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Abstract

We consider the problem of universal dynamic re-
gret minimization under exp-concave and smooth
losses. We show that appropriately designed
Strongly Adaptive algorithms achieve a dynamic
regret of Õ(d2n1/5[T V1(w1:n)]

2/5 ∨ d2), where
n is the time horizon and T V1(w1:n) a path vari-
ational based on second order differences of the
comparator sequence. Such a path variational
naturally encodes comparator sequences that are
piece-wise linear – a powerful family that tracks
a variety of non-stationarity patterns in practice
(Kim et al., 2009). The aforementioned dynamic
regret is shown to be optimal modulo dimension
dependencies and poly-logarithmic factors of n.
To the best of our knowledge, this path variational
has not been studied in the non-stochastic online
learning literature before. Our proof techniques
rely on analysing the KKT conditions of the of-
fline oracle and requires several non-trivial gener-
alizations of the ideas in Baby and Wang (2021)
where the latter work only implies an Õ(n1/3)
regret for the current problem.

1 INTRODUCTION

Online Convex Optimization (OCO) (Zinkevich, 2003;
Hazan, 2016) is a widely studied setup in machine learn-
ing that has witnessed a myriad of influential applications
such as time series forecasting, building recommendation
engines etc. In this setting, a learner plays an iterative game
with an adversary that last for n rounds. In each round
t ∈ [n] := {1, . . . , n}, the learner makes a decision pt that
belongs to a decision space D ⊂ Rd. Then a convex loss
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loss function ft : Rd → R is revealed by the adversary. The
learner suffers a cost of f(pt) at round t for making its deci-
sion. Now, given a benchmark space of decisionsW ⊆ D,
we aim to study learners that can control its dynamic regret
against any sequence of comparators from the benchmark:

Rn(w1:n) :=

n∑
t=1

ft(pt)− ft(wt), (1)

where we abbreviate the comparator sequence w1:n :=
w1, . . . ,wn where each wt ∈ W . This is known to be a
good metric for characterizing the performance of a learner
in non-stationary environments (Zinkevich, 2003; Zhang
et al., 2018a; Cutkosky, 2020). The quantity in Eq.(1) is
also sometimes referred as universal dynamic regret (Zhang
et al., 2018a) because we do not impose any constraints on
the comparator sequence w1:n except that each sequence
member must belong to the benchmark setW . This is a dif-
ferent and more powerful way of tackling distribution-shifts
than other methods that model the environment explicitly
(e.g., Besbes et al., 2015; Baby and Wang, 2020).

Let us illustrate the point in a weather forecasting applica-
tion in which ft(wt) = ℓ(yt, x

T
t wt) where xt is a feature

vector (e.g., humidity and temperature at Day t), yt is the
actual precipitation of the next day and ℓ is a loss function.
The underlying distribution of yt|xt is determined by nature
and could drift over time due to unobserved variables such
as climate change. The approach of Besbes et al. (2015);
Baby and Wang (2020) would be to assume a model, e.g.,
yt = xT

t w
∗
t + noise and control the regret against w∗

1:n in
terms of the variation of the true regression coefficients over
time. In contrast, a universal dynamic regret approach will
not make any assumption about the world, but instead will
compete with the best time-varying sequence of compara-
tors that can be chosen in hindsight. In the case when the
model is correct, we can choose the comparators to be w∗

1:n;
otherwise, we can compete with the best sequence of linear
predictors that optimally balances the bias and variance.

A bound on Rn(w1:n) is usually expressed in terms of
the time horizon n and a path variation that captures
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the smoothness of the comparator sequence w1:n. Some
examples of such path variationals include P (w1:n) =∑n−1

t=1 ∥wt −wt+1∥2 (Zinkevich, 2003) and more recently
T V(w1:n) =

∑n−1
t=1 ∥wt − wt+1∥1 (Baby and Wang,

2021).

Comparator as a discretized function. When we view
the sequence of comparators as a function of time, it is natu-
ral to describe them as a discretization of (continuous-time)
functions residing in some non-parametric function classes.
We now proceed to expand upon this idea. For a function
f : [0, 1]→ R that is k times (weakly) differentiable, define
the Total Variation (TV) of its kth derivative f (k) to be:

TV (f (k)) := sup
0=z1<...<zN+1=1

N∑
i=1

|f (k)(zi+1)− f (k)(zi)|.

(2)

If the function has k + 1 continuous derivatives, then
TV (f (k)) is equivalent to

∫ 1

0
|f (k+1)(x)|dx. Given

n,Cn > 0 one may define the function space:

Fk(Cn) := {f : [0, 1]→ R|TV (f (k)) ≤ Cn}.

This space is known to contain functions that have a piece-
wise degree k polynomial structure (Tibshirani, 2014). We
can generate interesting comparator sequence families by
discretizing such function spaces. First we fix some nota-
tions. For a sequence of vectors v1:ℓ := v1, . . . ,vℓ, de-
fine the first order discrete difference operation Dv :=
v2− v1, . . . ,vℓ− vℓ−1. For any positive integer k, the kth

order discrete difference – Dk – of a sequence is obtained
via applying the operation D for k times. For a sequence
v1:ℓ, we define ∥v1:ℓ∥1=

∑ℓ
j=1∥vj∥1

The higher order TV distance. Next, we define a path
length which is the discrete analogue of TV (f (k)) in Eq.(2)
as follows:

T Vk(w1:n) := nk∥Dk+1w1:n∥1. (3)

It is a common misconception that constraining T Vk can
be alarmingly restrictive due to the presence of the multi-
plicative factor of nk in its definition. To clarify that this is
not the case, we observe that the multiplicative factor of nk

arises naturally as a consequence of the Riemann approxi-
mation of the continuous Total Variation displayed in Eq.(2)
at a resolution 1/n. This observation leads to the following
scheme of generating sequences with T V1(w1:n) = O(Cn)
for any given number Cn: Along any coordinate j ∈ [d],
generate the sequence w1[j], . . . ,wn[j] via sampling a
function fj(x) ∈ Fk(Cn,j) at points x = i/n for i ∈ [n]

with the property that
∑d

j=1 Cn,j = Cn. For example, con-
sidering the case of k = 1 and d = 1, if TV (f (1)) is O(nα)
for some α ≥ 0, then T V1(w1:n) := n∥D2w1:n∥1 is also

O(nα) despite the multiplicative factor of n appearing in the
quantity T V1(w1:n). A demonstration of this phenomenon
for α = 0 is displayed in Fig.1.

Why is this useful? In this paper, we focus on compara-
tors with bounded T V1 distance (i.e Eq.(3) with k = 1).
Our goal will be to bound the dynamic regret Eq.(1) against
w1:n as a function of n and T V1(w1:n). Due to the pres-
ence of second order differencing operation in the definition
of T V1, this path length is ideal to capture the variation
incurred by comparators with piece-wise linear structure
across each coordinate (see Definition 1). The points where
the sequence transition from one linear structure to other
can be interpreted as abrupt changes or events in the un-
derlying comparator dynamics. The value of T V1(w1:n)
simultaneously captures the sparsity (due to the presence
of L1 norm in Eq.(3)) and intensity of such changes. Many
real world time series data are known to contain piece-wise
linear trends. See for example Fig.2 or Kim et al. (2009)
for more examples. Hence controlling the dynamic regret in
terms of T V1(w1:n) has significant practical value.

Fast rate phenomenon. Path lengths of the form T V1

(or more generally T Vk) have gained significant atten-
tion and have been the subject of extensive study in the
stochastic non-parametric regression community for over
two decades (van de Geer, 1990; Donoho and Johnstone,
1998; Kim et al., 2009; Tibshirani, 2014; Wang et al.,
2016). These works aim to estimate an unknown scalar
(i.e d = 1) sequence w1:n from n noisy observations
yt = wt + N (0, σ2) in an offline setting. They propose
algorithms that produce estimates ŵ1:n such that the ex-
pected total squared error

∑n
t=1 E[(ŵt−wt)

2] is controlled.
In particular, an estimation rate of Õ(n1/5[T V1(w1:n)]

2/5)
is shown to be attainable for the squared loss (Õ(·) hides
poly-logarithmic factors of n). On the other hand, squared
error losses are also exp-concave in a compact domain.
Baby and Wang (2021) proposes algorithms for control-
ling dynamic regret under exp-concave losses. Apply-
ing their algorithm will lead to an estimation error of
Õ(n1/3[T V0(w1:n)]

2/3). However, there can be scenar-
ios where the rate of Õ(n1/5[T V1(w1:n)]

2/5) can be faster
than the rate of Õ(n1/3[T V0(w1:n)]

2/3). For instance, con-
sider the canonical (and practically relevant) example in
Fig.1. Let w1:n be generated by discretizing the func-
tion in the left panel at a resolution 1/n. We can see that
T V0(w1:n) ≤ 1 = O(1) and T V1(w1:n) ≈ 2.5 = O(1)
(for n ≥ 10). Here, the aforementioned results from stochas-
tic non-parametric regression can yield a rate of Õ(n1/5)
while existing state-of-the-art results from adversarial online
learning can only lead to O(n1/3) rate of estimation. We
refer the reader to Remark 7 for a discussion about more
such examples.
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Figure 1: A TV 1 bounded comparator sequence w1:n can be obtained by discretizing the weakly differentiable functions
displayed in Fig(a) at points i/n, i ∈ [n]. In Fig(b), we plot the TV 1 distance (which is equal to n∥D2w1:n∥1 by definition)
of the generated sequence for various sequence lengths n. Blue (orange) curve in Fig(b) corresponds to the statistics of the
discretization of the blue (orange) curve in Fig(a). As n increases the discrete TV 1 distance converges to a constant value
given by the continuous TV 1 distance of the functions in Fig(a). In Fig(c) we plot the TV 0 distance of the discretizations.
Thus in this example, we see that both ∥D1w1:n∥1 and n∥D2w1:n∥1 are O(1) as n grows. Since TV 1 distance of the
sequences is O(1), the algorithm that we propose in Section 3 is able to obtain the faster dynamic regret rate of Õ(n1/5)
as opposed to the rate of Õ(n1/3) obtainable from Baby and Wang (2021) for sequences with bounded TV 0 distance.
Furthermore, the functions in Fig(a) are reminiscent to the real-life trends observed in Fig.2.

Central question and summary of results. A natural
question that we ask here is:

Can we attain a universal dynamic regret (Eq.(1)) of
Õ∗(n1/5[T V1(w1:n)]

2/5) when the losses are
exp-concave without imposing any stochastic

assumptions?

Here O∗ hides dimension dependencies. We remark
that the rate of Õ(n1/5[T V1(w1:n)]

2/5) is faster
than Õ(n1/3[T V0(w1:n)]

2/3) iff T V1(w1:n) =
O
(
n1/3[T V0(w1:n)]

5/3
)
. In what follows, we refer

to this regime as the low TV 1 regime. We emphasize that
this regime is not too restrictive as many different examples
can be encompassed by it (see for eg. Fig.1 and Remark
7). A starting point in answering our central question is to
observe that a sequence will have low T V1 distance if it
exhibits a piece-wise linear structure across each coordinate
and the number of linear sections (or kinks) is sparse. A
sequence that is linear across each coordinate within some
interval can be perfectly described using a fixed vector
u ∈ R2d where u[2k − 1 : 2k] ∈ R2 specifies the slope
and intercept along coordinate k ∈ [d]. We will call such
u to be a linear predictor. If an algorithm guarantees that
its static regret against fixed linear predictors within any
interval is controlled, one can hope to perform nearly as
well as the comparator sequence with low enough T V1.
This is precisely an application of Strongly Adaptive
algorithms (Hazan and Seshadhri, 2007; Daniely et al.,
2015; Adamskiy et al., 2016; Cutkosky, 2020) which aim
to control their static regret in any interval and hence we
can use them off-the-shelf to achieve our goal. We refer
the reader to Section 3 for more details. Below, we briefly
summarize our contributions:

• We show that by using appropriate Strongly
Adaptive algorithms, one can attain the (near)
optimal universal dynamic regret rate of
Õ∗ (min{n1/5[T V1(w1:n)]

2/5, n1/3[T V0(w1:n)]
2/3}

)
(Theorem 3 and Proposition 5; a ∨ b = max{a, b})
whenever the comparators w1:n ∈ T V(1)(Cn) and
the losses are exp-concave and gradient smooth (see
Section 4 for the list of Assumptions and associated
definitions). Further this rate is attained without
prior knowledge of the path lengths T V1(w1:n) and
T V0(w1:n).

• To the best of our knowledge, we are the first to in-
troduce path variationals based on second order differ-
ences to the setting of adversarial online learning. We
show how to import the fast rate phenomenon observed
in stochastic non-parametric regression problem under
squared loss into the problem of controlling universal
dynamic regret under general exp-concave losses with
no stochastic assumptions.

Even though in our proofs, we analyse the KKT conditions
of an offline optimization problem akin to the spirit of Baby
and Wang (2021), this similarity is only superficial. The of-
fline optimization problem analysed in this work is different
from what is considered in Baby and Wang (2021). So the
KKT conditions, regret decomposition and the proof strate-
gies we use are also different. Further, we introduce several
new non-trivial ideas and generalizations (see Section 4.1
and Appendix B) while exploiting the smoothness of se-
quences with low T V1 distance to attain the challenging
goal of deriving faster (in comparison to Baby and Wang
(2021)) universal dynamic regret rates.

Before we end this section, we briefly describe how the
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(a) S&P500 stock prices

(b) Daily COVID cases

Figure 2: Fig.(a) displays S&P500 data and Fig.(b) displays
Daily COVID cases reported in the state of New Mexico,
USA. In both scenarios the underlying trend (obtained via
an L1 Trend Filter (Kim et al., 2009)) exhibits a weakly
differentiable piece-wise linear structure (orange).

present work provide a new direction in the research thread
of dynamic regret minimization.

Notes on general outlook and potential impact. Any
meaningful dynamic regret bound has to be parameterized
by the particular comparator sequence to avoid a trivial
linear regret, i.e.,
n∑

t=1

ft(pt)−ft(wt) ≤ DynamicRegretBound(w1, . . . ,wn).

Almost all existing dynamic regret bounds are parameterized
by the movement costs — a functional of consecutive differ-
ences of the comparator sequence. In particular, we can de-
fine Vp,q :=

∑n
t=2∥wt −wt−1∥pq . This includes almost all

existing variations, e.g., pathlength (p = 1, q = 2), square
pathlength (p = 2, q = 2), total variation (p = 1, q = 1),
number of changes (p > 0, q = 0) and so on. The optimal
universal dynamic regret for each functional under different
loss classes are now well-known.

While it appears to be a complete story if we roll back to the
general problem, there should be many other ways we can
parameterize the DynamicRegretBound(w1, ...,wn) by
exploiting other structures of the comparator sequence than
via the movement costs vector. This work can be thought
of as the first one to resort to this idea. We reveal that one
can attain faster rates by exploiting the smoothness / regu-
larity (in terms of piece-wise polynomial structures) in the
comparator sequence. As an example, when the first deriva-
tive (aka the T V1 distance) of the sequence has bounded

variation, we show that the dynamic regret improves to
O(n1/5). This idea traces back to the nonparametric re-
gression literature, where the higher order smoothness of
functions are often used. It is our hope that this work can
inspire further collaborations between researchers in these
two (mostly disparate) communities of online learning and
offline non-parametric regression.

We remark that our work only touches the surface of the idea
of characterizing dynamic regret via interesting smoothness
metrics of the comparator sequence. Indeed, there are other
interesting functionals of the comparator sequence that we
can exploit, e.g., periodicity, smoothness in an appropriately
transformed domain and so on. We believe this is an inter-
esting future direction for researchers working in dynamic
regret minimisation. The present work takes only the first
steps towards realising this bigger goal.

2 RELATED WORK

Here we recall the most relevant works. The work of
Baby and Wang (2020) aims at controlling Eq.(1) under
squared error when noisy realizations of a T V1 bounded
sequence is revealed sequentially. For this setting, they
propose an algorithm namely AdaVAW that combines Vovk-
Azoury-Warmuth forecaster with wavelet denoising which
relies strongly on the iid noise assumption and losses being
squared error. The absence of such stochastic assumptions
and handling general exp-concave losses in our setting poses
a significant challenge in controlling the dynamic regret.
Overall, we can conclude that results in the current paper
dominates that of AdaVAW for TV order k = 1. As men-
tioned in Section 1, the work of Baby and Wang (2021) fails
to attain optimal regret rate for the current problem. We
refer the readers to Appendix F for a detailed description
on why the analysis of Baby and Wang (2021) fails to attain
optimal regret rate in our setting where the comparators has
low T V1 distance. Baby et al. (2021) reported experiments
where they use a Strongly Adaptive algorithm for compet-
ing against best linear predictor in each time window for
the task of forecasting COVID-19 cases. This method was
shown to empirically out-perform state-of-the-art trend fore-
casting strategies. However, they didn’t provide analysis
for this strategy while our work supplements it with neces-
sary theoretical grounding albeit with a slightly different
Strongly Adaptive algorithm. Apart from these works, there
is a rich body of literature on dynamic regret minimization
such as (Jadbabaie et al., 2015; Yang et al., 2016; Mokhtari
et al., 2016; Chen et al., 2018; Zhang et al., 2018a,b; Yuan
and Lamperski, 2020; Goel and Wierman, 2019; Baby and
Wang, 2019; Zhao et al., 2020; Zhao and Zhang, 2021; Zhao
et al., 2022; Baby and Wang, 2022a; Jacobsen and Cutkosky,
2022; Baby and Wang, 2022b; Zhang et al., 2023). However,
to the best of our knowledge none of these works are known
to attain the optimal dynamic regret rate for our setting. An
elaborate literature survey is deferred to Appendix A.
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3 THE ALGORITHM

FLH-SIONS: inputs: exp-concavity factor σ and n SIONS
base learners E1, . . . , En initialized with parameters ϵ =
2, η = σ and C = 20. (see Fig. 4)

1. For each t, vt = (v
(1)
t , . . . , v

(t)
t ) is a probability vec-

tor in Rt. Initialize v
(1)
1 = 1.

2. For any SIONS expert Ej with j ≤ t, define x
(t)
j =

[1, t − j + 1]T to be given to Ej at time t before
making its prediction Ej(t) ∈ Rd.

3. In round t, set ∀j ≤ t, yj
t ← Ej(t) (the pre-

diction of the jth base learner at time t). Play
pt =

∑t
j=1 v

(j)
t y

(j)
t .

4. After receiving ft, set v̂(t+1)
t+1 = 0 and perform update

for 1 ≤ i ≤ t:

v̂
(i)
t+1 =

v
(i)
t e−σft(x

(i)
t )∑t

j=1 v
(j)
t e−σft(x

(j)
t )

5. Addition step - Set v(t+1)
t+1 to 1/(t + 1) and for i ̸=

t+ 1:

v
(i)
t+1 = (1− (t+ 1)−1)v̂

(i)
t+1

Figure 3: FLH algorithm of Hazan and Seshadhri (2007)
with SIONS (see Fig.4) base experts

SIONS: inputs: exp-concavity factor η, ϵ > 0 and C > 0.

1. For any round t, we define f̃t(v) = fj(x
T
t v[1 :

2],xT
t v[3 : 4], . . . ,xT

t v[2k− 1 : 2k]) for any vector
v ∈ R2d.

2. At round t+ 1:

(a) Receive co-variate xt+1 ∈ R2.
(b) Let Kt+1 = {w ∈ R2d : |xT

t+1w[2k − 1 :
2k]|≤ C for all k ∈ [d]}.

(c) Let At = ϵI2d + η
∑t

j=1∇f̃j(vj)∇f̃j(vj)
T .

(d) Let ut+1 = vt −A−1
t ∇f̃t(vt).

(e) Let vt+1 = argminw∈Kt+1
∥w − ut+1∥At

.

(f) Play wt+1 ∈ Rd such that wt+1[k] =
xT
t+1vt+1[2k − 1 : 2k] for all k ∈ [d].

Figure 4: An instance of SIONS algorithm from Luo et al.
(2016).

In this section, we formally describe the main algorithm
FLH-SIONS (Follow the Leading History-Scale Invariant
Online Newton Step) in Fig.3 and provide intuition on why

it can favorably control the dynamic regret against T V1

bounded comparators. For the sake of simplicity, we capture
the intuition in a uni-variate setting where the comparators
wt ∈ W ⊂ R for all t ∈ [n].

Definition 1. Within an interval [a, b], we say that the com-
parator wa:b is a linear signal or assumes a linear structure
if the slope wt+1 − wt is constant for all t ∈ [a, b− 1].

