marquis Nicolas Szczepanski
Univ. Artois, CNRS, CRIL Univ. Artois, CNRS, CRIL Univ. Artois, CNRS, CRIL, IUF Univ. Artois, CNRS, CRIL

Abstract

Boosted trees is a dominant ML model, exhibiting
high accuracy. However, boosted trees are hardly
intelligible, and this is a problem whenever they
are used in safety-critical applications. Indeed, in
such a context, provably sound explanations for
the predictions made are expected. Recent work
have shown how subset-minimal abductive expla-
nations can be derived for boosted trees, using
automated reasoning techniques. However, the
generation of such well-founded explanations is
intractable in the general case. To improve the
scalability of their generation, we introduce the
notion of tree-specific explanation for a boosted
tree. We show that tree-specific explanations are
provably sound abductive explanations that can
be computed in polynomial time. We also explain
how to derive a subset-minimal abductive explana-
tion from a tree-specific explanation. Experiments
on various datasets show the computational ben-
efits of leveraging tree-specific explanations for
deriving subset-minimal abductive explanations.

1 INTRODUCTION

The deployment of ML models in a large spectrum of ap-
plications has triggered the fast-growing development of
eXplainable AI (XAI) (see for instance (Frosst and Hin-
ton, 2017; Wang and Rudin, 2015; Guidotti et al., 2019;
Hooker et al., 2019; Huysmans et al., 2011; Ignatiev et al.,
2019a; Kim et al., 2018; Lundberg and Lee, 2017; Miller,
2019; Molnar, 2019; Shih et al., 2019b)). Models with high
prediction performance are usually considered as poorly in-
telligible (Molnar, 2019; Arrieta et al., 2020; Lundberg et al.,
2020; Caruana et al., 2020; Rudin et al., 2021). Among them
is the family of boosted trees (Friedman, 2001), which is
among the state-of-the-art ML models when dealing with
tabular data (Borisov et al., 2021).

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

Motivations. The design of efficient methods for inter-
preting ML models and explaining their decisions (i.e., de-
riving local explanations) is acknowledged as an issue of
the utmost importance when ML models are to be used
in safety-critical applications (Marques-Silva and Ignatiev,
2022). Since most existing approaches to explaining ML
models deliver model-agnostic explanations, they cannot be
used in any high-risk context because the explanations that
are generated are unsound: one can find "counterexamples"
for them, i.e., pairs of instances that have the same explana-
tion but are nevertheless classified differently by the model
(Ignatiev et al., 2019b). In particular, (Ignatiev, 2020) shows
that the amount of ”counterexamples” can be high when
using some of the most popular approaches for computing
model-agnostic explanations, namely LIME (Ribeiro et al.,
2016), Anchors (Ribeiro et al., 2018), and SHAP (Lundberg
and Lee, 2017).

In order to avoid the generation of unsound explanations,
a number of alternative approaches, falling under the for-
mal XAI umbrella (Marques-Silva and Ignatiev, 2022), have
shown how ML models of various types (including “black”
boxes) can be associated with Boolean circuits (alias trans-
parent or “white” boxes), exhibiting the same input-output
behaviours (see among others (Narodytska et al., 2018; Shih
et al., 2018b, 2019a)). Thanks to such mappings, XAI
queries about classifiers, including the generation of expla-
nations, can be delegated to the corresponding circuits (see
for instance (Darwiche and Hirth, 2020; Barceló et al., 2020;
Parmentier and Vidal, 2021)). The price to be paid for en-
suring that the explanations that are generated are sound is
a certain lack of scalability (the derivation of explanations
is often NP-hard in the broad sense).

Ensemble methods (bagging, boosting, stacking, etc.) have
already been considered in such a perspective. Unlike what
happens for decision trees, the derivation of abductive ex-
planations is not a computationally easy task when tree
ensembles are considered. An abductive explanation for
an instance given a classifier is a subset of the character-
istics of the instance that is enough to justify how the in-
stance has been classified. In order to avoid the presence
of useless characteristics in explanations and consider the
instance itself as a valuable explanation, subset-minimal
abductive explanations (alias sufficient reasons (Darwiche

Computing Abductive Explanations for Boosted Trees

and Hirth, 2020)) are often targeted. (Choi et al., 2020; Izza
and Marques-Silva, 2021; Audemard et al., 2022a) show
how to derive abductive explanations for random forests
(Breiman, 2001). As to boosted trees, (Ignatiev et al., 2019b)
provides an SMT (satisfiability modulo theory) encoding
scheme for boosted trees and shows how to use an SMT
solver to compute sufficient reasons based on the encoding
scheme. The corresponding XAI tool is called XPlainer
(https://github.com/alexeyignatiev/xplainer). (Ignatiev et al.,
2022) presents another encoding scheme, based on MaxSAT
(maximum satisfiability), and indicates how to exploit a
MaxSAT solver to compute sufficient reasons based on it.
The associated tool is called XReason (https://github.com/
alexeyignatiev/xreason). Deciding whether a given explana-
tion is sound is intractable for boosted trees. Accordingly,
though XReason typically exhibits better performances
than XPlainer, its scalability is still an issue.

Contributions. Considering boosted trees, the main con-
tribution of this paper is a new approach to derive sufficient
reasons, that is more efficient in practice than SOTA meth-
ods, as identified in the literature. To reach the objective,
we introduce the notion of tree-specific explanation (TS-
explanation for short) given a boosted tree.

TS-explanations elaborate on the notion of majoritary rea-
sons for random forests, introduced in (Audemard et al.,
2022a). Both are (possibly redundant) abductive explana-
tions that can be computed efficiently thanks to a greedy
algorithm. The main differences between the present work
and the one described in (Audemard et al., 2022a) are as
follows. In (Audemard et al., 2022a), the computation of
majoritary reasons is not used as a preprocessing to the
computation of sufficient reasons, unlike what is done here.
More importantly, majoritary reasons are about random
forests, not gradient boosted trees (which is usually ac-
knowledged as a more accurate, yet more opaque, model).
Finally, the work presented in (Audemard et al., 2022a) con-
cerns only binary classification and Boolean features, while
in the present work, none of those restrictions is required.

Notably, our approach applies to boosted trees as they have
been learned, and whatever the learning algorithm used to
generate them. Thus, many boosted tree learning algorithms
can be used upstream. Those algorithms may differ in a num-
ber of aspects, including the method used to compute gra-
dients (standard gradient algorithm vs. Newton-Raphson),
the use of subsampling, the use of a regularization function
(lasso or ridge), the handling of categorical features, etc.
The combination of techniques achieves several trade-offs
in terms of accuracy of the resulting trees and the computa-
tion time required to generate them. In particular, XGBoost
(Chen and Guestrin, 2016), LightGBM (Ke et al., 2017) and
CatBoost (Prokhorenkova et al., 2018) that implement some
of the combinations above generate boosted trees that can be
used as inputs for our approach for computing explanations.

This is also the case of AdaBoost1 (Freund and Schapire,
1997; Schapire and Freund, 2014).

To be more precise, in the following we show that TS-
explanations are abductive explanations that can be com-
puted in polynomial time. This heavily contrasts with suffi-
cient reasons, which cannot be derived in polynomial time
(unless P = NP) when boosted trees are considered. TS-
explanations are provably sound: no "counterexamples"
for them may exist. While TS-explanations are not subset-
minimal abductive explanations in the general case, we show
that they are close to sufficient reasons in practice. Further-
more, because sufficient reasons can be derived from TS-
explanations, computing TS-explanations can be exploited
as a preprocessing step in the derivation of sufficient reasons.
Experiments on various datasets show that leveraging TS-
explanations for generating sufficient reasons is a valuable
approach.

The proofs of the propositions given in the paper are re-
ported to a final appendix. A description of the datasets
and the code used in our experiments are provided as a sup-
plementary material, available at www.cril.fr/expekctation/
aistats23.zip.

