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Abstract

We present a novel kernel over the space of prob-
ability measures based on the dual formulation
of optimal regularized transport. We propose an
Hilbertian embedding of the space of probabil-
ities using their Sinkhorn potentials, which are
solutions of the dual entropic relaxed optimal
transport between the probabilities and a refer-
ence measure U . We prove that this construc-
tion enables to obtain a valid kernel, by using
the Hilbert norms. We prove that the kernel en-
joys theoretical properties such as universality
and some invariances, while still being compu-
tationally feasible. Moreover we provide theo-
retical guarantees on the behaviour of a Gaus-
sian process based on this kernel. The empiri-
cal performances are compared with other tradi-
tional choices of kernels for processes indexed on
distributions.

1 INTRODUCTION

Context: Gaussian Processes and Kernels Indexed
by Distributions. Gaussian process (GP) models are
widely used in fields such as geostatistics, computer code
experiments and machine learning. We refer to Rasmussen
and Williams (2006) for general references. They consist
in modeling an unknown function as a realization of
a GP, and hence correspond to a functional Bayesian
framework. For instance, in computer experiments, the
input points of the function are simulation parameters and
the output values are quantities of interest obtained from
the simulations. GPs rely on the definition of a covariance
function that characterises the correlations between the
values of the process at different observation points.
In this paper we consider GPs indexed by distributions.
Learning functions defined on distributions has gained
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a special interest over the last decade in the machine
learning literature, see for instance Póczos et al. (2013).
Distribution-valued inputs are commonly used to describe
complex objects such as images, shapes or media as de-
scribed for instance in Glaunes et al. (2004), Muandet et al.
(2012), Ginsbourger et al. (2016) or Szabó et al. (2016).
The construction of a kernel for these inputs requires a
notion of similitude between the probability distributions.
Many methods have been considered to provide kernels
for distributions, from the mere extraction of parametric
features, such as the mean or higher moments, to the
well used Maximum Mean Discrepancy (MMD) method
(Gretton et al., 2012).

Context: Optimal Transport for Kernels. On this topic,
optimal transport (OT) has imposed itself has a prominent
method for comparing or analyzing distributions. Previous
works in this direction are, in one dimension, Bachoc et al.
(2017) and Thi Thien Trang et al. (2021), where a kernel di-
rectly based on the quadratic difference between the quan-
tiles, which yields (on the real line) the quadratic Wasser-
stein distance, is proposed. In several dimensions, a quite
natural generalisation uses the quadratic norm between the
multidimensional transport maps between the probabilities
and a reference measure, see Bachoc et al. (2020) and
Moosmüller and Cloninger (2020). Even though, with a
good choice of the reference measure, the generated ker-
nels are translation invariant (see del Barrio et al. (2020);
del Barrio et al. (2022b); Hallin et al. (2021)), for machine
learning purposes the computation of the transport map
(between continuous measures) is rather complicated and
depends highly on the dimension, see Peyré et al. (2019).
Moreover, even if the transport maps exist almost surely
(see McCann (1995)) for a suitable choice of the reference
distribution, their continuity—and therefore their approx-
imations from empirical settings–require at least upper-
lower bounded densities and the convex supports of the tar-
get measures, see Figalli (2017). Regarding GPs based on
OT, the high complexity of the transport problem makes it
so that their continuity properties are not much studied es-
pecially in multi-dimension. As a simplification, Kolouri
et al. (2018) proposed the use of a slice-Wasserstein ker-
nel. The idea is to reduce the problem by projecting on the
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different directions generated by a (uniform) discretization
of the unit sphere Sd−1, and then integrating w.r.t. the uni-
form measure on Sd−1. This avoids completely the curse of
the dimensionality, but this does not discriminate quite well
between non convex domains. The corresponding univer-
sality properties are studied in the recent work of Meunier
et al. (2022).

Contributions. While the initial formulations of OT yield
computational challenges, subsequent regularized versions
have provided valuable trade-offs between richness and
tractability. In this work, we provide a kernel based on
regularized OT. We prove that the norm between the
potentials derived from entropy relaxation of Wasserstein
distances, see Cuturi (2013), provides a natural embedding
for the distributions and can be used to construct a valid
kernel. Much work on the properties of the potentials has
been carried out in particular del Barrio et al. (2022a);
Gonzalez-Sanz et al. (2022); Mena and Niles-Weed (2019)
but few results exist taking advantage of the natural
embedding the potentials provide. 1) Our contribution
is first to propose a novel valid and universal kernel
based on Sinkhorn’s dual potentials when considering
the regularized transport towards a reference measure. 2)
We then propose statistical guarantees for this kernel by
studying the properties of its empirical counterpart as well
as invariance properties w.r.t. the choice of the reference.
3) We study the theoretical properties of the corresponding
GP, especially the existence of a continuous version.
Feasible computations through Sinkhorn’s algorithm
enable to study the prediction performance of the kernel.
4) We provide publically available code, together with
simulations and real datasets where our kernel competes
favorably with state of the art methods: it yields a similar
accuracy as them, while being computationally efficient,
in particular providing a computational speed-up of order
up to 100 compared to the MMD kernel.

Outline. Section 2 is devoted to providing some definitions
and notations related to Sinkhorn’s transport methods. In
Section 3 we define and study the kernel based on the po-
tentials, while Section 4 studies the GP with this kernel
as covariance operator. Implementation and experiments
are discussed in Section 5. The proofs and complementary
content are postponed to the Appendix.

