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Abstract

We study a problem of batch distribution drift
motivated by several applications, which consists
of determining an accurate predictor for a tar-
get time segment, for which a moderate amount
of labeled samples are at one’s disposal, while
leveraging past segments for which substantially
more labeled samples are available. We give new
algorithms for this problem guided by a new theo-
retical analysis and generalization bounds derived
for this scenario. We further extend our results to
the case where few or no labeled data is available
for the period of interest. Finally, we report the re-
sults of extensive experiments demonstrating the
benefits of our drifting algorithm, including com-
parisons with natural baselines. A by-product of
our study is a principled solution to the problem
of multiple-source adaptation with labeled source
data and a moderate amount of target labeled data,
which we briefly discuss and compare with.

1 Introduction

The standard assumption in learning theory and algorithm
design is that training and test distributions coincide and
that the distributions are fixed over time. However, this
assumption does not always hold in practice. In many ap-
plications, the learning environment is non-stationary and
subject to a continuous drift over time. These include tasks
such as political sentiment analysis, news stories, spam de-
tection, financial market prediction under mildly fluctuating
economic conditions, fraud detection, network intrusion
detection, sales prediction, and many others.

In such tasks, the distribution changes over time gradually.
For example, sales or fraud patterns are relatively stable
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within a time segment, which may be a month or two long,
but they may change at the subsequent period. We are
interested here in the study of prediction in such gradual
distribution drift scenarios, which are distinct from and more
favorable than the most general scenarios of time series
prediction where more drastic changes of the distributions
may occur (Engle, 1982; Bollerslev, 1986; Brockwell and
Davis, 1986; Box and Jenkins, 1990; Hamilton, 1994; Meir,
2000; Kuznetsov and Mohri, 2015).

The problem of predicting in a distribution drift setting, also
known as the concept drift problem, is more challenging,
however, than learning in the standard i.i.d. environments.
In general, concept drift is defined by a change in the joint
distribution over the input points and their labels (Gama
et al., 2014). The problem has been studied both in the
on-line and batch learning settings. This paper deals with
the batch setting. For a discussion of related work in the
online setting, see Appendix A.

For offline or batch learning, Helmbold and Long (1994)
provided learning bounds in the case where only the target
was allowed to drift. Bartlett (1992) presented an analysis
for a drifting of the joint distribution based on the total vari-
ation as the distance between distributions, and Barve and
Long (1997) gave a tight bound for this scenario. Under a
persistent or even rapid rate of change assumption, Freund
and Mansour (1997) improved these theoretical learning
results. However, such studies for the batch learning make
a rather strong assumption about the rate of drift, which
implies that training only on the most recent examples is
sufficient for a certain period of time. This approach there-
fore does not benefit from all older examples that are at
the learner’s disposal. The results just discussed are also
all based on the `1-distance as a measure of divergence be-
tween two consecutive distributions. As argued by Mohri
and Muñoz Medina (2012), tighter learning bounds can
be achieved using a notion of discrepancy, which can be
viewed as a more suitable divergence measure since it takes
into account both the loss function and the hypothesis set.
Concept drift has also been studied in both the online and
offline setting for clustering, where labels are not available
(Moulton et al., 2018).
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This paper deals with the particular batch scenario of distri-
bution drift that often appears in applications. In that sce-
nario, distribution time segments are known to the learner
and one can thus expect to receive i.i.d. data from the same
distribution within each period. The task consists of making
use of the data from the previous time segments to make
accurate predictions for a new segment for which there can
be a moderate amount of labeled data. This could for ex-
ample correspond to the first few days of a month-long
time segment. We will also consider an alternative weakly
supervised drifting problem where few or no labeled data
is available from the new period. This notion of a pre-
defined structural component of a time series is common
in statistical analysis like Kalman filters for time series de-
composition (Harvey, 1990; Durbin and Koopman, 2002;
Campagnoli et al., 2009) and the BSTS technique (Scott
and Varian, 2014). Note, however, that in our formulation
we do not require the segments to be of a fixed length.

Much of the recent literature on drifting has been related
to drift detection and subsequent model adaptation, as also
detailed in Appendix A. This paper deals with the model
adaptation problem in drifting. Thus, our assumption about
the distribution time segments being available holds either
when the task admits some clearly defined segments, or
when a prior drift detection technique has been used to
determine the segments. In Section 4, we provide an algo-
rithm based on discrepancy for automatically detecting time
segment boundaries, should they not have been provided a
priori.

Unlike some of the past literature on drifting, our analysis
makes no direct assumption about the δ-closeness of con-
secutive distributions. Instead, we make use of estimates
of the discrepancy between the distribution at each time
segment and that of the target segment. Many algorithms
dealing with this scenario consist of a fixed reweighting of
the labeled examples in the past time segments. We give a
new and general analysis of generalization for reweighting
in the drifting setting. Next, we use that theory to guide
the design of a new algorithm, DRIFT, as well as a simpler
version, SDRIFT.

Our theoretical analysis and algorithm are distinct from
those of Mohri and Muñoz Medina (2012), which also make
use of the discrepancy. Our discrepancy-based general-
ization bounds for reweighted samples in the drifting sce-
nario are novel and very general: they hold for arbitrary
hypothesis sets and are expressed in terms of their weighted
Rademacher complexity. In contrast, the guarantees pro-
vided by that prior work are specific to an online-to-batch
solution. Our algorithm crucially learns simultaneously the
weights and the hypothesis, while theirs relies on an online
learning algorithm to generate hypotheses in a first stage
and then determines weights in the second stage to form an
average of the hypotheses. The adversarial online algorithm
used can be too conservative and return predictors in the first
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Figure 1: Illustration of the Learning Scenario: distributions
Dt, samples St ∼ Dmt

t , and discrepancies dis(DT+1,Dt),
where ∣St∣ =mt and ∑T+1s=1 ms =m.

stage that are too weak to combine into a strong solution in
the second stage. This is what we observe in our empirical
analysis, where we also find that our algorithm outperforms
theirs in all the tasks considered (Section 5).

In the next section (Section 2), we give a formal description
of the batch distribution drift scenario we consider, along
with several relevant definitions of discrepancy. In Section 3,
we prove generalization bounds for learning with weighted
labeled samples in this drifting scenario, including guar-
antees that hold uniformly over the choice of the weights.
We discuss the insights gained from these learning bounds
and use them to directly design new algorithms, DRIFT and
SDRIFT, in Section 4. In Appendix D, we further extend
our theoretical and algorithmic results to the scenario of
weakly supervised and unsupervised drifting where few or
no labeled data is available from the target period.

A by-product of our study is a principled solution to the prob-
lem of multiple-source adaptation with labeled source data
and a moderate amount of target labeled data, which can be
viewed as a special instance of our drifting problem where
the data is not sequential. In Section 4.6, we briefly discuss
that scenario and compare it with those studied in previous
work. Finally, we report the results of extensive experiments
with our algorithm on synthetic as well as real-world data
and comparisons with several baselines in Section 5.

2 Learning Scenario

Let X denote the input space, Y the output space, and H a
hypothesis set of functions mapping from X to Y. We will
consider a loss function `∶Y×Y→ R assumed to take values
in [0,1]. For any distribution P over X × Y, we denote by
L(P, h) the expected loss of h ∈ H for the distribution P:
L(P, h) = E(x,y)∼P[`(h(x), y)].

We study the following distribution drift problem. Let
D1, . . . ,DT+1 be (T + 1) distributions over X × Y.
The learner receives a labeled i.i.d. sample St =
((xnt+1, ynt+1), . . . , (xnt+mt , ynt+mt)) of size mt from
each distribution Dt, t ∈ [T+1], with nt = ∑t−1s=1ms, see Fig-
ure 1. The notation t ∈ [T +1] refers to t ∈ {1,2, . . . , T +1}.
We will also use the shorthandm = nT+2 = ∑T+1t=1 mt for the
total sample size. We will be particularly interested in cases
wheremT+1 is significantly smaller than the total sample en-
countered in the first T segments, that is mT+1 ≪ ∑Tt=1mt.
For any t, will denote by D̂t the empirical distribution de-
fined by the sample St and will denote by Dt,X the marginal
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distribution of Dt on X. The goal is to use these samples to
learn a hypothesis h for the target distribution DT+1 with
small expected loss L(DT+1, h).

A key challenge in this problem is that, in general, the source
distributions Dt, t ∈ [T ] do not coincide with the target
distribution DT+1. Of course, one could use just the sample
ST+1 available from the target to train a predictor. However,
when the distributions Dt, t ∈ [T ], are somewhat similar to
the target distribution, using the samples St, t ∈ [T ], may
help select a more accurate predictor.

An appropriate divergence measure between distributions is
needed to analyze the distribution drifting problem. Mohri
and Muñoz Medina (2012) argued that a suitable measure
in the context of drifting is that of Y-discrepancy, which
we will refer to as labeled discrepancy. The unlabeled
counterpart of the notion of discrepancy was introduced by
Mansour, Mohri, and Rostamizadeh (2009a) and shown to
be tailored to the analysis of domain adaptation (Kifer et al.,
2004; Ben-David et al., 2006; Mansour et al., 2009a; Cortes
and Mohri, 2014; Cortes et al., 2019b). Discrepancy takes
into account both the loss function and the hypothesis set.
Moreover, it can be estimated from a finite sample (Mansour
et al., 2021). Unlabeled discrepancy also coincides with the
so-called dA-distance coined by Kifer et al. (2004), in the
particular case where the zero-one loss is used.

The labeled discrepancy between Di and Dj , dis(Di,Dj)
(Mohri and Muñoz Medina, 2012; Cortes et al., 2019b), is
defined as follows:

dis(Di,Dj)
= sup
h∈H

E
(x,y)∼Di

[`(h(x), y)] − E
(x,y)∼Dj

[`(h(x), y)].

Observe that we do not take the absolute value of the differ-
ence between the expectations as in the initial definitions of
discrepancy. This simpler definition is adequate for much of
our results. We define the discrepancy with absolute values
as: Dis(Di,Dj) = max{dis(Di,Dj),dis(Dj ,Di)}.