2 PRELIMINARIES

For an integer n, let [n] = {1, · · · , n}. We consider a finite
set {A1, . . . , An} of attributes (aka features) where each
attribute Ai (i ∈ [n]) takes its value in a domain Di. Three
types of attributes are taken into account: numerical (the
domain Di is a totally ordered set of numbers, typically
real numbers R, or integers Z), categorical (the domain is
a set of values that are not specifically ordered, e.g., Di =
{b(lue),w(hite), r(ed)}), or Boolean (the domain Di is
B = {0, 1}). An instance x is a vector (v1, . . . , vn) where
each vi (i ∈ [n]) is an element of Di. x is also viewed
as a term, i.e., a conjunctively-interpreted set of literals
tx = {(Ai = vi) : i ∈ [n]}, stating that each attribute
Ai takes the corresponding value vi. Each pair Ai = vi is
called a characteristic of the instance. X denotes the set of
all instances.

In the binary case, a classifier f is defined as a mapping
from X to {1, 0}. When f(x) = 1, x is said to be a positive
instance, otherwise it is a negative instance. The set of all
positive instances forms a target concept, and the set of all
negative instances is the complementary concept. More
generally, in the multi-class case, more than one concept
(together with the complementary concept) is considered.
A classifier f is then defined as a mapping from X to [m]
with m > 1. Each integer from [m] identifies a class and

1In this case, in order to recover the same format of boosted
trees as the one used by the other boosted tree learning algorithms,
the coefficients associated with the trees generated by AdaBoost
must be propagated to the leaves of those trees using a simple
product.

https://github.com/alexeyignatiev/xplainer
https://github.com/alexeyignatiev/xreason
https://github.com/alexeyignatiev/xreason
www.cril.fr/expekctation/aistats23.zip
www.cril.fr/expekctation/aistats23.zip

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski

when f(x) = j with j ∈ [m], the instance x is said to be
classified as an element of class j.

Trees and Forests. A regression tree over {A1, . . . , An}
is a binary tree T , each of its internal nodes being la-
beled with a Boolean condition on an attribute from
{A1, . . . , An}, and leaves are labeled by real numbers. The
conditions are typically of the form Ai > vj with vj a num-
ber when Ai is a numerical attribute, Ai = vj when Ai

is a categorical attribute, and Ai (or equivalently Ai = 1)
when Ai is a Boolean attribute. The weight w(T,x) ∈ R
of T for an input instance x ∈ X is given by the label of
the leaf reached from the root as follows: at each node go
to the left or right child depending on whether or not the
condition labelling the node is satisfied by x. w(T,x) can
also be viewed as the "output" of T on x. In the binary
classification case, a decision tree over {A1, . . . , An} is a
regression tree over {A1, . . . , An} where leaves are labeled
in {0, 1} (Breiman et al., 1984; Quinlan, 1986).

A forest over {A1, . . . , An} associated with a class j ∈ [m]
is an ensemble of trees F j = {T j

1 , · · · , T j
pj
}, where each

T j
k (k ∈ [pj]) is a regression tree over {A1, . . . , An}, and

such that the weight w(F j ,x) ∈ R of F j for an input
instance x ∈X is given by

w(F j ,x) =

pj∑
k=1

w(T j
k ,x).

A random forest over {A1, . . . , An} is a forest over
{A1, . . . , An} that consists only of decision trees (Breiman,
2001).

In the binary classification case, a boosted tree BT over
{A1, . . . , An} is a forest F = {T1, · · · , Tp}. In a multi-
class context, a boosted tree BT over {A1, . . . , An} is
a collection of m forests BT = {F 1, . . . , Fm} over
{A1, . . . , An} (Freund and Schapire, 1997; Schapire and
Freund, 2014; Friedman, 2001). The size of a forest F j is
given by |F j | =

∑pj

k=1 |T
j
k |, where |T j

k | is the number of
nodes occurring in T j

k . The size of a boosted tree BT is
given by |BT | =

∑m
j=1 |F j |.

In the binary classification case, an instance x is considered
as a positive instance when w(F,x) > 0 and as a negative
instance otherwise. We note BT (x) = 1 in the first case
and BT (x) = 0 in the second case. In a multi-class context,
an instance x is classified as an element of class j ∈ [m],
noted BT (x) = j, if and only if w(F j ,x) > w(F i,x) for
every i ∈ [m] \ {j}. If w(F j ,x) = w(F i,x) for every
i, j ∈ [m], then BT (x) is defined as a preset element of
[m] (e.g., a most frequent class in the dataset used to learn
BT). Whatever the case (binary or multi-class), computing
BT (x) can be achieved in polynomial time in |BT |+ n.
Example 1. As an example of binary classification, con-
sider four attributes: A1, A2 are numerical, A3 is categor-
ical, and A4 is Boolean. The boosted tree BT = {F} in

A4 = 1T1

−0.5 A2 > 1

0.4 A3 = b

−0.3 A1 > 2

−0.2 0.3

A2 > 1T2

A1 > 2 0.5

−0.2 A4 = 1

−0.4 0.3

A3 = bT3

A2 > 1 A2 > 1

A1 > 2 A4 = 1

−0.1 A1 > 2

0.2 0.3

−0.4 A4 = 1

−0.2 0.2 −0.5 0.1

Figure 1: A boosted tree BT = {F} consisting of a single forest
F = {T1, T2, T3}. In each tree, the left (dashed) arc (resp. the
right (plain) arc) outgoing from any node labelled by a condition c
corresponds to the case c is false (resp. true).

Figure 1 is composed of a single forest F , which consists of
three regression trees T1, T2, T3.

Consider x = (A1 = 4, A2 = 3, A3 = b, A4 = 1). We
have w(T1,x) = 0.3, w(T2,x) = 0.5, and w(T3,x) = 0.1.
So w(F,x) = 0.9, and x is classified as a positive instance
by F , thus it is classified as such by BT : BT (x) = 1.

Abductive Explanations & Sufficient Reasons. Ex-
plaining the classification achieved by a classifier f on an
instance x consists in identifying a subset of the character-
istics of x that is enough to get the class returned by f . For-
mally, an abductive explanation (Ignatiev et al., 2019c) (also
called weak abductive explanation (Huang et al., 2021)) t
for an instance x ∈X given a classifier f (that is binary or
not) is a (conjunctively-interpreted) subset t ⊆ tx such that
every instance x′ ∈X covered by t, i.e., satisfying t ⊆ tx′ ,
is classified by f in the same way as x: f(x′) = f(x).2

The size |t| of an abductive explanation t is the number of
characteristics in it. A sufficient reason t for x ∈X given
f is an abductive explanation for x given f such that no
proper subset t′ of t is an abductive explanation for x given
f . Stated otherwise, the sufficient reasons for x given f are
the subset-minimal abductive explanations for x given f .

Example 2. For our running example, t = {(A1 =
4), (A4 = 1)} is a sufficient reason for x = (A1 = 4, A2 =
3, A3 = b, A4 = 1) given BT = {F}. Indeed, all the in-
stances x′ extending t can be gathered into four categories,
obtained by considering the truth values of the Boolean
conditions over the two remaining attributes (A2 and A3)
as encountered in the trees of BT . In every case, we have
w(F,x′) > 0 (see Table 1), showing that BT (x′) = 1.
Since BT (x) = 1, t is an abductive explanation for x given
BT . Since no proper subset of t satisfies this property, t
actually is a sufficient reason for x given BT . Similarly,
we can show that t′ = {(A2 = 3), (A4 = 1)} is sufficient

2In subsequent papers, including (Ignatiev et al., 2020), ab-
ductive explanations have been required to be minimal w.r.t. set
inclusion - under this requirement, they coincide with sufficient
reasons (Darwiche and Hirth, 2020), also called prime-implicant
explanations (Shih et al., 2018a).

Computing Abductive Explanations for Boosted Trees

Algorithm 1: SR(x, f)
1 t← tx
2 foreach ci ∈ tx do
3 if implicant(t \ {ci},x, f) then t← t \ {ci}
4 return t

reason for x given BT .

Sufficient reasons are usually preferred to other abductive
explanations since they are more simple: they do not contain
any characteristics of the instance at hand that are not useful
to explain the prediction made by f .

Computing Sufficient Reasons. In order to compute a
sufficient reason for an input instance x given a classifier
f , one can take advantage of a simple greedy algorithm
(see Algorithm 1). Starting with t = tx, this algorithm
considers all the characteristics ci = (Ai = vi) of x in a
specific order and, at each step, tests whether t deprived
of ci is still an abductive explanation for x given f . If the
test is positive, ci is removed from t, otherwise it is kept.
Once all the characteristics ci of x have been considered,
the resulting term t is by construction a sufficient reason for
x given f .