As described in Section 1, we are interested in compet-
ing against comparator sequences w1:n that have a piece-
wise linear structure (across each coordinate in multi-
dimensions). The durations / intervals of [n] where the
comparator is a fixed linear signal is unknown to the learner.
Suppose that an ideal oracle provides us with the exact lo-
cations of these intervals of [n]. Consider an interval [a, b]
provided by the oracle where the comparator has a fixed
linear structure given by wt = µTx

(t)
a for the co-variates

x
(t)
a := [1, t−a+1]T and µ such that |wt| is O(1) bounded

for all t ∈ [a, b]. An effective strategy for the learner is to
deploy an online algorithm Ea that starts from time a such
that within the interval [a, b] its regret:

R[a,b](µ) :=

b∑
t=a

ft (Ea(t))− ft(µ
Tx(t)

a )

is controlled. Here Ea(t) is the predictions of the algorithm
Ea at time t. Under exp-concave losses, an O(log n) bound
on the above regret can be achieved by the SIONS algorithm
(Fig.4) from (Luo et al. (2016), Theorem 2) run with co-
variates x(t)

a .

In practice, the locations of such ideal intervals are unknown
to us. So we maintain a pool of n base SIONS experts in
Fig.3 where the expert Eτ starts at time τ with the monomial
co-variate x(t)

τ = [1, t− τ +1]T for all t ≥ τ . The adaptive
regret guarantee of FLH with exp-concave losses (due to
Hazan and Seshadhri (2007), Theorem 3.2) keeps the regret
wrt any base expert to be small. In particular, FLH-SIONS
satisfies that

j∑
t=τ

ft(pt)− ft (Eτ (t)) = O(log n),

where pt are the predictions of FLH-SIONS and j ≥ τ for
any τ ∈ [n]. Hence for the interval [a, b] given by the ideal
oracle, it follows that

b∑
t=a

ft(pt)− ft(µ
Tx(t)

a ) ≤
b∑

t=a

ft (Ea(t))− ft(µ
Tx(t)

a )

+O(log n)

= R[a,b](µ) +O(log n)

= O(log n), (4)
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where in the last equation, we appealed to the logarithmic
static regret of SIONS from Luo et al. (2016). As a mi-
nor technical remark, we note that the original results of
Luo et al. (2016) assume that the losses are of the form
f̃j(w) = fj(x

T
j w) for a uni-variate function fj . How-

ever, we show in Lemma 32 (in Appendix) that their regret
bounds can be straightforwardly extended to handle multi-
variate losses fj as in Line 1 of Fig.4 which is useful in our
multi-dimensional setup.

Thus ultimately, the regret of the FLH-SIONS procedure is
well controlled within each interval provided by the ideal
oracle, thus allowing us to be competent against the piece-
wise linear comparator. We remark that while both FLH
and SIONS are well-known existing algorithms, our use of
them with monomial co-variates is new. Our dynamic regret
analysis is new too, which uncovers previously unknown
properties of a particular combination of these existing al-
gorithmic components using novel proof techniques.

4 MAIN RESULTS

In this section, we explain the assumptions used and the
main results of this paper. Then we provide a brief proof
sketch for Theorem 3 in a uni-variate setting highlighting
the technical challenges overcome along the way. The case
of multiple dimensions is handled by constructing suitable
reductions that will allow us to re-use much of the analytical
machinery developed for the case of uni-variate setting.
For the sake of clarity, we present a detailed overview of
our proof strategy in Appendix B. The following are the
assumptions made.

A1. For all t ∈ [n], the comparators wt belongs to a given
benchmark space W ⊂ Rd. Further we have W ⊆
[−1, 1]d.

A2. The loss function ft : Rd → R revealed at time t is
1-Lipschitz in ∥·∥2 norm over the interval [−20, 20]d.

A3. The losses ft are 1-gradient Lipschitz over the inter-
val [−20, 20]d. This implies that ft(y) ≤ ft(x) +
∇ft(x)T (y − x) + 1

2∥(y − x)∥22 for all x,y ∈
[−20, 20]d.

A4. The losses ft are σ exp-concave over [−20, 20]d. This
implies that ft(y) ≥ ft(x) + ∇ft(x)T (y − x) +
σ
2

(
∇ft(x)T (y − x)

)2
for all x,y ∈ [−20, 20]d.

Assumptions A3 and A4 ensure the smoothness and curva-
ture of the losses which we crucially rely to derive fast regret
rates. Assumptions about Lipschitzness as in A2 are usually
standard in online learning. In assumption A1 we consider
comparators that belong to an interval that is smaller than
the intervals in other assumptions. This is due to the fact that
we allow our algorithms to be improper in the sense that the

decisions of the algorithm may lie outside the benchmark
spaceW .

We start with a lower bound on the dynamic regret (Eq.(1))
which is obtained by adapting the arguments in Donoho and
Johnstone (1998) to the case of bounded sequences as in
Assumption A1. See Appendix E for a proof.
Proposition 2. Under Assumptions A1-
A4, any online algorithm necessarily suf-
fers supw1:n with T V1(w1:n)≤Cn

Rn(w1:n) =

Ω(d3/5n1/5C
2/5
n ∨ d).

We have the following guarantee for FLH-SIONS.
Theorem 3. Let pt be the predictions of FLH-SIONS algo-
rithm with parameters ϵ = 2, C = 20 and exp-concavity
factor σ. Under Assumptions A1-A4, we have that,

n∑
t=1

ft(pt)− ft(wt) = Õ(d2n1/5[T V1(w1:n)]
2/5 ∨ d2),

where Õ hides poly-logarithmic factors of n and a ∨ b =
max{a, b}.
Remark 4. Compared with the lower bound in Proposition
2, we conclude that the regret rate of the above theorem is
optimal modulo factors of d and log n.
Proposition 5. It can be shown that the same algorithm
FLH-SIONS under the setting of Theorem 3 enjoys a regret
rate of Õ(n1/3[T V0(w1:n)]

2/3) as well. This result is a
straight-forward consequence of the arguments in Baby and
Wang (2021) and summarized in Appendix D. When com-
bined with Theorem 3 we conclude that under Assumptions
A1-A4, FLH-SIONS attains an adaptive guarantee of
n∑

t=1

ft(pt)− ft(wt) = Õ

(
d2

( (
n1/5[T V1(w1:n)]

2/5
)

∧
(
n1/3[T V0(w1:n)]

2/3
) )
∨ d2

)
,

for any comparator sequence w1:n. Here Õ hides poly-
logarithmic factors of n, a ∨ b = max{a, b} and a ∧ b =
min{a, b}.

From the above Proposition, we see that FLH-SIONS has
the nice property of safe-guarding the regret in case the
T V1(w1:n) distance of the comparator doesn’t fall in the
low T V1 regime defined in Section 1.
Remark 6. We note that the upper bound in Proposition 5
does not contradict the lower bound in Proposition 2. The
lower bound holds in a worst case sense while the upper
bound in Proposition 5 is instance-dependant and can some-
times be faster than the worst case rate in Proposition 2.
Indeed, for the hard comparator sequence w1:n we con-
struct in Appendix E, the rates n1/5[T V1(w1:n)]

2/5 and
n1/3[T V0(w1:n)]

2/3 are of the same order.
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Remark 7. We can construct many examples of sequences
w1:n that fall in the low T V1 regime besides the one in Fig.1,
such that the rate of n1/5[T V1(w1:n)]

2/5 ∨ 1 is faster than
the rate n1/3[T V0(w1:n)]

2/3∨1. We defer a non-exhaustive
list of such examples to Appendix G.
Remark 8. One may ask if a simpler algorithm such as
carefully tuned online gradient descend (OGD) can enjoy
these fast rates too. However, Proposition 2 of Baby and
Wang (2020) implies that properly tuned OGD algorithm
which is optimal against set of all comparators w1:n with
T V0(w1:n) ≤ 1 under convex losses, necessarily suffers
a slower dynamic regret of Ω(n1/4) against set of all com-
parators with T V1(w1:n) ≤ 1 under exp-concave losses
(see Lemma 14 in Appendix A).
Remark 9 (optimized implementation). In the presented
form of FLH-SIONS, we need to hedge over O(n) SIONS
base learners per round to make predictions. However, this
can be reduced to hedging over O(log n) base learners per
round by using AFLH from Hazan and Seshadhri (2007) or
PAE from Zhang et al. (2021) as the aggregation algorithm.
This route will help to achieve a near-linear overall com-
plexity of O(n log n) calls to the base learners. The cost of
doing this is that it enlarges the dynamic regret bound by
a factor of O(log n). Moreover, the run-time of the SIONS
base learners can be further ameliorated at the expense of
slightly increasing the regret bound by using randomized
sketchings as described in Luo et al. (2016). It is also pos-
sible to specify custom base learners in the case we know
the form of losses ahead of time. If the base learners incur
logarithmic static regret under the specified loss, then we
can enjoy the regret rate specified in Proposition 5. For
example, if the losses are linear regression type losses, one
can use Vovk-Azoury-Warmuth forecaster (Cesa-Bianchi
and Lugosi, 2006) as base learners. If the losses are logistic
regression losses, one can use the algorithm in Jézéquel
et al. (2020) as base learners. Such custom base learners
can have much lower run-time than SIONS base learners
which are designed to support the fully general exp-concave
losses. We also note that losses such as linear and logistic
regression losses are commonly used in practice as well.

4.1 Proof Summary of Theorem 3 for one dimension

In what follows, we present several useful lemmas and pro-
vide a running sketch on how to chain them to arrive at
Theorem 3 in a uni-variate setting (i.e d = 1). Detailed
proofs are deferred to Appendix C.1.

Suppose that we need to compete against comparators
whose T V1 distance (i.e n∥D2w1:n∥1) is bounded by some
number Cn. This quantity could be unknown to the algo-
rithm. Consider the offline oracle who has access to the
entire sequence of loss functions f1, . . . , fn and the T V1

bound Cn. It may then solve for the strongest possible com-
parator respecting the T V1 bound through the following
convex optimization problem.

min
ũ1, ... ,ũn

n∑
t=1

ft(ũt)

s.t. ∥D2ũ1:n∥1≤ Cn/n, (5a)
− 1 ≤ ũt ∀t ∈ [n], (5b)
ũt ≤ 1 ∀t ∈ [n], (5c)

Let u1, . . . , un be the optimal solution of the above problem.
This sequence will be referred as offline optimal hence-
forth. Clearly we have that the regret against any comparator
sequence w1:n with T V1(w1:n) ≤ Cn obeys

n∑
t=1

ft(pt)− ft(wt) ≤
n∑

t=1

ft(pt)− ft(ut),

and hence it suffices to bound the right side of the above
inequality.

Next, we provide a partition of the horizon with certain
useful properties.

Lemma 10. (key partition) For some interval [a, b] ∈ [n],
define ℓa→b := b − a + 1. There exists a partitioning of
the time horizon P := {[1s, 1t], . . . , [is, it], . . . [Ms,Mt]}
where M = |P| such that for any bin [is, it] ∈ P we have:
1) ∥D2uis:it∥1≤ 1/ℓ

3/2
is→it

; 2) ∥D2uis:it+1∥1> 1/ℓ
3/2
is→it+1

and 3) M = O
(
n1/5C

2/5
n ∨ 1

)
.

Going forward, the idea is to bound the dynamic regret
within each bin in P by an Õ(1) quantity. Then we can add
them up across all bins to arrive at the guarantee of Theorem
3 (with d = 1). We pause to remark that eventhough this
high-level idea resembles to that of (Baby and Wang, 2021),
the underlying details of our analysis to materialize this idea
requires highly non-trivial deviations from the path followed
by (Baby and Wang, 2021).

First, we need some definitions. Consider a bin [is, it] ∈ P
with length at-least 2. Let’s define a co-variate xj :=

[1, j − is + 1]T . Let XT := [xis , . . . ,xit ] be the ma-
trix of co-variates and uis:it := [uis , . . . , uit ]

T . Let

β =
(
XTX

)−1

XTuis:it be the least square fit coef-
ficient computed with co-variates xj and labels uj . De-
fine a second moment matrix A =

∑it
j=is

xjx
T
j . Let

α := β − A−1∑it
j=is
∇fj(βTxj)xj . (A−1 is guaran-

teed to exist when length of the bin is at-least 2). We remind
the reader that ∇fj(βTxj) is a scalar as we consider uni-
variate fj in this section.

We connect these quantities via a key regret decomposition
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as follows:

it∑
j=is

fj(pj)− fj(uj) =

it∑
j=is

fj(pj)− fj(α
Txj)︸ ︷︷ ︸

T1

+

it∑
j=is

fj(α
Txj)− fj(β

Txj)︸ ︷︷ ︸
T2

+

it∑
j=is

fj(β
Txj)− fj(uj)︸ ︷︷ ︸
T3

(6)

It can be shown that |αTxj |≤ 20 = O(1). Hence the
term T1 can be controlled by an O(log n) bound due to
Strong Adaptivity of FLH-SIONS as described in Section 3,
Eq.(4). The quantity α is obtained via moving in a direction
reminiscent to that of Newton method. This is in sharp
contrast to the one step gradient descent update used in Baby
and Wang (2021). More precisely, consider the function
F (β) =

∑it
j=is

fj(β
Txj). Then α = β − A−1∇F (β).

By exploiting gradient Lipschitzness of fj , the correction
matrix A can be shown to satisfy the Hessian dominance
∇2F (β) ≼ A. This Newton style update is shown to keep
the term T2 to be negative through the following generalized
descent lemma:

Lemma 11. We have that T2 ≤ − 1
2 ∥∇F (β)∥2A−1 .

The negative descent term displayed in the above Lemma is
similar to the standard (squared) Newton decrement (Nes-
terov, 2004) in the sense that it is also influenced by the
local geometry through the norm induced by the inverse
correction matrix A−1.

We then proceed to show that the negative T2 can diminish
the effect of T3 by keeping T2 + T3 to be an O(1) quantity.
Thus the dynamic regret within the bin [is, it] ∈ P is con-
trolled to Õ(1). Adding the bound across all bins in P from
Lemma 10 yields Theorem 3 in one dimension.

A major challenge in the analysis is to prove that the term
T2 + T3 = O(1) without imposing restrictive assumptions
such as Self-Concordance or Hessian Lipschitnzess as in the
classical analysis of Newton method (see for eg.(Nesterov,
2004)). In the rest of this section, we outline the arguments
leading to this result.

Lemma 12. We have that T2 + T3 = O(1) where T2 and
T3 are as defined in Eq.(6)

Here the main idea is to exploit the KKT conditions of the
offline optimization problem in Eq.(5) to show T2 + T3 =
O(1) even if |T2| and |T3| can be very large individually.
Though this is similar to the observation in Baby and Wang
(2021), our regret decomposition in Eq.(6) and the KKT
conditions (see Lemma 17 in Appendix B) are different. So
showing this result requires non-trivial deviations from the
proof of Baby and Wang (2021). Importantly, it was not

apriori clear that T2 + T3 can be possibly bound by O(1)
for the current problem. The key novelty is that we bound
T2+T3 by introducing an auxiliary function that is concave
in its arguments which allows us to systematically explore
the properties of its maximizers. We refer the reader to
Appendix B for a thorough overview on the construction
and use of such auxiliary functions in proving the lemma.

As discussed before, the case of multiple dimensions is
handled by constructing suitable reductions that will allow
us to re-use much of the analytical machinery developed
for the case of uni-variate setting. We refer the reader to
Appendix B for an overview of the details of such reductions.
However, we emphasize that this reduction happens only in
the analysis, and we do not run d uni-variate FLH-SIONS
algorithms for handling multi-dimensions (see Theorem 3).

We conclude this section by noting that our proof techniques
also lead to a dynamic regret bound that simultaneously hold
for any sub-interval of [n].

Remark 13. Assume the notations used in Lemma 10 and
Proposition 5. Consider an interval [a, b] ⊆ [n]. By parti-
tioning this sub-interval as per Lemma 10 and applying the
regret decomposition of Eq.(6), one can show the following
dynamic regret bound over the interval [a, b]:

b∑
t=a

ft(pt)− ft(wt) = Õ

(
d2

( (
ℓ1/5

(
ℓ∥D2wa:b∥1

)2/5)

∧
(
ℓ1/3∥D1wa:b∥2/31

) )
∨ d2

)
,

where ℓ := ℓa→b.

5 CONCLUSION

In this work, we derived universal dynamic regret rate
parametrized by a novel second-order path variational of
the comparators. Such a path variational naturally captures
the piecewise linear structures of the comparators and can
be used to flexibly model many practical non-stationarities
in the environment. Our results for the exp-concave
losses achieved an adaptive universal dynamic regret of
Õ∗ (min{n1/5[T V1(w1:n)]

2/5, n1/3[T V0(w1:n)]
2/3} ∨ 1

)
which matches the minimax lower bound up to a factor
that depends on d and log n. This is the first result of such
kind in the adversarial setting and the first that works with
general exp-concave family of losses. We conjecture that a
similar algorithm as in Fig.3 based on degree k monomial
co-variates [1, t, . . . , tk] can lead to optimal dynamic regret
in terms of T Vk.
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A More on Related Work

In this section, we elaborate upon the related works mentioned in Section 2. We inherit all the notations and terminologies
introduced in Section 1.

Dynamic regret against T V(1)(Cn) in stochastic setting. Perhaps, the most relevant to our work is that of Baby and
Wang (2020). They consider an online protocol where at each round, the learner makes a prediction θ̂t ∈ R. Then a label
yt = θt +N (0, 1) is revealed. They assume that the ground truth sequence θ1:n ∈ T V(k)(Cn) (see Eq.(3)). The goal of
the learner is control the expected cumulative squared error of the learner namely

∑n
t=1(θ̂t − θt)

2. In this setting, they

propose policies that can attain a near optimal estimation error of Õ(n
1

2k+3C
2

2k+3
n ) for any k > 0. In retrospect, in this work

we consider the case where comparators belong to a T V(1)(Cn) class (i.e, with k=1). Further, the absence of stochastic
assumptions in our setting poses a significant challenge in controlling the universal dynamic regret (Eq.(1)).

Restricted dynamic regret minimization. In this line of work, we consider a similar learning setting as mentioned in
Section 1. However, the goal of the learner is to control the dynamic regret against point-wise minimizers:

Rn,restrict =

n∑
t=1

ft(pt)− ft(w
∗
t ),

where w∗
t ∈ argminx ∈ Wft(x). When the losses are strongly convex and gradient smooth, Mokhtari et al. (2016)

proposes algorithms that can attain a restricted dynamic regret of O(1 +C∗
n), where C∗

n =
∑n−1

t=1 ∥w∗
t −w∗

t+1∥2. However,
as noted in Zhang et al. (2018a), such a guarantee can be sometimes overly pessimistic. For example, in the context of
statistical learning where the losses are sampled iid from a distribution, the point-wise minimizers can incur a path length
C∗

n = O(n) due to random perturbations introduced by sampling.

Universal dynamic regret minimization. This is the same framework as considered in the introduction. Obtaining
universal dynamic regret guarantees is challenging since we need to bound the dynamic regret for any comparator sequence
from the bench mark setW while automatically adapting to their path length. When the losses are convex Zhang et al.
(2018a); Cutkosky (2020) provides an optimal universal dynamic regret of O(

√
n(1 + Pn)), where

Pn =

n−1∑
t=1

∥wt −wt+1∥2.

For Cn = Ω(1), the embedding T V(1)(Cn) ⊆ T V(0)(κCn) (see Proposition 37) where κ is a constant doesn’t depend
on n or Cn implies that work of Zhang et al. (2018a) yields a dynamic regret rate of O∗(

√
nCn) for competing against

comparator sequences in T V(1)(Cn) class. (O∗ hides dimension dependencies.) This is a sub-optimal rate when applied to
our setting as expected, since they don’t assume the losses are exp-concave.

When the losses are in-fact exp-concave, one can apply the result of Baby and Wang (2021) to produce a dynamic regret
rate of Õ∗(n1/3C

2/3
n ∨ 1). However, as noted in Section 1, this rate is sub-optimal. In Appendix F, we give an elaborate

description on why their analysis lead to sub-optimal rate in our setting of competing against comparators from T V(1)(Cn)
class.

Dynamic regret based on functional variations. It is also common to measure the non-stationarity of the environment in
terms of the variation incurred by the loss function sequence. Define

Dn =

n∑
t=2

max
w∈W

|ft(w)− ft−1(w)|.