Labeled discrepancy can be upper bounded by the `1-
distance when the loss function admits an upper bound
B (see also (Mansour et al., 2009a):

dis(Di,Dj) = sup
h∈H

∑
(x,y)

[Di(x, y) −Dj(x, y)] `(h(x), y)

≤ sup
h∈H

∑
(x,y)

∣Di(x, y) −Dj(x, y)∣ ∣`(h(x), y)∣

≤ B ∑
(x,y)

∣Di(x, y) −Dj(x, y)∣

= B `1(Di,Dj).

By Pinsker’s inequality, it can thus also be upper bounded
in terms of the relative entropy. However, these divergence
measures do not take into account the hypothesis set and the
loss function and in general cannot be accurately estimated
from finite samples. Since it takes into account the loss

function, labeled discrepancy is also a finer measure, more
relevant to the task at hand than theH-divergence adopted
for time series modeling in (Ganin and Lempitsky, 2015;
Sicilia et al., 2021; Lu et al., 2022).

In all the definitions above, we also allow Di and Dj to be
finite signed measures over X × Y, thus the weights may not
sum to one. In addition, we (abusively) allow distributions
over sample indices. For example, given a sample S and a
distribution q over its [m] indices, we write

dis(D̂,q) = sup
h∈H

1

m

m

∑
i=1
`(h(xi), yi) −

m

∑
i=1

qi`(h(xi), yi).

3 Generalization Bounds for Batch Drifting
Scenarios

In this section, we give new generalization bounds for the
distribution drift problem, using the notion of discrepancy.
We will denote by S the full sample S = (S1, . . . , ST+1) of
sizem. For a non-negative vector q in [0,1]m, we denote by
qt the total weight on the points in sample St, t ∈ [T+1]: q =
∑mti=1 qnt+i and by Rq(` ○H) the q-weighted Rademacher
complexity, an extension of Rademacher complexity taking
into account the weights q:

Rq(` ○H) = E
S,σ

[sup
h∈H

m

∑
i=1
σiqi`(h(xi), yi)], (1)

where σis are independent and uniform random variables
taking values in {−1,+1}.

We first present a learning guarantee for batch drifting for
fixed values of the weights q, expressed in terms of the dis-
crepancy between DT+1 and a weighted sum of all segment
distributions Dt.

Theorem 1. Fix a vector q in [0,1]m. Then, for any δ > 0,
with probability at least 1 − δ over the choice of a sample S
drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 , for all h ∈H:

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt)

+ 2Rq(` ○H) + ∥q∥2

√
log 1

δ

2
.

Furthermore, when q is a distribution, ∥q∥1 = 1, the discrep-
ancy term can be replaced by ∑Tt=1 qtdis(DT+1,Dt).

The simplification of the second term when q is a dis-
tribution stems from dis((1 − qT+1)DT+1,∑Tt=1 qtDt) =
dis(∑Tt=1 qtDT+1,∑Tt=1 qtDt) = ∑Tt=1 qtdis(DT+1,Dt).
The full proof is given in Appendix B, where we also prove
that the result is tight in terms of the discrepancy term (The-
orem 3). The following theorem further extends this result
to a bound that can be used to choose both h ∈H and q. For
this result, we consider a reference distribution p0, which
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can be thought of as a reasonable first estimate for q. A
natural choice is the uniform distribution over just the target
points. We then derive a bound that holds uniformly for all
q in {q∶0 < ∥q − p0∥1 < 1}.

Theorem 2. For any δ > 0, with probability at least
1 − δ over the choice of a sample S drawn from Dm1

1 ⊗
⋯ ⊗ DmT+1

T+1 , the following holds for all h ∈ H and q ∈
{q∶0 ≤ ∥q − p0∥1 < 1}:

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt)

+ dis(q,p0) + 2Rq(` ○H) + 5∥q − p0∥1

+ [∥q∥2 + 2∥q − p0∥1][
√

log log2
2

1−∥q−p0∥1 +
√

log 2
δ

2
].

This proof is also given in Appendix B.

Analysis of the bounds. Theorem 1 provides a guar-
antee for the expected loss of any predictor h in H

based on its q-weighted sample loss, the labeled dis-
crepancy, the q-weighted Rademacher complexity, and
∥q∥2. When q is a distribution, the discrepancy term re-
duces to ∑Tt=1 qtdis(DT+1,Dt) and the bound suggests
allocating less total weight, qt, to a segment t with a
larger target discrepancy, dis(DT+1,Dt). Equivalently,
the first two terms of the bound can then be combined
as ∑T+1t=1 ∑

nt+mt
i=nt qi[`(h(xi), yi) + dis(DT+1,Dt)], which

can be interpreted as the loss on each sample point be-
ing augmented with the discrepancy term corresponding
to its segment. There is also a natural balance between
the q-weighted empirical loss and ∥q∥2 terms: the learning
guarantee prescribes minimizing the former, but not at the
expense of assigning most points a weight of zero which
results in a large value for ∥q∥2. Note that the last term sug-
gests an interpretation of 1/∥q∥22 as the effective sample size,
since in standard learning bounds, ignoring constants, the
term appearing in lieu of ∥q∥2 is 1/

√
∣sample∣. The bound

of Theorem 2 additionally includes the terms ∥q − p0∥1 and
dis(q,p0), which both recommend choosing q not too far
from the reference p0. The global insight suggested by these
learning bounds is that a balance of all these terms is im-
portant for generalization to be successful in drifting. In
the next section we describe an algorithm based on these
observations.

4 Drifting Distributions Algorithms

We present new learning algorithms that leverage the theo-
retical foundations above.

4.1 DRIFT Algorithm

Theorem 2 suggests minimizing the right-hand side of the
inequality with an ideal choice of h ∈H and q ∈ [0,1]m. If

we assume that H is a subset of a normed vector space and
that the Rademacher complexity term can be upper-bounded
on the norm squared ∥h∥2, the optimization problem with λ1,
λ2 and λ∞ as non-negative hyperparameters is as follows:

min
h∈H,q∈[0,1]m

m

∑
i=1

qi[`(h(xi), yi)] +
T

∑
t=1

qtdis(DT+1,Dt)

+ dis(q,p0) + λ∞∥q∥∞∥h∥2 + λ1∥q − p0∥1 + λ2∥q∥22,

where we used a tight upper bound on the weighted
Rademacher complexity given by Lemma 1, see Ap-
pendix B. We must still choose the reference p0. A nat-
ural choice is the uniform distribution over just ST+1, the
empirical distribution without any points from previous dis-
tributions. We call DRIFT the algorithm seeking to solve
this optimization problem. We also introduce a simpler al-
gorithm SDRIFT, where we upper-bound the dis(q,p0) term
by ∥q − p0∥1, allowing it to be absorbed into λ1. We use
SDRIFT for all experimental evaluation.

Both of our algorithms, DRIFT and SDRIFT, directly benefit
from the theoretical guarantees of Theorem 2, since they
seek to minimize the right-hand side of that bound, or a
natural upper bound derived by replacing dis(q,p0) term
by ∥q − p0∥1.

Note that dis(q,p0) is a convex function of q since it
is a supremum of convex functions of q: dis(q,p0) =
suph∈H{∑mi=1(qi − p0i )`(h(xi), yi)}. Thus, when the loss
function ` is convex with respect to its first argument, the
objective function is convex in q and convex in h. In general,
however, it is not jointly convex. To minimize the objec-
tive, we use alternate minimization or DC-programming.
Here, alternate minimization switches between optimizing
with respect to h or with respect to q, each time solving a
convex optimization problem. The method admits conver-
gence guarantees under certain assumptions (Grippo and
Sciandrone, 2000; Li et al., 2019; Beck, 2015). The descrip-
tion and guarantees for DC-programming are discussed in
Appendix C.

4.2 Discrepancy Estimation

The optimization problem for our DRIFT algorithm requires
discrepancy values dt = dis(DT+1,Dt), which we can esti-
mate from labeled samples. Here, we analyze this estimation
problem in detail.

An empirical estimate d̂t of the discrepancy dt can be ob-
tained as the solution of the problem:

max
h∈H

⎧⎪⎪⎨⎪⎪⎩

1

mT+1

nT+1+mT+1
∑

i=nT+1+1
`(h(xi), yi) −

1

mt

nt+mt
∑

i=nt+1
`(h(xi), yi)

⎫⎪⎪⎬⎪⎪⎭
.

When the loss function ` is convex, the objective function
is a difference of two convex functions. Thus, the problem
can be cast as an instance of DC-programming, which can
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Figure 2: Enhanced Discrepancy Estimation: d̂ts are original discrepancy estimates; dts are corrected estimates leveraging
the higher quality estimates δts and the sequentiality of the drifting distribution.

be tackled using the DCA algorithm (Tao and An, 1998),
see also Appendix C. In the special case of the squared
loss, the problem is an instance of the trust-region problem
and a method based on the DCA algorithm is guaranteed to
converge to the global optimum (Tao and An, 1998). More
generally, the global optimum can be found by combining
the DCA algorithm with a branch-and-bound or cutting
plane method (Tuy, 1964; Horst and Thoai, 1999; Tao and
An, 1997). Reformulating the maximization problem as
a minimization, the DCA solution consists of solving the
following sequence of convex optimizations with hk+1 the
solution of kth problem, k ∈ [K], and h1 chosen at random:

hk+1 ∈ argmin
h∈H

{ 1

mt

nt+mt
∑

i=nt+1
`(h(xi), yi)

− 1

mT+1

nT+1+mT+1
∑

i=nT+1+1
∇`(hk(xi), yi) ⋅ (h − hk)},

where the second term of the objective is obtained by
linearization of the loss, with ∇` a sub-gradient of
the loss. By McDiarmid’s inequality, with high prob-
ability, ∣dis(DT+1,Dt) − d̂t∣ can be upper-bounded by
O(

√
1/mt + 1/mT+1).

Finer guarantees can be given when the discrepancy is rela-
tively small, using relative deviation bounds or Bernstein-
type bounds (Cortes et al., 2019a). When the sample ST=1
is large enough, we can reduce the hypothesis space H and
have a more precise local discrepancy where the maximum
is now taken over this smaller set. We reduce H by train-
ing a relatively accurate classifier hDT+1

on a fraction n of
points from ST=1 so we can restrict H to a ball B(hDT+1

, r)
of radius r ∼ 1/

√
n.