The computationally demanding step in this greedy algo-
rithm is the call to function implicant that tests whether
t deprived of ci is still an abductive explanation for x given
f , i.e., any instance covered by t \ {ci} is classified in the
same way as x by f . Though this test can be achieved in
polynomial time for some families of classifiers f (includ-
ing decision trees) (Izza et al., 2020; Huang et al., 2021), it
is intractable in general. Indeed, it is coNP-hard when f is
a random forest (Audemard et al., 2022a). Similarly, when
f is a boosted tree BT , we easily get that:

Proposition 1. Let BT be a boosted tree over
{A1, . . . , An} and x ∈ X . Let t ⊆ tx. Deciding whether
t is an abductive explanation for x given BT is coNP-
complete. coNP-hardness still holds in the restricted case
every Ai (i ∈ [n]) is Boolean and BT consists of a single
forest.

In order to achieve the implicant test when f is a
boosted tree BT , several approaches can be followed. (Ig-
natiev et al., 2019b) took advantage of an SMT (SAT mod-
ulo theory) encoding of the boosted tree and then on an
SMT solver to compute sufficient reasons. More recently,
(Ignatiev et al., 2022) pointed out a more sophisticated en-
coding based on MaxSAT and exploited a MaxSAT solver
to compute sufficient reasons. Though this latter approach
exhibited better performances in practice, its scalability is
still an issue (the datasets considered in the experiments
presented in (Ignatiev et al., 2022) contain at most 60 at-
tributes).

3 COMPUTING TS-EXPLANATIONS

Worst / Best Instances. As explained before, when the
classifier at hand is a regression tree, a forest, or (more gen-
erally) a boosted tree BT , the classification of an instance
x ∈X depends on the weights of the tree(s) of the classifier
for the instance. Because of this weight-based mechanism,
the notion of abductive explanation t for x can be character-
ized via the notion of worst /best instance extending t. Let
us start with the binary case:

Definition 1. Let BT = {F} be a boosted tree over
{A1, . . . , An} and x ∈X . Let t ⊆ tx.

• A worst instance extending t given F is an in-
stance x′ ∈ X such that t ⊆ tx′ and x′ =
argminx′′∈X:t⊆tx′′ ({w(F,x′′)}).
• A best instance extending t given F is an in-

stance x′ ∈ X such that t ⊆ tx′ and x′ =
argmaxx′′∈X:t⊆tx′′ ({w(F,x′′)}).

In this definition, the condition t ⊆ tx′′ is used to charac-
terize the set of instances x′′ of interest, i.e., those covered
by t. W (t, F) (resp. B(t, F)) denotes the set of worst
(resp. best) instances extending t given F , and w↓(t, F)
(resp. w↑(t, F)) denotes the weight of any worst (resp. best)
instance covered by t given F .

Intuitively, a worst/best instance extending a given term t is
one of minimal/maximal weight. If such a weight is posi-
tive/negative, then so is the weight of any instance covered
by t. Accordingly, we have:

Proposition 2. In the binary case, let BT = {F} be a
boosted tree over {A1, . . . , An} and x ∈X . Let t ⊆ tx.

• If BT (x) = 1, then t is an abductive explanation for
x given BT if and only if any x′ ∈ W (t, F) is such
that BT (x′) = 1.
• If BT (x) = 0, then t is an abductive explanation for
x given BT if and only if any x′ ∈ B(t, F) is such
that BT (x′) = 0.

Example 3. For our running example, t = {(A1 =
4), (A4 = 1)} is an abductive explanation for x = (A1 =
4, A2 = 3, A3 = b, A4 = 1) given BT = {F} because
any worst instance covered by t, i.e., any x′ satisfying
(A1 = 4) ∧ (A2 ≤ 1) ∧ (A3 = b) ∧ (A4 = 1) is such
that w(F,x′) = 0.3 (hence w(F,x′) > 0) (see Table 1).

In the multi-class case, a similar notion of worst instance
can be stated:3

Definition 2. Let BT = {F 1, . . . , Fm} be a boosted
tree over {A1, . . . , An} and x ∈ X such that BT (x) =
i. Let t ⊆ tx. Given BT and x, a worst in-
stance extending t is an instance x′ ∈ X such that

3A notion of best instance could also be defined but it is useless
for our purpose.

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski

A1 = 4 A2 > 1 A3 = b A4 = 1 w(T1,x
′) w(T2,x

′) w(T3,x
′) w(F,x′)

1 0 0 1 0.4 0.3 0.2 0.9
1 0 1 1 0.4 0.3 −0.4 0.3
1 1 0 1 −0.3 0.5 0.3 0.5
1 1 1 1 0.3 0.5 0.1 0.9

Table 1: Weights of BT for instances x′ extending t.

t ⊆ tx′ and x′ = argminx′′∈X:t⊆tx′′ ({w(F i,x′′) −
max j∈[m]\{i}w(F

j ,x′′)}).

Then we have:

Proposition 3. Let BT = {F 1, . . . , Fm} be a boosted tree
over {A1, . . . , An} and x ∈ X such that BT (x) = i. Let
t ⊆ tx. t is an abductive explanation for x given BT if and
only if for any worst instance x′ extending t given BT and
x, w(F i,x′)−max j∈[m]\{i}w(F

j ,x′) > 0 holds.

Propositions 1 and 2 (or 3) show together that identifying a
worst (resp. best) instance x′ ∈X extending a term t ⊆ tx
given a boosted tree BT is intractable. Indeed, if it were not
the case, we could check in polynomial time whether t is an
abductive explanation for x given BT by testing whether
x′ is classified by BT in the same way as x.

Computing Worst/Best Instances for Trees. Interest-
ingly, when the classifier consists of a regression tree T ,
identifying an element of W (t, T) (resp. B(t, T)) is easy:
there exists a simple, linear-time, algorithm to compute
w↓(t, T) and w↑(t, T), and as a by-product, to derive a
worst instance and a best instance extending t given T . Ba-
sically, the algorithm consists of freezing in T every arc
corresponding to a condition not satisfied by t, which can
be done in time linear in the size of the input. A valid
root-to-leaf path in the resulting tree is a root-to-leaf path
of T not containing any frozen arc. The weight w↓(t, T)
of T for a worst (resp. best) instance extending t simply
is the minimal (resp. maximal) weight labelling a leaf of
a valid root-to-leaf path in the resulting tree, and it can be
determined in time linear in the size of the input. Any x′

satisfying the conditions associated with a valid root-to-leaf
path leading to a minimal (resp. maximal) weight leaf and
satisfying t ⊆ tx′ is a worst (resp. best) instance extending
t given T .

Example 4. Considering our running example again, let us
identify worst instances extending t = {(A1 = 4), (A4 =
1)} for each of the trees T1, T2, and T3. On Figure 2, every
frozen arc (and the corresponding subtree) is watermark
displayed; the minimal weight leaves are bold, and the arcs
of the corresponding root-to-leaf paths are bold. We have:

• Every x′ ∈X satisfying (A1 = 4)∧(A2 > 1)∧(A3 6=
b) ∧ (A4 = 1) is an element of W (t, T1),
• Every x′ ∈X satisfying (A1 = 4)∧(A2 ≤ 1)∧(A4 =
1) is an element of W (t, T2),

• Every x′ ∈X satisfying (A1 = 4)∧(A2 ≤ 1)∧(A3 =
b) ∧ (A4 = 1) is an element of W (t, T3).

A4 = 1T1

−0.5 A2 > 1

0.4 A3 = b

−0.3 A1 > 2

−0.2 0.3

A2 > 1T2

A1 > 2 0.5

−0.2 A4 = 1

−0.4 0.3

A3 = bT3

A2 > 1 A2 > 1

A1 > 2 A4 = 1

−0.1 A1 > 2

0.2 0.3

−0.4 A4 = 1

−0.2 0.2 −0.5 0.1

Figure 2: Worst instances and the corresponding weights for the
regression trees used in BT .

Tree-Specific Explanations. We are now ready to define
the notion of TS-explanation t for an instance x given a
boosted tree BT . We start with the binary case, i.e., when
BT consists of a single forest F :
Definition 3. Let F = {T1, · · · , Tp} be a forest over
{A1, . . . , An} and x ∈X .