There are works such as (Besbes et al., 2015; Yang et al., 2016; Chen et al., 2018) that aims in controlling the dy-
namic(restricted / universal) in terms of Dn. Jadbabaie et al. (2015) proposes algorithms that can control dynamic regret
simultaneously in the terms of Dn and Pn.
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Static regret minimization. In classical OCO, a well known metric is to control the static regret of an algorithm namely,∑n
t=1 ft(pt)− ft(w). Algorithms such as Online Gradient Descent (Zinkevich, 2003) can attain an optimal O(

√
n) static

regret when losses are convex. When the losses are exp-concave or strongly convex it is possible to attain logarithmic
static regret (Hazan et al., 2007). However, static regret is not a good metric for measuring the performance of a leraner in
non-stationary environments.

Strongly Adaptive (SA) regret minimization. This notion of regret is introduced by Daniely et al. (2015). In this
framework, the learner aims in controlling its static regret in any local time window as a function of window-length (modulo
factors of log n). The algorithms in Daniely et al. (2015); Cutkosky (2020) provides a static regret of Õ(

√
|I|) across any

local interval I whenever the losses are convex. When the losses are strongly convex or exp-concave, the algorithms in
(Hazan and Seshadhri, 2007; Adamskiy et al., 2016; Zhang et al., 2021) yields logarithmic static regret in any local time
window when the base learners are chosen appropriately.

Zhang et al. (2018b) shows that SA algorithms can be used to control the dynamic regret in terms of the functional variation
Dn.

Online non-parametric regression. In section 1, we modelled the dynamics of the comparator sequence as a member
of a non-parametric function class. Rakhlin and Sridharan (2014, 2015) studies the minimax rate of learning against a
non-parametric function class. They establish the right minimax rate (in terms of dependencies wrt n) using arguments
based on sequential Rademacher complexity in a non-constructive manner. In-fact, their results on Besov spaces imply
that the minimax dynamic regret rate for our problem is indeed O(n1/5) since the T V(1) class is sandwiched between two
Besov spaces having the same minimax rate (see for eg. (DeVore and Lorentz, 1993) and (Donoho and Johnstone, 1998)).
There are other line of works that study the non-parametric regression problem against other function classes of interest such
as Gaillard and Gerchinovitz (2015) (for Holder class of functions), Kotłowski et al. (2016) (for isotonic functions) and
Koolen et al. (2015) (for Sobolev functions). These function classes doesn’t capture the T V(1) class that we study in this
work. For instance, the (discretized) higher order Holder and Sobolev classes features sequences that are more regular than
that of T V(1) class (see for example Baby and Wang (2019)).

Further explanations on Remark 8. In rest of this section, we focus on proving Remark 8.

It is sufficient to focus on OGD algorithms with step-size η < 1. Otherwise if η ≥ 1, one can come up with sequence of
losses that can enforce linear regret. An example of this scenario is described as follows:

The loss at time t is given by ft(x) =
(x−yt)

2

2 with yt = −1 at odd rounds and yt = 1 at even rounds. The decision set is
given by D = [−1, 1]. We focus on OGD algorithms which plays 0 at the first round, though similar arguments can be given
for any valid initialization point. Suppose the step size is η ≥ 1. The iterate at step t+ 1, denoted by wt+1, is maintained as

wt+1 = clip[−1,1] (wt − η(wt − yt)) ,

where clip function clips the argument to [−1, 1].

Recall that η ≥ 1. So we have w1 = 0, w2 = clip[−1,1](−η) = −1, w3 = clip[−1,1](−1(1 − η) + η) = 1, w4 =
clip[−1,1](1(1− η)− η) = −1 and so on.

Thus the iterates oscillates between −1 and 1. However, the best fixed comparator for the sequence of losses is given by 0.
Hence we have that

n∑
t=1

ft(wt)− ft(0) = 1/2 + 2(n− 1)− n/2

≥ 3n/4,

for all n ≥ 2.

Thus choosing step-size η ≥ 1 can be exploited by the adversary to enforce a linear regret even for the case of static
comparators.

So it suffices to consider OGD algorithms with step size η < 1 as what is done in the following lemma.
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First, let’s define the comparator class:

T V(1)(1) := {θ1:n : T V1(θ1:n) ≤ 1}.

Lemma 14. There exist a choice of loss functions, comparator sequence θ1:n ∈ T V(1)(1) and decision set such that OGD
with steps size η < 1 necessarily suffers a dynamic regret of Ω(n1/4) for all n ≥ 35.

Proof. Consider a setup where the decision set D = [−1/(2
√
2.2), 1/(2

√
2.2)]. Let yt = θt + ϵt where |θt|≤ 1/(8

√
2.2),

and ϵt are iid uniformly chosen from [−1/(8
√
2.2), 1/(8

√
2.2)]. Thus yt ∈ [−1/(4

√
2.2), 1/(4

√
2.2)]. Further θ1:n ∈

T V(1)(1).

The loss at time t is ft(x) = 2
√
2.2
3 (yt − x)2. So the Lispchitzness coefficient of these losses is bounded by |∇ft(x)|≤

4
√
2.2
3 (|yt|+|x|) ≤ 1 := G as |yt|≤ 1/(4

√
2.2) and |x|≤ 1/(2

√
2.2) for all x ∈ D.

Let D be the diameter of D. So D = 1/
√
2.2.

Under this setup, the projected online gradient descent (OGD) with learning rates η < 1 doesn’t need to do any projection.
This can be seen as follows. Assume that OGD till step t doesn’t project. Let Π denote the projection to set D. Then the
iterate at time t+ 1 (denoted by xt+1) is given by xt+1 = Π(zt+1) where

zt+1 =

t∑
k=1

(1− η)t−kηyk. (7)

We have that

|zt+1|≤ 1/(4
√
2.2),

where we applied triangle inequality, summed up the infinite series and used the fact that |yt|≤ 1/(4
√
2.2). So zt+1 ∈ D

and therefore xt+1 = zt+1. Hence by induction, we have that OGD with learning rate η < 1 doesn’t need to project.

Looking at Eq.(7) we see that the OGD output at any time is a fixed linear function of the revealed labels yt. Baby and
Wang (2020) calls such forecasters to be linear forecasters. They provide the following proposition (para-phrased here for
clarity) about such forecasters:

Proposition 15. (Proposition 2 in Baby and Wang (2020) for k = 1) For any online estimator producing estimates θ̂t which
is a fixed linear function of past labels y1:t−1, t ∈ [n] we have

sup
θ1:n∈∈T V(1)(1)

n∑
t=1

E[(θ̂t − θt)
2] = Ω(n1/4). (8)

Thus we have

sup
θ1:n∈∈T V(1)(1)

n∑
t=1

E[(yt − θ̂t)
2]− E[(yt − θt)

2] = sup
θ1:n∈∈T V(1)(1)

n∑
t=1

E[(θ̂t − θt)
2]− 2E[ϵt(θ̂t − θt)] + E[ϵ2t ]− E[ϵ2t ]

=(a) sup
θ1:n∈∈T V(1)(1)

n∑
t=1

E[(θ̂t − θt)
2]− 2E[ϵt]E[(θ̂t − θt)]

= sup
θ1:n∈∈T V(1)(1)

n∑
t=1

E[(θ̂t − θt)
2]

=(b) Ω(n
1/4),

where line (a) is due to the fact that θ̂t and ϵt are mutually independent (because of online nature of algorithm) and line (b)
is due to Eq.(8).

Thus we conclude that

sup
θ1:n∈∈T V(1)(1)

n∑
t=1

E[ft(θ̂t)− ft(θt)] = Ω(n1/4),

where the losses ft are as defined in the beginning of the proof. This concludes the lemma.
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B Overview of proof strategy

Remark 16. (reason behind faster rates). We remark that in the low TV1 regime, the sequence assumes a piecewise linear
structure with gradually changing slopes. This regularity of the comparator sequence is what enables to derive fast regret
rates in low TV1 regimes.

For the sake of clarity, we give an elaborate overview of our proof scheme before presenting the analysis in Appendix C. We
adopt the notations introduced in Section 4.

We start with the KKT conditions of the offline optimization problem (Eq.(5)) defined in Section 4.1.

Lemma 17. (KKT conditions) Let u1, . . . , un be the optimal primal variables and let λ ≥ 0 be the optimal dual variable
corresponding to the constraint (5a). Further, let γ−

t ≥ 0, γ+
t ≥ 0 be the optimal dual variables that correspond to

constraints (5b) and (5c) respectively for all t ∈ [n]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ ((st−1 − st)− (st−2 − st−1))+γ−
t −γ+

t , where st = sign((ut+2−ut+1)−(ut+1−ut)).
Here sign(x) = x/|x| if |x|> 0 and any value in [−1, 1] otherwise. For convenience of notations, we also define
s−1 = s0 = sn−1 = sn = 0.

• complementary slackness: (a) λ
(
∥D2u1:n∥1−Cn/n

)
= 0; (b) γ−

t (ut + 1) = 0 and γ+
t (ut − 1) = 0 for all t ∈ [n]

As mentioned in Section 4, a key step is proving Lemma 12 which we restate for convenience.

Lemma 12. We have that T2 + T3 = O(1) where T2 and T3 are as defined in Eq.(6)

Proof Sketch. For the sake of explaining ideas, we consider a case where the offline optimal within a bin [is, it] ∈ P doesn’t
touch the boundary 1 but may touch boundary −1 at multiple time points. (In the full proof, we show that the partition P
can be slightly modified so that in non-trivial cases, the offline optimal can only touch one of the boundaries due to the
TV1 constraint within the bins described in Lemma 10.) Then by complementary slackness of Lemma 17 we conclude that
γ+
j = 0 for all j ∈ [is, it]. Our analysis starts by considering a scenario where the offline optimal touches boundary −1 at

precisely two points r, w ∈ [is, it] with r < w (see Fig.5). Again via complementary slackness, only γ−
r and γ−

w can be
potentially non-zero in this case. Through certain careful bounding steps, we show that:

T2 + T3 ≤ −B(λ, γ−
r , γ−

w ; r, w), (9)

where B is a function jointly convex in its arguments λ, γ−
r , γ−

w . We treat r and w to be fixed parameters. The exact form of
the function B is present at Eq.(45) in Appendix. Then we consider the following convex optimization procedure:

min
λ,γ−

r ,γ−
w

B(λ, γ−
r , γ−

w ; r, w) (10a)

s.t. λ ≥ 0

First, we perform a partial minimization wrt γ−
r and γ−

w keeping λ fixed. Note that even-though γ−
r ≥ 0 and γ−

w ≥ 0 via
Lemma 17, we choose to perform an unconstrained minimization wrt these variables as doing so can only increase the
bound on T2 + T3.

Let the optimal solutions of the partial minimization procedure be denoted by γ̂−
r and γ̂−

w . We find that:

B(λ, γ̂−
r , γ̂−

w ; r, w) = L(λ), (11)

where L(λ) is a linear function of λ that doesn’t depend on r or w (Eq.(48) in Appendix). The constrained minimum of this
linear function is then found to be attained at λ = 0 and we show that

−B(0, γ̂−
r , γ̂−

w ; r, w) = O(1)

This leaves us with an important question on how to handle more than two boundary touches at −1 where many of γ−
j ,

j ∈ [is, it] can potentially be non-zero. One could perform a similar unconstrained optimization as earlier wrt all γ−
j .

However, deriving the closed form expressions for the optimal γ̂−
j becomes very cumbersome as it involves solving for a



Dheeraj Baby, Yu-Xiang Wang

is r w it

−1

1

A bin [is, it] touchingboundary -1at twopoints

Figure 5: A configuration referred in the proof sketch of Lemma 12. The blue dots represent the offline optimal sequence.

complex system of linear equations. In the following, we argue that this general case can be handled via a reduction to the
previous setting where only two dual variables γ−

r and γ−
w can be potentially non-zero. Specifically we show that the same

auxiliary function B as in Eq.(9) can be used to obtain

T2 + T3 ≤ −B(λ, γ̃−
r , γ̃−

w ; r̃, w̃),

where r̃, w̃, γ̃−
r and γ−

w can be computed from the sequence of dual variables γ−
is:it

. Now we can proceed to optimize
similarly as in Eq.(10a) with the optimization variables being λ, γ̃−

r , γ̃−
w and use the same arguments as earlier to bound

T2 + T3 = O(1). We remark that while doing so, it is an extremely fortunate fact that the partially minimized objective in
Eq.(11) does not depend on the parameter values r and w. This fact in hindsight is what permitted us to fully eliminate the
dependence of all γ−

j where j ∈ [is, it] on the bound via the method of reduction to the case of two non-zero dual variables
considered earlier.

Proof summary for Theorem 3 in multi-dimensions. In rest of this section, we focus on outlining the analysis ideas that
facilitated the main result Theorem 3. The high-level idea is to construct a reduction that helps us to re-use much of the
machinery developed in Section 4.1. We emphasize that this reduction happens only in the analysis, and we do not run d
uni-variate FLH-SIONS algorithms for handling multi-dimensions. Following Lemma serves a key role in materializing the
desired reduction.

Lemma 18. Let Xj ∈ Rd×2d be as defined as:

XT
j =


xj [1 : 2] 0 . . . 0

0 xj [3 : 4] . . . 0
...

. . .
...

0 . . . xj [2d− 1 : 2d]

 ,

where 0 = [0, 0]T and xj ∈ R2d. The entries xj [2k − 1 : 2k] ∈ R2 for k ∈ [d]. Let f̃j(v) = fj(Xjv) for some v ∈ R2d

and let Σ := XT
j Xj ∈ R2d×2d which is a block diagonal matrix. We have that

∇2f̃j(v) ≼ Σ.

In multi-dimensions also we form a partition P of the offline optimal similar to Lemma 10. Then we consider following
regret decomposition for any bin [is, it] ∈ P .

it∑
j=is

fj(pj)− fj(uj) =

it∑
j=is

fj(pj)− fj(Xjαj)︸ ︷︷ ︸
T1

+

it∑
j=is

fj(Xjαj)− fj(Xjβj)︸ ︷︷ ︸
T2

+

it∑
j=is

fj(Xjβj)− fj(uj)︸ ︷︷ ︸
T3

, (12)

where we shall shortly describe how to construct the quantities Xj ∈ Rd×2d,αj ∈ R2d and βj ∈ R2d. For compactness of
notations later, let’s define αj,k = αj [2k − 1 : 2k] ∈ R2, βj,k = βj [2k − 1 : 2k] ∈ R2 and yj,k = xj [2k − 1 : 2k] ∈ R2
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for some xj ∈ R2d as in lemma 18. The Hessian dominance in Lemma 18 leads to:

f̃j(αj)− f̃j(βj) ≤
d∑

k=1

⟨∇fj(Xjβj)[k]yj,k,αj,k − βj,k⟩+
1

2

d∑
k=1

∥αj,k − βj,k∥2yj,ky
T
j,k

:=

d∑
k=1

t2,j,k. (13)

Further, due to gradient Lipschitzness of fj ,

f̃j(βj)− fj(uj) ≤
d∑

k=1

∇fj(uj)[k] ·
(
βT
j,kyj,k − uj [k]

)
+

d∑
k=1

1

2
∥βT

j,kyj,k − uj [k]∥22

:=

d∑
k=1

t3,j,k (14)

Combining Eq.(13) and (14), we see that T2 + T3 in any bin [is, it] can be bounded coordinate-wise:

T2 + T3 ≤
d∑

k=1

it∑
j=is

t2,j,k + t3,j,k.

This form allows one to bound
∑it

j=is
t2,j,k + t3,j,k = O(1) separately for each coordinate by constructing αj,k,βj,k and

yj,k similar to Section 4.1. We then sum across all coordinates to bound T2 + T3 = O(d). We remark that the situation is a
bit more subtle here because in-order to handle certain combinatorial structures imposed by the KKT conditions, we had to
use a sequence of comparators αis , . . . ,αit (for linear predictors in Eq.(12)) that switches at-most O(d) times . Finally
by appealing to strong adaptivity of FLH-SIONS, we show that T1 = Õ(d2) for each bin [is, it] ∈ P and Theorem 3 then
follows by adding the Õ(d2) regret across all O(n1/5C

2/5
n ∨ 1) bins in P .

C Analysis

We start with the analysis in the uni-variate setting followed by the proof in multi-dimensions. The analysis requires very
clumsy algebraic manipulations in certain places. We used Python’s open-source simplification engine SymPy (Meurer
et al., 2017) to assist with the algebraic manipulations.

A remark. The constants occurring in the proofs may be optimized further though we haven’t aggressively focused on
doing so. Throughout the analysis we compete with comparators whose TV1 distance is bounded by Cn. This quantity can
be unknown to the algorithm. Hence the resulting regret rate of FLH-SIONS simultaneously holds for any value of Cn.

C.1 One dimensional setting

Lemma 17. (KKT conditions) Let u1, . . . , un be the optimal primal variables and let λ ≥ 0 be the optimal dual variable
corresponding to the constraint (5a). Further, let γ−

t ≥ 0, γ+
t ≥ 0 be the optimal dual variables that correspond to

constraints (5b) and (5c) respectively for all t ∈ [n]. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ ((st−1 − st)− (st−2 − st−1))+γ−
t −γ+

t , where st = sign((ut+2−ut+1)−(ut+1−ut)).
Here sign(x) = x/|x| if |x|> 0 and any value in [−1, 1] otherwise. For convenience of notations, we also define
s−1 = s0 = sn−1 = sn = 0.

• complementary slackness: (a) λ
(
∥D2u1:n∥1−Cn/n

)
= 0; (b) γ−

t (ut + 1) = 0 and γ+
t (ut − 1) = 0 for all t ∈ [n]
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Proof. By introducing auxiliary variables, we can re-write the offline optimization problem as:

min
ũ1, ... ,ũn

n∑
t=1

ft(ũt)

s.t. z̃t = ũt+2 − 2ũt+1 + ũt ∀t ∈ [n− 2]

n−2∑
t=1

|z̃t|≤ Cn/n,

− 1 ≤ ũt ∀t ∈ [n],

ũt ≤ 1 ∀t ∈ [n],

The Lagrangian of the optimization problem can be written as

L(ũ1:n, z̃1:n−2, ṽn−2, γ̃
−
1:n, γ̃

+
1:nλ̃) =

n∑
t=1

ft(ũt) + λ̃

(
n−2∑
t=1

|z̃t|−Cn/n

)

+

n−2∑
t=2

ṽt(ũt+2 − 2ũt+1 + ũt − z̃t) +

n∑
t=1

γ+
t (ũt − 1)− γ−

t (ũt + 1).

Due to stationary conditions wrt ut, we have

∇ft(ut) = 2vt−1 − vt − vt−2 + γ−
t − γ+

t ,

where we define v−1 = v0 = vn−1 = vn = 0 and, due to staionarity conditions wrt vt we have

vt = λsign(zt).

Combining the above two equations and the complementary slackness rule now yields the Lemma.

Terminology. In what follows, we refer to u1:n from the Lemma above to be the offline optimal sequence.

Lemma 10. (key partition) For some interval [a, b] ∈ [n], define ℓa→b := b − a + 1. There exists a partitioning of
the time horizon P := {[1s, 1t], . . . , [is, it], . . . [Ms,Mt]} where M = |P| such that for any bin [is, it] ∈ P we have: 1)

∥D2uis:it∥1≤ 1/ℓ
3/2
is→it

; 2) ∥D2uis:it+1∥1> 1/ℓ
3/2
is→it+1 and 3) M = O

(
n1/5C

2/5
n ∨ 1

)
.

Proof. Let the total number of bins formed be M . Consider the case where M > 1. We have that

∥D2u1:n∥1 ≥
M−1∑
i=1

∥D2uis→it+1∥1

≥(a) 1/ℓ
3/2
is→it+1

≥(b)
(M − 1)5/2

n3/2
,

where line (a) follows due to the construction of the partition and line (b) is due to Jensen’s inequality applied to the convex
fucntion f(x) = 1/x3/2 for x > 0.

Rearranging and including the trivial case where M = 1 yields the lemma.

Proposition 19. In the following analysis we will often use a useful represent offline optimal within a bin [a, b] to be
ma,ma +ma+1, . . . ,

∑b
t=a mt WLOG. We can view this sequence to be samples obtained from a piece-wise linear signal

that is continuous at every sampling point.
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Lemma 20. (residual bound) Consider a bin [a, b]. Let ℓ := b− a+ 1. Define:

X =


1 1
1 2
...
1 ℓ


Let β = (XTX)−1XTua:b be the least square fit coefficient computed with labels ut and co-variates xt = [1, t− a+ 1]T

where t ∈ [a, b]. Then we have that the residuals satisfy

|βTxt − ut|≤ 20ℓ∥D2ua:a+ℓ−1∥1,

whenever ℓ ≥ 6.