2 DEFINITIONS AND BASIC
PROPERTIES OF SINKHORN
DISTANCE

2.1 General Definitions and Notations

We let P(A) be the set of probability measures on a gen-
eral set A ⊂ Rd. When A is compact and for s > 0,

we let Cs(A) be the space of functions f : A → R that
are ⌊s⌋ times differentiable, with ⌊.⌋ the integer part, with
∥f∥Cs(A) < ∞ where

∥f∥Cs(A) :=

⌊s⌋∑
i=0

∑
|α|=i

∥Dαf∥∞. (1)

Above α = (α1, . . . , αd) ∈ Nd with
∑d

j=1 αj = i and
Dα = ∂i/∂α1

x1
· · · ∂αd

xd
. The space Cs(A) is endowed with

the norm ∥ · ∥Cs(A). A probability P ∈ P(A) belongs also
to the topological dual space of Cs(A). A distance between
two measures P,Q ∈ P(A) can be defined as

∥P−Q∥s := sup
f∈Cs(A), ∥f∥Cs(A)≤1

∫
f(x)(dP(x)−dQ(x)).

(2)

We let ℓd be d-dimensional Lebesgue measure. For p > 0
and for P ∈ P(A), we let Lp(P) be the set of functions
f : A → R such that ∥f∥pLp(P) :=

∫
A
|f(x)|pdP(x) < ∞.

We use the abbreviations “a.s.” for “almost surely” and
“a.e.” for “almost everywhere”. For a probability mea-
sure P on A, we let supp(P) be its topological support
(the smallest closed set with P-probability one). For two
sets A and B, for a probability measure P on A, and for
T : A → B, we let T♯A be the probability measure of
T (X) where X is a random vector with law P. For two
probability distributions P and Q on A, we write P ≪ Q
when P is absolutely continuous w.r.t. Q and in this case
we write dP/dQ for the density of P w.r.t. Q. A random
vector V on A ⊂ Rd is said to be sub-Gaussian if there is
σ2 < ∞ such that E(exp(su⊤V)) ≤ exp(σ2s2/2) for any
u ∈ Rd, ∥u∥ = 1 and s ∈ R. We let PSG(A) be the set
of sub-Gaussian probability measures on A. For x ∈ A we
let δx be the Dirac probability measure at x.

For a set E, a function k : E×E → R is said to be positive
definite when for any x1, . . . , xn ∈ E, α1, . . . , αn ∈ R,∑n

i,j=1 αiαjk(xi, xj) ≥ 0. The function is said to be
strictly positive definite if in addition the sum is strictly
positive when x1, . . . , xn are two-by-two distinct and not
all α1, . . . , αn are zero.

For A ⊂ Rd we let diam(A) = sup{∥x − y∥;x,y ∈ A}.
For t ∈ R, we let ⌈t⌉ be the smallest integer larger or equal
to t. For two column vectors x,y, we let ⟨x,y⟩ = x⊤y be
their scalar product.

2.2 Regularized Optimal Transport

We consider an input space Ω ⊂ Rd that is fixed throughout
the paper. For some of the results of the paper, Ω will be
assumed to be compact, while for others, we can make the
weaker assumption to consider sub-Gaussian measures on
Ω (that is not necessarily bounded). Let P, Q be probabili-
ties on Ω and let Π(P,Q) be the set of probability measures
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π ∈ P(Ω × Ω) with marginals P and Q, i.e. for all A,B
measurable sets

π(A× Ω) = P(A), π(Ω×B) = Q(B). (3)

The OT problem amounts to solve the optimization prob-
lem (see Kantorovich (1942))

Tc(P,Q) := min
π∈Π(P,Q)

∫
c(x,y)dπ(x,y), (4)

with a continuous cost c : Ω × Ω → [0,∞). It is
well known (see eg. Villani (2003)) that Wp(P,Q) :=(
T∥·∥p(P,Q)

) 1
p —the value of (4) for a potential cost

(x,y) 7→ ∥x − y∥p, for p ≥ 1—defines a distance on
the space of probabilities with finite moments of order p.
This distance is called the Wasserstein distance.

In this paper we will consider the quadratic cost c(x,y) =
∥x−y∥2, for simplicity. Note nevertheless that most of our
results (except, in particular, those related to the continuity
of the GP [Proposition 4.1] and the bounds on the potentials
[Statements 3.2 to 3.5] apply as well to general bounded
cost functions, see the recent work Rigollet and Stromme
(2022)).

When at least one distribution P is absolutely continu-
ous w.r.t. Lebesgue measure, then there exists a P -a.e.
unique map T : Ω → Ω such that T♯P = Q, and
W2(P,Q)2 =

∫
Ω
∥T (x)− x∥2dP(x). Moreover, there ex-

ists a lower semi-continuous convex function φ such that
T = ∇φ P-a.e., with ∇ the gradient operator, and T is the
only map of this type pushing forward P to Q, up to a P-
negligible modification. This theorem above is commonly
referred to as Brenier’s theorem (Brenier, 1991). Note that
a similar statement was established earlier independently in
a probabilistic framework in Cuesta and Matrán (1989).
This result enables to define a natural Hilbertian embedding
of the distributions in P(Ω) by considering the distance be-
tween the transport maps towards a common reference dis-
tribution. This framework has been used in Bachoc et al.
(2020) to provide kernels on distributions. Yet such kernels
have the drawback of being difficult to compute, prevent-
ing their use for large or high-dimensional datasets.
Indeed, computing the OT (4) turns out to be computation-
ally difficult. In the discrete case, different algorithms have
been proposed such as the Hungarian algorithm (Kuhn,
1955), the simplex algorithm (Luenberger et al., 1984)
or others versions using interior points algorithms (Orlin,
1988). The complexity of these methods is at worst of or-
der O(n3 log(n)) for two discrete distributions with equal
size n. Hence Bachoc et al. (2020) and many statistical
methods based on OT suffer from this drawback.