• If F (x) = 1, then t is a tree-specific explanation for
x given F if and only if t is a subset of tx such that∑p

k=1 w↓(t, Tk) > 0 and no proper subset of t satisfies
the latter condition.
• If F (x) = 0, then t is a tree-specific explanation for
x given F if and only if t is a subset of tx such that∑p

k=1 w↑(t, Tk) ≤ 0 and no proper subset of t satisfies
the latter condition.

More generally, in the multi-class setting, TS-explanations
can be defined as follows:
Definition 4. Let BT = {F 1, · · · , Fm} be a boosted tree
over {A1, . . . , An} where each F j (j ∈ [m]) contains pj
trees, and x ∈ X such that BT (x) = i. t is a tree-
specific explanation for x given BT if and only if t is a
subset of tx such that for every j ∈ [m] \ {i}, we have∑pi

k=1 w↓(t, T
i
k) >

∑pj

k=1 w↑(t, T
j
k), and no proper subset

of t satisfies the latter condition.

A first key property that makes TS-explanations valuable is
that they are abductive explanations:
Proposition 4. Let BT be a boosted tree over
{A1, . . . , An} and x ∈ X . If t is a TS-explanation for
x given BT , then t is an abductive explanation for x given
BT .

Computing Abductive Explanations for Boosted Trees

Accordingly, each time the test ∀j ∈ [m] \
{i},

∑pi

k=1 w↓(t, T
i
k) >

∑pj

k=1 w↑(t, T
j
k) succeeds, it is en-

sured that t is an abductive explanation for x given BT .
However, the condition is only sufficient: when the test
fails, it can be the case that t is an abductive explana-
tion for x given BT nevertheless. Testing the condition
∀j ∈ [m] \ {i},

∑pi

k=1 w↓(t, T
i
k,x) >

∑pj

k=1 w↑(t, T
j
k ,x)

thus amounts to making an incomplete implicant test.

It is easy to check that TS-explanations coincide with suf-
ficient reasons for regression trees. Unsurprisingly, given
the complexity shift pointed out in Proposition 1, this equiv-
alence does not hold for forests or boosted trees. Thus, in
the general case, a TS-explanation t for x given BT is not
a sufficient reason for x given BT : t may contain character-
istics of x that could be removed without questioning the
classification achieved by BT .

Example 5. Considering our running example again, the
sufficient reason t = {(A1 = 4), (A4 = 1)} for x =
(A1 = 4, A2 = 3, A3 = b, A4 = 1) given BT = {F}
is not a TS-explanation for x given BT . Indeed, we have
w↓(t, T1) = −0.3, w↓(t, T2) = 0.3, and w↓(t, T3) = −0.4,
hence w↓(t

′, T1) + w↓(t
′, T2) + w↓(t

′, T3) = −0.4 < 0
while w(F,x) = 0.9 > 0. Contrastingly, the suffi-
cient reason t′ = {(A2 = 3), (A4 = 1)} for x given
BT also is a TS-explanation for x given BT . We have
w↓(t

′, T1) = −0.3, w↓(t′, T2) = 0.5, and w↓(t
′, T3) = 0.1,

hence w↓(t
′, T1) + w↓(t

′, T2) + w↓(t
′, T3) = 0.3 > 0.

Though subset-minimality is required in both cases, the
fact that TS-explanations and sufficient reasons do not
coincide (in general) can be easily explained by the fact
that TS-explanations consider the trees separately: it can
be easily the case that two distinct trees T j

k and T j
l be-

longing to the same forest F j do not share any worst in-
stance extending a given term t. In symbols, we may have
W (t, T j

k) ∩W (t, T j
l) = ∅.

Example 6. For our running example, no worst instance
extending t = {(A1 = 4), (A4 = 1)} given T1 is also a
worst instance extending t = {(A1 = 4), (A4 = 1)} given
T2 or given T3. Indeed, every worst instance extending t =
{(A1 = 4), (A4 = 1)} given T1 must satisfy A2 > 1, while
every worst instance extending t = {(A1 = 4), (A4 = 1)}
given T2 or T3 must satisfy the complementary condition
A2 ≤ 1.

In the worst case, the number of useless characteristics in a
TS-explanation can be equal to the number n of attributes:

Proposition 5. Let BT be a boosted tree over
{A1, . . . , An} and x ∈ X . It can be the case that the
unique TS-explanation for x given BT consists of tx itself,
while ∅ is the unique sufficient reason for x given BT . This
holds even in the restricted case BT consists of a single
forest and every attribute is Boolean.

A second key property that makes TS-explanations valuable

Algorithm 2: TS(x, BT)

1 t← tx
2 j ← BT (x)
3 foreach ci ∈ tx do
4 if @k ∈ [m] \ {j} s.t.

∑pj

l=1 w↓(t \ {ci}, T
j
l) ≤∑pk

l=1 w↑(t \ {ci}, T k
l) then

5 t← t \ {ci}

6 return t

is that they can be computed efficiently. Indeed, the greedy
algorithm TS given by Algorithm 2 can be used to derive
in time O(n|BT |) a TS-explanation for x given BT in the
multi-class case.

Proposition 6. Let BT be a boosted tree over
{A1, . . . , An} and x ∈ X . TS(x, BT) returns a TS-
explanation for x given BT .

Clearly enough, an algorithm closely similar to TS can
be designed to handle the binary classification case (in
that case, at each iteration, one just needs to test the sign
of

∑p
k=1 w↓(t, Tk) when x is positive, and the sign of∑p

k=1 w↑(t, Tk) when x is negative). The same perfor-
mance guarantees as in the multi-class case are ensured.

Interestingly, when dealing with boosted trees, the greedy
algorithm SR (Algorithm 1) for deriving sufficient reasons
can be exploited to remove useless characteristics in TS-
explanations, i.e., to generate sufficient reasons from TS-
explanations. Viewed from a different angle, the computa-
tion of a TS-explanation for an instance x given a boosted
tree BT can be exploited as a preprocessing step in SR. This
combination is given by the pipeline

SR(TS(tx, BT), BT).

The rationale for this preprocessing step is the fact that TS
is a polynomial-time algorithm, while implicant is not.
As the experiments reported in Section 4 will show it, TS
may remove in a very efficient way many useless character-
istics of x, thus avoiding many calls to the computationally
expensive function implicant.

4 EXPERIMENTS

Empirical Protocol. The empirical protocol was as fol-
lows. We have considered 50 datasets, which are standard
benchmarks (adult, farm-ads, ...) coming from the well-
known repositories Kaggle (www.kaggle.com), OpenML
(www.openml.org), and UCI (archive.ics.uci.edu/ml/). For
these datasets, the number of classes varies from 2 to 9
classes, the number of attributes (features) from 10 to
100001, and the number of instances from 345 to 48842.
Categorical features have been treated as numbers. This

www.kaggle.com
www.openml.org
archive.ics.uci.edu/ml/

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski

choice has been motivated by the fact that most of the time
the types of the attributes are not documented in the datasets.
As to numerical features, no data preprocessing has taken
place: these features have been binarized on-the-fly by the
learning algorithm that has been used, namely XGBoost
(Chen and Guestrin, 2016) that learns gradient boosted trees.
XGBoost has been used without any tuning. Since our pur-
pose is to be able to explain the classification achieved by the
boosted trees as they have been learned, hyper-parameters
have not been optimized but set to their default values (in
particular, 100 trees per class have been considered and the
maximum depth of each tree was set to 6).

For every dataset, a 10-fold cross validation process has
been achieved. Ten boosted trees have been learned per
dataset. The mean accuracy per dataset varies from 53.23%
up to 100% (in average, it is equal to 88.5%). Ten instances
have been picked up uniformly at random in the test set
associated with the training set used to learn each boosted
tree. This led to 100 instances per dataset, giving a total of
5000 instances for which explanations about the way they
were classified have been sought for. To get such explana-
tions, we ran implementations of the algorithms presented
in the previous sections: SR implemented as XReason
(with its default parameters), our own implementation of
TS, and an implementation TS+XReason of the pipeline
of the two. In order to implement this pipeline, we had to
modify XReason in such a way that it can use as input
any abductive explanation for the instance at hand, and not
only the instance itself. By default, XReason starts by
removing some useless characteristics of the input instance
using a core-guided mechanism. Though beneficial when
XReason is used alone, this step turns out to be counter-
productive when XReason is combined with TS. Indeed,
in our experiments, the number of instances (out of 5000)
"solved" by TS+XReason with this treatment switched on
is 4016, while it is equal to 4097 when the treatment was
switched off. Hence, in our experiments, the treatment has
been switched off when TS was run upstream to XReason,
and switched on when XReason was used alone. We have
also modified XReason to make it provide the abductive
explanation that is available when the time limit is reached
(in this case, the returned explanation is not guaranteed to
be subset-minimal). In our experiments, for each instance x,
TS has been called 1000 times: at each run, an elimination
ordering of the characteristics of x (as considered at line 3.
of Algorithm 2) has been picked up uniformly at random,
and a shortest TS-explanation among those generated for
the 1000 runs was finally returned.