Proof. We follow the notations of Proposition 19 for representing the offline optimal ua, . . . , ub. The residual at time
i ∈ [a, b] can be computed through straight forward algebra as:

ui − βTxi =
1

(ℓ2 − 1)

ℓ∑
j=2

(
6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}

)
ma+j−1, (16)

where I{·} is the indicator function assuming value 1 if the argument evaluates true and 0 otherwise. Now we note that if all
mk for k ∈ [a+1, b] are same, then the residuals ui −βTxi must be zero for all i as the least square fit exactly matches the
labels in this case. In particular, this implies from Eq.(16) that

1

(ℓ2 − 1)

ℓ∑
j=2

(
6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}

)
ma+1 = 0. (17)

Subtracting Eq.(17) from (16) we get,

ui − βTxi =
1

(ℓ2 − 1)

ℓ∑
j=2

(
6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}

)
(mj+a−1 −ma+1)

≤ 1

(ℓ2 − 1)
max

j∈[a+2,b]
|mj −ma+1|

ℓ∑
j=3

∣∣∣∣∣6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}

∣∣∣∣∣,
where the last line is due to Holder’s inequality. Further, we have |mj −ma+1|≤

∑a+2
t=j |mj −mj−1|≤ ∥D2ua:b∥1 by the

definition of the discrete difference operator D2.

Now applying triangle inequality and the crude bounds 1+(1−2i)/ℓ ≤ 3, (ℓ− j+1) ≤ ℓ, (ℓ+ j) ≤ 2ℓ, i/ℓ ≤ 1, 2ℓ ≥ 2/ℓ
and −2/ℓ ≤ 0 we obtain
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∣∣∣∣∣6(1 + (1− 2i)/ℓ)(ℓ− j + 1/)(ℓ+ j)/2

+ (6i+ 6i/ℓ− 4ℓ− 6− 2/ℓ)(ℓ− j + 1) + (ℓ2 − 1)I{j ≤ i}

∣∣∣∣∣ ≤ 19ℓ2 + 2ℓ.

So,

|ui − βTxi| ≤ ℓ · 19ℓ
2 + 2ℓ

ℓ2 − 1
∥D2ua:b∥1

≤ 20ℓ∥D2ua:b∥1,

where the last line is due to 19ℓ2 + 2ℓ ≤ 20ℓ2 − 20 for all ℓ ≥ 6.

Lemma 21. (bounding T3) Consider a bin [a, b] with length ℓ = b− a+ 1 obtained from the scheme in Lemma 10. Assume
the notations in Lemma 20. Let’s represent the residual as rt := βTxt − ut = (t − a + 1)Mt−1 + Ct−1 for t > a and
r1 := βTxa − ua = Ma + Ca with Mb := Mb−1 = Ma+ℓ−2 and Cb := Cb−1 = Ca+ℓ−2. Suppose ∥D2ua:b∥1≤ ℓ−3/2.
We have,

b∑
t=a

ft(β
Txt)− ft(ut) ≤ 200 + λ

(
(sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb)

− sa−1Ma + sb−1Mb−1 −
b∑

t=a+1

|Mt −Mt−1|

)

+ 20ℓ−1/2
b∑

t=a

|γ−
t − γ+

t | (18)

Further we have |Ma|≤ ∥D2ua:b∥1 and |Mb|≤ ∥D2ua:b∥1 whenever ℓ ≥ 2.

Here the semantics is that each Mt = rt+1 − rt for all t > a and Ma = ra+1 − ra. Any two points rt and rt+1 can be
joined using a unique line segment which in turn defines Ct appropriately.

Proof. By gradient Lipschitzness of f we have

b∑
t=a

ft(β
Txt)− ft(ut) ≤

b∑
t=a

⟨∇ft(ut),β
Txt − ut⟩+

b∑
t=a

1

2
(βTxt − ut)

2.

Now will focus on bounding the last two terms above.

From the construction of bins in Lemma 10, we know that ℓ∥D2ua:b∥1≤ 1/
√
ℓ. Hence we obtain using Lemma 20 that

b∑
t=a

1

2
(βTxt − ut)

2 ≤ 200.

Recall the representation of the residual βTxt − ut = tMt + Ct mentioned in the lemma statement. Observe that in
accordance with Proposition 19 this residual can also be viewed as samples of a piece-wise linear signal that is continuous at
every sampled point. In particular observe that for every t ∈ [a, b] we have:

(t− a+ 1)Mt−1 + Ct−1 = (t− a+ 1)Mt + Ct
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Consequently

Ct − Ct−1 = (t− a+ 1)(Mt−1 −Mt) (19)

From KKT conditions of Lemma 17 we have
b∑

t=a

⟨∇ft(ut),β
Txt − ut⟩ =

b∑
t=a

λ (((st−1 − st−2)− (st − st−1)) ((t− a+ 1)Mt + Ct))︸ ︷︷ ︸
X1

+

b∑
t=a

(γ−
t − γ+

t )(βTxt − ut)︸ ︷︷ ︸
X2

X1

λ
= (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb)

+

b−1∑
t=a

(st − st−1) ((t− a+ 2)Mt+1 + Ct+1 − ((t− a+ 1)Mt + Ct))

=(a) (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb) +

b−1∑
t=a

(st − st−1)Mt+1

= (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb) +

b−1∑
t=a

(Mt+1 −Mt+2)st − sa−1M2 + sb−1Mℓ

=(b) (sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb)− sa−1Ma + sb−1Mb−1 −
b∑

t=a+1

|Mt −Mt−1|,

where in line (a) we used Eq.(19) and in line (b) we used the fact that st = sign((ut+2 − ut+1)− (ut+1 − ut)) =
sign(Mt+2 −Mt+1) along with the fact that Ma = Ma+1 and Mb−1 = Mb.

By Holder’s inequality and Lemma 20, we have

X2 ≤ 20ℓ∥D2ua:b∥1
b∑

t=a

|γ−
t − γ+

t |

≤ 20ℓ−1/2
b∑

t=a

|γ−
t − γ+

t |,

where the last line is due to ∥D2ua:b∥1≤ ℓ−3/2 as assumed in the lemma’s statement. Putting everything together completes
the proof.

Next, we proceed to give useful bounds on |Ma| and |Mb−1|.

Since Ma = Ma+1 and Ca = Ca+1, we have Ma = (ua+1 − βTxa+1)− (ua − βTxa).So Eq.(16) we have,

|Ma| =

∣∣∣∣∣∣
ℓ∑

j=2

6(ℓ− j + 1)(1− j)

ℓ3 − ℓ
(mj+a−1 −ma+1)

∣∣∣∣∣∣
≤ ∥D2ua:b∥1

ℓ∑
j=3

6(ℓ− j + 1)(j − 1)

ℓ3 − ℓ

= ∥D2ua:b∥1
ℓ2 + ℓ− 6

ℓ(ℓ+ 1)

≤ ∥D2ua:b∥1,
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where in the last line we used ℓ2+ℓ−6
ℓ(ℓ+1) ≤ 1 for all ℓ ≥ 2.

Similarly Mb−1 = ub − βTxb − (ub−1 − βTxb−1) by recalling that Mb = Mb−1 and Cb = Cb−1. Proceeding from
Eq.(16) we obtain,

|Mb−1| =

∣∣∣∣∣∣
ℓ−1∑
j=2

6(ℓ− j + 1)(1− j)

ℓ3 − ℓ
(mj+a−1 −mb)

∣∣∣∣∣∣
≤ ∥D2ua:b∥1

ℓ−1∑
j=2

6(ℓ− j + 1)(j − 1)

ℓ3 − ℓ

= ∥D2ua:b∥1
ℓ2 + ℓ− 6

ℓ(ℓ+ 1)

≤ ∥D2ua:b∥1.

Lemma 22. Consider a bin [a, b] ∈ P of length ℓ from Lemma 10. Suppose |ua|< 1. Then either γ−
j = 0 or γ+

j = 0 for all
j ∈ [a, b].

Proof. We will provide arguments for the case when the offline optimal first hits −1 before hitting 1 for some point in [a, b].
The arguments for the alternate case where it hits 1 first are similar.

If the offline optimal hits −1 at some point in [a, b] it can only rise upto at-most −1 + 1/
√
l afterwards. This is due to the

constraint ∥D2ua:b∥1≤ 1/ℓ3/2.

Since −1 + 1/
√
l < 1 as ℓ > 1/4, we have that the offline optimal never touches 1 within the bin [a, b]. Consequently

γ+
j = 0 for all j ∈ [a, b].

Definition 23. The slope of the optimal solution at a time point t is defined to be ut+1 − ut for all t ∈ [n− 1].

Proposition 24. The bins in P can be further refined in such a way that each bin either satisfy the condition in Lemma 22
or has constant slope, meaning the L1 TV distance is zero. Further in doing so the size of partition P only gets increased by
at-most 2.

Proof. Suppose for a bin [a, b] ∈ P , if the offline optimal starts at 1. Then we can split that bin into two bins [a, c] and
[c+ 1, b] such that uc > −1 and ∥D2ua:c∥1= 0. Similar splitting can also be done for bins that start from −1. Observe that
this refinement only increases the partition size only by at-most 2.

Corollary 25. One powerful consequence of Lemma 22 and Proposition 24 when combined with the fact that γ−
t and γ+

t

are both non-negative (Lemma 17) is that
∑b

t=a|γ
−
t − γ+

t | is either equal to
∑b

t=a γ
−
t or

∑b
t=a γ

+
t for all bins [a, b] in the

refined partition of Proposition 24 whenever the ∥D2ua:b∥1> 0.

From here on WLOG we will assume that the bins [a, b] in partition P will satisfy the conditions:

• ∥D2ua:b∥1≤ 1/l3/2, where ℓ = b− a+ 1.

• It satisfies the conditions mentioned in Proposition 24 and consequently satisfying the condition in Corollary 25.

• |P|= O(n1/5C
2/5
n ).

Lemma 26. (bounding T2) Consider a bin [a, b] ∈ P with length ℓ = b − a + 1 that doesn’t touch boundary 1. Let
Γ =

∑b
j=a γ

−
j and Γ̃ =

∑b
j=a j

′γ−
j where j′ := j − a+ 1 . Let β be as in Lemma 20.
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Let F (β) :=
∑b

j=a fj(x
T
j β). Define:

A :=

b∑
j=a

xjx
T
j

Consider the following update:

α = β −A−1
b∑

j=a

f ′
j(x

T
j β)xj

= β −A−1∇F (β)

We have,

2L (F (α)− F (β)) ≤ −∥g∥2A−1−∥h∥2A−1−2 < g,A−1h⟩

+ 2⟨A−1(g + h),

b∑
j=a

xj

(
f ′
j(x

T
j β)− f ′

j(uj)
)
,

where g = λ[−sa−2 + sa−1 + sb−1− sb,−sa−2 +(ℓ+1)sb−1− ℓsb]
T and h = [Γ, Γ̃]T so that

∑b
j=a f

′
j(uj)xj = g+h.

Further we have:

• ∥g∥2
A−1 as in Eq. (23)

• ∥h∥2
A−1 as in Eq. (29)

• ⟨A−1g,h⟩ as in Eq. (30)

• ⟨A−1g,
∑b

j=a xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ bounded above by Eq.(27)

• ⟨A−1h,
∑b

j=a xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ bounded above by Eq.(28)

Similar expressions can be derived for bins [a, b] that may touch boundary 1 instead of -1.

Proof. We note that due to gradient Lipschitnzess of f ,

∇2F (β) =

b∑
j=a

f ′′
j (x

T
j β)xjx

T
j ≼ A

So by Taylor’s theorem we have for some z = tα+ (1− t)β

F (α)− F (β) = −⟨∇F (β),A−1∇F (β)⟩+ 1

2
∥A−1∇F (β)∥2∇2F (z)

≤ −⟨∇F (β),A−1∇F (β)⟩+ 1

2
∥A−1∇F (β)∥2A

= −1

2
∥∇F (β)∥2A−1 , (20)

where

A−1 =
2

(ℓ− 1)ℓ

[
2ℓ+ 1 −3
−3 6

ℓ+1

]
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Next we turn to lower bounding the above RHS

∥∇F (β)∥2A−1 = ∥
b∑

j=a

f ′
j(uj)xj +

b∑
j=a

(f ′
j(x

T
j β)− f ′

j(uj))xj∥2A−1

≥ ∥
b∑

j=a

f ′
j(uj)xj∥2A−1−2⟨A−1

b∑
j=a

f ′
j(uj)xj ,

b∑
j=a

(f ′
j(x

T
j β)− f ′

j(uj))xj⟩

From the KKT conditions in Lemma 17, we have

b∑
j=a

f ′
j(uj)xj = [λ(−sa−2 + sa−1 + sb−1 − sb) + Γ, λ(−sa−2 + (ℓ+ 1)sb−1 − ℓsb) + Γ̃]T , (21)

where Γ and Γ̃ are as defined in the statement of the lemma.

For the sake of brevity let’s denote g = λ[−sa−2 + sa−1 + sb−1 − sb,−sa−2 + (ℓ+ 1)sb−1 − ℓsb]
T and h = [Γ, Γ̃]T so

that
∑b

j=a f
′
j(uj)xj = g + h.

We have

A−1g =
2λ

(ℓ− 1)ℓ
[(2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1 − (ℓ+ 2)sb−1 + (ℓ− 1)sb,

3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1 + 3sb−1 −

3(ℓ− 1)

ℓ+ 1
sb]

T , (22)

and so

∥g∥2A−1 =
2λ2

(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)s2a−2 + (4− 4ℓ2)sa−2sa−1 − (2ℓ2 − 6ℓ+ 4)sa−2sb+

(2ℓ2 − 2)sa−2sb−1 + (2ℓ2 + 3ℓ+ 1)s2a−1+

(2ℓ2 − 2)sa−1sb − (2ℓ2 + 6ℓ+ 4)sa−1sb−1+

(2ℓ2 − 3ℓ+ 1)s2b + (4− 4ℓ2)sb−1sb + (2ℓ2 + 3ℓ+ 1)s2b−1

)
(23)

Using Eq. (22) we get

⟨A−1g,

b∑
j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ =
2λ

(ℓ− 1)ℓ

(
(2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1

− (ℓ+ 2)sb−1 + (ℓ− 1)sb

)
b∑

j=a

(f ′
j(x

T
j β)− f ′

j(uj))

+
2λ

(ℓ− 1)ℓ

(
3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1

+ 3sb−1 −
3(ℓ− 1)

ℓ+ 1
sb

)
b∑

j=a

j′(f ′
j(x

T
j β)− f ′

j(uj)). (24)
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Using gradient Lipschitzness, triangle inequality and Lemma 20 we have

b∑
j=a

(f ′
j(x

T
j β)− f ′

j(uj)) ≤
b∑

j=a

|xT
j β − uj |

≤ 20ℓ2∥D2ua:b∥1, (25)

and similarly

b∑
j=a

j′(f ′
j(x

T
j β)− f ′

j(uj)) ≤
b∑

j=a

Lj′|xT
j β − uj |

≤ 20ℓ3∥D2ua:b∥1. (26)

So continuing from Eq. (24),

⟨A−1g,

b∑
j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ ≤
40λℓ∥D2ua:b∥1

(ℓ− 1)

∣∣∣∣∣ (2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1 − (ℓ+ 2)sb−1 + (ℓ− 1)sb

∣∣∣∣∣
+

40λℓ2∥D2ua:b∥1
(ℓ− 1)

∣∣∣∣∣ 3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1 + 3sb−1 −

3(ℓ− 1)

ℓ+ 1
sb

∣∣∣∣∣
≤ 40λℓ−1/2

(ℓ− 1)

∣∣∣∣∣ (2− 2ℓ)sa−2 + (2ℓ+ 1)sa−1 − (ℓ+ 2)sb−1 + (ℓ− 1)sb

∣∣∣∣∣
+

40λℓ1/2

(ℓ− 1)

∣∣∣∣∣ 3(ℓ− 1)

ℓ+ 1
sa−2 − 3sa−1 + 3sb−1 −

3(ℓ− 1)

ℓ+ 1
sb

∣∣∣∣∣, (27)

where we used ∥D2ua:b∥1≤ ℓ−3/2.

We have

⟨A−1h,

b∑
j=a

xj

(
f ′
j(β

Txj)− f ′
j(uj)

)
=

2

(ℓ− 1)ℓ

(
((2ℓ+ 1)Γ− 3Γ̃)

b∑
j=a

f ′
j(β

Txj)− f ′
j(uj)

+

(
6Γ̃

ℓ+ 1
− 3Γ

)
b∑

j=a

(j − a+ 1)
(
f ′
j(β

Txj)− f ′
j(uj)

) )

≤ 40ℓ∥D2ua:b∥1
(ℓ− 1)

|(2ℓ+ 1)Γ− 3Γ̃|+40ℓ2∥D2ua:b∥1
(ℓ− 1)

∣∣∣∣∣ 6Γ̃

ℓ+ 1
− 3Γ

∣∣∣∣∣
≤ 40ℓ−1/2

(ℓ− 1)
|(2ℓ+ 1)Γ− 3Γ̃|+ 40ℓ1/2

(ℓ− 1)

∣∣∣∣∣ 6Γ̃

ℓ+ 1
− 3Γ

∣∣∣∣∣ , (28)

where the last line is obtained by using similar arguments used for obtaining Eq.(27).

By substituting the expression for A−1 and simplifying,

∥h∥2A−1 =
2

(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ+ 1)(ℓ+ 1)Γ2 − 6ΓΓ̃(ℓ+ 1) + 6Γ̃2

)
. (29)

Using Eq.(22), we obtain
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⟨A−1g,h⟩ =
b∑

j=a

2λγ−
j

(ℓ− 1)ℓ

(
−3j + 3ℓj′ − 2ℓ2 + 2

ℓ+ 1
sa−2 + (−3j′ + 2ℓ+ 1)sa−1

+ (3j′ − ℓ− 2)sb−1 +
−3ℓj + 3j′ + ℓ2 − 1

ℓ+ 1
sb

)
(30)

Lemma 27. (bounding T1) Consider a bin [a, b]. Let pt be the predictions of FLH-SIONS algorithm with parameters ϵ = 2,
C = 20 and exp-concavity factor σ. Suppose α and β are as defined in Lemma 26. For any µ ∈ {α,β} FLH-SIONS
satsifies:

b∑
t=a

ft(pt)− ft(µ
Txt) ≤ 256 +

1

2σ
log(1 + σn/2) +

4

σ
log n.

Proof. We will derive the guarantee for µ = α. The guarantee for µ = α follows similarly.

Let’s begin by calculating v := A−1
∑b

j=a f
′
j(x

T
j β)xj .

We have,

|v[1]| =

∣∣∣∣∣∣ 2

(ℓ− 1)ℓ

ℓ∑
j=1

(2ℓ+ 1− 3j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣∣
(a) ≤

2

(ℓ− 1)ℓ
· 2ℓ(ℓ− 1)

= 4, (31)

where line (a) is obtained via Lipschitzness and Holder’s inequality xTy ≤ ∥x∥1∥y∥∞ and the fact that |2ℓ+ 1− 3j|≤
2(ℓ− 1) for all j ∈ [1, ℓ].

Similarly

|v[2]| =

∣∣∣∣∣∣ 2

(ℓ− 1)ℓ(ℓ+ 1)

ℓ∑
j=1

(−3(ℓ+ 1) + 6j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣∣
≤ 2

(ℓ− 1)ℓ(ℓ+ 1)
· 3ℓ(ℓ− 1)

=
6

(ℓ+ 1)
, (32)

where we used |−3(ℓ+ 1) + 6j|≤ 3(ℓ− 1) for all j ∈ [1, ℓ].

Combining Eq.(31) and (32) we conclude that

|vTxj | ≤ 4 + (j − a+ 1)
6

(ℓ+ 1)

≤ 10,

where the last line follows due to the fact (j − a+ 1) ≤ ℓ.

Hence by Triangle inequality we have,

|αTxj |≤ |βTxj |+10. (33)

Further note that

∥v∥2≤ 8
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Notice that β = A−1∑ℓ
j=a ujxj which have similar functional form as v. Since |uj |≤ B for all j ∈ [n], by following

similar arguments used in bounding v we obtain |βTxj |≤ 10 and

∥β∥2≤ 8.

Continuing from (33) we get

|αTxj | ≤ 20. (34)

Further,

∥α∥2 ≤ ∥β∥2+∥v∥2
≤ 16 (35)

Since the losses ft are σ exp-concave in [−1, 1], b+y Theorem 2 in (Luo et al., 2016) and Lemma 3.3 in (Hazan and
Seshadhri, 2007), FLH-SIONS with parameters set as in the statement of the Lemma yields a regret of

b∑
t=a

ft(pt)− ft(α
Txt) ≤ 256 +

1

2σ
log(1 + σn/2) +

4

σ
log n.