We could use directly the discrepancy estimates d̂t in the
optimization problem of our DRIFT algorithm. However, we
can leverage the sequential aspect of our distribution drift
problem to derive better estimates. Note that the width ∆t

of the confidence interval guaranteed by our learning bounds
is in O(

√
1/mt + 1/mT+1) and while we expect mt to be

typically large, mT+1 could be only moderately large and
affect the accuracy of our estimation. First, note that, by
the triangle inequality, for any t ∈ [T − 1], the following
holds: dis(DT+1,Dt+1) − dis(DT+1,Dt) ≤ dis(Dt,Dt+1).
Thus, we have ∣dt+1 − dt∣ ≤ Dis(Dt,Dt+1). In many prior
analyses of the drifting distribution problem, consecutive
distributions are assumed to be δ-close (Helmbold and Long,

1994; Long, 1999; Mohri and Muñoz Medina, 2012) for the
`1-distance or the two-sided discrepancy. Thus, we could
adopt the assumption Dis(Dt,Dt+1) ≤ δ here. However,
we can instead estimate accurately Dis(Dt,Dt+1) modulo
an error in O(

√
1/mt + 1/mt+1) which would be small,

since both mt and mt+1 are typically large. Let δ̂t denote
that estimate, then this leads to searching our discrepancy
estimated dt as the solution of the following problem:

min
d1,...,dT

T

∑
t=1

∣dt − d̂t∣
2

s.t. ∣dt+1 − dt∣ ≤ δt = δ̂t +
√

1
mt

+ 1
mt+1

, (2)

which helps us derive better estimates, as illustrated in Fig-
ure 2. Note that, with high probability, the true discrepancies
dt satisfy the constraints and are thus feasible solutions.

Let us also add that some authors have (naively) suggested
to simply remove the supremum in the definition of
discrepancy, especially in a scenario where labeled
samples are available from the target domain. But,
without the supremum, the analysis and the optimiza-
tion would simply boil down to training on the (small)
target labeled sample ST+1, since the sum of the em-
pirical loss and empirical estimate of the difference
without a supremum is then ∑mi=1 qi`(h(xi), yi) +
[∑nT+1+mT+1i=nT+1+1 qi`(h(xi), yi) −∑mi=1 qi`(h(xi), yi)] =
∑nT+1+mT+1i=nT+1+1 qi`(h(xi), yi), thereby losing the benefit
of the labeled data from the T segments. Furthermore,
we cannot derive generalization bounds such as those of
Theorems 1 and 2 in the absence of the supremum.

Computational complexity: the computational complexity
of our algorithm corresponds to that of estimating the dis-
crepancies and subsequently that of solving the main opti-
mization problem via alternating minimization. The main
cost for discrepancy estimation is that of solving the DC-
program in 4.2. Each DC-program is solved by solving a
sequence of K convex optimization problems. Thus, the
total complexity for this part is O(TKC), where C is the
cost of solving each convex program, which depends on
the properties of the loss and hypothesis set. In our experi-
ments, K is never more than 20. The cost of our alternating
minimization is that of solving K ′ times two convex opti-
mizations Cq and Ch, thus in total O(K ′(Cq +Ch)). Ch is
the cost of a standard weighted-ERM for the hypothesis set
considered. Cq runs in O(m) and K ′ is never more than 50
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in our experiments. Our experiments show that, in practice,
our algorithm is very efficient and practical.

4.3 Automatic Determination of Distributions Dt

The DRIFT algorithm hinges on the knowledge of the seg-
ments supporting the distributions Dt, which are used to
estimate discrepancy and improve predictions on the tar-
get segment DT+1. Often, the distributions Dt admit an
inherent time segmentation such as days, weeks, or months,
but, for some other distributions, there may not be such a
natural pattern, and one can ask how to determine the splits
automatically from data. There is a wide literature on drift
detection tackling this problem (see Appendix A). Standard
algorithms for change-point detection in time series analysis
also provide useful tools relevant to this task. Here, we
briefly describe a natural method related to discrepancy.

Figure 3: Illustration of how to automatically determine the
distributions Dt with homogeneous discrepancies dis(T +
1, t). A classifier h is determined by minimizing its loss on
the data ST+1. Its loss on the historic data is determined,
and a step function fitted to the losses.

The distributions Dt of the DRIFT algorithm are character-
ized by their discrepancy dis(DT+1,Dt). In the absence
of the segmentation information, we cannot estimate these
quantities. But, we can use a classifier trained on the target
sample to identify the segments, using its losses on historical
data. The difference of the expected loss of this classifier on
the target and on any past segment provides a lower bound
on the corresponding discrepancy. Thus, let h be a classi-
fier trained on the target sample ST+1. We apply h to the
historical data and record its pointwise losses, see Figure 3.
One may then fit a piecewise constant function number of
points per region to ensure estimation accuracy. The knots
determined in this way specify the split between the distri-
butions. A discrepancy lower bound for the region can be
found from the differences in losses of h on the regions.

4.4 Weakly Supervised Drifting

By unsupervised or weakly supervised drifting, we refer
to the scenario where we have very few or no labeled data
points from the target DT+1. We study this scenario in de-
tail in Appendix D: we extend our bounds to that scenario,
bound labeled discrepancy terms in terms of unlabeled dis-
crepancy ones, and then derive an algorithm WDRIFT based
on unlabeled discrepancy terms.

4.5 Extension to Other Algorithms

There are several algorithms used in the context of drifting
that consist of assigning weights, often fixed ones such as
exponentially decaying ones, to the samples losses. Other
reweighting algorithms originally designed for domain adap-
tation are also sometimes used in this context, including
KMM (Huang et al., 2006), KLIEP (Sugiyama et al., 2007),
importance weighting (Cortes et al., 2010), discrepancy min-
imization (Cortes and Mohri, 2014) and many others. Our
learning bounds for weighted samples are general and can
be applied to the analysis of these algorithms. Our analysis
suggests however that an algorithm such as DRIFT, which
seeks to minimize the bounds, benefits from a more favor-
able theoretical guarantee.

Note that we consider a batch scenario with infrequent up-
dates or retraining, for example large recommendation sys-
tems with monthly, bimonthly or other season-long updates.
Retraining is further natural since each new segment comes
with a fair amount of new labeled data. In scenarios with
more frequent segments, we can learn an ensemble of the
hypotheses hT learned for previous target segments T , us-
ing the small labeled sample from the new target, or simply
fine-tune the previous model, and only retrain occasionally.

4.6 Relationship with Multiple-Source Adaptation

While the main motivation for this work is the batch distri-
bution drifting problem, our theory, analysis, and algorithms
also provide a new and principled solution to the problem
of multiple-source adaptation (MSA) with a specific target
distribution and labeled data. In this scenario, the learner
receives labeled data from multiple source distributions, as
well as a moderate amount of labeled data from the target
distribution. The goal is to come up with an accurate predic-
tor for that target distribution. This problem is distinct from
the drifting one we consider by the absence of sequentiality
of the data received by the learner, which we specifically
leverage in our case to derive more accurate estimates of
the discrepancies. If we ignore the sequential aspect, criti-
cal in drifting, our theoretical analysis holds for this MSA
scenario and, if we use directly the discrepancy estimates
d̂t defined in Section 4.2, the algorithm readily applies and
provides a principled solution for this problem.

This MSA scenario is distinct from the one first introduced
and analyzed by Mansour et al. (2009a,b), later extensively
studied and extended by Hoffman et al. (2018, 2021, 2022)
and Cortes et al. (2021b). In that scenario, the learner has
only access to unlabeled data from the source distributions
and a trained predictor for each source domain, with no
access to source labeled data or target labeled or unlabeled
data. The goal in that scenario is to combine the exist-
ing pre-trained source models to come up with a predictor
that is accurate for any distribution that is a mixture of the
source distributions. This approach has been further used
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Figure 4: Synthetic Data: (Left) and (Middle) with label-flipping and three segments D1 = D3 ≠ D2. Left: MSE as a
function of increasing discrepancy; Middle: the amount of q-mass assigned to D2 by SDRIFT, in particularly the points with
flipped labels. Right: MSE performance for k sources.

successfully in many applications such as object recognition
(Hoffman et al., 2012; Gong et al., 2013a,b). Since the target
distribution is not specified beforehand, this scenario can be
viewed as an instance of the domain generalization problem,
where no labeled input data is available but only relatively
accurate predictors for each source domain.

Zhao et al. (2018) and Wen et al. (2020) studied an MSA sce-
nario where there are multiple source domains with labeled
instances and one target domain with unlabeled instances.
This scenario is also distinct from ours since no labeled data
is available from the target. Our learning bounds can, how-
ever, be used to analyze the scenario considered by these
authors and lead to more general guarantees with uniform
convergence bounds over the weights and finer quantities
such as the weighted Rademacher complexity and labeled
discrepancies. In Section 5, we are presenting an empirical
comparison with MDAN (Zhao et al., 2018) and DARN
(Wen et al., 2020). Cortes et al. (2021a) study a similar
but distinct scenario in a boosting setting, where the target
distribution is unspecified but assumed to be a mixture of
the source distributions and where no target data is avail-
able. The domain generalization problem of Blanchard et al.
(2021) is a similar scenario but one where at prediction time
unlabeled data is available from the target distribution.

Finally, an MSA scenario with labeled data from the source
domains and only limited labeled data from the target do-
main was studied in (Konstantinov and Lampert, 2019; Man-
sour et al., 2021; Shui et al., 2021). Mansour et al. (2021)
presented a theoretical analysis of this scenario using the
notion of discrepancy but their analysis and algorithms also
assume that the target distribution is a mixture of the source
distributions, as in (Mansour et al., 2009a,b), or is close to
being a mixture. They argued that the approach adopted by
Konstantinov and Lampert (2019) could be sub-optimal in
general. The analyses of Konstantinov and Lampert (2019)
and Mansour et al. (2021) both use the discrepancy, which
is a finer divergence measure than the Wasserstein distance
used by Shui et al. (2021). The scenario studied in these
publications is distinct from ours since we do not require
an assumption about the target distribution and since we
assume a moderate amount of labeled data from the target.