All the experiments have been conducted on a computer
equipped with Intel(R) XEON E5-2637 CPU @ 3.5 GHz
and 128 Gib of memory. For each algorithm, a timeout
(TO) of 100 seconds per instance has been considered. This
was deemed as a reasonable time bound for providing an
explanation to a human user.

Dataset #Cls. #Feat. #Feat. Used #Inst. Acc.
gina_agnostic 2 970 477.90(±10.46) 3468 95.13(±1.35)
malware 2 1084 88.60(±1.85) 6248 99.46(±0.26)
ad_data 2 1558 78.70(±4.24) 3279 97.78(±0.83)
christine 2 1636 1272.20(±8.06) 5418 73.81(±1.82)
cnae 9 856 132.30(±4.24) 1079 91.48(±2.64)
gisette 2 5000 783.60(±14.33) 7000 97.83(±0.56)
arcene 2 10000 143.50(±5.90) 200 80.50(±7.23)
dexter 2 20000 104.50(±4.54) 600 91.83(±3.69)
allBooks 8 8266 315.90(±8.70) 590 87.12(±3.73)
farm-ads 2 54876 714.10(±16.70) 4143 90.27(±1.45)
dorothea 2 100000 222.20(±10.85) 1150 93.91(±2.55)

Table 2: A focus on 10 datasets.

Results. A synthesis of the results we obtained is pro-
vided on Figure 3. On those two scatter plots, each dot
corresponds to an instance among the 5000 instances tested.

Figure 3 (a) is about computation times. The x-coordinate
(resp. y-coordinate) of a dot is the time (in seconds) re-
quired by TS+XReason (resp. XReason) to compute an
abductive explanation for the associated instance. By con-
struction, this abductive explanation is a sufficient reason
for the instance when the computation stops before the time
limit.

In light of Figure 3 (a), two observations can be made.
On the one hand, the run times of TS+XReason are sig-
nificantly smaller than those of XReason. On the other
hand, the time limit has been reached much more often by
XReason than by TS+XReason.

Figure 3 (b) is about the size of the abductive explanations
that are generated, and more precisely, about reduction rates,
where the reduction rate achieved by an explanation t for an
instance x over n attributes is given by 1− |t|

n−d where d is
the number of attributes that are dropped by XGBoost. For
example, if |t| = 10, n = 100, and d = 20 (meaning that
only n− d = 80 attributes are used in the boosted tree), the
reduction rate is 87.5%. Indeed, size is one of the criteria
to be considered when evaluating the intelligibility4 of an
explanation: everything else being equal, shortest explana-
tions are easier to understand than longer explanations. For
each dot corresponding to an instance x, the x-coordinate
(resp. y-coordinate) of the dot is the reduction rate of the
explanation for x generated by TS+XReason (resp. by
XReason). Different dot representations for instances have
been used in this figure, depending on the fact that a suffi-
cient reason for the instance at hand has been computed (or
not) within the time limit by any of the two programs, or by
both of them.

Figure 3 (b) shows that TS+XReason leads in general
to much better reduction rates than those obtained by
XReason, thus to much smaller explanations. One can

4In general, the intelligibility of an explanation does not reduce
to its size and an accurate evaluation of it cannot be achieved in a
context-independent way (Doshi-Velez and Kim, 2017; Narayanan
et al., 2018), since intelligibility typically depends on the explainee
(i.e., the person who asked for an explanation) (Miller, 2019).

Computing Abductive Explanations for Boosted Trees

0

20

40

60

80

100

0 20 40 60 80 100

X
R
e
a
s
o
n

TS+XReason

(a) Run times (in seconds)

0

20

40

60

80

100

0 20 40 60 80 100

X
R
e
a
s
o
n

TS+XReason

None
Both
Only TS+XReason
Only XReason

(b) Reduction rates

Figure 3: Comparing TS+XReason to XReason.

Run time Reduction rate
Dataset Inst. TS+XReason XReason TS+XReason

XReasonTS TS+XReason #TO #SUF. XReason #TO #SUF. TS TS+XReason
gina_agnostic SUF. 1.86(±0.18) 91.87(±6.18) 34 75.48(±1.48) 77.54(±1.50)

TO 1.77(±0.15) 100(±0.20) 66 100(±0.01) 100 74.21(±1.81) 76.38(±2.08) 62.78(±2.45)
malware SUF. 0.22(±0.02) 6.01(±1.22) 100 8.34(±0.81) 100 84.63(±5.54) 85.90(±4.84) 83.40(±5.62)
ad_data SUF. 0.32(±0.03) 14.2(±9.49) 100 46.03(±20.65) 53 79.27(±8.89) 83.97(±8.30) 72.49(±9.90)

TO 100(±0.01) 47 57.78(±11.92)
christine TO 6.13(±0.40) 100(±0.32) 100 100(±0.01) 100 77.29(±0.78) 77.39(±0.81) 51.70(±1.64)
cnae SUF. 5.68(±0.60) 53.82(±21.71) 97 77.96(±13.29) 50 62.88(±9.95) 67.61(±10.38) 61.11(±11.01)

TO 4.72(±0.09) 100(±0.10) 3 100(±0.05) 50 41.85(±9.09) 46.70(±9.27) 43.16(±8.84)
gisette SUF. 2.91(±0.22) 91.49(±6.81) 77 81.34(±1.63) 82.51(±1.61)

TO 3.10(±0.18) 100(±0.33) 23 100(±0.02) 100 80.47(±1.1) 81.78(±1.16) 71.02(±2.29)
arcene SUF. 0.20(±0.02) 5.89(±1.88) 100 4.49(±0.31) 100 73.71(±5.17) 74.41(±5.09) 71.36(±5.50)
dexter SUF. 0.30(±0.04) 7.05(±1.23) 100 11.25(±1.32) 100 77.31(±7.63) 80.05(±7.05) 70.68(±5.70)
allBooks SUF. 7.60(±0.97) 57.33(±14.91) 97 77.01(±7.23) 79.98(±7.34)

TO 8.11(±1.24) 100(±0.34) 3 100(±0.03) 100 69.52(±3.17) 73.41(±3.67) 61.70(±7.32)
farm_ads SUF. 2.89(±0.21) 99.26(±1.01) 7 72.29(±1.44) 73.57(±1.40)

TO 2.86(±0.19) 100(±0.25) 93 100(±0.03) 100 70.47(±1.58) 72.27(±1.60) 65.37(±1.89)
dorothea SUF. 0.68(±0.06) 12.17(±1.28) 100 17.28(±2.53) 100 59.48(±6.21) 62.12(±6.02) 52.84(±7.22)

Table 3: Performances of TS+XReason and XReason in terms of run times and reduction rates on 10 datasets.

observe that the number of sufficient reasons that have been
(provably) derived by TS+XReason in at most 100 seconds
is significantly higher than the number of sufficient reasons
that have been (provably) derived by XReason. More in
detail, out of 5000 abductive explanations, 3476 sufficient
reasons have been obtained in due time by the two programs,
while 621 have been obtained in due time by TS+XReason
alone, 8 have been obtained in due time by XReason alone.
This gives a win rate of more than 98% for the pipeline.
Overall, a significant amount of 621 − 8 = 613 sufficient
reasons have been gained by taking advantage of TS as a
preprocessing to XReason. For 895 abductive explanations
that have been generated, there are no subset-minimality
guarantees whatever TS+XReason or XReason was used
to derive them.