To overcome this issue, regularization methods have been
proposed to approximate the OT problem by adding a
penalty. The seminal paper by Cuturi (2013) provides the

description of the Sinkhorn algorithm to regularize OT by
using an entropy penalty.

The relative entropy between two probability measures
α, β on Ω, is defined as

H(α|β) =
∫
Ω

log(
dα

dβ
(x))dα(x)

if α ≪ β and | log(dα/dβ)| ∈ L1(β), and +∞ otherwise.
Set ϵ > 0. Then the entropy regularized version of the OT
problem is defined as

Sϵ(P,Q) := min
π∈Π(P,Q)

∫
Ω×Ω

1

2
∥x− y∥2dπ(x,y)

+ ϵH(π|P×Q),

(5)

with P×Q the product measure. The entropy term H mod-
ifies the linear term in classical OT (the quadratic trans-
portation cost) to produce a strictly convex functional. The
parameter ϵ balances the trade-off between the classical
OT problem (ϵ = 0) and the influence of the regularizing
penalty.

The minimization of (5) is achieved using the Sinkhorn’s
algorithm. We refer to Peyré et al. (2019) and references
therein for more details. The introduction of the Sinkhorn
divergence enables to obtain an ε-approximation of the
OT distance which can be computed, as pointed out in
Altschuler et al. (2017), with a complexity of algorithm of
order O(n

2

ε3 ), hence in a much faster way than the origi-
nal OT problem. Several toolboxes have been developed
to compute regularized OT such among others as Flamary
and Courty (2017) for Python, Klatt et al. (2017) for R.

Contrary to (unregularized) OT, Sinkhorn OT does not pro-
vide transport maps, which would in turn provide a Hilber-
tian embedding. Hence, we consider the dual formulation
of (5) pointed out in Genevay (2019):

Sϵ(P,Q) = sup
f∈L1(P),g∈L1(Q)

∫
Ω

f(x)dP(x) +

∫
Ω

g(y)dQ(y)

−ϵ

∫
Ω×Ω

e
1
ϵ (f(x)+g(y)− 1

2∥x−y∥2)dP(x)dQ(y) + ϵ.

(6)
Note that this formulation is a convex relaxation of the du-
ality of the usual OT. Both primal and dual problems have
solutions if P and Q have finite second moments.

Let π be the solution to (5) which will be denoted as the
optimal entropic plan. Let (f, g) be the solution to (6),
which will be denoted as the optimal entropic potentials.
For P,Q ∈ PSG(Ω), both quantities can be related using
the formula

dπ

dPdQ
= exp

(
−1

ε

(
f(x) + g(y)− 1

2
∥x− y∥2

))
.

(7)
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A consequence of this relation is that we have the optimal-
ity conditions∫

e
1
ϵ (f(x)+g(y)− 1

2∥x−y∥2)dP(x) = 1, ∀y ∈ Ω, (8)∫
e

1
ϵ (f(x)+g(y)− 1

2∥x−y∥2)dQ(y) = 1, ∀x ∈ Ω. (9)

3 A KERNEL BASED ON
REGULARIZED OPTIMAL
TRANSPORT

3.1 Construction of Positive Definite Kernels

Consider a reference measure U on Ω. For two distributions
P and Q, consider the two regularized OTs respectively be-
tween P and U and between Q and U . Let πP

U and πQ
U be

the optimal entropic plans and (fP
U , g

P
U ) and (fQ

U , gQU ) the
optimal entropic potentials:

dπP
U

dPdU
= exp

(
−1

ε

(
fP
U (x) + gPU (y)−

1

2
∥x− y∥2

))
(10)

dπQ
U

dQdU
= exp

(
−1

ε

(
fQ
U (x) + gQU (y)−

1

2
∥x− y∥2

))
.

(11)

Our aim is to use the distance ∥gPU − gQU ∥L2(U) to build
Sinkhorn kernels. Note first that the uniqueness of
Sinkhorn potentials holds up to additive constants. To ob-
tain uniqueness, from now on, we will define gPU as the
unique centered (w.r.t. to U) potential. This implies that
gPU = gPU − E(gPU (U)), which yields the following equality

VarU∼U (g
P
U (U)− gQU (U)) = ∥gPU − gQU ∥

2
L2(U).

Then, a function f : [0,∞) → R is said to be com-
pletely monotone if it is C∞ on (0,∞), continuous at 0
and satisfies (−1)ℓf (ℓ)(r) ≥ 0 for r > 0 and ℓ ∈ N. Let
F : [0,∞) → R be continuous.
The following theorem provides the kernel construction
and its validity (positive-definiteness).

Theorem 3.1. Let K : PSG(Ω) × PSG(Ω) → R be the
function defined as

(P,Q) 7→ K(P,Q) = F (∥gPU − gQU ∥L2(U)), (12)

for some U ∈ PSG(Ω). Then the two following conditions
are sufficient conditions for K to be a positive definite ker-
nel on PSG(Ω).

1. F (
√
.) is completely monotone on [0,∞).

2. There exists a finite nonnegative Borel measure ν on
[0,∞) such that for t ≥ 0 F (t) =

∫∞
0

e−ut2dν(u).

Remark that the quantity ∥gPU − gQU ∥L2(U) in Theorem 3.1
is finite via (Mena and Niles-Weed, 2019, Proposition 1).

Examples of functions F for which the assumptions of
Theorem 3.1 are satisfied are the well-known square ex-
ponential, power exponential and Matérn covariance func-
tions, see Bachoc et al. (2020) and the references therein.