Lemma 28. (monotonic slopes) Consider a bin [is, it] ∈ P such that the slopes are monotonic (i.e either non-decreasing
or non-increasing). Let pj be the predictions made by the FLH-SIONS algorithm with parameters as set in Lemma 27. Then
we have,

it∑
j=is

fj(pj)− fj(uj) ≤ O

(
1

2σ
log(1 + σn/2) +

4

σ
log n+ 210408

)
= Õ(1)

Proof. We will consider the case of non-decreasing slopes. The alternate case can be handled similarly.

Assume that the slope within the bin is not constant, otherwise we trivially get logarithmic regret as we need only to compete
with the best fixed linear fit which is handled by the static regret of FLH-SIONS in any interval (µ = β in Lemma 27).

The optimal solution within a bin of P obtained via Proposition 24 which doesn’t have constant slope may touch either −1
or 1 but not both. Consider the case where the optimal touches −1. Then as the slopes are non-decreasing, once it leaves
−1, it never touches −1 again. So we can split the bin [is, it] into at-most 3 bins [a, b], [b+ 1, c] and [c+ 1, d] such that the
optimal touches −1 only within [b+ 1, c]. (This bin can be empty if the optimal doesn’t touch −1 anywhere within [is, it]).

Now we will bound the regret within bin [a, b].

Suppose that sa−1 = 1 and sb = 1. If this condition is not satisfied, we can refine the bin [a, b] into at-most 3 bins
[a1, b1], [a2, b2], [a3, b3] such that the optimal has constant slope in the first and last bins and sa2−1 = sb2 = 1. This is
possible because the slopes in [a, b] are non-decreasing.

Let ∆ := ∥D2ua:b∥1 and ℓ := b − a + 1. Let p and q be two numbers in [0, 2]. Substituting sa−2 = 1 − p, sa−1 = 1,
sb−1 = 1− q and sb = 1 into Lemma 21 and using the fact that |jMj +Cj |≤ 20ℓ∆ for all j ∈ [a, b] due to Lemma 20, we
get

T3 ≤ 40λ(p+ q)ℓ∆+ 200, (36)
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where we observed that a term arising from Lemma 21: −Ma + Mb−1 −
∑b

t=a+1|Mt −Mt−1|= 0 as the slopes are
non-decreasing.

By making similar sign substitutions in Lemma 26 and noting that h = 0, we get

T2 ≤
−2λ2

2(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq

)
+

40λℓ∆

ℓ− 1
(2p(ℓ− 1) + q(ℓ+ 2)) +

40λℓ2∆

(ℓ− 1)(ℓ+ 1)
(p(ℓ− 1) + q(ℓ+ 1))

≤ −2λ2

2(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq

)
+ 160λℓ∆(p+ q) + 160λℓ∆(p+ q), (37)

where in the last line we used the fact that ℓ− 1 ≥ ℓ/2 and ℓ+ 2 ≤ 2ℓ for all ℓ ≥ 2.

Now consider the case where p ≥ q. Then,

(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq ≥ (2ℓ2 − 3ℓ+ 1)p2

≥ ℓ2p2, (38)

where the last line holds for all ℓ ≥ 3. (If ℓ ≤ 3, the regret within the bin is trivially O(1) appealing to the Lipschitzness
of the losses ft and the boundedness of the predictions and the comparators (see proof of Lemma 27)). Thus by using
ℓ− 1 ≤ ℓ and ℓ+ 1 ≤ 2ℓ, we get

−2λ2

2(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq

)
≤ −λ

2p2

2ℓ
. (39)

Combining Eq. (37) and (39) and using the fact that p ≥ q, we have

T2 ≤
−λ2p2

2ℓ
+ 640λℓ∆p. (40)

Similarly from (36) using p ≥ q we get

T3 ≤ 40λ(p+ q)ℓ∆+ 200

≤ 80λpℓ∆+ 200 (41)

Combining Eq. (40) and (41) we have

T2 + T3 ≤
−λ2p2

2ℓ
+ 648λpℓ∆+ 200

= −
(

λp√
2ℓ
− 648

√
2ℓ3/2∆

)
+ 209952ℓ3∆2 + 200

≤ 210152,

where in the last line we dropped the negative term and used the facts that ∆ ≤ 1/ℓ3/2.

For the case of q ≥ p, we have

(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 + 2(ℓ2 − 1)pq ≥ (2ℓ2 − 3ℓ+ 1)q2

≥ ℓ2q2,
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where the last line holds for all ℓ ≥ 3. This is the same expression as in Eq.(38) with p replaced by q. By replacing p with q
in the arguments we detailed for the case of p ≥ q earlier, we arrive at the same conclusion that T2 + T3 ≤ 210152 even
when q ≥ p. (If ℓ ≤ 3, the regret within the bin is trivially O(1) appealing to the Lipschitzness of the losses ft and the
boundedness of the predictions and the comparators (see proof of Lemma 27))

Similar bound on T2 + T3 can be shown for bin [c+ 1, d] by essentially the same arguments.

Hence through Lemma 27 we have the dynamic regret in bins [a, b] to be:

b∑
t=a

ft(pt)− ft(ut) ≤ 256 +
1

2σ
log(1 + σn/2) +

4

σ
log n+ 210152

= Õ(1)

Similarly, the regret within bin [c+ 1, d] is also bounded by the above expression.

As the slope within bin [b+ 1, c] is constant, the regret incurred within this bin is trivially bounded by 256 + 1
2σ log(1 +

σn/2) + 4
σ log n due to Lemma 27.

Adding the regret incurred across the bins [a, b], [b+ 1, c] and [c+ 1, d] together yields the lemma.

Next, we will focus on bounding T2 + T3 for general non-monotonic bins in P .
Lemma 29. (non-monotonic slopes) Consider a bin [is, it] ∈ P such that the slopes are not monotonic. Let pj be the
predictions made by the FLH-SIONS algorithm with parameters as set in Lemma 27. Then we have,

it∑
j=is

fj(pj)− fj(uj) ≤ O

(
1

σ
log(1 + σn) +

12

σ
log n+ 1

)
= Õ(1)

Proof. Let [a, b] ∈ P be a bin where the slope is not monotonic and not constant.

Assume that |sa−1|= |sb|= 1. Otherwise we can split the original bin into at-most 3 bins [a, b1 − 1], [b1, b2], [b2 + 1, b]
such that |sb1−1|= |sb2 |= 1 and slopes are constant in the the other two bins. This is possible because slope in [a, b] is not
constant or monotonic.

For a bin [a, b] we define boundary signs to be sa−2, sa−1, sb−1 and sb.

First, we will study the case where the offline optimal touches the boundary −1 at two point r and w with r < w. The case
of arbitrary number of boundary touches will be discussed towards the end. (All arguments can be mirrored appropriately
for the case where optimal touches boundary 1).

In what follows we use the notations in the proof of Lemma 26. From Eq.(21) we have

g + h = λµ+ γ−
r xr + γ−

wxw, (42)

where µ ∈ R2 is a vector depending on the boundary signs and the length ℓ := b− a+ 1. xr = [1, r − a+ 1]T and xw

defined similarly.

Since g + h is an affine map of [λ, γ−
r , γ−

w ]T and since A is positive definite for ℓ ≥ 2, we conclude that ∥g + h∥2
A−1 is

jointly convex in λ, γ−
r , γ−

w via appealing to the convexity of squared L2 norm.

First let’s focus on the case where boundary signs obey sa−1 = 1 and sb = −1. Let sa−2 = 1− p and sb−1 = −1 + q for
some p, q ∈ [0, 2].

Making these sign substitutions in Lemma 26, we get:

∥g∥2A−1 =
2λ2

(ℓ− 1)ℓ(ℓ+ 1)

(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 − (2ℓ2 − 2)pq + 12(ℓ− 1)p− 12(ℓ+ 1)q + 24

)
.
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⟨g,A−1h⟩ = λ

(ℓ− 1)ℓ(ℓ+ 1)
(−24− 6ℓ(p− q) + 6(p+ q)) (r′γ−

r + w′γ−
w )+

+
λ

(ℓ− 1)ℓ(ℓ+ 1)

(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)
(γ−

r + γ−
w ),

where r′ = r − a+ 1 and w′ = w − a+ 1.

Let ∆ := ℓ−3/2. By using equation (27) and the facts ℓ− 1 ≥ ℓ/2, ℓ+1 < ℓ, p, q ∈ [0, 2] and triangle inequality, we bound

⟨A−1g,

b∑
j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ ≤(a)
40λℓ∆

ℓ− 1
|2p(ℓ− 1)− q(ℓ+ 2) + 6|

+
40λℓ2∆

ℓ− 1
|3q(ℓ+ 1) + p(1− ℓ)− 4|

(b) ≤ 640λℓ∆(p+ q) + 800λ∆,

where the line (a) is obtained by equation (27) and making the boundary sign substitutions. Line (b) is obtained using the
facts ℓ− 1 ≥ ℓ/2, ℓ+ 2 ≤ 2ℓ whenever ℓ ≥ 2 and p, q ∈ [0, 2] along with triangle inequality.

From Eq.(28), by using similar triangle inequality based arguments and the fact that |Γ̃|≤ ℓ|Γ| by Holder’s inequality and
Corollary 25 in as above we obtain

⟨A−1h,

b∑
j=a

xj(f
′
j(x

T
j β)− f ′

j(uj))⟩ ≤ 1200ℓ∆(γ−
r + γ−

w ).

To bound T3 we observe from Lemma 21

T3 = 200 + λ

(
(sa−1 − sa−2)(Ma + Ca)− (sb − sb−1)(ℓMb + Cb)

− sa−1Ma + sb−1Mb−1 −
ℓ∑

t=2

|Mt −Mt−1|

)
+ 20ℓ∆(γ−

r + γ−
w )

≤ 200 + λ

(
|(sa−1 − sa−2)(Ma + Ca)|+|(sb − sb−1)(ℓMb + Cb)|

+ |Ma|+|Mb−1|+∆

)
+ 20ℓ∆(γ−

r + γ−
w )

≤ 200 + 80λℓ∆(p+ q) + 3λ∆+ 20ℓ∆(γ−
r + γ−

w ),

where in the last line we used the fact that |(j − a+ 1)Mj + Cj |≤ 20ℓ∆ from Lemma 20.

Recall that ∆ = ℓ−3/2. Combining all the above equations / inequalities above and Eq. (29), define:

T (λ, γ−
r , γ−

w ) := λ2
(
(2ℓ2 − 3ℓ+ 1)p2 + (2ℓ2 + 3ℓ+ 1)q2 − (2ℓ2 − 2)pq + 12(ℓ− 1)p− 12(ℓ+ 1)q + 24

)
+
(
(2ℓ+ 1)(ℓ+ 1)(γ−

r + γ−
w )2 − 6(γ−

r + γ−
w )(r′γ−

r + w′γ−
w )(ℓ+ 1) + 6(r′γ−

r + w′γ−
w )2
)

+ λ (−24− 6ℓ(p− q) + 6(p+ q)) (r′γ−
r + w′γ−

w )

+ λ
(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)
(γ−

r + γ−
w )

− ((ℓ− 1)ℓ(ℓ+ 1))
(
720λℓℓ−3/2(p+ q) + 803λℓ−3/2 + 1220ℓℓ−3/2(γ−

r + γ−
w )
)
. (43)
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We have,

T2 + T3 ≤ −
T (λ, γ−

r , γ−
w )

(ℓ− 1)ℓ(ℓ+ 1)
+ 200. (44)

The expression in Eq.(43) can be compactly written as:

T (λ, γ̌−
r , γ̌−

w ) = 0.5 · (ℓ− 1)ℓ(ℓ+ 1)∥g + h∥2A−1+Φ(λ, γ̌−
r + γ̌−

w )

:= Q(λ, γ−
r + γ−

w , rγ−
r + wγ−

w ),

where g+h is as in Eq.(42) (which only depends on the boundary signs and λ, γ−
r +γ−

w and rγ−
r +wγ−

w ) and Φ(λ, γ̌−
r , γ̌−

w )
is a linear function of its arguments namely,

Φ(λ, γ̌−
r + γ̌−

w ) = −(ℓ− 1)ℓ(ℓ+ 1)
(
20λℓℓ−3/2(p+ q) + 803λℓ−3/2 + 1220ℓℓ−3/2(γ−

r + γ−
w )
)

Since we have established earlier that ∥g∥2
A−1 is convex in λ, γ−

r , γ−
w we will certainly have T (λ, γ−

r , γ−
w ) as a function

jointly convex in its arguments.

The function B referred in Appendix B is defined to be:

B(λ, γ−
r , γ−

w ; r, w) := − T (λ, γ−
r , γ−

w )

(ℓ− 1)ℓ(ℓ+ 1)
+ 200, (45)

with r′ and w′ in Eq.(43) to be taken as r′ = r − is + 1 and w′ = w − is + 1 , ℓ = it − is + 1 and T (λ, γ−
r , γ−

w ) is as in
Eq.(43).

So we consider the following convex optimization problem:

min
λ,γ−

r ,γ−
w

T (λ, γ−
r , γ−

w )

s.t. λ ≥ 0

Note that in the program above we do unconstrained minimization over γ−
r and γ−

w . Doing so can only further decrease the
objective function leading to a valid upper bound on T2 + T3.

First we will perform a partial minimization wrt the variables γ−
r and γ−

w . Differentiating the objective wrt γ−
r and setting to

zero yields:

(
2(2ℓ2 + 3ℓ+ 1)− 12(ℓ+ 1)r′ + 12(r′)2

)
γ̂−
r

+
(
2(2ℓ2 + 3ℓ+ 1)− 6(ℓ+ 1)(r′ + w′) + 12r′w′) γ̂−

w

= λr′ (24 + 6ℓ(p− q)− 6(p+ q))− λ
(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)
+ 1220ℓ2(ℓ2 − 1)ℓ−3/2.

Similarly differentiating the objective wrt γ−
w and setting to zero yields:

(
2(2ℓ2 + 3ℓ+ 1)− 12(ℓ+ 1)w′ + 12(w′)2

)
γ̂−
w

+
(
2(2ℓ2 + 3ℓ+ 1)− 6(ℓ+ 1)(r′ + w′) + 12r′w′) γ̂−

r

= λw′ (24 + 6ℓ(p− q)− 6(p+ q))− λ
(
2ℓ2(2p− q)− 6ℓq − 4(p+ q) + 12(ℓ+ 1)

)
+ 1220ℓ2(ℓ2 − 1)ℓ−3/2.

Solving the above two equations yields:
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γ̂−
r =

w′λℓ2p+ w′λℓ2q − w′λp− w′λq

+ 1220w′ℓ0.5 − 1220w′ℓ2.5 − λℓ3q − λℓ2p

− λℓ2q + 2λℓ2 + λℓq + λp

+ λq − 2λ− 610ℓ0.5 − 610ℓ1.5 + 610ℓ2.5 + 610ℓ3.5

r′ℓ2 − r′ − w′ℓ2 + w′ ,

and

γ̂−
w =

− r′λℓ2p− r′λℓ2q + r′λp+ r′λq

− 1220r′ℓ0.5 + 1220r′ℓ2.5 + λℓ3q + λℓ2p

+ λℓ2q − 2λℓ2 − λℓq − λp− λq

+ 2λ+ 610ℓ0.5 + 610ℓ1.5 − 610ℓ2.5 − 610ℓ3.5

r′ℓ2 − r′ − w′ℓ2 + w′ .

Substituting the above two expression we get:

T (λ, γ̂−
r , γ̂−

w ) =

− 797λℓ2.0 − 1780λℓ3.0p− 1780λℓ3.0q

+ 2391λℓ4.0 + 5340λℓ5.0p+ 5340λℓ5.0q − 2391λℓ6.0

− 5340λℓ7.0p− 5340λℓ7.0q + 797λℓ8.0 + 1780λℓ9.0p+ 1780λℓ9.0q

+ 744200ℓ3.5 − 2232600ℓ5.5 + 2232600ℓ7.5 − 744200ℓ9.5

ℓ2.5 − 2ℓ4.5 + ℓ6.5
(47)

Looking at Eq.(47) we notice that it is a linear fucntion of λ which defined the function L(λ) mentioned in Appendix B:

L(λ) =

− 797λℓ2.0 − 1780λℓ3.0p− 1780λℓ3.0q

+ 2391λℓ4.0 + 5340λℓ5.0p+ 5340λℓ5.0q − 2391λℓ6.0

− 5340λℓ7.0p− 5340λℓ7.0q + 797λℓ8.0 + 1780λℓ9.0p+ 1780λℓ9.0q

+ 744200ℓ3.5 − 2232600ℓ5.5 + 2232600ℓ7.5 − 744200ℓ9.5

ℓ2.5 − 2ℓ4.5 + ℓ6.5
(48)

We observe that the leading term (i.e terms whose magnitude is biggest) in the denominator is a positive quantity namely
ℓ6.5. The leading term in the numerator that contains λ grows as 1780λℓ9(p+ q) + 797λℓ8. So the unconstrained minimum
of this linear function is attained at λ = −∞.

Hence the constrained minimum (with constraint λ ≥ 0) of the optimization problem 46 is attained at λ = 0. We calculate
the optimal objective to the constrained problem via Eq.(47) as

T (0, γ̂−
r , γ̂−

w ) =
744200

(
ℓ1.5 − 3ℓ3.5 + 3ℓ5.5 − ℓ7.5

)
ℓ0.5 − 2ℓ2.5 + ℓ4.5

,

where we consider bins with length ℓ ≥ 14.

Since ℓ4 ≥ 2ℓ2 for all ℓ ≥ 2, we continue from the previous display to obtain:

T (0, γ̂−
r , γ̂−

w ) ≥ −744200 · (1 + 3 + 3 + 1)
ℓ7.5

ℓℓ.5

= −5953600ℓ3,

Hence we have

T (0, γ̂−
r , γ̂−

w )

(ℓ− 1)ℓ(ℓ+ 1)
≥ −5953600ℓ3

(ℓ− 1)ℓ(ℓ+ 1)

≥ −11907200,
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where in the last line we used the fact that ℓ− 1 ≥ ℓ/2 is satisfied for all ℓ ≥ 14 and ℓ+ 1 > ℓ.

Hence continuing from Eq.(44) we conclude that

T2 + T3 ≤ (11907200 + 200)

= 11907400.

The term T1 can be bound as

T1 ≤ 256 +
1

2σ
log(1 + σn/2) +

4

σ
log n

= Õ(1),

by Lemma 27.

Now suppose that the offline optimal within bin [a, b] touches boundary −1 more than two times. In this case we propose a
reduction to the previous type of analysis where only γ−

r and γ−
w are potentially non-zero.

The reduction is facilitated by two observations:

1. While performing the minimization of function T (λ, γ−
r , γ−

w ) in Eq.(43) via the optimization problem 46 we neither
used the fact that r and w are integers nor constrained any bounds on them as well

2. The partially minimized objective in Eq.(47) fortunately doesn’t depend on neither r nor w.

Now let’s consider the case where arbitrary number of γ−
j , j ∈ [a, b] can be non-zero. We can then write,

Γ =

b∑
j=a

γ−
j

= γ̌−
r + γ̌−

w ,

where γ̌−
r := γ−

1 and γ̌−
w = Γ− γ̌−

1 .

Define r′ := 1 and w′ :=
∑b

j=a j′γ−
j −γ̌−

r

γ̌−
w

=
˜
Γ−γ̌−

r

γ̌−
w

where we assume that γ̌−
w > 0 (otherwise, we fall back to the earlier

analysis).

With these re-definitions we note that

T2 + T3 ≤ −
T (λ, γ̌−

r , γ̌−
w )

(ℓ− 1)ℓ(ℓ+ 1)
,

still holds. Further, T (λ, γ̌−
r , γ̌−

w ) is jointly convex in its arguments. This can be seen as follows: Note that T (λ, γ̌−
r , γ̌−

w )
assumes the form

T (λ, γ̌−
r , γ̌−

w ) = 0.5 · (ℓ− 1)ℓ(ℓ+ 1)∥g + h∥2A−1+Φ(λ, γ̌−
r + γ̌−

w ),

where Φ(λ, γ̌−
r + γ̌−

w ) is an affine function of its arguments and

h = [Γ, Γ̃]T

= [γ̌−
r + γ−

w , r′γ̌−
r + w′γ̌−

w ]T ,

where the last line follows due to our re-parametrizations. By following essentially same arguments as earlier for proving
convexity of T (λ, γ−

r , γ−
w ) we conclude that T (λ, γ̌−

r , γ̌−
w ) is also jointly convex in its arguments.