In order to evaluate the impact of picking a shortest TS-
explanation out of 1000 instead of using only the one that
has been computed first, we have considered a variant of TS
that derives only one TS-explanation. We observed that the
performances of the pipelines TS+XReason are similar in

the two cases. Thus, when a single TS-explanation is consid-
ered, the reduction rate decreases a bit on average (−4.25%),
leading to slightly longer explanations. On the contrary,
computation time decreases a bit on average (−7.65%). Fo-
cusing on the harder instances (those for which the pipeline
required more than 10s to terminate), the reduction rate
decreases a bit more on average (−5.14%) but the compu-
tation time increases slightly on average (+5.04%). Hence
the ability to compute many TS-explanations almost ”for
free” and to keep a smallest one is valuable but not the main
cause for the efficiency of the pipeline.

To complete the scatter plots, Tables 2 and 3 report some
details about 10 datasets out of 50 (the ones based on the
largest numbers of attributes). The columns of Table 2 give,
from left to right, the name of the dataset, the number of
classes and features in it, the mean number of features used
in the boosted trees that have been generated, the number of
instances in the dataset, the mean accuracy of the boosted
trees. For each dataset, Table 3 presents the results obtained
on 100 instances by TS+XReason and XReason in terms

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski

of mean run times (given in seconds) number of TOs and
number of sufficient reasons computed in due time, and then
in terms of mean reduction rates. For TS+XReason, we
report the mean run times and mean reduction rates achieved
by TS alone, and then by the pipeline TS+XReason where
XReason is run on the abductive explanation generated
by TS. The 100 instances tested per dataset are divided
into two subsets, each one corresponding to a line: those
instances for which a TO occurs (in that case, the abductive
explanation that is generated may be redundant) and those
for which a sufficient reason has been computed within the
time limit. Whenever every instance or no instance out of
100 has been solved by the pipeline TS+XReason and by
XReason alone before the time limit has been reached,
only one line has been kept.

For some instances, it can be observed that the pipeline
TS+XReason does not succeed in computing a sufficient
reason in due time (this happens e.g., for every instance
of the dataset ’christine’, see Table 3). Even if XReason
does not do better for this dataset, this can be considered
as a limitation of the approach. It is also worth noting
that when computing a sufficient reason, deriving first a
TS-explanation is sometimes a waste of time. In our ex-
periments, this is reflected by the 8 instances for which
XReason alone succeeded to compute a sufficient reason
in due time, while TS+XReason failed.

However, the advantages offered by the pipeline are sig-
nificant in practice most of the time (the two scatter plots
and the table show clear benefits in terms of computation
time and explanation size). Thus, TS+XReason appears as
a better algorithm than XReason for the purpose of com-
puting sufficient reasons. This is particularly salient in the
multi-class case (both in terms of computation times and
sufficient reasons found). TS also appears as a valuable
algorithm for generating abductive explanations because of
its efficiency (the cumulated run times over 1000 runs per
instance are bounded by a few seconds). The main disad-
vantage of considering TS-explanations instead of sufficient
reasons is that TS-explanations may contain redundant char-
acteristics (so shorter reasons may exist in the worst case).
However, our experiments show that the reduction rates
achieved by TS are, in practice, close to those achieved by
TS+XReason, and often significantly higher than those
achieved by XReason,5. This holds both for instances for
which a sufficient reason has been derived in due time and
for instances for which the explanation that is derived may
be redundant. This discrepancy can be explained by the
fact that the implicant test performed by the TS algorithm is
incomplete. As a consequence, a characteristics of the input
instance can be kept while it would be removed if XReason
was used instead. Removing such a characteristics during

5Please keep in mind that an instance may have exponentially
TS-explanations / sufficient reasons and that the two algorithms
we consider compute only one of them.

one of the first iterations of the greedy algorithm may have
a strong impact on the search space and may prevent from
removing many other characteristics later.

5 OTHER RELATED WORK

Because of their intrinsic interpretability, trees have been
considered in ML and data mining for a long time and for
various purposes (including classification and regression,
but also reinforcement learning (Silva et al., 2020)). Trees
are first-class components (weak learners) of ensemble meth-
ods. Trees have been used in various ways to resolve the
tension between generalization and interpretability of black
box models, for instance by mimicking the input-output
functions discovered by deep neural networks (Frosst and
Hinton, 2017), or by designing deep models that are more
interpretable (Wu et al., 2018, 2020).

From a formal XAI perspective, decision trees have been
investigated in depth (Audemard et al., 2022c; Izza et al.,
2022). Decision trees support in polynomial time a number
of XAI queries that are intractable for other ML models,
including random forests and boosted trees (Audemard et al.,
2021). Among those queries is the generation of a sufficient
reason for a given instance, that is the query we focused on
in this paper.

6 CONCLUSION

We have introduced a new notion of abductive explanation
for boosted trees, called tree-specific (TS) explanations. In
the worst case, TS-explanations can be arbitrarily larger than
sufficient reasons. However, unlike sufficient reasons, their
generation is tractable. We have presented a polynomial-
time algorithm TS for computing TS-explanations, and
proved its correctness. Because a sufficient reason can be
extracted from a TS-explanation, TS can be used as a pre-
processing step for greedy algorithms deriving sufficient
reasons. Empirically, we have shown that TS+XReason
significantly improves the state-of-the-art. Finally, in prac-
tice, the abductive explanations computed by TS are often
close to sufficient reasons. This shows that TS is also useful
alone, as an efficient generator of provably sound, valuable
abductive explanations.

Various perspectives for extending this work can be envi-
sioned. Thus, instead of considering the characteristics of
the input instance randomly (line 3 of TS), it would make
sense to design heuristics for making more informed choices,
exploiting the derivation process user preferences about the
characteristics. This can be a way to derive preferred ex-
planations (Audemard et al., 2022b), with the user in the
loop. From a practical side, it would be useful to implement
algorithms for deriving preferred explanations. We plan
to add such algorithms to PyXAI (www.cril.fr/pyxai/), the
Python library for XAI we develop.

www.cril.fr/pyxai/

Computing Abductive Explanations for Boosted Trees

Acknowledgements

Many thanks to the anonymous reviewers for their numerous
comments and suggestions that helped to improve the paper.
This work has benefited from the support of the AI Chair
EXPEKCTATION (ANR-19-CHIA-0005-01) of the French
National Research Agency. It was also partially supported
by TAILOR, a project funded by EU Horizon 2020 research
and innovation programme under GA No 952215.

References

A. Barredo Arrieta, N. Díaz R., J. Del Ser, A. Bennetot,
S. Tabik, A. Barbado, S. García, S. Gil-Lopez, D. Molina,
R. Benjamins, R. Chatila, and F. Herrera. Explainable
artificial intelligence (XAI): concepts, taxonomies, op-
portunities and challenges toward responsible AI. Inf.
Fusion, 58:82–115, 2020.

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M.
Lagniez, and P. Marquis. On the computational intel-
ligibility of boolean classifiers. In Proc. of KR’21, pages
74–86, 2021. doi: 10.24963/kr.2021/8.

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M.
Lagniez, and P. Marquis. Trading complexity for sparsity
in random forest explanations. In Proc. of AAAI’22, pages
5461–5469, 2022a.

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M.
Lagniez, and P. Marquis. On preferred abductive ex-
planations for decision trees and random forests. In Proc.
of IJCAI’22, pages 643–650, 2022b.

G. Audemard, S. Bellart, L. Bounia, F. Koriche, J.-M.
Lagniez, and P. Marquis. On the explanatory power of
Boolean decision trees. Data Knowl. Eng., 142:102088,
2022c.

P. Barceló, M. Monet, J. Pérez, and B. Subercaseaux. Model
interpretability through the lens of computational com-
plexity. In Proc. of NeurIPS’20, 2020.

V. Borisov, T. Leemann, K. Seßler, J. Haug, M. Pawelczyk,
and G. Kasneci. Deep neural networks and tabular data:
A survey. CoRR, abs/2110.01889, 2021.

L. Breiman. Random forests. Machine Learning, 45(1):
5–32, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, 1984.

R. Caruana, S. M. Lundberg, M. Túlio Ribeiro, H. Nori,
and S. Jenkins. Intelligible and explainable machine
learning: Best practices and practical challenges. In Proc.
of KDD’20, pages 3511–3512. ACM, 2020.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting
system. In Proc. of KDD’16, page 785–794, 2016.