The latter assumption can be relaxed in our case, however,
since we can extend our theory to the weakly supervised
setting, as discussed in Section 4.4. Our algorithms provide
in fact a novel and principled solution to this problem based
on a reweighting of all sample points. This is in contrast
with the solutions considered in these publications, which
only assign a global weight to each domain.

5 Experimental Evaluation

Here, we study properties of our new DRIFT algorithm and
report a series of comparison results with several baselines.

5.1 Synthetic Data

Our synthetic data experiments demonstrate how the DRIFT
algorithm effectively and automatically hones in on low-
discrepancy source segments to boost its performance. We
predetermine the distributions to control the discrepancy
between the distributions. All experiments are for the re-
gression setting and use a linear hypothesis set and a squared
error loss. For all examples, x ∈ Rn, n = 20, is sampled
from a normal distribution, N (0, In×n). The labels y are
based on a randomly drawn weight vector w ∈ Rn of unit
length, and y = w ⋅ x. We use the SDRIFT algorithm, see
Section 4.1, for all experimental evaluation.

The first scenario is with just two source segments with
samples S1 and S2, and a target sample S3. To illustrate the
benefit of our new approach, S1 and S3 are drawn from the
same distribution, while S2 differs slightly. We artificially
control its discrepancy d2 to the S3 by flipping the sign of a
fraction of its labels.

We estimate the empirical discrepancy, d̂2 as outlined in
Section 4, and then run algorithm SDRIFT by carrying out
a grid search over the three hyperparameters, λ∞, λ1, and
λ2. The best performance is determined by evaluation on
an independent validation set of size 10∣Si∣, with ∣Si∣ = 120,
and we report mean and standard deviations over 10 runs as
measured on a test set of size 100∣Si∣. Performance in terms
of MSE and amount of q-weight assigned to the sample
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wind airline gas news traffic

Figure 5: A plot of the total average probability mass assigned (in blue) to each segment by the SDRIFT algorithm along side
the corresponding (normalized) discrepancy values (in green).

Table 1: MSE of the SDRIFT Algorithm Against Baselines for Regression Tasks. We report relative errors normalized so
that training on target has an MSE of 1.0. Best results in boldface.

Dataset KMM DM MM EXP BSTS SDRIFT

Wind 1.19 ± 0.07 1.12 ± 0.06 1.19 ± .07 0.98 ± 0.04 0.98 ± 0.01 0.95 ± 0.02
Airline 2.45 ± 0.17 1.78 ± 0.11 1.41 ± 0.28 0.98 ± 0.03 0.945 ± 0.01 0.94 ± 0.03
Gas 0.45 ± 0.02 0.42 ± 0.02 0.47 ± 0.04 0.94 ± 0.03 1.02 ± 0.2 0.4 ± 0.01
News 1.1 ± 0.02 1.13 ± 0.01 1.1 ± 0.03 0.98 ± 0.02 1.00 ± 0.02 0.97 ± 0.004
Traffic 2.3 ± 0.12 2.2 ± 0.11 0.99 ± 0.12 0.996 ± 0.008 0.98 ± 0.03 0.96 ± 0.006

S2 is illustrated in Figure 4. In the figure we compare the
performance to that of Naive-DRIFT, see Appendix E, where
the samples S1 and S2 are assumed to be drawn from the
same distribution.

In all regression experiments, we normalize the MSE by
the one obtained from training on S3 only. Figure 4-Left
illustrates how the samples from D1 and D2 aide learning.
For low noise level, and hence low discrepancy, the algo-
rithm obtains significantly better performance, MSE < 1.
As the discrepancy d̂2 increases, the MSE increases. How-
ever, even when all the signs of the labels of S2 are flipped,
the algorithm is able to make use of the good samples of
S1 and performs better than training just on S3. This left
plot also demonstrates the performance gains over Naive-
DRIFT, which cannot take advantage of the difference in
distributions D1 ≠D2. The middle plot shows the amount
of q-weight allocated by the SDRIFT algorithm to the points
in S2, and also the points with noisy flipped labels. As the
discrepancy increases, less total q-mass is allocated to the
points in D2. Even as the label-flipping fraction becomes
very small, SDRIFT detects the few noisy points and gives
them almost no weight.

Figure 4-Right also illustrates the performance of SDRIFT
for a synthetic setting with T sources diverging away from
ST+1. Higher values of T result in samples with smaller
discrepancy to DT+1 and the overall performance improves.
For this setting a natural baseline is exponential decay of the
weights q, keeping them constant within a segment. How-
ever as the figure illustrates, SDRIFT also outperforms this
baseline. For details and more experiments using synthetic
data, see Appendix F.

5.2 Real-World Data

We compare SDRIFT to several baseline algorithms in real-
world regression and classification settings.

Baseline Algorithms. We compare with the following base-
line algorithms, modified to incorporate the labeled sample
ST+1:
KMM (Huang et al., 2006): The algorithm assigns weights
to the sample points in S1, S2, . . . , ST so that the kernelized
mean feature vector of each segment matches that of ST+1
in terms of mean squared error. We run linear KMM for
each segment to derive the qi-weights. We then minimize a
squared error loss using these weights, adding in the target
points with uniform weights.
DM (Cortes and Mohri, 2014): This method also performs a
two-stage optimization, but uses the unlabeled discrepancy
to determine weights per segment. These weights and uni-
form 1/(mT+1) weights for the target points are then used
for training a squared error loss.
MM (Mohri and Muñoz Medina, 2012): In an online learn-
ing phase this algorithm first generates multiple hypotheses.
In a second phase it determines weights to form a weighted
average of the hypotheses.
EXP (Ross et al., 2012): This method often used in drifting
and time-series modeling exponentially down-weights past
samples. For our comparisons, we keep the weights fixed
within each past segment.
BSTS (Scott and Varian, 2014): A state-of-the-art time-
series modeling technique that incorporates drift as well as
segment indicators.
MDAN (Zhao et al., 2018) and DARN (Wen et al., 2020):
two state-of-the-art multiple-source domain adaptation algo-
rithms for the scenario of labeled source data plus unlabeled
target data (only).

Regression Tasks. We compare the SDRIFT algorithm to
that of the baselines on a number of regression tasks. For
pointers to the dataset and details on the experimental proce-
dure, see Appendix F. For each dataset, we form T source
segments and define a target distribution. We estimate the
discrepancy d̂i, i ∈ [T ], as outlined in Section 4, deter-
mine the best hyper-parameters via cross-validation on an
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STAGGER Electricity Room Occupancy Adult Income

Figure 6: Average probability mass assigned (in blue) to each segment by the SDRIFT algorithm along side the corresponding
(normalized) discrepancy values (in green).

Table 2: Accuracy of the SDRIFT Against Baselines for Classification Tasks. We report relative accuracies normalized so
training on just target has an accuracy of 1.0. Best results are in boldface.
Dataset KMM DM MM EXP BSTS MDAN DARN SDRIFT

STAGGER 0.69 ± 0.006 0.73 ± 0.05 0.74 ± 0.01 1.02 ± 0.03 0.98 ± 0.02 0.71 ± 0.02 0.88 ± 0.04 1.05 ± 0.03
Electricity 0.95 ± 0.01 0.93 ± 0.02 0.84 ± 0.02 1.09 ± 0.02 1.02 ± 0.07 1.12 ± 0.02 1.08 ± 0.02 1.13 ± 0.02
Room Occupancy 0.62 ± 0.02 0.63 ± 0.01 0.72 ± 0.03 1.02 ± 0.04 1.07 ± 0.01 0.60 ± 0.02 0.60 ± 0.02 1.02 ± 0.02
Adult Income 0.97 ± 0.007 0.98 ± 0.01 0.99 ± 0.005 1.00 ± 0.01 1.00 ± 0.02 0.97 ± 0.01 0.98 ± 0.01 1.01 ± 0.004

independent validation set and measure the test error on
a different and independent test set. Reported results are
mean and standard deviations over ten different splits of
the data. For the objective, we use the squared loss and the
hypothesis set is that of linear functions.

Table 1 provides results for 5 regression tasks in terms of
MSE, normalized so that training only on the data from the
target segment gives an error of MSE = 1. Hence, we are
seeking algorithms achieving a better performance, that is
MSE<1. The KMM and DM algorithms admits no princi-
pled mechanism for down-weighing segments that are too
far from the target, thus all segments are assigned the same
total mass in the loss function. In contrast, as can be seen
from Figure 5, the SDRIFT algorithm effectively discards
many segments and assigns them little or no q-mass, indi-
cated by small blue segment bars. In addition, KMM and
DM do not make use of any labels to match distributions.

The MM algorithm does incorporate the performance of the
hypotheses found in the online training phase, and hence in
its final training it puts most weight on the hypotheses from
the target segment. However, the simple online hypotheses
are weaker than the result from batch training on the target
and as a result, this method also obtains an MSE>1. Fi-
nally, we compare to the BSTS algorithm. For dataset with
a clear time component: wind (month), news (weekday),
airline (hour), traffic (hour) it provides a strong base-
line, but proves sub-optimal for general drifting problems.
BSTS falls short similarly for classification, see below.

Figure 5 provides further insight into how the SDRIFT algo-
rithm achieves an improved performance and how it effec-
tively allocates q-mass to the source segments with lower
discrepancy. The green bars indicates the estimated dis-
crepancy between the sources and the target segments, the
blue bars illustrate the q-mass the algorithm assigns. As
expected, segments with higher discrepancy are assigned
lower q-mass. The figure and a further discussion can be
found in Appendix F.

Classification Tasks. We report results on 4 classification
tasks for which we report performance in terms of accu-
racy and normalize so training only on the target gives an
accuracy of one (see Appendix F for more details). Thus,
well-performing algorithms have an accuracy superior to
one. Table 2 reports our results. KMM, DM, and MM again
under-perform, see discussion under regression tasks. The
EXP algorithm is competitive and ties in some instances
with SDRIFT, for example when past segments receive very
little weight from SDRIFT (Room) or when the number of
past segments is small (STAGGER). BSTS outperforms on
Room that has a strong time component. Figure 6 shows the
discrepancies and q-mass allocated by the SDRIFT algorithm
to each segment. Again, we see how the algorithm effec-
tively leverages segments with lower target discrepancy.