This completes our reduction to the case of two-boundary touches and rest of analysis proceeds by minimizing T (λ, γ̌−
r , γ̌−

w )
as earlier.

We now consider the case where sa−1 = sb = 1. We can split the original bin [a, b] into two sub-bins [a1, b1] and [a2, b2]
with a2 = b1 + 1 such that (i) sb1 = −1 with ub1+1 − ub1 > ua2+1 − ua2 and (ii) the slopes are non-decreasing within
[a2, b2]. This can be achieved by picking b1 as the last point within [a, b] where ub1+1 − ub1 > ub1+2 − ub1+1.
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In the bin [a1, b1] we apply the previous analysis to bound regret by Õ(1). For the bin [a2, b2] we resort to Lemma 28 to
bound regret by Õ(1).

The analysis for the case of boundary signs assignments sa−1 = −1 and sb = 1 as well as sa−1 = −1 and sb = −1 can be
done similarly.

Adding the regret bounds across all newly formed bins due to potential splitting yields the lemma.

Next, we provide the full regret guarantee in a uni-variate setting.

Theorem 30. Let pt be the predictions of FLH-SIONS algorithm with parameters ϵ = 2, C = 20 and exp-concavity factor
σ. Under Assumptions A1-A4, we have that,

n∑
t=1

ft(pt)− ft(wt) = Õ(n1/5C2/5
n ∨ 1),

for any comparator sequence w1:n ∈ T V(1)(Cn). Here Õ hides poly-logarithmic factors of n and a ∨ b = max{a, b}.

Proof. The proof is complete by adding the Õ(1) dynamic regret bound from Lemmas 28 and 29 across O(n1/5C
2/5
n ∨ 1)

bins in the partition P .

The proof of Lemma 11 stated in Appendix B is similar to the arguments used to derive Eq.(20). We record it for the sake of
completeness.

Lemma 11. We have that T2 ≤ − 1
2 ∥∇F (β)∥2A−1 .

Proof. We follow the same notations used in defining Lemma 11.

Let’s begin by calculating v := A−1∑b
j=a f

′
j(x

T
j β)xj .

We have,

|v[1]| =

∣∣∣∣∣∣ 2

(ℓ− 1)ℓ

ℓ∑
j=1

(2ℓ+ 1− 3j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣∣
(a) ≤

2

(ℓ− 1)ℓ
· 2ℓ(ℓ− 1)

= 4, (49)

where line (a) is obtained via Lipschitzness and Holder’s inequality xTy ≤ ∥x∥1∥y∥∞ and the fact that |2ℓ+ 1− 3j|≤
2(ℓ− 1) for all j ∈ [1, ℓ].

Similarly

|v[2]| =

∣∣∣∣∣∣ 2

(ℓ− 1)ℓ(ℓ+ 1)

ℓ∑
j=1

(−3(ℓ+ 1) + 6j)f ′
(j+a−1)(x

T
j+a−1β)

∣∣∣∣∣∣
≤ 2

(ℓ− 1)ℓ(ℓ+ 1)
· 3ℓ(ℓ− 1)

=
6

(ℓ+ 1)
, (50)

where we used |−3(ℓ+ 1) + 6j|≤ 3(ℓ− 1) for all j ∈ [1, ℓ].
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Combining Eq.(49) and (50) we conclude that

|vTxj | = 4 + (j − a+ 1)
6

(ℓ+ 1)

≤ 10, (51)

where the last line follows due to the fact (j − a+ 1) ≤ ℓ.

Hence by Triangle inequality we have

|αTxj |≤ |βTxj |+10. (52)

Now we bound |βTxj | using similar arguments. We have v′ := A−1∑b
j=a ujxj . Now noting that |uj |≤ 1 by Assumption

A1 and using similar arguments used to obtain Eq.(51) we conclude that

|βTxj |≤ 10. (53)

So continuing from Eq.(52) we have |αTxj |≤ 20.

For some z = tα+ (1− t)β, t ∈ [0, 1] we have by Taylor’s theorem that

F (α)− F (β) = −⟨∇F (β),A−1∇F (β)⟩+ 1

2
∥A−1∇F (β)∥2∇2F (z)

≤ −⟨∇F (β),A−1∇F (β)⟩+ 1

2
∥A−1∇F (β)∥2A

= −1

2
∥∇F (β)∥2A−1 ,

where in the first inequality we used that fact that∇2F (z) ≼ A due to the fact that the functions fj are 1 gradient Lipschitz
in [−20, 20]d via Assumption A3.

C.2 Multi-dimensional setting

splitMonotonic: Inputs- (1) offline optimal sequence (2) A bin [is, it] (3) A coordinate k ∈ [d]

1. Compute zj [k] = uj+1[k]− uj [k]

2. If z[k] is constant in [is, it] return {is, it}.

3. If z[k] is non-decreasing (non-increasing) across [is, it]: //ensure equal boundary
signs (see caption) for bin [b+ 1, c] below.

(a) Split [is, it] into at-most three bins [is, b], [b + 1, c], [c + 1, it] such that zj [k] remains
constant in the first and last bins. Further zb+1[k] > (<)zb[k] and zc+1[k] > (<)zc[k].

(b) Return {is, b, b+ 1, c, c+ 1, it}

Figure 6: splitMonotonic procedure. If line 3 is replaced by “If z[k] is non-increasing ...”, then we propagate that
change by replacing the symbols > /< in the lines below 3 by the bracketed statements next to it. For a bin [a, b], we refer
to sa−1 and sb as the boundary signs.
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generateBins: Input- (1) offline optimal sequence

1. Form consecutive bins [is, it] such that: // coarse partition based on TV1
distance

(a) ∥D2uis:it∥1≤ 1/ℓ
3/2
is→it

(b) ∥D2uis:it+1∥1> 1/ℓ
3/2
is→it+1,

where ℓa→b := b− a+ 1.

2. Let the partition of the time horizon be represented as P̧′ := {[1s, 1t], . . . , [is, it], . . . [Ms,Mt]}
where M = |P ′|.

3. InitializeR ← Φ.

4. For each bin [is, it] ∈ P ′: // ensuring γ+
j [k]γ

−
j [k] = 0 for all k ∈ [d]

(a) R = R∪ {is, it}.
(b) For each coordinate k ∈ [d]:

i. If uis [k] = 1(−1) and there exists a point p ∈ [is, it] such that up = −1(1) then
R ← R∪ {p− 1, p}

ii. If uit [k] = 1(−1) and there exists a point p ∈ [is, it] such that up = −1(1) then
R ← R∪ {p− 1, p}

5. Remove duplicates fromR and form a partition P by splitting at each point inR

6. Return P

Figure 7: generateBins procedure. If line 7(d) is replaced by “If zp[k] < zp−1[k]”, then we propagate that change by
replacing the symbols > /< in the lines below 7(d) by the bracketed statements next to it. For a bin [a, b], we refer to sa−1

and sb as the boundary signs.

Lemma 31. Consider the following convex optimization problem.

min
ũ1, ... ,ũn,z̃1, ... ,z̃n−1

n∑
t=1

ft(ũt)

s.t. z̃t = ũt+2 − 2ũt+1 + ũt ∀t ∈ [n− 2],

n−2∑
t=1

∥z̃t∥1≤ Cn/n, (54a)

− 1 ≤ ũt[k] ∀t ∈ [n], ∀k ∈ [d] (54b)
ũt[k] ≤ 1 ∀t ∈ [n], ∀k ∈ [d] (54c)

Let u1, . . . ,un, z1, . . . ,zn−2 be the optimal primal variables and let λ ≥ 0 be the optimal dual variable corresponding
to the constraint (73a). Further, let γ−

t ≥ 0,γ+
t ≥ 0 (coordinate-wise) be the optimal dual variables that correspond to

constraints (73b) and (54c) respectively for all t ∈ [n]. Note that γ−
t ,γ

+
t ∈ Rd. By the KKT conditions, we have

• stationarity: ∇ft(ut) = λ ((st−1 − st)− (st−2 − st−1))+γ−
t −γ+

t , where st[k] ∈ ∂|zt[k]| (a subgradient) for k ∈
[d]. Specifically, st[k] = sign((ut+2[k]−ut+1[k])−(ut+1[k]−ut[k])) if |(ut+2[k]−ut+1[k])−(ut+1[k]−ut[k])|> 0
and st[k] is some value in [−1, 1] otherwise. For convenience of notations, we also define s−1 = s0 = 0.

• complementary slackness: (a) λ
(∑n−2

t=1 ∥zt∥1−Cn/n
)
= 0; (b) γ−

t [k](ut[k] + 1) = 0 and γ+
t [k](ut[k]− 1) = 0

for all t ∈ [n].

The proof of above Lemma is similar to that of Lemma 17 and hence omitted.



Second Order Path Variationals in Non-Stationary Online Learning

Lemma 32. (Luo et al., 2016) Consider an online learning setting where at each round t, we are given a feature vector
xt ∈ R2. Define f̃t(v) = ft(x

T
t v[1 : 2], . . . ,xT

t v[2d − 1 : 2d]) for some vector v ∈ R2d. Let the function f(r) be σ
exp-concave and G Lipschitz for r ∈ Rd with ∥r∥∞≤ C. DefineKt := {w ∈ R2d : |xT

t w[2k−1 : 2k]|≤ C ∀k ∈ [d]}. Let
K := ∩Tt=1Kt and gt := ∇f̃t(pt). Consider a variant of the algorithm proposed by (Luo et al., 2016) where the algorithm
makes a prediction p̂t+1 ∈ Rd at round t+ 1 as:

wt+1 = pt −A−1
t gt

pt+1 = argmin
w∈Kt+1

∥w −wt+1∥At

p̂t+1 =
[
xT
t+1pt+1[1 : 2], . . . ,xT

t+1pt+1[2d− 1 : 2d]
]T

where At = ϵI +
∑t

s=1 σgsg
T
s with I is the identity matrix and ϵ is an input parameter.

Then for any w ∈ K we have the regret controlled as

T∑
t=1

ft(p̂t)− f̃t(w) =

T∑
t=1

f̃t(pt)− f̃t(w)

≤ ϵ∥w∥22
2

+
2d

σ
log

(
1 +

σTG2

dϵ

)
.

We will call this algorithm as SIONS (Scale Invariant Online Newton Step).

Proof. First we show that exp-concavity is invariant to affine transforms. Since ft is σ exp-concave, we have

f̃t(w) ≥ f̃t(v) +

〈
∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d− 1 : 2d]),

[xT
t (w[1 : 2]− v[1 : 2]), . . . ,xT

t (w[2d− 1 : 2d]− v[2d− 1 : 2d])]T ]

〉

+
σ

2

(〈
∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d− 1 : 2d]),

[xT
t (w[1 : 2]− v[1 : 2]), . . . ,xT

t (w[2d− 1 : 2d]− v[2d− 1 : 2d])]T ]

〉)2

.

For the sake of brevity let’s denote f
(k)
t := ∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d− 1 : 2d])[k] for k ∈ [d]. Then we have

∇f̃t(v) =
[
f
(1)
t xT

t , . . . , f
(d)
t xT

t

]T
.

Let

A =

〈
∇ft(xT

t v[1 : 2], . . . ,xT
t v[2d− 1 : 2d]),

[xT
t (w[1 : 2]− v[1 : 2]), . . . ,xT

t (w[2d− 1 : 2d]− v[2d− 1 : 2d])]T ]

〉
.

With this, we observe that,

A = (w − v)T∇f̃t(v).

Thus, we obtain the affine invariance of exp-concavity as:

f̃t(w) ≥ f̃t(v) + (w − v)T∇f̃t(v) +
σ

2

(
(w − v)T∇f̃t(v)

)2
. (55)
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Note that the set Kt is convex. This can be seen as follows: if v,w ∈ Ķt, then we have |xT
t v[2k − 1 : 2k]|≤ C and

|xT
t w[2k − 1 : 2k]|≤ C for all k ∈ [d]. Now for any t ∈ [0, 1] let z = tv + (1− t)w. Then we have for any k ∈ [d] that

|xT
t z[2k − 1 : 2k]| ≤ t|xT

t v[2k − 1 : 2k]|+(1− t)|xT
t 2[2k − 1 : 2k]|

≤ C,

where the first inequality is via triangle inequality. Thus z ∈ Kt so the set Kt is convex.

So by the properties of projection to convex sets (see for example, Lemma 16 in (Hazan et al., 2007)) and the definition of
the algorithm, we have that

∥pt+1 −w∥2At
≤ ∥wt+1 −w∥2At

= ∥pt −w∥2At
+gT

t A
−1
t gt − 2gT

t (pt −w).

Let RT (w) :=
∑T

t=1 f̃t(pt)− f̃t(w). Since each ft is exp-concave, we have by Eq.(55) and the previous inequality that

2RT (w) ≤
T∑

t=1

2gT
t (pt −w)− σ(gT

t (pt −w))2

≤
T∑

t=1

gT
t A

−1
t gt + ∥pt −w∥2At

−∥pt+1 −w∥2At
−σ(gT

t (pt −w))2

≤ ∥w∥2A0
+

T∑
t=1

gT
t A

−1
t gt + (pt −w)T (At −At−1 − σgtg

T
t )(pt −w)

= ∥w∥2A0
+

T∑
t=1

gT
t A

−1
t gt,

where the last line is by the definition of At.

By using the arguments of Lemma 12 of (Hazan et al., 2007) we have

T∑
t=1

gT
t A

−1
t gt ≤

2d

σ
log

(
1 +

σTG2

dϵ

)
.

Thus overall we have,

RT (w) ≤ ϵ∥w∥22
2

+
2d

σ
log

(
1 +

σTG2

dϵ

)

Corollary 33. (Hazan and Seshadhri, 2007) Consider the FLH algorithm from (Hazan and Seshadhri, 2007) with SIONS
from Lemma 32 as the base experts with parameter ϵ = 2 as described in Fig.3. Consider an arbitrary interval [a, b] ⊆ [n].
Then the regret of FLH-SIONS within this interval is controlled as:

b∑
j=a

fj(yj)− f̃j(w) ≤ ∥w∥22+
2d

σ
log

(
1 +

σn3G2

dϵ

)
+

4 log n

σ
,

where w ∈ ∩bj=aKj and f̃ is as defined in Lemma 32.

Proof. Since the loss functions fj are σ exp-concave, by Lemma 3.3 in (Hazan and Seshadhri, 2007) we have that

b∑
j=a

fj(yj) ≤
4 log n

σ
+

b∑
j=a

fj(Ea(j)).

Subtracting f̃j(w) from both sides and using Lemma 32 now yields the result.
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Corollary 34. The number of bins M := |P| formed via a call to generateBins(u1:n) is at-most O(n1/5C
2/5
n ∨ 1).

Proof. The proof is similar to that of Lemma 10.

Lemma 35. Let [is, it] ∈ P where P is the partition produced via the generateBins procedure. We have that the
dynamic rgeret of FLH-SIONS within this bin controlled as

it∑
j=is

fj(p̂j)− fj(uj) = Õ(d2),

where p̂j ∈ Rd are the predictions of the algorithm.

Proof. Consider a bin [is, it]. Let Q = refineSplit([is, it]). Define f̃j(v) := f̃j(y
T
j v) for v ∈ R2d.

Next, we proceed to construct the details of a regret decomposition within a bin [is, it]:

it∑
j=is

fj(p̂j)− fj(uj) =

it∑
j=is

fj(p̂j)− fj(Xjαj)︸ ︷︷ ︸
T1

+

it∑
j=is

fj(Xjαj)− fj(Xjβj)︸ ︷︷ ︸
T2

+

it∑
j=is

fj(Xjβj)− fj(uj)︸ ︷︷ ︸
T3

, (56)

where we will construct appropriate yj ,αj ,βj ∈ R2d and Xj ∈ Rd×2d in what follows.

AssignCo-variatesAndSlopes1: Inputs- (1) offline optimal sequence (2) A bin [a, b] (3) A
coordinate k ∈ [d]

1. Let βk be the least square fit coefficient computed with labels being ua[k], . . . ,ub[k] and co-
variates xj := [1, j − a+ 1]T so that the fitted value at time j is given by ûj [k] = βTxj .

2. Set βj [2k − 1 : 2k]← βk for all j ∈ [a, b].

3. Set αk ← βk

4. Set αj [2k − 1 : 2k]← αk for all j ∈ [a, b].

5. Set yj [2k − 1 : 2k] = xj for all j ∈ [a, b].

Figure 8: AssignCo-variatesAndSlopes1 used to set the parameters in the regret decomposition of Eq.(56)
whenever the offline optimal is constant across the specified coordinate k within the interval [a, b]. We use a 1-based
indexing. i.e v[1] refers the first element of a vector v.

(A1): Consider a coordinate k ∈ [d] such that u[k] is not monotonic in [is, it] and do not touch boundary 1. Let
[is, it] = [is, a− 1] ∪ [a, b] ∪ [b+ 1, c] ∪ [c+ 1, it] such that u[k] is constant in bins [is, a− 1] and [c+ 1, it]. Further we
consider the case where sa−1 = 1 and sb = −1 with u[k] non-decreasing within [b+1, c]. (Note that this can be guaranteed
by picking b as the last point with ub+1[k]−ub[k] > ub+2[k]−ub+1[k].) The alternate case where sa−1 = −1 and sb = 1
with u[k] non-increasing within [b + 1, c] can be handled similarly. All the arguments we explain for the case of offline
optimal touching the boundary −1 can be mirrored to handle the case where the offline optimal touches the boundary 1.
(The offline optimal can’t touch both boundaries simultaneously along a coordinate, see Lemma 22)

We will use 1-based indexing. (i.e v[1] denotes the first element of a vector). For each k ∈ [d]:

• Call AssignCo-variatesAndSlopes1(u1:n, [is, a− 1], k).

• Call AssignCo-variatesAndSlopes2(u1:n, [a, b], k).

• Let [b+ 1, t1 − 1], [t1, t2], [t2 + 1, c] be the bins returned by a call to splitMonotonic(u1:n, [b+ 1, c], k).

• Call AssignCo-variatesAndSlopes1(u1:n, [b+ 1, t1 − 1], k).

• Call AssignCo-variatesAndSlopes2(u1:n, [t1, t2], k).
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AssignCo-variatesAndSlopes2: Inputs- (1) offline optimal sequence (2) A bin [a, b] (3) A
coordinate k ∈ [d]

1. Let βk be the least square fit coefficient computed with labels being ua[k], . . . ,ub[k] and co-
variates xj := [1, j − a+ 1]T so that the fitted value at time j is given by ûj [k] = βTxj .

2. Set βj [2k − 1 : 2k]← βk for all j ∈ [a, b].

3. Set yj [2k − 1 : 2k]← xj for all j ∈ [a, b].

4. Define Ak :=
∑b

j=a xjx
T
j , f̃j(v) := f̃j(y

T
j v) for some v ∈ R2d.

5. Set αk ← βk −A−1
k

∑b
j=a∇f̃(βj)[2k − 1 : 2k].

6. Set αj [2k − 1 : 2k]← αk for all j ∈ [a, b].

Figure 9: AssignCo-variatesAndSlopes2 used to set the parameters in the regret decomposition of Eq.(56)
whenever the offline optimal may not be constant across the specified coordinate k within the interval [a, b]. We use a
1-based indexing. i.e v[1] refers the first element of a vector v.

• Call AssignCo-variatesAndSlopes1(u1:n, [t2 + 1, c], k).

• Call AssignCo-variatesAndSlopes1(u1:n, [c+ 1, it], k).

For a vector y we treat y[m : n] = [y[m], . . . ,y[n]]T . Define Xj ∈ Rd×2d as

XT
j =


yj [1 : 2] 0 . . . 0

0 yj [3 : 4] . . . 0
...

. . .
...

0 . . . yj [2d− 1 : 2d]

 , (57)

where 0 = [0, 0]T and yj is set according to various calls of AssignCo-variatesAndSlopes1 and
AssignCo-variatesAndSlopes2 as done previously.