The following proposition bounds the L2(U) distance be-
tween the potentials as a function of the distance between
the distributions.
Proposition 3.2. Let s ∈ N. Assume that Ω is compact
and let P,Q ∈ P(Ω). Then there exists a constant cd,
depending on the dimension, such that

∥gPU−gQU ∥L2(U) ≤ cd diam(Ω)se
19
2 diam(Ω)2∥P−Q∥s.

Note that the previous bound is still valid if we replace
∥P−Q∥s by W1(P,Q). This remark follows directly from
Kantorovich’s duality, see Theorem 1.14 in Villani (2003).

The following proposition guarantees that the entropic po-
tentials gPU and gQU can be used to characterize the distribu-
tions P and Q. It also guarantees that our suggested kernel
is not only positive definite but also strictly positive defi-
nite.
Proposition 3.3. Let P,Q,U ∈ PSG(Ω). The potentials
gPU (u) and gQU (u) can be extended continuously (see Re-
mark 3.5) with (9) for u ∈ Rd, which we call the canonical
extension. Then P = Q if and only if there exists an open
set D with supp(U) ⊂ D ⊂ Ω such that gPU (u) = gQU (u),
for ℓd−a.e. u ∈ D (after extension). Moreover, if there
exists an open set D′ ⊂ Ω such that ℓd ≪ U in D′, then
VarU∼U (g

P
U (U)− gQU (U)) = 0 if and only if P = Q.

Corollary 3.4. Let U ∈ PSG(Ω) and assume that there
exists an open set D′ ⊂ Ω such that ℓd ≪ U in D′. As-
sume also that F in Theorem 3.1 is non-constant. Then the
function K in Theorem 3.1 is strictly positive definite on
PSG(Ω).
Remark 3.5. The previous result is stated for the case
where U dominates Lebesgue measure on a ball; in partic-
ular U cannot be discrete. Nevertheless, even when U does
not satisfies this assumption, we can still construct a strictly
positive definite kernel as follows. Let U ,P,Q ∈ PSG(Ω).
First note that from (8) and (9) we have

gPU (y) =

− ϵ log

∫
exp

(
−1

ε

(
fP
U (x)−

1

2
∥x− y∥2

))
dP(x)

which extends (as in Proposition 3.3) gPU out of the support
of U , on an open ball B of Rd containing supp(U). Then
we have gPU = gQU ℓd-a.e. on B implies P = Q. Thus, let
F be as in Theorem 3.1 and assume that it is non-constant.
Define the function K : PSG(Ω)× PSG(Ω) 7→ R as

K(P,Q) = F (∥gPU − gQU ∥L2(ℓd,B)), (13)
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with ∥.∥L2(ℓd,B) the square norm w.r.t. the measure ℓd
on B. Then K is strictly definite positive on PSG(Ω) ×
PSG(Ω).

As an example for Remark 3.5, set ϵ = 1, suppose 0 ∈ Ω
and consider the discrete measure U = δ0. In this case,
gPU (y) =

∥y∥2

2 − log(MP(y)), for y in a neighborhood of
0, after extension, where MP(y) =

∫
e⟨y,x⟩dP(x) is the

moment generating function.

A kernel K is said to be universal on P(Ω) as soon as the
space generated by all possible linear combinations µ 7→∑n

i=1 αiK(µ, µi) has good approximation properties, in
the sense that it is dense in the set continuous functions
on P(Ω), endowed with the weak convergence of proba-
bilities. We prove that the squared exponential kernel built
with the distance between the potentials ∥gPU − gQU ∥L2(U)

is universal.
Proposition 3.6 (Universality of Sinkhorn based kernel).
Assume that Ω is compact and that there exists an open
set D′ ⊂ Ω such that ℓd ≪ U in D′ Consider for every
distribution P,Q in P(Ω), their potentials gPU , gQU as in
(10) and (11). Then for any σ > 0 the kernel defined by

Kσ(P,Q) = exp(−σ∥gPU − gQU ∥2L2(U))

is universal.

3.2 Consistency Property of the Empirical Kernel

In practical situations, the distributions may not be known
but only random samples may be at hand. Let X1, . . . ,Xn

and Y1, . . . ,Ym be mutually independent sequences of
random vectors with distributions P and Q respectively.
Denote as Pn and Qm their empirical measures: Pn =
(1/n)

∑n
i=1 δXi and Qm = (1/m)

∑m
i=1 δYi

. Consider
the optimal entropic transport potentials of the empirical
distributions towards a common fixed measure U denoted
by (fPn , gPn) and (fQm , gQm). Finally, define the empir-
ical kernel by K(Pn,Qm) = F (∥gPn − gQm∥L2(U)). The
following proposition proves its consistency.
Proposition 3.7 (Consistency of the empirical kernel). As-
sume that Ω is compact and let P,Q ∈ P(Ω). When
F is continuous, the empirical kernel K(Pn,Qm) con-
verges almost-surely when both n,m → ∞ to the true
kernel K(P,Q). Moreover if we assume that F satisfies
|F (t) − F (s)| ≤ A|t − s|a for constants 0 < A < ∞
and 0 < a ≤ 1 and for t ≥ 0, then we have the following
bound, with a constant Cd,

E|K(Pn,Qm)−K(P,Q)| ≤

Cd

((
1√
n
+

1√
m

)
diam(Ω)2

d+1

e
19
2 diam(Ω)4

)a

.
(14)

3.3 Influence of U and Invariance Properties.

In this section we investigate the impact of the reference
distribution U . Consider two distributions U and U ′ that

will be used to build two different kernels. Consider the
Sinkhorn OT towards respectively U and U ′ for both distri-
bution P and Q. We will write the corresponding entropic
potentials as (fP

U , gQU ) and (fP
U ′ , g

Q
U ′) (defined as in Section

3.1). We thus have the two kernels KU (P,Q) = F (∥gPU −
gQU ∥L2(U)) and KU ′(P,Q) = F (∥gPU ′ − gQU ′∥L2(U ′)). One
desirable property is translation invariance, which means
that the kernel does not change whenever the reference dis-
tribution is changed by translation. This is shown next for
our kernel construction.