6 Conclusion

We presented a comprehensive study of a distribution drift
problem that arises in many applications. We presented a
detailed theoretical analysis of this problem based on the
notion of labeled discrepancy, including learning bounds
that hold uniformly over the sample weights. We also gave
a principled algorithm for this problem that directly benefits
from our theoretical analysis. We showed how the sequen-
tial nature of the data can be exploited when estimating
the discrepancy. We further extended both our theory and
algorithms to a weakly supervised scenario where few or no
labeled is at hand from the target domain.

Our analysis and theory are likely to be useful in the study
of other drifting problems and adaptation tasks. In fact, a
direct by-product of our study is a principled solution to the
problem of multiple-source adaptation with labeled source
data and a moderate amount of target labeled data, which
we briefly described. Our experimental results suggest that
our algorithm is of practical use with significant benefits
in several tasks, including the scenario of multiple-source
adaptation just outlined.
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A Related Work

Here, we further discuss some related work. Let us emphasize that we do not anticipate any negative societal impact of our
work in the near future.

A.1 Online Setting

In on-line learning, the benchmark typically adopted is that of external regret, which measures the cumulative loss of the
algorithm against that of the best static expert in hindsight (Cesa-Bianchi and Lugosi, 2006). This framework was extended
by Herbster and Warmuth (2001), who studied the scenario where the best expert could shift over time at most a finite
number of times. The analysis was later improved to account for broader expert classes (Gyorgy et al., 2012) and to deal with
unknown parameters (Monteleoni and Jaakkola, 2003). It was further generalized (Vovk, 1999; Cesa-Bianchi et al., 2012;
Koolen and de Rooij, 2013) and used to extend the perceptron algorithm (Cavallanti et al., 2007). A more general theoretical
and algorithmic analysis of online learning with dynamic sequences of experts based on weighted automata was given by
Mohri and Yang (2018), which comprehensively covers past competitor classes considered in the literature. An alternative
study of dynamic environments based on the notion of adaptive regret was also suggested by Hazan and Seshadhri (2009),
which was later strengthened and generalized (Adamskiy et al., 2012; Daniely et al., 2015). Bartlett et al. (2000) considered
other settings allowing arbitrary but infrequent changes, such as sequences corresponding to slow walks. Crammer et al.
(2010) analyzed an intermediate model of drift based on a near function, where consecutive distributions could change
arbitrarily, provided that the region of disagreement between nearby functions were assigned limited distribution mass at any
time. Ensemble learning was suggested as a solution technique for drifting in Tsymbal (2004). In a somewhat related work,
Zhao et al. (2020) introduced an algorithm based on model reuse and weight updating. Finally, a study of active learning in
the online setting with drifting distributions was presented by Yang (2011).

A.2 Drift Detection

Much of the recent literature on drifting has been related to drift detection and subsequent model adaptation. The detection of
a drift significant enough to warrant updating the model is critical, as retraining is computationally expensive. The theoretical
results suggest the use of only a most recent set of training examples. Hence, it is important to identify a (changing) window
of examples to train on. FLORA (Widmer and Kubat, 1996) was one of the original algorithms to train with a fixed window.
Later versions of this algorithm study an adaptive window (using methods such as a Hoeffding statistical test in Gâlmeanu
and Andonie (2021) which does not require subsequent entire model retraining) as well as gradual forgetting of data points
(Gama et al., 2014; Klinkenberg, 2004). An error-based method of drift detection is now one of the most popular approaches
to drift detection, originating from the Drift Detection Method of Gama et al. (2004), which identifies an acceptable level of
error for the most recent window of online examples. Other methods include distribution-based drift detection and more
recently the use of multiple (parallel or hierarchical) hypothesis tests to detect drift (Lu et al., 2020). A Bayesian approach
has also been studied (Bach and Maloof, 2010). In an application to financial markets and more specifically the Dow Jones,
neural networks have been used to detect concept drift (Silva et al., 2012). Analysis has also been extended to the active
learning setting, where Tahmasbi et al. (2021) claim to outperform standalone drift detection.

B Main Theorems

Theorem 1. Fix a vector q in [0,1]m. Then, for any δ > 0, with probability at least 1 − δ over the choice of a sample S
drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 , for all h ∈H:

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) + 2Rq(` ○H) + ∥q∥2

√
log 1

δ

2
.

Furthermore, when q is a distribution, ∥q∥1 = 1, the discrepancy term can be replaced by ∑Tt=1 qtdis(DT+1,Dt).

Proof. Let LS(q, h) denote the q-weighted empirical loss: LS(q, h) = ∑mi=1 qt`(h(xi), yi). For any sample S drawn from
Dm1

1 ⊗⋯⊗DmT+1
T+1 , we define Φ(S) as follows:

Φ(S) = sup
h∈H

T+1
∑
t=1

qtL(Dt, h) −LS(q, h).
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Changing point xi to some other point x′i affects Φ(S) at most by qi, as we consider loss functions `∶Y × Y→ R assumed to
take values in [0,1]. Thus, by McDiarmid’s inequality, which only requires independent random variables and not the same
distribution, for any δ > 0, with probability at least 1 − δ, the following holds for all h ∈H:

T+1
∑
t=1

qtL(Dt, h) ≤ LS(q, h) +E[Φ(S)] + ∥q∥2

√
log 1

δ

2
. (3)

We now analyze the expectation term. Observe that for any sample S, we can write:

E
S
[LS(q, h)] =

m

∑
i=1

qiE[`(h(xi), yi)] =
T+1
∑
t=1

mt

∑
i=1

qnt+iE[`(h(xnt+i), ynt+i)] =
T+1
∑
t=1

mt

∑
i=1

qnt+iL(Dt, h) =
T+1
∑
t=1

qtL(Dt, h).

Thus, the expectation term can be expressed as follows:

E[Φ(S)] = E
S
[sup
h∈H

T+1
∑
t=1

qtL(Dt, h) −LS(q, h)]

= E
S
[sup
h∈H

E
S′
[LS′(q, h) −LS(q, h)]]

≤ E
S,S′

[sup
h∈H
LS′(q, h) −LS(q, h)] (by the sub-additivity of the supremum operator)

= E
S,S′

[sup
h∈H

m

∑
i=1

qi`(h(x′i), y′i) − qi`(h(xi), yi)]

= E
S,S′,σ

[sup
h∈H

m

∑
i=1
σi(qi`(h(x′i), y′i) − qi`(h(xi), yi))] (introducing Rademacher variables)

≤ E
S′,σ

[sup
h∈H

m

∑
i=1
σiqi`(h(x′i), y′i)] + E

S,σ
[sup
h∈H

m

∑
i=1
σiqi`(h(xi), yi)]

(by the sub-additivity of the supremum operator)

= 2 E
S,σ

[sup
h∈H

m

∑
i=1
σiqi`(h(xi), yi)] = 2Rq(` ○H).

Now, for any h ∈H, we have

L(DT+1, h) −
T+1
∑
t=1

qtL(Dt, h) = L(DT+1, h) −L(
T+1
∑
t=1

qtDt, h) ≤ dis(DT+1,
T+1
∑
t=1

qtDt).

When q is a distribution, we have ∑T+1t=1 qt = 1 and

dis(DT+1,
T+1
∑
t=1

qtDt) = max
h∈H

{L(DT+1, h) −L(
T+1
∑
t=1

qtDt, h)}

= max
h∈H

{L(DT+1, h) −
T+1
∑
t=1

qtL(Dt, h)}

= max
h∈H

{
T

∑
t=1

qt[L(DT+1, h) −L(Dt, h)]}

≤
T

∑
t=1

qtmax
h∈H

{[L(DT+1, h) −L(Dt, h)]}

=
T

∑
t=1

qtdis(DT+1,Dt).

This completes the proof.

The following result shows that the bound is tight as a function of the weighted-discrepancy term.
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Theorem 3. Fix a distribution q in ∆m. Then, for any ε > 0, there exists h ∈H such that, for any δ > 0, the following lower
bound holds with probability at least 1 − δ over the choice of a sample S drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 :

L(DT+1, h) ≥
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) − 2Rq(` ○H) − ∥q∥2

√
log 1

δ

2
− ε.

In particular, for ∥q∥2,Rq(` ○H) ∈ O( 1√
m
), we have:

L(DT+1, h) ≥
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) −Ω( 1√
m

).

Proof. Let L(q, h) denote ∑mi=1 qi`(h(xi), yi). By definition of discrepancy as a supremum, for any ε > 0, there exists
h ∈H such that L(DT+1, h) −L(∑T+1t=1 qtDt, h) ≥ dis(DT+1,∑T+1t=1 qtDt) − ε. For that h, we have

L(DT+1, h) − dis(DT+1,
T+1
∑
t=1

qtDt) −L(q, h) ≥ L(
T+1
∑
t=1

qtDt, h) −L(q, h) − ε = E
S
[LS(q, h)] −L(q, h) − ε.

By McDiarmid’s inequality, with probability at least 1 − δ, we have E[L(q, h)] −L(q, h) ≥ −2Rq(` ○H) − ∥q∥2
√

log 1
δ

2
.

Thus, we have:

L(DT+1, h) −L(q, h) − qdis(DT+1,Q) ≥ −2Rq(` ○H) − ∥q∥2

√
log 1

δ

2
− ε.

The last inequality follows directly by using the assumptions and Lemma 1, see below.

Lemma 1. Fix a distribution q over [m]. Then, the following holds for the q-weighted Rademacher complexity:

Rq(` ○H) ≤ ∥q∥∞mRm(` ○H).

Proof. The result follows immediately Talagrand’s contraction lemma, by the ∥q∥∞-Lipschitzness of each function x ↦
qix.

Note that the bound is tight since for q uniform, we have ∥q∥∞ = 1
m

and Rq(` ○H) =Rm(` ○H).