We proceed to bound T2 + T3 in Eq.(56). First notice that due to Taylor’s theorem,

f̃j(αj)− f̃j(βj) = ⟨∇f̃j(βj),αj − βj⟩+
1

2
∥αj − βj∥2∇2f̃j(v)

,

where v = tαj + (1− t)βj for some t ∈ [0, 1]. Now we use Lemma 36 to obtain,

f̃j(αj)− f̃j(βj) ≤ ⟨∇f̃j(βj),αj − βj⟩+
1

2

d∑
k′=1

∥αj [2k
′ − 1 : 2k′]− βj [2k

′ − 1 : 2k′]∥2yj [2k
′−1:2k′]yj [2k

′−1:2k′]T

=

d∑
k′=1

⟨∇fj(Xjβj)[k
′]yj [2k

′ − 1 : 2k′],αj [2k
′ − 1 : 2k′]− βj [2k

′ − 1 : 2k′]⟩

+
1

2

d∑
k′=1

∥αj [2k
′ − 1 : 2k′]− βj [2k

′ − 1 : 2k′]∥2yj [2k
′−1:2k′]yj [2k

′−1:2k′]T (58)
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Further, due to gradient Lipschitzness,

f̃j(βj)− fj(uj) = fj(Xjβj)− fj(uj)

≤ ⟨∇fj(uj),Xjβj − uj⟩+
1

2
∥Xjβj − uj∥22

=

d∑
k′=1

∇fj(uj)[k
′] ·
(
βj [2k

′ − 1 : 2k′]Tyj [2k
′ − 1 : 2k′]− uj [k

′]
)

+

d∑
k′=1

1

2
∥βj [2k

′ − 1 : 2k′]Tyj [2k
′ − 1 : 2k′]− uj [k

′]∥22 (59)

Looking at Eq.(58) and (59), we see that they decompose across each coordinate k′. So we can bound T2 + T3 in any bin
[is, it] coordinate wise:

T2 + T3 =
d∑

k′=1

it∑
j=is

⟨∇fj(Xjβj)[k
′]yj [2k

′ − 1 : 2k′],αj [2k
′ − 1 : 2k′]− βj [2k

′ − 1 : 2k′]⟩

+
1

2

d∑
k′=1

∥αj [2k
′ − 1 : 2k′]− βj [2k

′ − 1 : 2k′]∥2yj [2k
′−1:2k′]yj [2k

′−1:2k′]T

+∇fj(uj)[k
′] ·
(
βj [2k

′ − 1 : 2k′]Tyj [2k
′ − 1 : 2k′]− uj [k

′]
)

+
1

2
∥βj [2k

′ − 1 : 2k′]Tyj [2k
′ − 1 : 2k′]− uj [k

′]∥22

:=

d∑
k′=1

it∑
j=is

t2,j,k′ + t3,j,k′ , (60)

where in the last line we define:

t2,j,k′ := ⟨∇fj(Xjβj)[k
′]yj [2k

′ − 1 : 2k′],αj [2k
′ − 1 : 2k′]− βj [2k

′ − 1 : 2k′]⟩

+
1

2
∥αj [2k

′ − 1 : 2k′]− βj [2k
′ − 1 : 2k′]∥2yj [2k

′−1:2k′]yj [2k
′−1:2k′]T ,

and

t3,j,k′ := ∇fj(uj)[k
′] ·
(
βj [2k

′ − 1 : 2k′]Tyj [2k
′ − 1 : 2k′]− uj [k

′]
)

+
1

2
∥βj [2k

′ − 1 : 2k′]Tyj [2k
′ − 1 : 2k′]− uj [k

′]∥22.

Next, we proceed to bound
∑it

j=is
t2,j,k + t3,j,k for the coordinate k with a structure as mentioned in Paragraph (A1).

Recall that [is, it] = [is, a− 1]∪ [a, b]∪ [b+1, t1 − 1]∪ [t1, t2]∪ [t2 +1, c]∪ [c+1, it]. So we will consider each of these
sub-bins separately.

For bin [is, a − 1] we have αj [2k − 1 : 2k] = βj [2k − 1 : 2k] and βj [2k − 1 : 2k]Tyj [2k − 1 : 2k] = uj [k]. So we
trivially have

a−1∑
j=is

t2,j,k + t3,j,k = 0. (61)

Next, we focus on the bin [a, b]. We note that by construction, αj [2k−1 : 2k] and βj [2k−1 : 2k] are fixed for all j ∈ [a, b].
Let’s denote these fixed values by αk and βk respectively. For the sake of brevity let’s denote xj := yj [2k − 1 : 2k] and
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Ak =
∑b

j=a xjx
T
j . We have the relation,

αk = βk −A−1
k

b∑
j=a

∇f̃(βj)[2k − 1 : 2k]

= βk −A−1
k

b∑
j=a

∇fj(Xjβj)[k]xj . (62)

By the new compact notations, we have

t2,j,k = ⟨∇fj(Xjβj)[k]xj ,αk − βk⟩+
1

2
∥αk − βk∥2xjxT

j
,

and

t3,j,k = ∇fj(uj)[k] ·
(
βT
k xj − uj [k]

)
+

1

2
∥βT

k xj − uj [k]∥22.

From Eq.(62) we have,

b∑
j=a

t2,j,k = −

∥∥∥∥∥∥
b∑

j=a

∇fj(Xjβj)[k]xj

∥∥∥∥∥∥
2

A−1
k

+
1

2

∥∥∥∥∥∥A−1
k

b∑
j=a

∇fj(Xjβj)[k]xj

∥∥∥∥∥∥
2

Ak

= −1

2

∥∥∥∥∥∥
b∑

j=a

∇fj(Xjβj)[k]xj

∥∥∥∥∥∥
2

A−1
k

≤ −1

2

∥∥∥∥∥∥
b∑

j=a

∇fj(uj)[k]xj

∥∥∥∥∥∥
2

A−1
k

+ 2⟨A−1
k

b∑
j=a

∇fj(uj)[k]xj ,

b∑
j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩.

Now we define gk = λ[−sa−2[k]+sa−1[k]+sb−1[k]−sb[k],−sa−2[k]+(ℓ+1)sb−1[k]−ℓsb[k]]T and hk = [Γ[k], Γ̃[k]]T

where Γ =
∑b

j=a γ
−
j − γ+

j and Γ̃ =
∑b

j=a j
′(γ−

j − γ+
j ) where j′ = j − a+ 1 so that

∑b
j=a∇fj(uj)[k]xj = gk + hk

via the KKT conditions in Lemma 31.

With these, we can bound:
b∑

j=a

2 · t2,j,k ≤ −∥gk∥2A−1
k

−∥hk∥2A−1
k

−2 < gk,A
−1
k hk⟩

+ 2⟨A−1
k (gk + hk),

b∑
j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩ (63)

Proceeding similarly to Eq.(25) and (26) by gradient Lipschitzness we obtain,

b∑
j=a

∇fj(Xjβj)[k]−∇fj(uj)[k] ≤
b∑

j=a

∥Xjβj − uj∥1

≤ 20ℓ2ℓ−3/2,

where in the last line we used Lemma 20 coordinate-wise and the fact that ∥D2ua:b∥1≤ ℓ−3/2.

Similarly,

b∑
j=a

j′(∇fj(Xjβj)[k])−∇fj(uj)[k] ≤
b∑

j=a

j′∥Xjβj − uj∥1

≤ 20ℓ3ℓ−3/2.
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Hence by KKT conditions in Lemma 31, we can further bound

⟨A−1
k gk,

b∑
j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩ ≤ 40λℓ−1/2

(ℓ− 1)

∣∣∣∣∣ (2− 2ℓ)sa−2[k] + (2ℓ+ 1)sa−1[k]

− (ℓ+ 2)sb−1[k] + (ℓ− 1)sb[k]

∣∣∣∣∣
+

40λℓ1/2

(ℓ− 1)

∣∣∣∣∣ 3(ℓ− 1)

ℓ+ 1
sa−2[k]− 3sa−1[k]

+ 3sb−1[k]−
3(ℓ− 1)

ℓ+ 1
sb[k]

∣∣∣∣∣, (64)

and

⟨A−1
k hk,

b∑
j=a

xj

(
∇fj(Xjβj)[k]−∇fj(uj)[k]

)
⟩ ≤ 40ℓ−1/2

(ℓ− 1)
|(2ℓ+ 1)Γ[k]− 3Γ̃[k]|

+
40ℓ1/2

(ℓ− 1)

∣∣∣∣∣6Γ̃[k]ℓ+ 1
− 3Γ[k]

∣∣∣∣∣ . (65)

We observe that Eq.(63),(64),(65) are semantically same as Eq.(60), (25) and (26) respectively in the 1D case.

Next, we proceed to setup a similar observation for bounding
∑b

j=a t3,j,k. From KKT conditions in Lemma 31 and
proceeding similar to the arguments in Lemma 21 we get,

b∑
j=a

∇fj(uj)[k] ·
(
βj [2k − 1 : 2k]Tyj [2k − 1 : 2k]− uj [k]

)
=

b∑
j=a

λ

(
((sj−1[k]− sj−2[k])− (sj [k]− sj−1[k]))×

((j − a+ 1)M j [k] +Cj [k])

)

+

b∑
j=a

(γ−
j [k]− γ+

j [k])×

(βj [2k − 1 : 2k]Tyj [2k − 1 : 2k]− uj [k])

≤
b∑

j=a

λ

(
((sj−1[k]− sj−2[k])− (sj [k]− sj−1[k]))×

((j − a+ 1)M j [k] +Cj [k])

)

+ 20ℓ−1/2
b∑

j=a

∣∣γ−
j [k]− γ+

j [k]
∣∣ ,

where similar to Lemma 21, we represent βj [2k − 1 : 2k]Tyj [2k − 1 : 2k] − uj [k] = (j − a + 1)M j [k] +Cj [k] with
Ma[k] = Ma+1[k], Ca[k] = Ca+1[k], M b[k] = M b−1[k] and Cb[k] = Cb−1[k]. The last line is obtained due to Lemma
20.

Further, by using Lemma 20 we obtain,

d∑
k′=1

b∑
j=a

1

2
∥βj [2k

′ − 1 : 2k′]Tyj [2k
′ − 1 : 2k′]− uj [k

′]∥22 ≤ 200.
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Combining the last two inequalities yields,

b∑
j=a

t3,j,k ≤ 200 +

b∑
j=a

λ

(
((sj−1[k]− sj−2[k])− (sj [k]− sj−1[k])) ((j − a+ 1)M j [k] +Cj [k])

)

+ 20ℓ−1/2
b∑

j=a

∣∣γ−
j [k]− γ+

j [k]
∣∣ . (66)

We observe that the last inequality is semantically similar to Eq.(18) for 1D case. Recall that Eq.(63),(64),(65) are also
semantically same as Eq.(60), (27) and (28) respectively in the 1D case.

Hence we can proceed to bound

b∑
j=a

t2,j,k + t3,j,k = O(1), (67)

using the same arguments as in Lemma 29.

Observe that by construction, the slopes across coordinate k are constant in the bins [b+ 1, t1 − 1], [t2 + 1, c] and [c+ 1, it].
So by using similar arguments used for handling the bin [is, a− 1] we obtain,∑

j∈I
t2,j,k + t3,j,k = 0, (68)

where I ∈ {[b+ 1, t1 − 1], [t2 + 1, c], [c+ 1, it]}.

By appealing to our reduction to 1D case facilitated by Eq.(63) and (66) and using similar arguments used to handle the
monotonic slopes case as in Lemma 28 we obtain,

t2∑
j=t1

t2,j,k + t3,j,k = O(1). (69)

So far we have discussed bounding
∑it

j=is
t2,j,k+t3,j,k for a bin with structure across coordinate k as described in Paragraph

(A1). We remark that if the slopes across a coordinate k assumes a monotonic structure across [is, it], we can handle it in
the same way as we handled the sub-bin [t1, t2] above.

We pause to remark that Eq.(61),(67),(68) and (69) together gives a way to bound to
∑it

j=is
t2,j,k′ + t3,j,k′ across any

coordinate k′ as we comprehensively considered all the possible structures across a coordinate k′. (The alternate cases where
where sa−1 = −1 and sb = 1 with u[k′] non-increasing within [b+ 1, c] can be handled similarly to the case described in
Paragraph (A1). Finally the case where the offline optimal touches boundary 1 instead of −1 can be handled using similar
arguments.)

Thus overall we obtain that for any bin [is, it] ∈ P we have:

T2 + T3 ≤
d∑

k′=1

it∑
j=is

t2t2,j,k′ + t3,j,k′

= O(d),

where T2 and T3 are as defined in Eq.(56).

Next, we proceed to control T1. Recall that

T1 =

it∑
j=is

fj(pj)− fj(Xjαj).

Let’s revisit bin [is, it] with structure as described in Paragraph (A1) across coordinate k. First we consider the bin [a, b].
Through the call to AssignCo-variatesAndSlopes2(u1:n, [a, b], k) we set αk. Further αj [2k − 1 : 2k] = αk for
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all j ∈ [a, b]. By using similar arguments as in the proof of Lemma 27 which lead to Eq.(34), we have that |yj [2k − 1 :

2k]Tαj |≤ 20. For other bins such as [is, a−1], [b+1, t1−1], [t2+1, c], [c+1, it] where the slope of the offline optimal across
coordinate k remains constant, we set αj [2k−1 : 2k] for j ∈ I with I ∈ {[is, a−1], [b+1, t1−1], [t2+1, c], [c+1, it]} to
be a constant value obtained as the least square fit coefficients with co-variates yj [2k−1 : 2k] and labels set appropriately via
the call to AssignCo-variatesAndSlopes1. Hence in this case also we have |yT

j [2k− 1 : 2k]αj [2k− 1 : 2k]|≤ 10
via the arguments in Lemma 27.

For the alternate cases (i) where sa−1 = −1 and sb = 1 with u[k′] non-increasing within [b+1, c] as described in Paragraph
(A1) (ii) case where the offline optimal touches boundary 1 instead of -1 (iii) The offline optimal across coordinate k is
non-decreasing within [is, it] and (iv) The offline optimal across coordinate k is non-increasing within [is, it]. In all these
cases we can set the quantities αj [2k− 1 : 2k],yj [2k− 1 : 2k] by similar calls to AssignCo-variatesAndSlopes1
or AssignCo-variatesAndSlopes2 such that yj [2k−1 : 2k]Tαj [2k−1 : 2k] ≤ 20 for all j ∈ [is, it]. For example,
for case (iii) we can resort to similar arguments used for handling sub-bin [t1, t2] which is again similar to how we handled
the bin [a, b]. (see Paragraph (A1)).

Further, even-though we create at-most 6 sub-bins across each coordinate for an interval [is, it] ∈ P (see Paragraph (A1) and
the sequence of calls beneath), doing so for each coordinate can result in at-most 6d partitions of uis:it overall. However, if
we consider any sub-bin [p, q] of this partition, we have that αj [2k − 1 : 2k] is fixed and βj [2k − 1 : 2k] is fixed for all
j ∈ [p, q] across any coordinate k ∈ [d] and yj [2k − 1 : 2k][2] is monotonically increasing wrt j ∈ [p, q] for all coordinates
k ∈ [d]. Now suppose that k′ ∈ [d] is such that yj [2k

′− 1 : 2k′][1] ≤ yj [2k− 1 : 2k][1] for all k ̸= k′ and for all j ∈ [p, q].
With a change of variables we have that α̃j [2k − 1 : 2k]Tyj [2k

′ − 1 : 2k′] = αj [2k − 1 : 2k]Tyj [2k − 1 : 2k] by setting
α̃j [2k−1 : 2k][2] = αj [2k−1 : 2k][2] and α̃j [1] = αj [1]+ (yj [2k−1 : 2k][2]−yj [2k

′−1 : 2k′][2])αj [2k−1 : 2k][2]
for k ̸= k′ within the bin [p, q]. Since (yj [2k − 1 : 2k][2]− yj [2k

′ − 1 : 2k′][2]) ≤ yj [2k − 1 : 2k][2] by Eq.(32) we have
that

|(yj [2k − 1 : 2k][2]− yj [2k
′ − 1 : 2k′][2])αj [2k − 1 : 2k][2]|≤ 6. (70)

Further we have from Eq.(34) that |αj [2k − 1 : 2k][2]yj [2k
′ − 1 : 2k′][2] +αj [2k − 1 : 2k][1]|≤ 20 due to the fact that

αj [2k − 1 : 2k] remains fixed from a time point j∗ ≤ p such that yj∗ [2k − 1 : 2k] = [1, 1]T . Further we have that

∥α̃j [2k − 1 : 2k]∥22 = (αj [2k − 1 : 2k][2])2

+ (αj [2k − 1 : 2k][1] + (yj [2k − 1 : 2k][2]− yj [2k
′ − 1 : 2k′][2])αj [2k − 1 : 2k][2])2

≤ 2 (αj [2k − 1 : 2k][2] +αj [2k − 1 : 2k][1])
2

+ 2
(
(yj [2k − 1 : 2k][2]− yj [2k

′ − 1 : 2k′][2])αj [2k − 1 : 2k][2]
)2

≤ 584, (71)

where the last line is due to Eq.(35) and (70).

Let’s represent µ ∈ R2d such that µ[2k′ − 1 : 2k′] = α[2k′ − 1 : 2k′] and µ[2k − 1 : 2k] = α[2k − 1 : 2k] for all other
k ∈ [d].

Thus within the sub-bin [p, q], we have that |µT [2k − 1 : 2k]yj [2k
′ − 1 : 2k′]|≤ 20 for all k ∈ [d]. Further, due to Eq.(71)

we have that ∥µ∥22≤ 584d. Hence we can use a base expert that starts at time p which gives the co-variate yj [2k
′ − 1 : 2k′]

to all coordinates where j ∈ [p, q]. Note that the sub-bin [p, q] must have been resulted via a splitting across coordinate
k′ at time p. So by the calls to AssignCo-variatesAndSlopes1 or AssignCo-variatesAndSlopes2 we
set yp[2k

′ − 1 : 2k′] = [1, 1]T . Thus there exists a base expert in FLH-SIONS (Fig.3) that provides the co-variate
yj [2k

′ − 1 : 2k′] to all coordinates where j ∈ [p, q].

This expert will have a regret of Õ(d) against µ via Lemma 32. By using Strong Adaptivity from Corollary 33 (set w = µ
there and recall that ∥µ∥22≤ 584d) and adding the regret across all 6d sub-bins of [is, it] lead to an Õ(d2) on T1 in Eq.(56).
Thus for any bin in P produced by generate bins procedure, we have its dynamic regret bounded by Õ(d2).

Proof of Theorem 3. The proof is now complete by adding the Õ(d2) dynamic regret bound across all O(n1/5C
2/5
n ∨ 1)

bins in P from Corollary 34.
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The proof of Lemma 18 is same as that of the lemma below, albeit with slightly different notations for Xj .

Lemma 36. Let Xj be as defined in Eq.(57). Let f̃j(v) = fj(Xjv) for some v ∈ R2d and let Σ := XT
j Xj ∈ R2d×2d.

We have,

∇2f̃j(v) ≼ Σ

Proof. We have,

f̃j(v) = fj
(
⟨yj [1 : 2],v[1 : 2]⟩, . . . , ⟨yj [2d− 1 : 2d],v[2d− 1 : 2d]⟩

)
.

Let

f ′′
jk := ∇2fj

(
⟨yj [1 : 2],v[1 : 2]⟩, . . . , ⟨yj [2d− 1 : 2d],yj [2d− 1 : 2d]⟩

)
[j][k],

be the Hessian of f evaluated at the vector [⟨y[1 : 2],v[1 : 2]⟩, . . . , ⟨y[2d− 1 : 2d],v[2d− 1 : 2d]⟩]T ∈ Rd.

By straightforward calculations, we obtain

∇2f̃j(v) =

 f ′′
11yj [1 : 2]yj [1 : 2]T . . . f ′′

1dyj [1 : 2]yj [2d− 1 : 2d]T

...
. . .

...
f ′′
d1yj [2d− 1 : 2d]yj [1 : 2]T . . . f ′′

ddyj [2d− 1 : 2d]yj [2d− 1 : 2d]T

 ,

Let I ∈ Rd×d be the identity matrix and 1 ∈ R2×2 be the matrix of all ones. Further let’s denote b :=
[⟨y[1 : 2],v[1 : 2]⟩, . . . , ⟨y[2d− 1 : 2d],v[2d− 1 : 2d]⟩]T We can succinctly write:

Σ−∇2f̃j(v) =
((
I −∇2f(b)

)
⊗ 1
)
◦ yjy

T
j ,

where ⊗ denotes the Kronecker product and ◦ denotes the Hadamard product.

Recall that the loss functions fj are 1-gradient Lipschitz. So we have
(
I −∇2f(b)

)
is Positive Semi Definite (PSD). The

matrices 1 and yjy
T
j are also PSD. Since both Kronecker and Hadamard products preserves positive semidefiniteness, we

have∇2f̃j(v) ≼ Σ which proves the lemma.