Lemma 3.8. Let U ,P,Q ∈ PSG(Ω) and T0 : Ω → Ω be
a translation (T0(u) = u + u0 for a fixed u0 ∈ Rd), then
KT0♯U (P,Q) = KU (P,Q).

The choice of the reference measure merits an impor-
tant discussion in this work. Indeed, many possible
probabilities with density could be used. For the sake
of applications, uniformly distributed measures (on the
square, on the ball, spherical uniform) are beneficial, as
they are easily approximated on a discrete set. Also, the
uniform distribution allows us to compare the Sinkhorn
potentials by factorising into independent lower dimen-
sional marginals. Note that an issue of using a unit-squared
reference is the high influence of the coordinate system,
which can be arbitrary in some applications.

A benefit of using a spherical (invariant to linear isome-
tries) reference distributions is rotation invariance, as
shown next.

Lemma 3.9. Let U ,P,Q ∈ PSG(Ω), with U spherical and
T0 : Ω → Ω be a rigid transformation (i.e. T0(x) = Rx+
t with RT = R−1 and t ∈ Rd), then KT0♯U (P,Q) =
KU (P,Q).

Again for spherical distributions, the following result
shows that a dilatation of factor δ of the reference measure
is equivalent to a change of order ϵ = 1/δ2 on the Sinkhorn
problem.

Proposition 3.10. Let U ,P,Q ∈ PSG(Ω), with U spheri-
cal and Tδ(u) = δ u, with δ > 0, then

VarUδ∼Tδ♯U (g
P
Tδ♯U (Uδ)− gQTδ♯U (Uδ))

= δ4 VarU∼U (g
T 1

δ
♯P

U, δ (U)− g
T 1

δ
♯Q

U, δ (U)),

where g
T 1

δ
♯P

U, δ and g
T 1

δ
♯Q

U, δ solve the dual formulation (6) of
Sϵ(T 1

δ
♯P,U) and Sϵ(T 1

δ
♯Q,U), for ϵ = 1

δ2 . Above, gPTδ♯U

and gQTδ♯U correspond to ϵ = 1.

For generic changes of reference distribution, the following
proposition quantifies the corresponding kernel changes.

Proposition 3.11. Assume that Ω is compact. Let s ∈
N. There exists a constant c(Ω, d, ϵ, s) such that for
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U ,U ′,P,Q ∈ P(Ω),

|KU (P,Q)−KU ′(P,Q)| ≤ 2diam(Ω)∥U − U ′∥s
+ c(Ω, d, ϵ, s) (∥U − U ′∥s∥P−Q∥s)

1/2
.

4 GAUSSIAN PROCESSES USING
SINKHORN’S POTENTIAL KERNEL

Let us recall that a GP (Z(x))x∈E indexed by a set E
is entirely characterised by its mean and covariance func-
tions. Its covariance function is defined by (x, y) ∈ E2 7→
Cov(Z(x), Z(y)). In this section we consider the GP on
distributions defined by the Sinkhorn’s potential Kernel K
with Cov(Z(P ), Z(Q)) = K(P,Q) with K as in Theorem
3.1. We study its properties in this section.

4.1 Continuity of the Gaussian Process

For any positive definite kernel, a GP is guaranteed to ex-
ist having this kernel as covariance function. Nevertheless,
this GP is defined only as a collection of Gaussian vari-
ables, and not necessarily as a random continuous func-
tion. Being able to define a GP as a random continuous
function is at the same time satisfying from a functional
Bayesian point of view, and also technically useful to tackle
advanced convergence results, see for instance Bect et al.
(2019). Next, we establish the existence of a continuous
GP with our kernel construction, under mild regularity as-
sumptions on the space of input probability measures.

For a set S ⊂ Rd, we let ∂S be its boundary and for t ∈ Rd,
we let d(t, S) be the smallest distance between t and an
element of S.
Proposition 4.1. Let Ω be compact with non-empty inte-
rior. Let F in (12) satisfy |F (t) − F (0)| ≤ A|t|a for con-
stants 0 < A < ∞ and 0 < a ≤ 1 and for t ≥ 0. Let
b > 0 be fixed. Let Pδ be the set of distributions P on Ω
that have a continuous density p w.r.t. Lebesgue measure,
such that p is zero on {x ∈ Ω, d(x, ∂Ω) ≤ b}. Consider
Pδ as a metric space with the 1-Wasserstein distance W1.
Then there exists a GP Z on Pδ with covariance function
as in (12) that is almost surely continuous on Pδ .

The proof of Proposition 4.1 is based on a control of the
covering numbers of the canonical distance defined through
the covariance function in (12). A multi-dimensional inte-
gration by part allows us to upper bound this quantity by the
covering numbers of C⌈

d
a+1⌉(Ω), which is enough for the

continuity of the process (see (van der Vaart and Wellner,
2013, Theorem 2.7.1) and (Adler, 1990, Theorem 1.1)).

4.2 Estimation of the Parameters and Prediction

Parametrization of the Kernel. The kernel is

Kθ,u(P,Q) = Fθ(∥gPu − gQu ∥L2(U)),

where Fθ is the function F in Theorem 3.1, depending on
the vector of covariance parameters θ. For instance for
the square exponential covariance function, θ consists of a
scalar variance and length scale. Furthermore, the Hilber-
tian embedding yielding gPu and gQu depends on the choice
of the reference measure U (see Section 3.1). This choice
is indexed by a vector u. For instance, in our numerical
experiments, U will be a discrete measure and u gathers
the support points and weights. The presentation of (stan-
dard) likelihood methods for selecting θ,u in regression
and classification, together with a discussion on microer-
godicity, are given in the Appendix, for the sake of brevity.