Theorem 2. For any δ > 0, with probability at least 1 − δ over the choice of a sample S drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 ,

the following holds for all h ∈H and q ∈ {q∶0 ≤ ∥q − p0∥1 < 1}:

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qtDt) + dis(q,p0) + 2Rq(` ○H)

+ 5∥q − p0∥1 + [∥q∥2 + 2∥q − p0∥1][
√

log log2
2

1−∥q−p0∥1 +
√

log 2
δ

2
].

Proof. Consider two sequences (εk)k≥0 and (qk)k≥0. By Theorem 1, for any fixed k ≥ 0, we have:

P[L(DT+1, h) >
m

∑
i=1

qki `(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qktDt) + 2Rqk(` ○H) + ∥qk∥2√
2
εk] ≤ e−ε

2
k .

Choose εk = ε +
√

2 log(k + 1). Then, by the union bound, we can write:

P[∃k ≥ 1∶L(DT+1, h) >
m

∑
i=1

qki `(h(xi), yi) + dis(DT+1,
T+1
∑
t=1

qktDt) + 2Rqk(` ○H) + ∥qk∥2√
2
εk]

≤
+∞
∑
k=0

e−ε
2
k ≤

+∞
∑
k=0

e−ε
2−log((k+1)2) = e−ε

2
+∞
∑
k=1

1

k2
= π

2

6
e−ε

2

≤ 2e−ε
2

. (4)
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We can choose qk such that ∥qk − p0∥1 = 1 − 1
2k

. Then, for any q ∈ {q∶0 ≤ ∥q − p0∥1 < 1}, there exists k ≥ 0 such that
∥qk − p0∥1 ≤ ∥q − p0∥1 < ∥qk+1 − p0∥1 and thus such that

√
2 log(k + 1) =

√
2 log log2

1

1 − ∥qk+1 − p0∥1
=
√

2 log log2

2

1 − ∥qk − p0∥1

≤
√

2 log log2

2

1 − ∥q − p0∥1
.

Furthermore, for that k, the following inequalities hold:

m

∑
i=1

qki `(h(xi), yi) ≤
m

∑
i=1

qi`(h(xi), yi) + dis(qk,q)

≤
m

∑
i=1

qi`(h(xi), yi) + dis(qk,p0) + dis(p0,q)

≤
m

∑
i=1

qi`(h(xi), yi) + ∥qk − p0∥1 + dis(q,p0)

≤
m

∑
i=1

qi`(h(xi), yi) + ∥q − p0∥1 + dis(q,p0),

dis(DT+1,
T+1
∑
t=1

qktDt) ≤ dis(DT+1,
T+1
∑
t=1

qtDt) + ∥qkt − qt∥1

≤ dis(DT+1,
T+1
∑
t=1

qtDt) + ∥qk − p0∥1 + ∥p0 − q∥1

≤ dis(DT+1,
T+1
∑
t=1

qtDt) + 2∥p0 − q∥1,

Rqk(` ○H) ≤Rq(` ○H) + ∥qk − q∥1 ≤Rq(` ○H) + 2∥q − p0∥1,
and ∥qk∥2 ≤ ∥q∥2 + ∥qk − q∥2 ≤ ∥q∥2 + ∥qk − q∥1 ≤ ∥q∥2 + 2∥q − p0∥1.

Plugging in these inequalities in (4) concludes the proof.

Corollary 1. For any δ > 0, with probability at least 1 − δ over the choice of a sample S drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 ,

the following holds for all h ∈H and q ∈ {q∶0 ≤ ∥q − p0∥1 < 1}:

L(DT+1, h) ≤
m

∑
i=1

qi`(h(xi), yi) +
T

∑
t=1

qtdis(DT+1,Dt) + dis(q,p0) + 2Rq(` ○H) + 6∥q − p0∥1

+ [∥q∥2 + 2∥q − p0∥1][
√

log log2
2

1−∥q−p0∥1 +
√

log 2
δ

2
].

Proof. By definition of the discrepancy, we can write:

dis(DT+1,
T+1
∑
t=1

qtDt) = dis([(1 − qT+1) +
T

∑
t=1

qt]DT+1,
T

∑
t=1

qtDt)

≤ (
T

∑
t=1

qtDT+1,
T

∑
t=1

qtDt) + ∣1 − ∥q∥1∣

=
T

∑
t=1

qt(DT+1,Dt) + ∣∥p∥1 − ∥q∥1∣

=
T

∑
t=1

qt(DT+1,Dt) + ∣∥p − q∥1∣.

Combining this inequality with the bound of Theorem 2 completes the proof.
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C DC-Programming

We can reduce the optimization problem of DRIFT to an instance of DC-programming (difference of convex) by writing
the objective as a difference. Note that for any non-negative and convex function f , f2 is convex: for all (x,x′) ∈ X2 and
α ∈ [0,1], by the convexity of f and the monotonicity of x↦ x2 on R+, we can write

f2(αx + (1 − α)x′) ≤ [αf(x) + (1 − α)f(x′)]2 ≤ αf2(x) + (1 − α)f2(x′),

where the last inequality holds by the convexity of x ↦ x2. Thus, we can rewrite the non-jointly convex terms of the
objective as the following DC-decompositions:

qi`(h(xi), yi) =
1

2
[[qi + u]2 − [q2i + u2]] ∥q∥∞∥h∥2 = 1

2
[[∥q∥∞ + ∥h∥2]2 − [∥q∥2∞ + ∥h∥2]],

where u = `(h(xi), yi). We can then apply the DCA algorithm of Tao and An (1998), (see also Tao and An (1997)),
which in our differentiable case coincides with the CCCP algorithm of Yuille and Rangarajan (2003) further analyzed by
Sriperumbudur et al. (2007). The DCA algorithm does indeed guarantee convergence.

D Unsupervised or Weakly Supervised Drifting

The analysis of Section 3 can also be used to derive finer guarantees for weakly supervised drifting, the scenario where the
learner has access to few or no labeled points from the target segment. In this section, we analyze the case where points
from the target segment DT+1 are all unlabeled. The extension of our analysis to the case where a small fraction of the
points from that segment are labeled is straightforward. The new guarantees lead to the design of better algorithms for
weakly supervised drifting.

D.1 Unsupervised or Weakly Supervised Drifting Generalization Bounds

For convenience, we will use an alternative notation here for the weights on the first T source samples and the sample ST+1
from the target sample: we will denote by q ∈ [0,1]nT+1 the weight vector for the source samples and by q′ ∈ [0,1]mT+1 the
weight vector for the target (unlabeled) samples. Since the labels are not available for points in ST+1, we upper-bound the
reweighted empirical loss in terms of a p-weighted empirical loss and a weighted discrepancy term, for any weight vector
p ∈ [0,1]nT+1 :

nT+1

∑
i=1

qi`(h(xi), yi) +
m

∑
i=nT+1+1

q′i`(h(xi), yi) ≤
nT+1

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p). (5)

This yields immediately the following theorem, using Theorem 1.

Theorem 4. Fix the vectors q ∈ [0,1]nT+1 and q′ ∈ [0,1]mT+1 . Then, for any δ > 0, with probability at least 1 − δ over the
choice of a sample S drawn from Dm1

1 ⊗⋯⊗DmT+1
T+1 , the following holds for all p ∈ [0,1]nT+1 and h ∈H:

L(DT+1, h) ≤
nT+1

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p) + dis(DT+1,
T+1
∑
t=1

qtDt)

+ 2R(q,q′)(` ○H) +

√
(∥q∥22 + ∥q′∥22) log 1

δ

2
.

Here we denote by (q,q′) the vector in [0,1]m obtained by appending q′ to q. This learning bound can be extended to
hold uniformly over {(q,q′) ∈ [0,1]m∶0 < ∥(q,q′) − p0∥1 < 1} and all p in [0,1]nT+1 , where p0 is a reference (or ideal)
reweighting choice over the m points (see Theorem 5 and Corollary 2 in Appendix D).

Here, both p and q′ can be chosen to make the weighted-discrepancy term dis(q′,p) smaller. Several of the comments on
Theorem 1 similarly apply here. When we do not have labels from ST+1, the discrepancy terms must be upper-bounded
with unlabeled discrepancies, using only unlabeled data from DT+1. A detailed analysis is presented in Appendix D.4
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D.2 WDRIFT Algorithm

The analysis of the previous section suggests seeking h ∈H and q and p in [0,1]nT+1 and q′ in [0,1]mT+1 to minimize the
bound of Theorem 5 or that of Corollary 2. As in Section 4, assume that H is a subset of a normed vector space and that the
Rademacher complexity term can be bounded in terms of an upper bound on the norm squared ∥h∥2. Then, the optimization
problem corresponding to Corollary 2 can be written as follows:

min
h∈H,q,p∈[0,1]nT+1

q′∈[0,1]mT+1

nT+1

∑
i=1

(qi + pi) `(h(xi), yi) (6)

+
T

∑
t=1

qtdis(DT+1,Dt) + dis(q′,p) + dis((q,q′),p0)

+ λ∞∥(q,q′)∥∞ ∥h∥2 + λ1∥(q,q′) − p0∥1 + λ2(∥q∥22 + ∥q′∥22),

where λ1, λ2 and λ∞ are non-negative hyperparameters and where we used the shorthand. We will refer by WDRIFT to the
algorithm seeking to minimize this objective. We are omitting subscripts to simplify the presentation but, as discussed in the
previous section, the unlabeled discrepancies in the optimization problem may be local unlabeled discrepancies, which are
finer quantities. Here too, a natural choice for p0 is the uniform distribution over the input points of S′. In practice, there
may be better choices motivated by specific applications.

Our comments and analysis of the DRIFT optimization (Section 4) apply similarly here. In particular, the problem can
be similarly cast as an alternate minimization or a DC-programming problem. The unlabeled discrepancy terms can be
accurately estimated using the samples available.

D.3 Theorems and Proofs

Let (q,q′) denote the vector in [0,1]m formed by appending q′ to q. The learning bound of Theorem 4 can be extended to
hold uniformly over all p in [0,1]nT+1 and (q,q′) in {(q,q′) ∈ [0,1]m∶0 < ∥(q,q′) − p0∥1 < 1}, where p0 is a reference (or
ideal) reweighting choice over the m points.