Proposition 37. Consider the sequence class T V1(Cn) as per Eq.(3). Under Assumption A1 (see Section 4) we have that
T V(1)(Cn) ⊆ T V(0)(2Cn + 20d).

Proof. We start by considering a 1D setting. Consider a sequence w1:n ∈ T V(1)(Cn). We can represent it as sum
(point-wise) of two sequences as

w1:n = p1:n + q1:n, (72)

where q1:n = βTxt where xt = [1, t]T and β is the least square fit coefficnts computed by using covariates xt and labels
wt, t ∈ [n]. Here the p1:n is the residual sequence obtained by subtracting the least square fit sequence from the true
sequence.

Following the terminology in Lemma 21, we can represent pt = tMt + Ct. Further, due to Eq.(19) (with a = 1) we have
that pt+1 − pt = Mt+1.

Applying triangle inequality to Eq.(72) we have

∥Dw1:n∥1 ≤ ∥Dp1:n∥1+∥Dq1:n∥1.
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Further,

∥Dp1:n∥1 =

n∑
t=2

|Mt|

=

n∑
t=2

∣∣∣∣∣∣M1 +

t−1∑
j=1

Mj+1 −Mj

∣∣∣∣∣∣
≤

n∑
t=2

|M1|+D2∥p1:n∥1

=(a) n|M1|+nD2∥w1:n∥1
≤(b) 2nD

2∥w1:n∥1,

where in line (a) we used the fact that ∥D2p1:n∥1= ∥D2w1:n∥1 as subtracting a linear sequence doesn’t affect the TV1
distance. In line (b) we applied |M1|≤ ∥D2w1:n∥1 as shown in Lemma 21.

It remains to bound ∥Dq1:n∥1. For this we note that ∥qt∥≤ 10 for all t ∈ [n] due to Eq.(53). Since q1:n is a monotonic
sequence we have that its variation ∥Dq1:n∥1≤ 20.

Thus overall we obtain that

∥Dw1:n∥1 ≤ 2nD2∥w1:n∥1+20

≤ 2Cn + 20.

For multiple dimensions we apply the same argument across each dimension and add them up to yield the lemma.

D Proof of Proposition 5

In this section, we first prove the following result.

Theorem 38. Let pt be the predictions of FLH-SIONS algorithm with parameters ϵ = 2, C = 20 and exp-concavity factor
σ. Under Assumptions A1-A4, we have that,

n∑
t=1

ft(pt)− ft(wt) = Õ(d2n1/3C2/3
n ∨ d2),

for any Cn > 0 and any comparator sequence w1:n ∈ T V(0)(Cn). Here Õ hides poly-logarithmic factors of n and
a ∨ b = max{a, b}.

Proof. The proof follows almost directly from the arguments in Baby and Wang (2021). First, we use the partition P
mentioned in Lemma 30 in Baby and Wang (2021). Let the partition be cP = {[1s, 1t], . . . , [Ms,Mt]}, with |P|= M .

Consider the following convex optimization problem.

min
ũ1, ... ,ũn,z̃1, ... ,z̃n−1

n∑
t=1

ft(ũt)

s.t. z̃t = ũt+1 − ũt ∀t ∈ [n− 1],

n−1∑
t=1

∥z̃t∥1≤ Cn, (73a)

∥ũt∥∞≤ B ∀t ∈ [n], (73b)

Let u1, . . . ,un be the optimal solution to the above problem. Let wj be the prediction of the FLH-SIONS algorithm at time
j. Define:
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Rn(Cn) =

n∑
t=1

fj(wt)− ft(ut).

Define ūi =
1
ni

∑it
j=is

uj and u̇i = ūi − 1
ni

∑it
j=is
∇fj(ūi). We can use the regret decomposition of Baby and Wang

(2021).

Rn(Cn) ≤
M∑
i=1

it∑
j=is

fj(wj)− fj(u̇i)︸ ︷︷ ︸
T1,i

+

M∑
i=1

it∑
j=is

fj(u̇i)− fj(ūi)︸ ︷︷ ︸
T2,i

+

M∑
i=1

it∑
j=is

fj(ūi)− fj(uj)︸ ︷︷ ︸
T3,i

.

For any bin [is, it] ∈ P , we can bound T2,i + T3,i = O(1) by using the arguments in the proof of Theorem 14 of Baby and
Wang (2021) since the losses in our case are also gradient-Lipschitz as per Assumption A3. So we only need to consider the
term T1,i. Observe that

∥u̇i∥∞ ≤ ∥ūi∥∞+
1

ni

it∑
j=is

∥∇fj(ūi)∥∞

≤ 2,

as per Assumptions A1-A2. Further we can view the comparator u̇i as a linear predictor with slope zero. The output of this
linear predictor is bounded in magnitude by 2 which is less that 20. Hence FLH-SIONS under the setting of the current
theorem leads to T1,i = Õ(d). Since M = O(dn1/3C

2/3
n ∨ d) for the partition in Lemma 30 of adding the regret across all

bins results in the theorem.

Theorem38 when combined with Theorem 3 now directly leads to Proposition 5.

E Proof of Proposition 2

The result proven in this section is mainly due to the geometric arguments in Donoho et al. (1990); Donoho and Johnstone
(1998) (or see Johnstone (2017) for a comprehensive monograph) with an extra technicality of handling boundedness
constraint as per Assumption A1 (in Section 4).

In the proof we make extensive use of wavelet theory and refer readers to Johnstone (2017) for necessary preliminaries.

Proposition 2. Under Assumptions A1-A4, any online algorithm necessarily suffers supw1:n with T V1(w1:n)≤Cn
Rn(w1:n) =

Ω(d3/5n1/5C
2/5
n ∨ d).

Proof. We consider a uni-variate setting with the losses ft(w) = (dt−w)2 where dt = ut+N (0, 1) with u1:n ∈ T V(1)(Cn).
At each step, dt is revealed to the learner as doing so can only make learning easier.

Let W be the set of whole numbers. For the purposes of analysis, we start with an abstract observation model:

yj = θj + ϵN (0, 1), j ∈W (74)

where θj are the wavelet coefficients in a regularity-three CDJV multi-resolution basis (Cohen et al., 1993) of a function in
F1(Cn) from which the discrete samples u1:n are generated.

In what follows we will show that for any procedure estimating the wavelet coefficients (let the estimate be θ̂j , j ∈W) we
have that ∑

j∈W
(θ̂j − θj)

2 = Ω(C2/5ϵ8/5).
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Due to Section 15.5 of (Johnstone, 2017), by taking ϵ = 1/
√
n, such a guarantee will then imply a lower bound of

Ω(n−4/5C2/5) for 1
n

∑n
t=1(ut − ût)

2, where ût is the estimate produced by observing the data dt (assume C = Ω(1/
√
n)

for now). This rate will finally imply a dynamic regret lower bound in the following manner:

E

[
sup

r1:n∈T V(1)(C)

n∑
t=1

ft(ût)− ft(rt)

]
≥ sup

r1:n∈T V(1)(C)

E

[
n∑

t=1

ft(ût)− ft(rt)

]

=(a) sup
r1:n∈T V(1)(C)

n∑
t=1

E[(ût − ut)
2]− (rt − ut)

2

=

n∑
t=1

E[(ût − ut)
2], (75)

where in line (a) we used the bias variance decomposition and the fact that ût is independent of dt for online algorithms.

In what follows we use a dyadic indexing scheme for referring to wavelet coefficients in Eq.(74) as θjk which means the kth

wavelet coefficient in resolution j ≥ 0. There are 2j wavelet coefficients in resolution j. We will also use θj· to denote a
sequence of 2j wavelet coefficients at resolution j.

Let β be the subset of wavelet coefficients at resolutions less than or equal to 2. i.e, β = [θ0·, θ1·, θ2·] which has a length of
7.

Define a Besov norm as follows:

∥θ∥
b
3/2
1,1

:= ∥β∥1+
∑
j≥3

23j/2∥θj·∥1.

Define a Besov space as:

A(B) := {θ : ∥θ∥
b
3/2
1,1
≤ B}.

It is known that A(κC) ⊆ F1(C) for some constant 0 < κ ≤ 1. (see for eg. Eq.(33) in (Tibshirani, 2014) along with
Theorem 1 in (Donoho and Johnstone, 1998)).

Since the space A(B) is solid and orthosymmetric (see Section 4.8 in Johnstone (2017)) we have that the risk of estimating
coefficients from A is lower bounded by the risk (i.e

∑
j≥0(θ̂j − θj)

2) of the hardest rectangular sub-problem as shown by
Donoho et al. (1990).

A hyper-rectangle is defined as follows:

Θ(τ) = {θ : |θj |≤ τj , j ≥ 0}.

From Donoho et al. (1990), the minimax risk over a hyper-rectangle under the observation model Eq.(74) is known to be:

R∗(τ) := min
θ̂

max
θ∈Θ(τ)

∑
j≥0

(θ̂j − θ)2

≥
∑
j≥0

min{τ2j , ϵ2}.

So all we need to show is an appropriate hyper-rectangle (which is identified by τ ) within A(B) whose minimax risk is
sufficiently large.

We next proceed to give such a hyper-rectangle. Let j∗ ∈W be the smallest number such that

2j∗ ≥ C2/5

ϵ2/5
.

For simplicity, from now on-wards, let’s assume that j∗ is an integer that satisfy 2j∗ = C2/5

ϵ2/5
.



Dheeraj Baby, Yu-Xiang Wang

Define the hyper-rectangle coordinates by

τj∗k =
κC

25j∗/2
, (76)

for all k = 0, 1, . . . , 2j∗ − 1 and τj· = 0 for all other resolutions.

Note that κC
25j∗/2 = ϵ. The minimax risk over such a hyper-rectangle then becomes

R∗(τ) = 2j∗ϵ

= (κC)2/5ϵ8/5.

Now it remains to verify that

1. The hyper-rectangle in Eq.(76) is indeed in A(κC).

2. The function produced by the coefficients in that hyper rectangle is bounded by 1 point-wise in magnitude.

First we notice that by taking ϵ = 1/
√
n as mentioned earlier, we have

2j∗ > 4,

whenever C > 45/2/
√
n. We first consider the case where C is within this regime.

For the first item, we have that

∥τ∥
b
3/2
1,1

= 23j∗/2 · 2j∗ κC

25j∗/2

= κC,

where we used the fact that j∗ > 2 in the regime C > 45/2/
√
n.

Hence Θ(τ) ⊆ A(κC).

For the second item, we notice that due to Lemma B.18 in Johnstone (2017), it is sufficient to show that 2j∗/2∥θj∗·∥∞= O(1).
Taking ϵ = 1/

√
n as mentioned earlier, we have that

2j∗/2∥θj∗·∥∞ =
κC

22j∗

= κ1/5C1/5ϵ4/5

=
κ1/5C1/5

n2/5

≤ 1,

in the non-trivial regime of C ≤ n2 where we recall that κ ≤ 1.

For the regime where C ≤ 1/
√
n, the trivial lower bound of Ω(1) estimation error kicks in. Thus overall we have shown

that for any online algorithm producing estimates ût we have that
n∑

t=1

E[(ût − ut)
2] = Ω(n1/5C2/5 ∨ 1),

thus obtaining a lower bound on the dynamic regret as per Eq.(75).

In multiple-dimensions we can consider a similar setup as before with losses ft(w) = ∥dt −w∥22 with dt[k] = ut[k] +

N (0, 1) where u1:n ∈ T V(1)(C). We can consider a sequence u1:n such that ∥nD2u1:n[k]∥1= C/d across each coordinate
k ∈ [d].

min
p1:n

max
w1:n∈T V(1)(C)

n∑
t=1

ft(pt)− ft(wt) =

d∑
k=1

n∑
t=1

Ω(n1/5(C/d)2/5 ∨ 1)

= Ω(d3/5n1/5C2/5 ∨ d).
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This completes the proof of the proposition.

Next, we verify the fact in Remark 6 that the rate of n1/3[T V0]
1/3 is of the same order as n1/5[T V1]

2/5 for the comparator
sequence constructed above.

Define the following norm:

∥θ∥
b
1/2
1,1

:= ∥β∥1+
∑
j≥2

2j/2∥θj·∥1.

Define another Besov space as:

G(B) := {θ : ∥θ∥
b
1/2
1,1
≤ B}.

Let w1:n be the sequence of reals and let θ1:n be its wavelet coefficients. It is known from DeVore and Lorentz (1993) that

∥θ∥
b
1/2
1,1
≍ T V0(w1:n),

where ≍ means that the quantities have similar scaling.

So we only need to compute the norm ∥θ∥
b
1/2
1,1

for the hard instance created above. We have that:

∥θ∥
b
1/2
1,1

= 2j∗/2 · 2j∗κC/25j∗/2

= κC/2j∗

= κC3/5/n1/5.

Thus the T V0 of the sequence scales as C3/5/n1/5. Hence the rate:

n1/3[T V0(w1:n)]
2/3 ≍ n1/5C2/5.

Thus for the hard instance constructed in the proof, both the rates grow with similar scale.

F Why the analysis of Baby and Wang (2021) leads to sub-optimal regret?

For simplicity, we consider a uni-variate setting. First we derive a tighter regret guarantee (than one implied by Proposition
37) of O(n1/3C

2/3
n ∨ 1) for the results of Baby and Wang (2021) when applied to our setting. Then we explain the source

of sub-optimality in their analysis. Throughout this section, we assume that the condition of low TV1 regime defined in
Section 1 is satisfied.

First, let’s define the comparator classes:

T V(1)(C) := {θ1:n : T V1(θ1:n) ≤ C},

and

T V(0)(C) := {θ1:n : T V0(θ1:n) ≤ C}.

Let u1:n be the offline optimal sequence as per Lemma 17.
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In accordance to the details in Section 3, we can interpret a comparator sequence u1:n ∈ T V(1)(Cn) as a continuous
piece-wise linear sequence. Then the dynamic regret can be expressed as:

Rn(u1:n) =

n∑
t=1

ft(pt)− ft(ut)

=(a)

n∑
t=1

ft(α
T
t xt)− ft(β

T
t xt)

:=(b)

n∑
t=1

f̃t(αt)− f̃t(βt),

where in Line (a) we define xt = [1, t/n]T and α and β are chosen such that pt = αT
t xt and ut = βT

t xt. Further the
predictors βt are chosen to satisfy βT

t xt = βT
t+1xt so that the sequence u1:n can be interpreted as a piece-wise linear signal

that is also continuous at every transition point where the slope changes (see Definition 1).

In Line (b) we define f̃t(v) = ft(v
Txt). We chose the co-variates as xt = [1, t/n]T instead of xt = [1, t]T so that the

losses f̃t(v) remains Lipschitz and gradient Lipschitz whenever |vTxt|= O(1) which is a requirement for the results in
(Baby and Wang, 2021).

By using similar line of arguments used to derive (19), we obtain

βt+1[1]− βt[1] =
t

n

(
βt[2]− βt+1[2]

)
.

Hence we have that
n−1∑
t=1

|βt+1[1]− βt[1]| ≤
n−1∑
t=1

|βt[2]− βt+1[2]|

= n∥D2u1:n∥1,

where we used the fact that the sum of difference of the slopes (see Definition 1) in the linear representation of u1:n with
co-variates xt = [1, t/n]T is exactly equal to n∥D2u1:n∥1.

Thus overall, we obtain that

n−1∑
t=1

∥βt − βt+1∥1 ≤ 2n∥D2u1:n∥1

≤ 2Cn, (77)

as u1:n ∈ T V(1)(Cn).

Hence by the results of Baby and Wang (2021) we have that

Rn(u1:n) = Õ(n1/3C2/3
n ∨ 1).

Next, we proceed to explain source of this sub-optimality in the analysis of Baby and Wang (2021).

In Baby and Wang (2021) (Lemma 5) they form a partition P ′ of β1:n so that in the ith bin (represented by [is, it]) we have
that:

• ∥Dβis:it∥≤ 1/
√
ℓis→it

• ∥Dβis:it+1∥> 1/
√
ℓis→it+1

where we recall that ℓa→b = b− a+ 1.

So we have that within bin [is, it] ∈ P ′, ∥Dβis:it [2]∥1≤ 1/
√

ℓis→it . This amounts to saying that

∥D2uis:it∥1 ≤ 1/(n
√
ℓis→it).
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While in the partition P that we construct in Lemma 10 we have that

∥D2uis:it∥1 ≤ 1/ℓis→it
3/2.

Comparing the previous two inequalities, we conclude that the sequence within each bin of P ′ is much smoother than that
of P .

This will result in the formation of |P ′|= O(n1/3C
2/3
n ∨ 1) bins overall as per Eq.(77) (see Lemma 5 in Baby and Wang

(2021)) which is larger than the O(n1/5C
2/5
n ∨ 1) bins in P under the low TV1 regime.

Within each bin [is, it] ∈ P ′ Baby and Wang (2021) uses a three term regret decomposition as follows:

T[is,it] :=

it∑
j=is

f̃j(αj)− f̃j(βj)

=

it∑
j=is

f̃j(αj)− f̃j(β̇)︸ ︷︷ ︸
T ′
1

+

it∑
j=is

f̃j(β̇)− f̃j(β̄)︸ ︷︷ ︸
T ′
2

+

it∑
j=is

f̃j(β̄)− f̃j(βj)︸ ︷︷ ︸
T ′
3

, (78)

where β̄ = 1
n

∑it
j=is

βj and β̇ = β̄ − 1
ℓis→it

∑it
j=is
∇f̃j(β̄).

Then Baby and Wang (2021) proceed to show that this one step gradient descent based decomposition is sufficient to keep
T[is,it] = O(1) leading to an overall regret of O(n1/3C2/3 ∨ 1) when summed across all bins.

In our case the main challenge is to keep T[is,it] = Õ(1) for [is, it] ∈ P while dealing with the fact that sequence within
each bin of P is much less smooth than that in P ′. We accomplish this via a newton step based decomposition with a careful
analysis as detailed in Section 4.1 (It was found that the one-step gradient descent as in Eq.(78) doesn’t keep T ′

2 negative
enough to make T ′

2 + T ′
3 = O(1) for bins in P). Eventhough the sequence in bins P is wigglier than that of bins in P ′,

overall the sequence, u1:n from a T V(1) class is much smoother than the sequences from T V(0) class in the low TV1 regime
due to sufficiently slowly changing piecewise linear structure. This extra smoothness property is what allowed us to consider
larger (in terms of mean bin width) bins and hence smaller partition size (when compared to P ′) and still bound the regret
within each bin to be Õ(1). Adding this bound across all bins in P then lead to the optimal rate of Õ(n1/5C

2/5
n ∨ 1).

G More examples from the low TV1 regime

We list some examples where the low TV1 regime defined in Section 1 is satisfied. Under this regime, the rate of
Õ(n1/5[T V1(w1:n)]

2/5 ∨ 1) attained by FLH-SIONS via Theorem 3 is faster than the rate of Õ(n1/3[T V0(w1:n)]
2/3 ∨ 1)

attained by Baby and Wang (2021). This is a non-exhaustive list of examples and one can construct many other examples
as well. All the examples we consider here are for uni-variate setting, through the extension to multi-dimensions is a
straight-forward replication of the sequence generating process across each coordinate.

We begin by a minimalist example yielding logarithmic dynamic regret rate.

Example 39. Consider a sequence θ1:n such that θt = t/n for t ∈ {0, 1, . . . , n}. This is a sequence obtained via
descretizing a linear signal. We have that T V1(θ1:n) = 0 and T V0(θ1:n) = 1. So by Theorem 3 we have that the rate
attained by FLH-SIONS is O(log n) while the rate attained by Baby and Wang (2021) is O(n1/3).

Next, we give an example where both T V1 and T V0 distance of a sequence is growing with n.

Example 40. For an integer s < n, define a1:s = 0, s/n, 2s/n, . . . , s(n/s−1)
n . Let b1:s be the mirror image of

a1:s.i.e b1:s = s(n/s−1)
n , . . . , s/n, 0. For simplicity lets’ assume that n/s is an integer. Form a sequence θ1:n :=

a1:s, b1:s, a1:s, b1:s, . . . , a1:s, b1:s by concatenating the sequences a1:s, b1:s for s/2 times. This sequence transitions between
0 and 1 through linear sections. For this sequence, we have that T V0(θ1:n) = s and T V1(θ1:n) = 2s2. Let s = nα for
some 0 < α < 1. Thus Theorem 3 yields a rate of Õ(n

4α+1
5 ) while the results in Baby and Wang (2021) yields only a rate of

Õ(n
2α+1

3 ) which is a slower rate for all α < 1.
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