Prediction. The GP framework enables to predict the
outputs corresponding to new input probability measures,
by using conditional distributions given observed outputs.
This is reviewed in the Appendix for regression and classi-
fication.

5 IMPLEMENTATION AND
EXPERIMENTS

All the experiments of the paper were run on the publicly
available GPU Colab hardware.

The code can be found on an anonymous reposi-
tory: https://anonymous.4open.science/r/
SinkhornMuGP-D37E/README.md.

Parametrization of the Reference Measure U . We
choose a suitable machine representation for U (see Sec-
tion 4.2) as a weighted sum of Diracs:

U =

q∑
i=1

wiδ(xi) with
q∑

i=1

wi = 1, wi ≥ 0,xi ∈ Rd.

In this form U is not absolutely continuous w.r.t. Lebesgue
measure, but see Remark 3.5. The parameters u for U
gather w1, . . . , wq,x1, . . . ,xq . The procedure for the es-
timation of u,θ is sketched in Algorithm 1.

Gradient Computations. We will use the L-BFGS
method for optimization (Liu and Nocedal, 1989). This re-
quires the gradients of the likelihood function in regression
and classification w.r.t. θ and u. The derivatives of rele-
vant quantities w.r.t. θ can be found in the literature, see
for instance Rasmussen and Williams (2006). A specificity
of u is that for some measures P,Q, we need to differenti-
ate ∥gPu − gQu ∥L2(U) w.r.t. u, that is we need to differenti-
ate regularized OT plans. This is possible either by back-
propagating through unrolled Sinkhorn iterations (Genevay
et al., 2018), or by using implicit differentiation (Eisen-
berger et al., 2022). In practice we noticed that, while be-
ing slower, unrolling of Sinkhorn iterates was actually more
stable numerically.

Software Framework Used. For automatic support of
autodifferentiation, we use the Jax framework (Brad-

https://anonymous.4open.science/r/SinkhornMuGP-D37E/README.md
https://anonymous.4open.science/r/SinkhornMuGP-D37E/README.md
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Figure 1: Toy example. Left: 50 point clouds of the train set, with color scale depending on the random field Z. The
trajectories of the points xi of u are depicted in different colors. Center: evolution of the weights w of u during training.
Right: evolution of the negative log marginal likelihood during training.

bury et al., 2018) with the libraries GPJax (Pinder and
Dodd, 2022) to implement GP regression, OTT-Jax (Cu-
turi et al., 2022) for differentiable Sinkhorn algorithm,
and Jaxopt (Blondel et al., 2021) for optimization with
L-BFGS. The computation of inverse covariance matrices
is done efficiently using Cholesky decomposition (Press
et al., 2007), which allows efficient computation of matrix
inverse-vector products without materializing the inverse in
memory. The computations are performed in float32 arith-
metic and take advantage of GPU for matrix operations,
that are the bottleneck of the algorithm.

Other Numerical Aspects. For u, the point coordinates
are parameterized as x = S tanh (x̃) with S ∈ R to
ensure they remain bounded, the weights are parametrized
as w = softmax(w̃) to ensure they represent a valid
probability distribution. The dual variables gPu computed
at each time step during the optimization of u are cached
to speed-up Sinkhorn iterations: this strategy is reasonable
since when u and u′ are close then the dual variables gPu
and gPu′ are close too.

Computational Cost of u-Sinkhorn Kernels. We denote
by |u| the size of the support of u (written q above). For
another point cloud of size n, according to Altschuler et al.
(2017); Dvurechensky et al. (2018) the time complexity of
the Sinkhorn algorithm is O(n|u| log (n|u|)

ϵ2 ) to reach preci-
sion ϵ, while the complexity of the MMD kernel is O(n2).
It follows that for a reference measure with |u| ≪ n the
runtime cost of Sinkhorn u-kernel becomes competitive.
Runtimes against MMD are reported in Table 3 (in the Ap-
pendix), with a speed-up of up to 100 for our method.

Once u is chosen, the embeddings gPu can be pre-computed
once for all for each point cloud P1, . . . ,Pn and used as
a low dimension embedding of P(Ω) into R|u|. The dis-
tribution support |u| needs to be big enough to capture the
similarities between the Pis up to the precision required by

Task |u| m Ours Bachoc et al. (2020)
Toy example 6 30 0.997 0.81

Table 1: Explained Variance Score (EVS) on the test set for
regression tasks, with train set of size n = 50 in dimension
d=2. |u|: dimension of the embedding. m: cloud size.

Task |u| Ours RBF
“4” vs “6” 4 94.2± 1.2 ✗
“4” vs “6” 5 95.5± 1.0 ✗
“4” vs “6” 6 95.0± 0.6 98.8± 0.2

“shirt” vs “sandals” 12 99.5± 0.2 99.7± 0.2
“sneakers” vs “sandals” 12 88.6± 1.8 91.9± 1.2

Table 2: Test Accuracy for classification tasks, with train
set of size n = 200 in dimension d=2 with clouds of size
m = 24 × 24 = 576. |u|: embedding dimension. We
compare against RBF. Average over 25 runs.

the task, but does not need to be bigger (see Section 5.1).