Theorem 5. For any δ > 0, with probability at least 1−δ over the draw of a sample S from Dm1

1 ⊗⋯⊗DmT+1
T+1 , the following

holds for all h ∈H, q ∈ {q∶0 ≤ ∥(q,q′) − p0∥1 < 1} and all p ∈ [0,1]nT+1 :

L(DT+1, h) ≤
nT+1

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p) + dis(DT+1,
T+1
∑
t=1

qtDt)

+ dis((q,q′),p0) + 2R(q,q′)(` ○H) + 5∥(q,q′) − p0∥1

+ [∥q∥2 + 2∥(q,q′) − p0∥
1
][

√
log log2

2
1−∥(q,q′)−p0∥1 +

√
log 2

δ

2
].

Proof. The proof follows immediately by applying inequality (5), which holds for all p ∈ [0,1]nT+1 , to the bound of
Theorem 2.

Corollary 2. For any δ > 0, with probability at least 1 − δ over the draw of a sample S from Dm1

1 ⊗ ⋯ ⊗DmT+1
T+1 , the

following holds for all h ∈H, q ∈ {q∶0 ≤ ∥(q,q′) − p0∥1 < 1} and all p ∈ [0,1]nT+1 :

L(DT+1, h) ≤
m

∑
i=1

(qi + pi)`(h(xi), yi) + dis(q′,p) +
T

∑
t=1

qtdis(DT+1,Dt)

+ dis((q,q′),p0) + 2R(q,q′)(` ○H) + 6∥(q,q′) − p0∥1

+ [∥q∥2 + 2∥(q,q′) − p0∥1][
√

log log2
2

1−∥(q,q′)−p0∥1 +
√

log 2
δ

2
].

Proof. The result follows Theorem 5 and the application of the upper bound used in the proof of Corollary 1.
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D.4 Labeled Discrepancy Upper Bounds

The definition of labeled discrepancy naturally requires labels from Di and Dj . When we do not have access to these labels,
the unlabeled discrepancy dis(Di,Dj) is appropriate, defined as:

dis(Di,Dj) = sup
h,h′∈H

E
x∼DiX

[`(h(x), h′(x))] − E
x∼DjX

[`(h(x), h′(x))]. (7)

We define Dis(Di,Dj) as the version of unlabeled discrepancy with absolute values. When H has a favorable Rademacher
complexity such as a finite VC-dimension, the unlabeled discrepancy can be accurately estimated with finite (unlabeled)
samples from the marginal distributions DiX and DjX (Mansour et al., 2009a). The finer notion of local labeled discrepancy
for some suitably chosen subsets H1 and H2 of H is defined by:

disH1×H2(Di,Dj) = sup
(h,h′)∈H1×H2

E
x∼DiX

[`(h(x), h′(x))] − E
x∼DjX

[`(h(x), h′(x))]. (8)

Local discrepancy (Cortes et al., 2019b) is a more favorable quantity because it is defined by a supremum over smaller
sets. As an example, when a small but sufficient amount of labeled data is available from the target, we can use, instead of
the hypothesis space H, a ball of an appropriate radius around a classifier hT+1 obtained by training on that data. Other
instances of local discrepancy are adopted in (Zhang et al., 2019) and (Sicilia et al., 2022), with notions based on a single
supremum. However, the loss function in then ignored or reduced to a binary loss.

In the absence of labeled points from the target segment or when only few labeled points are available, we need to resort to
upper bounds in terms of this unlabeled discrepancy, which can be estimated using only unlabeled data. Such upper bounds
can be derived straightforwardly using previous work and analysis based on discrepancy (Cortes and Mohri, 2014; Cortes
et al., 2019b). We will briefly discuss here such upper bounds.

For the squared loss, for any hypothesis h0 ∈H, the following upper bound based on a local discrepancy can be derived:

dis(D̂T+1, D̂t) ≤ disH×{h0}(D̂T+1, D̂t) + 2δH,h0(D̂T+1, D̂t),

where D̂T+1 and D̂t denote the empirical distributions associated to DT+1 and Dt and where δ is defined by (Cortes and
Mohri, 2014):

δH,h0(D̂T+1, D̂t) = sup
h∈H

∣ E
(x,y)∼D̂T+1

[h(x)(y − h0(x))] − E
(x,y)∼D̂t

[h(x)(y − h0(x))]∣.

For a suitable choice of h0 ∈H, the term δH,h0(D̂T+1, D̂t) captures the closeness of the empirical output labels on D̂T+1
and D̂t. The unlabeled discrepancy term can be accurately estimated from unlabeled samples (Mansour et al., 2009a). When
a relatively small labeled sample S′ drawn i.i.d. from DT+1 is available, we can use it to select h0 via

h0 = argmin
h0∈H

δH,h0(D̂S′,T+1, D̂t),

where D̂S′,T+1 denotes the empirical distribution associated to S′. When no labeled data from the target segment is at our dis-
posal, we cannot choose h0 by leveraging any existing information. We can then assume that minh0∈H δH,h0(D̂T+1, D̂t) ≪
1, that is that the source labels are relatively close to the target ones based on these measures and use the standard unlabeled
discrepancy:

dis(D̂T+1, D̂t) ≤ dis(D̂T+1, D̂t) + 2 min
h0∈H

δH,h0(D̂T+1, D̂t).

When the covariate-shift assumption holds and the problem is separable, h0 can be chosen so that δH,h0(D̂T+1, D̂t) = 0.
More generally, when h0 can be chosen so that ∣y − h0(x)∣ is relatively small on both samples corresponding to D̂T+1 and
D̂t and the hypotheses h ∈H are bounded by some M > 0, then δH,h0(D̂T+1, D̂t) is relatively small.

For a µ-Lipschitz loss, similarly, the following upper bound on the labeled discrepancy can be used:

dis(D̂T+1, D̂t) ≤ disH×{h0}(D̂T+1, D̂t) + µηH,h0(D̂T+1, D̂t).
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where, for any h0 ∈H, ηH,h0(D̂T+1, D̂t) is defined by (Cortes et al., 2019b):

ηH,h0(D̂T+1, D̂t) = E
(x,y)∼D̂T+1

[∣y − ho(x)∣] + E
(x,y)∼D̂t

[∣y − ho(x)∣].

The Lipschitz loss labeled discrepancy ηH,h0(D̂T+1, D̂t) is a coarser quantity than δH,h0(D̂T+1, D̂t). In particular,
even when D̂T+1 = D̂t, ηH,h0(D̂T+1, D̂t) is not zero, as pointed out by Cortes and Mohri (2014). However, as with
δH,h0(D̂T+1, D̂t), it captures the closeness of the output labels on D̂T+1 and D̂t. The rest of the discussion in the case of a
Lipschitz loss is similar to the squared loss case. In particular, when a relatively small labeled sample S′ is available from
the target segment, then we can choose h0 as follows: h0 = argminh0∈H ηH,h0(D̂S′,T+1, D̂t).

E Comparison of DRIFT and a Naive-DRIFT Solution

A naive baseline to compare the DRIFT algorithm to is that of simply combining D1 to DT to form a single distribution
D1, and then applying the DRIFT algorithm with the same target DT+1. We will refer to this method by naive-DRIFT,
since ignores the differences between the first T distributions. Here, we present a simple case to illustrate how DRIFT can
outperform this baseline.

The DRIFT algorithm introduced in Section 4 optimizes the following objective

min
h∈H,q∈[0,1]m

m

∑
i=1

qi[`(h(xi), yi)] +
T

∑
t=1

qtdis(DT+1,Dt) + dis(q,p0)

+ λ∞∥q∥∞∥h∥2 + λ1∥q − p0∥1 + λ2∥q∥22,

Let there be two distributions D1 and D2, which are alternating up until and including DT+1. Thus, we have the sequence
D1,D2,D1,D2, . . . ,D2,D1 with DT+1 = D1 and dis(D1,D2) = 1. The only difference between the two approaches is
then the term∑Tt=1 qtdis(DT+1,Dt) from the optimization problem. In the naive approach of combining the T distributions,
we have:

T

∑
t=1

qtdis(DT+1,Dt) = qdis(DT+1,
1

T

T

∑
t=1

Dt) = qdis(D1,
1

2
(D1 +D2)) =

q

2
.

The last step comes from applying the following analysis. In general, we have:

dis(Di,Dj) = max
h∈H

E
(x,y)∼
Di

[`(h(x), y)] − E
(x,y)∼
Dj

[`(h(x), y)] = max
h∈H ∑

(x,y)
[Di(x, y) −Dj(x, y)]`(h(x), y).

In our case, we have:

dis(D1,
1

2
(D1 +D2)) = max

h∈H ∑
(x,y)

[D1(x, y) −
1

2
(D1(x, y) +D2(x, y))]`(h(x), y)

= 1

2
max
h∈H ∑

(x,y)
[D1(x, y) −D2(x, y)]`(h(x), y) =

1

2
dis(D1,D2) =

1

2
.

The first two terms of the objective of the DRIFT optimization can alternatively be written as

m

∑
i=1

qi[`(h(xi), yi)] +
T

∑
t=1

qtdis(DT+1,Dt)

=
T

∑
t=1

nt+mt
∑

i=nt+1
qi[`(h(xi), yi) + dis(DT+1,Dt)] +

m

∑
i=nT+1+1

qi[`(h(xi), yi)].

For the naive approach, these terms simplify to

T

∑
t=1

nt+mt
∑

i=nt+1
qi[`(h(xi), yi) + dis(DT+1,Dt)] +

m

∑
i=nT+1+1

qi[`(h(xi), yi)]

=
m−mt
∑
i=1

qi[`(h(xi), yi) +
1

2
] +

m

∑
i=nT+1+1

qi[`(h(xi), yi)].
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Figure 7: Left: Performance in the weight-mixing example of synthetic data with three distributions D1 = D3 ≠ D2 as a
function of increasing discrepancy. Right: Performance in the example with k source distributions.