A. Choi, A. Shih, A. Goyanka, and A. Darwiche. On sym-
bolically encoding the behavior of random forests. In

Proc. of FoMLAS’20, 3rd Workshop on Formal Meth-
ods for ML-Enabled Autonomous Systems, Workshop at
CAV’20, 2020.

A. Darwiche and A. Hirth. On the reasons behind decisions.
In Proc. of ECAI’20, pages 712–720, 2020.

F. Doshi-Velez and B. Kim. A roadmap for a rigorous
science of interpretability. CoRR, abs/1702.08608, 2017.
URL http://arxiv.org/abs/1702.08608.

Y. Freund and R.E. Schapire. A decision-theoretic general-
ization of on-line learning and an application to boosting.
J. Comput. Syst. Sci., 55(1):119–139, 1997.

J. H. Friedman. Greedy function approximation: A gradient
boosted machine. The Annals of Statistics, 29(5):1189–
1232, 2001.

N. Frosst and G. E. Hinton. Distilling a neural network
into a soft decision tree. In Proc. of 1st International
Workshop on Comprehensibility and Explanation in AI
and ML, volume 2071 of CEUR Workshop Proceedings,
2017.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti,
and D. Pedreschi. A survey of methods for explaining
black box models. ACM Computing Surveys, 51(5):93:1–
93:42, 2019.

S. Hooker, D. Erhan, P-J. Kindermans, and B. Kim. A
benchmark for interpretability methods in deep neural
networks. In Proc. of NeurIPS’19, pages 9737–9748,
2019.

X. Huang, Y. Izza, A. Ignatiev, and J. Marques-Silva. On
efficiently explaining graph-based classifiers. In Proc. of
KR’21, pages 356–367, 2021.

J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and
B. Baesens. An empirical evaluation of the comprehen-
sibility of decision table, tree and rule based predictive
models. Decis. Support Syst., 51(1):141–154, 2011.

A. Ignatiev. Towards trustable explainable AI. In Proc. of
IJCAI’20, pages 5154–5158, 2020.

A. Ignatiev, N. Narodytska, and J. Marques-Silva.
Abduction-based explanations for machine learning mod-
els. In Proc. of AAAI’19, pages 1511–1519, 2019a.

A. Ignatiev, N. Narodytska, and J. Marques-Silva. On
validating, repairing and refining heuristic ML expla-
nations. CoRR, abs/1907.02509, 2019b. URL http:
//arxiv.org/abs/1907.02509.

A. Ignatiev, N. Narodytska, and J. Marques-Silva.
Abduction-based explanations for machine learning mod-
els. In Proc. of AAAI’19, pages 1511–1519, 2019c.

A. Ignatiev, N. Narodytska, N. Asher, and J. Marques-Silva.
On relating ’why?’ and ’why not?’ explanations. CoRR,
abs/2012.11067, 2020.

A. Ignatiev, Y. Izza, P.J. Stuckey, and J. Marques-Silva. Us-
ing MaxSAT for efficient explanations of tree ensembles.
In Proc. of AAAI’22, pages 3776–3785, 2022.

http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1907.02509
http://arxiv.org/abs/1907.02509

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski

Y. Izza and J. Marques-Silva. On explaining random forests
with SAT. In Proc. of IJCAI’21, pages 2584–2591, 2021.

Y. Izza, A. Ignatiev, and J. Marques-Silva. On explaining
decision trees. CoRR, abs/2010.11034, 2020.

Y. Izza, A. Ignatiev, and J. Marques-Silva. On tackling
explanation redundancy in decision trees. J. Artif. Intell.
Res., 75:261–321, 2022.

G. Ke, Q. Meng, Th. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T. Liu. Lightgbm: A highly efficient gradient
boosting decision tree. In Proc. of NeurIPS’17, pages
3146–3154, 2017.

B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Vie-
gas, and R. Sayres. Interpretability beyond feature attribu-
tion: Quantitative testing with concept activation vectors
(TCAV). In Proc. of ICML’18, pages 2668–2677, 2018.

S. Lundberg and S-I. Lee. A unified approach to interpreting
model predictions. In Proc. of NIPS’17, pages 4765–
4774, 2017.

S. M. Lundberg, G. G. Erion, H. Chen, A. J. DeGrave, J. M.
Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and
S.I. Lee. From local explanations to global understanding
with explainable AI for trees. Nat. Mach. Intell., 2(1):
56–67, 2020.

J. Marques-Silva and A. Ignatiev. Delivering trustworthy
AI through formal XAI. In Proc. of AAAI’22, pages
12342–12350, 2022.

T. Miller. Explanation in artificial intelligence: Insights
from the social sciences. Artificial Intelligence, 267:1–38,
2019.

Ch. Molnar. Interpretable Machine Learning - A Guide for
Making Black Box Models Explainable. Leanpub, 2019.

M. Narayanan, E. Chen, J. He, B. Kim, S. Gershman,
and F. Doshi-Velez. How do humans understand ex-
planations from machine learning systems? an evalua-
tion of the human-interpretability of explanation. CoRR,
abs/1802.00682, 2018. URL http://arxiv.org/abs/1802.
00682.

N. Narodytska, S. Prasad Kasiviswanathan, L. Ryzhyk,
M. Sagiv, and T. Walsh. Verifying properties of bina-
rized deep neural networks. In Proc. of AAAI’18, pages
6615–6624, 2018.

A. Parmentier and T. Vidal. Optimal counterfactual expla-
nations in tree ensembles. In Proc. of ICML’21, volume
139 of Proceedings of Machine Learning Research, pages
8422–8431, 2021.

L. O. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Doro-
gush, and A. Gulin. Catboost: unbiased boosting with
categorical features. In Proc. of NeurIPS’18, pages 6639–
6649, 2018.

J. R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1(1):81–106, 1986.

M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I
trust you?": Explaining the predictions of any classifier.
In Proc. of KDD’16, pages 1135–1144, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-
precision model-agnostic explanations. In Proc. of
AAAI’18, pages 1527–1535, 2018.

C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova,
and C. Zhong. Interpretable machine learning: Fun-
damental principles and 10 grand challenges. CoRR,
abs/2103.11251, 2021.

R.E. Schapire and Y. Freund. Boosting: Foundations and
Algorithms. MIT Press, 2014.

A. Shih, A. Choi, and A. Darwiche. A symbolic approach
to explaining bayesian network classifiers. In Proc. of
IJCAI’18, pages 5103–5111, 2018a.

A. Shih, A. Choi, and A. Darwiche. Formal verification of
Bayesian network classifiers. In Proc. of PGM’18, pages
427–438, 2018b.

A. Shih, A. Choi, and A. Darwiche. Compiling Bayesian
networks into decision graphs. In Proc. of AAAI’19, pages
7966–7974, 2019a.

A. Shih, A. Darwiche, and A. Choi. Verifying binarized
neural networks by Angluin-style learning. In Proc. of
SAT’19, pages 354–370, 2019b.

A. Silva, M. C. Gombolay, T. W. Killian, I. Dario Jimenez
Jimenez, and S.-H. Son. Optimization methods for inter-
pretable differentiable decision trees applied to reinforce-
ment learning. In Proc. of AISTATS’20, pages 1855–1865,
2020.

F. Wang and C. Rudin. Falling rule lists. In Proc. of AIS-
TATS’15, 2015.

M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, and
F. Doshi-Velez. Beyond sparsity: Tree regularization of
deep models for interpretability. In Proc. of AAAI’18,
pages 1670–1678, 2018.

M. Wu, S. Parbhoo, M. C. Hughes, R. Kindle, L. A. Celi,
M. Zazzi, V. Roth, and F. Doshi-Velez. Regional tree
regularization for interpretability in deep neural networks.
In Proc. of AAAI’20, pages 6413–6421, 2020.

http://arxiv.org/abs/1802.00682
http://arxiv.org/abs/1802.00682

Computing Abductive Explanations for Boosted Trees

A MISSING PROOFS

Proof of Proposition 1

Proof.

• Membership to coNP: we consider the complementary problem and show that it belongs to NP. In order to determine
whether t is not an abductive explanation for x given BT , it is enough to guess an instance x′ ∈X such that t ⊆ tx′

and to check that BT (x′) 6= BT (x). Since the class associated by BT to any input instance can be computed in time
polynomial in the size of BT and the size of the instance, the conclusion follows.