5.1 Regression on Toy Example of Bachoc et al.
(2020)

In this section we re-use the example introduced in Section
5.3 of Bachoc et al. (2020). We simulate 100 random two-
dimensional isotropic Gaussian distributions. The means
are sampled uniformly from [−0.3, 0.3]2, and the variance
uniformly from [0.012, 0.022]. The value of the random
field induced by a Gaussian of means (m1,m2) and vari-
ance σ2 is Z = (m1+0.5−(m2+0.5)2)

1+σ . Gaussians are ap-
proximated by point clouds of size 30 sampled from the
distribution. The dataset is splitted into train (50 clouds)
and test (50 clouds). The u-measure consists of 6 points on
the ball of radius 0.5. Their position xi and weight wi are
trained for 30 iterations jointly with kernel parameters. The
results are highlighted in Figure 1 and Table 1. The role of
u is investigated in Figure 2 with |u| = 2: the position of
the xi’s makes the embedding more or less suitable for the
downstream task, as illustrated by the Explained Variance
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Figure 2: Role of u in quality of embeddings when |u| = 2 for the example of Section 5.1. Each dot is the 2D embedding
of a Gaussian where the color depends on the random field Z. Left: optimal choice for u that ensures the task can be
solved. Center: sub-optimal choice for u. Right: bad choice of u that prevents learning.

Figure 3: Optimization of u on Mnist “4” versus “6” task
with |u| = 6. An image from the train set is displayed on
the background to better grasp the scale of u.

Score (EVS). The EVS of our method is higher than that of
Bachoc et al. (2020).

5.2 Binary Classification on Mnist and Fashion-Mnist

We perform binary classification on Mnist by learning to
separate digits “4” and “6”. The dataset consists of 200
train images, and 1000 test images. Each 28 × 28 images
is centered crop to 24 × 24 to generate a cloud of size 576
matching pixel coordinates. The normalized pixel intensity
is used as a weight in OT. The likelihood is modeled with
Bernoulli distributions (not Gaussian, see the Appendix on
GP classification), and the log marginal likelihood is max-
imized using maximum a posteriori (MAP) estimates. We
tested different sizes for |u| ∈ [4, 5, 6]. The training is
depicted in Figure 3. The experiment is repeated 10 time
with random splits. It shows that Mnist images can be em-
bedded in a space of small dimension that preserves most
information about labels, achieving a compression rate of
R = |u|

584 ∈ [0.006, 0.013] tailored for the learning task.
We also perform binary classification on Fashion-Mnist.

For both Mnist and Fashion-Mnist, the accuracy is quan-
tified in Table 2. It is approximately similar to the accu-
racy of a Radial Basis Function (RBF) kernel (also called

squared exponential) applied to the “vectorized” images
(see Section D.1). Remark that the RBF kernel cannot be
applied to general point clouds, while our Sinkhorn ker-
nel is designed for this. On Mnist and Fashion-Mnist, the
MMD kernel could not provide comparable accuracy as
Sinkhorn and RBF, due to its higher computational cost,
see also Table 3.

Algorithm 1: Learn Kernel parameters.
1: input (Pi, yi)1≤i≤N : dataset of distributions.
2: input θ0 = (u0, σ0, l0): initial parameters.
3: repeat
4: for all Pi do
5: Solve regularized OT problem between Pi,u.
6: Compute Sinkhorn dual potential gPi

u .
7: end for
8: Build Kernel Kij := σ2 exp−∥gPi

u −g
Pj
u ∥2

2l2 .
9: Compute log marginal likelihood L(u, σ, l,K, y)

(Sections B.1 and B.2).
10: Compute gradients ∇(u,σ,l)L with Auto-Diff.
11: Perform one step of L-BFGS on (u, σ, l).
12: until convergence of (u, σ, l).
13: Return optimal parameters (u∗, σ∗, l∗).

5.3 Texture Classification with C-SVM

We follow the experimental procedure of Kolouri et al.
(2016) on the University of Illinois Urbana Champaign
(UIUC) texture dataset (Lazebnik et al., 2005). We trans-
form the images into two dimensional probability distribu-
tions by computing the gray-level co-occurence matrices
(GLCM) (Haralick et al., 1973). C-SVM yields a quadratic
programming problem. Convexity guarantees that the al-
gorithm will converge to a global minimum. Our kernel
matches the performances of Kolouri et al. (2016) on the
same experimental protocol, in Table 4 (see Appendix).
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6 CONCLUSION

In this paper we proposed a new positive definite kernel
for distributions. It is universal, allows to embed distribu-
tions in a space of smaller dimension controlled by u, and
is consistent so it scales with the number of points available
to approximate the distributions. Empirically, we showed
that the reference measure u was of crucial importance and
could be optimized directly with maximum likelihood. Our
numerical experiments also highlight that our kernel yields
a similar accuracy as other methods, while providing an
important computational speed-up compared to MMD.
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A PROOFS AND SOME ADDITIONAL RESULTS FOR SECTION 3

Proof of Theorem 3.1. The result follows from Proposition 4 and Remark 5 in Bachoc et al. (2020).

Proof of Proposition 3.2. The proof can be obtained mutatis mutandis from that of the empirical case (del Barrio et al.,
2022a, Theorem 4.5).

Proof of Proposition 3.3. For ease of notation we suppose that ϵ = 1. We prove both equivalences at the same time. In
any of the assertions, P = Q implies the equality of the potentials in Rd–defined via the canonical extension. On the other
hand, let us suppose that gP(u) = gQ(u), for ℓd-a.e. u ∈ D, for some open set D ⊂ Rd. Then gP = gQ, U-a.e. by
continuity when supp(U) ⊂ D. In consequence, the other potentials, obtained by the relations

fP(x) = − log

(∫
eg

P(y)− 1
2∥x−y∥2

dU(y)
)
, fQ(x) = − log

(∫
eg

Q(y)− 1
2∥x−y∥2

dU(y)
)
,

are also equal. Moreover, since gP = gQ U-a.s. then eg
P

= eg
Q

too, and, using the optimally conditions, we have∫
ef

P(x)− 1
2∥x−y∥2

dP (x) = eg
P(y) =

∫
ef

Q(x)− 1
2∥x−y∥2

dQ(x), for U-a.e. y ∈ Ω.