The extra loss of 1/2 in the objective for any example from the first T distributions forces in the naive approach q to be
quite small, allocating little weight to these points. As such, the naive approach does not allow us to benefit much from
the training points from the samples from D1, while they are drawn from the same distribution as the target. In the more
nuanced approach, since dis(D1,DT+1) = 0 and ∑mi=1 qi = 1, the algorithm can allocate significantly more weight to the
samples coming from D1, which should show an improvement over the naive approach.

F Experimental Results

We here provide more experimental data and detail of the results reported in the main paper, Section 5. Our proposed
SDRIFT algorithm requires computing the discrepancy values between the source segments and the target segment. Since for
the squared loss and the logistic loss over linear models, the discrepancy equals the difference of two convex terms, we
approximate the discrepancy value via DC programming (Tao and An, 1997, 1998). We use a fixed learning rate of 0.01 for
regression tasks and a learning rate of 0.001 for classification tasks.

F.1 Synthetic Data

Figure 7 (left) illustrates the normalized MSE for a weight mixing example. We use the same experimental setup as for the
example with three distributions detailed in the main paper, but here the labels of D2 are modified by mixing in an increasing
fraction, α, of a different weight vector w2, also randomly drawn and with unit length, such that yD2 = (αw2 + (1 − α)w) ⋅x.
Again, we observe how the DRIFT algorithm can effectively make use of the data from D2 and obtains a normalized MSE
< 1 for a much larger range of label corruption than that of Naive-DRIFT.

We also compare the performance of our proposed algorithm for varying number, T , of source segments. For each
T ∈ {3,4, . . . ,10}, the labels are generated as y = w ⋅ x +N (0, σ2), with σ = 0.1. Each source segment is generated in the
same manner and we artificially inject a varying amount of noise within each of them. For a source segment i ∈ {1,2, . . . , T},
an α = ((T − 1 + i)/T fraction of the predictions are flipped. That is, for D1, 100% of the labels are flipped. As can be seen
in Figure 7(right), our proposed algorithm outperforms the baselines and its performance is unaffected across different values
of T . For both Naive-DRIFT and SDRIFT the hyperparameters λ∞, λ1, λ2 were chosen via cross validation in the range
{1e − 3,1e − 2,1e − 1} ∪ {0,1,2, . . . ,10} ∪ {0,1000,2000,10000,50000,100000}. The h optimization step of alternate
minimization was performed using sklearn’s linear regression method (Pedregosa et al., 2011). For the q optimization we
used projected gradient descent and the step size was chosen via cross validation in the range {1e − 3,1e − 2,1e − 1}.

F.2 Regression Datasets

Here, we provide details on the datasets used for regression. In the final version of the paper we will provide GitHub links to
all datasets.



Batch Distribution Drift Problems

wind airline

gas news

traffic

Figure 8: (Same as Figure 5 in the main paper.) A plot of the total average probability mass assigned (in blue) to each
segment by the SDRIFT algorithm along side the corresponding (normalized) discrepancy values (in green).

The wind dataset (Haslett and Raftery, 1989) is related to wind speeds (in knots) in Ireland from 1961 to 1987. Measurements
were collected from 12 meterological stations, and we chose to predict the wind speed at the "Malin Head" station using the
values as the 11 other stations as features. Our 11 source segments consist of data from the first 11 months of the year, and
our target is data from the month of December. Each of the source segments is of size ∼500, and for the target we use a split
of ∼150/∼200/∼200 for training/validation/test.

The airline dataset was derived from Bifet and Ikonomovska (2009) and contains information regarding flights into
Chicago O’Haire International Airport (ORD) in 2008. We use as features the arrival time, distance, whether or not the
flight was diverted, and the day of the week for predicting the amount of time the flight was delayed. Our source segments
are comprised from the hours of the day, and our target segment is one of the busier hours. Each of the source segments is of
size 800, and for the target we have sizes 200 train/300 validation/300 test.

The gas dataset (Rodriguez-Lujan et al., 2014; Vergara et al., 2012; Dua and Graff, 2017) is a commonly used drift dataset
with measurements from 16 chemical sensors at varying concentrations of 6 gases. The dataset has predetermined batches,
and we reserved the seventh one as our target. The source batches vary in size from ∼150 to ∼3500, and for the target batch
we have sizes ∼600 train/∼1000 validation/∼2000 test.

The news dataset (Fernandes, 2015; Dua and Graff, 2017) consists of data gleaned from articles on www.mashable.com,
with the goal of predicting their popularity in terms of the number of shares. Our 6 source segments consist of the 6 days of
the week from Monday to Saturday and our target is data from Sunday. The weekday source segments are of size ∼6000 and
weekend of size ∼2500, and for the target we have sizes 737 train/1000 validation/1000 test.
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The traffic dataset from the Minnesota Department of Transportation (DOT, 2019; Dua and Graff, 2017) contains
information about the weather and traffic volume on the Westbound Interstate 94, which is located between Minneapolis and
St Paul. We split the data into segments by hour, and chose our target segment to be the one starting at 9am. The source
segments are of size 100, and for the target we have sizes 200 train/400 validation/400 test.

To obtain standard deviations for the errors, we randomly sampled data from the target into train/validation/test 10 times.

In Figure 8, (same as Figure 5 in the main paper), we show in blue the average probability mass assigned by SDRIFT to each
segment in the regression tasks. The green bars indicate the normalized discrepancy to the target segment. It is noticeable
how the SDRIFT algorithm assigns more probability mass to segments of lower discrepancy.

F.3 Classification Datasets

Here, we provide details on the datasets used for classification tasks. In the final version of the paper we will provide GitHub
links to all dataset.

The STAGGER dataset (López Lobo, 2020) is a common synthetic dataset used for concept drift detection. It contains 4
concepts, and the drifts are abrupt. The data exhibits 3 numeric features for a binary classification setting. We artificially
added noise to the target (last) training sample by flipping the class for 20% of the points. The source segments are of size
10,000, and for the target we have sizes 2000 train/4000 validation/4000 test.

The Electricity dataset (Harries and Wales, 1999; Gama et al., 2004) is a popular dataset used for predicting the price
movement (up or down compared to a 24 hour moving average) for the price of electricity in the Australian New South
Wales Electricity Market. The data comes from May 1996 to December 1998, and we split it into segments of roughly two
months each, with the target being the most recent one. Each of the source segments is of size ∼3000, and for the target we
have sizes ∼400 train/∼600 validation/∼600 test.

The Room dataset (Candanedo and Feldheim, 2016; Dua and Graff, 2017) presents a binary classification problem (occupied
or not) of an office room given features such as the light, temperature, humidity and CO2 measurements. Our segments
consisted of one for each of the 24 hours of the day, and our target was the data from the 8am hour, which is occupied about
10% of the time (not the busiest, but nevertheless sometimes occupied unlike hours in the night-time). Each of the source
segments is of size ∼100, and for the target we have sizes ∼100 train/∼100 validation/∼100 test.

The Adult Income dataset (Dua and Graff, 2017) is a popular dataset for predicting whether or not the income of an adult
is greater than $50,000 from features such as their education and sex. Our source segments came from 15 of the 16 specified
education levels, and our target was that of adults who had only completed 10th grade of high school. The source batches
vary in size from ∼100 to ∼8000, and for the target batch we have sizes ∼200 train/∼400 validation/∼400 test.

Similar to the regression datasets, to obtain standard deviations for the accuracies, we randomly sampled data from the target
into train/validation/test 10 times.

F.4 Hyperparameters for Real-World Data

SDRIFT. The hyperparameters for SDRIFT were chosen via cross validation in the same range as the one used for synthetic
data. For the h minimization step of the SDRIFT algorithm we used sklearn’s logistic regression method (Pedregosa et al.,
2011).

Baselines. For the exponential weighting heuristic the base value was chosen via cross validation in the range {1,2, . . . ,10}.
For both discrepancy minimization (DM) (Cortes and Mohri, 2014) and Kernel Mean Matching (KMM) (Huang et al., 2006)
a linear kernel was used. The DM algorithm was implemented via projected gradient descent and the learning rate was
chosen via cross validation in the range {1e − 3,1e − 2,1e − 1}. For the algorithm of Mohri and Muñoz Medina (2012) we
used online gradient descent for regression tasks and the perceptron algorithm for the classification settings. The learning
rates for online gradient descent and the second stage weight optimization were chosen via cross validation in the range
{1e − 3,1e − 2,1e − 1}. To run the BSTS algorithm (Scott and Varian, 2014) we used the CausalImpact python library
(Brodersen et al., 2014) and the algorithm was run with the default parameters. For computational tractability, we sample
100 random points from each segment to form the time series data that was fed to the algorithm. For the MDAN algorithm,
we use the code provided by the authors, and the µ hyperparameter was chosen in the range {1e − 5,1e − 4, . . .1e2}. We
report the best result from running the soft-max and hard-max version. For the DARN algorithm, we use the code provided
by the authors, and we perform a grid search over {1e − 3,1e − 1,1e1} for µ and {1,10} for γ.



Batch Distribution Drift Problems

F.5 Pseudocode for the Alternate Minimization Procedure

In Figure 9 we provide the algorithm description of our alternate minimization procedure for solving the batch distribution
drift problem.

Input: Samples {(x1, y1), . . . (xm, ym)}, tolerance τ , distribution p0, max iterations N , hyperparameters λ∞, λ1, λ2, discrepancy
estimates d̂1, d̂2, . . . , d̂T .

1. Initialize q0 to be the uniform distribution over [m].

2. Let OPT (q, h) = ∑
m
i=1 qi[`(h(xi), yi)] +∑

T
t=1 qtd̂t + λ∞∥q∥∞∥h∥2

+ λ1∥q − p
0
∥1 + λ2∥q∥

2
2

3. Initialize h0 = argminh∈H OPT (q0, h).

4. For j = 1, . . .N ,

• Set curr_obj_val = OPT (qj−1, hj−1).
• Compute qj = argminq∈∆m

OPT (q, hj−1).
• Compute hj = argminh∈H OPT (qj , h).
• Set new_obj_val = OPT (qj , hj).
• If ∣curr_obj_val − new_obj_val∣ ≤ τ , return qj , hj

5. Print: AM did not converge in T iterations. Return qN , hN .

Figure 9: Alternate minimization procedure for weights and hypothesis estimation.
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