• coNP-hardness: it has been shown in (Audemard et al., 2022a) (Proposition 3) that deciding whether t is an abductive
explanation for x given a random forest RF over Boolean attributes is coNP-complete. Thus, it is enough to show
that we can associate in polynomial time any random forest RF = {T1, . . . , Tp} over Boolean attributes A1, . . . , An

to a boosted tree BT = {F} with F = {T ′1, . . . , T ′p} such that for any x ∈ X , we have RF (x) = 1 if and only if
BT (x) = 1.

The reduction is easy: each T ′i (i ∈ [p]) is obtained in linear time from Ti by replacing every 0-leaf (resp. 1-leaf) of Ti

by a leaf labelled by −w (resp. w) where w is a (fixed) positive number (e.g., w = 0.5). By construction, we have
RF (x) = 1 if and only if

∑p
j=1 Ti(x) >

p
2 if and only if

∑p
j=1 T

′
i (x) > 0 if and only if BT (x) = 1.

Proof of Proposition 2

Proof. Suppose that BT (x) = 1, i.e., w(F,x) > 0. By definition, t is an abductive explanation for x given BT if and
only if any x′ ∈ X such that t ⊆ tx′ satisfies BT (x′) = 1. Since any x′′ ∈ W (t, F) satisfies t ⊆ tx′′ , we must have
BT (x′′) = 1. Conversely, suppose that for any x′′ ∈ W (t, F) we have BT (x′′) = 1. Then we have w(F,x′′) > 0. By
definition of W (t, F), for any x′ ∈ X such that t ⊆ tx′ , we have w(F,x′) ≥ w(F,x′′). Since BT (x′′) = 1, we have
w(F,x′′) > 0, hence by transitivity of >, we get that w(F,x′) > 0, or equivalently that BT (x′) = 1.

Similarly, consider the case when BT (x) = 0, i.e., w(F,x) ≤ 0. By definition, t is an abductive explanation for x given
BT if and only if any x′ ∈X such that t ⊆ tx′ satisfies BT (x′) = 0. Since any x′′ ∈ B(t, F) satisfies t ⊆ tx′′ , we must
have BT (x′′) = 0. Conversely, suppose that for any x′′ ∈ B(t, F) we have BT (x′′) = 0. Then we have w(F,x′′) ≤ 0.
By definition of B(t, F), for any x′ ∈X such that t ⊆ tx′ , we have w(F,x′) ≤ w(F,x′′). Since BT (x′′) = 0, we have
w(F,x′′) ≤ 0, hence by transitivity of ≤, we get that w(F,x′) ≤ 0, or equivalently that BT (x′) = 0.

Proof of Proposition 3

Proof. If t is an abductive explanation for x given BT , then for every x′ extending t we must have BT (x′) = i, that is
w(F i,x′) > w(F j ,x′) for every j ∈ [m] \ {i}. This is equivalent to state that w(F i,x′)−max j∈[m]\{i}w(F

j ,x′) > 0.
Since any worst instance x′ extending t given BT and x is an instance that extends t, we have

w(F i,x′)−max j∈[m]\{i}w(F
j ,x′) > 0,

as expected.

Conversely, suppose that for any worst instance x′ extending t given BT and x, we have w(F i,x′) −
max j∈[m]\{i}w(F

j ,x′) > 0. By definition, if x′ is a worst instance extending t given BT and x, then for any x′′ ∈X that
extends t, we have

w(F i,x′)−max j∈[m]\{i}w(F
j ,x′) ≤ w(F i,x′′)−max j∈[m]\{i}w(F

j ,x′′).

Hence, if w(F i,x′)−max j∈[m]\{i}w(F
j ,x′) > 0, we also have that

w(F i,x′′)−max j∈[m]\{i}w(F
j ,x′′) > 0,

showing that BT (x′′) = i.

Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski

Proof of Proposition 4

Proof. Towards a contradiction, suppose that BT (x) = i ∈ [m] and there exists an instance x′ extending t and such that
BT (x′) = j ∈ [m] with j 6= i. This implies that w(F j ,x′) > w(F k,x′) for every k ∈ [m] \ {j}. So, for k = i, we have
w(F j ,x′) > w(F i,x′).

Since t is a tree-specific explanation for x given BT , t is a subset of tx such that for every k ∈ [m] \ {i}, we have∑pi

l=1 w↓(t, T
i
l) >

∑pk

l=1 w↑(t, T
k
l). In particular, for k = j, we have

∑pi

l=1 w↓(t, T
i
l) >

∑pj

l=1 w↑(t, T
j
l).

However, by definition of the utmost instances, for every x′ extending t, we have w(T i
l ,x
′) ≥ w↓(t, T

i
l) for every T i

l ∈ F i

and w(T k
l ,x

′) ≤ w↑(t, T
k
l) for every T k

l ∈ F k with k ∈ [m] \ {i}. In particular, we have w(T j
l ,x

′) ≤ w↑(t, T
j
l) for every

T j
l ∈ F j .

Finally, we get that w(F j ,x′) =
∑pj

l=1 w(T
j
l ,x

′) ≤
∑pj

l=1 w↑(t, T
j
l) <

∑pi

l=1 w↓(t, T
i
l) ≤

∑pi

l=1 w(T
i
l ,x
′) = w(F i,x′).

A contradiction.

Proof of Proposition 5

Proof. Consider BT = {F} with F = {T+
i , T−i : i ∈ [n]} where for each i ∈ [n],

Ai = 1T+
i =

−0.5 0.5

Ai = 1T−i =

0.5 −0.5

Consider the instance x = (0, . . . , 0). We have w(F,x) = 0, hence F (x) = 0. Consider any i ∈ [n], let (Ai = 1) ∈ tx
and t = tx \ {Ai = 1}. For every j ∈ [n] \ {i}, we have B(t, T+

j) = B(t, T−j) = {x}. We also have B(t, T−i) = {x}.
Furthermore, B(t, T+

i) = {x′} where x′ is the instance that coincides with x, except that (Ai = 1) ∈ tx′ . Accordingly,∑n
j=1(w↑(t, T

+
j) + w↑(t, T

−
j)) = 1 > 0, showing that t is not a tree-specific explanation for x given F . Since the weights

of the utmost instances extending a term t given BT = {F} varies monotonically when t is deprived of some of its elements
and since

∑n
j=1(w↑(tx, T

+
j) + w↑(tx, T

−
j)) = 0, we can conclude that tx is the unique tree-specific explanation for x

given F . Contrastingly, since for every x′ ∈X , we have F (x′) = 0, ∅ is the (unique) sufficient reason for x given F .

Proof of Proposition 6

Proof. The proof consists of two points. First, we check that for every j ∈ [m] \ {i} (where BT (x) = i), we have∑pi

k=1 w↓(tx, T
i
k) >

∑pj

k=1 w↑(tx, T
j
k) holds. Since x is the unique instance that extends tx, for any tree T l

k of BT , x
is also a worst and a best instance extending tx given T l

k. Thus, for each k ∈ [pi], we have w↓(tx, T
i
k) = w(T i

k,x) and
for each k ∈ [pj], we have w↑(tx, T

j
k) = w(T j

k ,x). Acccordingly,
∑pi

k=1 w↓(tx, T
i
k) >

∑pj

k=1 w↑(tx, T
j
k) is equivalent to∑pi

k=1 w(T
i
k,x) >

∑pj

k=1 w(T
j
k ,x), which is equivalent to w(F i,x) > w(F j ,x) and finally to BT (x) = i, which holds.

The second point consists in verifying that if t, t′ verify t ⊂ t′ ⊆ tx, and for every j ∈ [m]\{i}, we have
∑pi

k=1 w↓(t
′, T i

k) ≤∑pj

k=1 w↑(t
′, T j

k) holds, then
∑pi

k=1 w↓(t, T
i
k) ≤

∑pj

k=1 w↑(t, T
j
k) holds as well. This comes directly from the fact that

when t ⊂ t′, we have w↓(t, T
i
k) ≤ w↓(t

′, T i
k) for each k ∈ [pi] and we have w↑(t, T

j
k) ≥ w↑(t

′, T j
k) for each k ∈ [pj].

	INTRODUCTION
	PRELIMINARIES
	COMPUTING TS-EXPLANATIONS
	EXPERIMENTS
	OTHER RELATED WORK
	CONCLUSION
	MISSING PROOFS