Moreover, extending eg
P(y) as in Remark 3.5, we obtain∫
ef

P(x)− 1
2∥x−y∥2

dP (x) = eg
P(y) =

∫
ef

Q(x)− 1
2∥x−y∥2

dQ(x), for all y ∈ D,

so, due to the equality fP = fQ in Ω, we have the equality∫
e⟨x,y⟩ef

P(x)− 1
2∥x∥

2

dP (x) =

∫
e⟨x,y⟩ef

P(x)− 1
2∥x∥

2

dQ(x), for all y ∈ D.

By hypothesis, and without loosing generality, there exists a ball centered in 0, such that Bϵ(0) ⊂ D. A fortiori∫
e⟨x,y⟩ef

P(x)− 1
2∥x∥

2

dP (x) =

∫
e⟨x,y⟩ef

P(x)− 1
2∥x∥

2

dQ(x),

for all y ∈ Bϵ(0). In particular, its evaluation in y = 0 yields the inequality
∫
ef

P(x)− 1
2∥x∥

2

dP (x) =∫
ef

P(x)− 1
2∥x∥

2

dQ(x) > 0. The uniqueness of the moment generating function, (see eg. (Billingsley, 1986, Theorem

22.)) proves that the probabilities ef
P(x)− 1

2
∥x∥2∫

ef
P(x)− 1

2
∥x∥2dP (x)

dP (x) and ef
P(x)− 1

2
∥x∥2∫

ef
P(x)− 1

2
∥x∥2dQ(x)

dQ(x) are equal, so that P = Q

too.

Proof of Corollary 3.4. Consider two-by-two distinct measures P1, . . . , Pn. Then from Proposition 3.3, the functions
gP1

U , . . . , gPn

U are two-by-two distinct in L2(U). Then the matrix[
F (∥gPi

U − g
Pj

U ∥L2(U))
]
1≤i,j≤n

is strictly positive definite from Proposition 4 in Bachoc et al. (2020).

Proof of Remark 3.5. The fact that gPU = gQU ℓd-a.e. on B implies P = Q holds from Proposition 3.3. Then, strict positive
definiteness is shown as in the proof of Corollary 3.4.

Proof of Proposition 3.6. First note that P(Ω) is a compact metric space endowed with the Wasserstein distance. Consider
the map Φ from P(Ω) to the separable Hilbert space L2(U) such that for any P ∈ P(Ω), Φ(P ) = gPU . This map is
continuous w.r.t. the Wasserstein distance W1 from Proposition 3.2 and the comment after it. Moreover Proposition 3.3
implies that Φ is injective. Hence using Theorem 2.2 in Christmann and Steinwart (2010), we obtain the universality of the
kernel.
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Proof of Proposition 3.7. First, using Proposition 3.2, for some constant Cd,Ω, we obtain the following bounds

∥gPn − gP∥L2(U) ≤ Cd,Ω∥P− Pn∥s, and ∥gQm − gQ∥L2(U) ≤ Cd,Ω∥Q−Qm∥s, (15)

where, in this case, s = ⌈ 2
d⌉+ 1. Moreover, the triangle inequality∣∣∥gPn − gQm∥L2(U) − ∥gP − gQ∥L2(U)

∣∣ ≤ ∥gPn − gP∥L2(U) + ∥gQ − gQm∥L2(U)

and (15) yield the upper bound∣∣∥gPn − gQm∥L2(U) − ∥gP − gQ∥L2(U)

∣∣ ≤ Cd,Ω (∥P− Pn∥s + ∥Q−Qm∥s) . (16)

Hence when n,m → +∞, consistency of the empirical distributions and continuity of the function F lead to the consis-
tency of the empirical kernel almost surely.
To obtain the upper bound, note that using the Assumption on F we have

E|K(Pn,Qm)−K(P,Q)| = E|F (∥gPn − gQm∥L2(U))− F (∥gP − gQ∥L2(U))|
≤ AE|∥gPn − gQm∥L2(U) − ∥gP − gQ∥L2(U)|a.

Since a ∈ (0, 1], Jensen’s inequality allows us to say that

E|K(Pn,Qm)−K(P,Q)| ≤ A
(
E|∥gPn − gQm∥L2(U) − ∥gP − gQ∥L2(U)|

)a
. (17)

Therefore, (16) and (17) enable to obtain that

E|K(Pn,Qm)−K(P,Q)| ≤ A (E|∥P− Pn∥s + ∥Q−Qm∥s|)a . (18)

The rest of the proof follows by classical empirical processes arguments.

Proof of Lemma 3.8. Let U ∼ U ∈ PSG(Ω) and X ∼ P ∈ PSG(Ω). The potentials are (up to additive constants)
characterized by the optimally conditions

E
(
ef

P
U (X)+gP

U (u)− 1
2∥X−u∥2

)
= 1 U − a.s.

E
(
ef

P
U (x)+gP

U (U)− 1
2∥x−U∥2

)
= 1 P− a.s.

Let T0 be a translation—defined as u 7→ u+ u0—and U0 = T0(U) ∼ U0, then we claim that

fP
U0
(x) = fP

U (x) + ⟨u0,x⟩+
3

4
∥u0∥2 and gPU0

(u) = gPU (u− u0)− ⟨u0,u⟩+
3

4
∥u0∥2

is a pair of OT potentials for U0. The verification of the optimallity conditions is enough to prove the claim. On the one
hand, note that

E
(
ef

P
U0

(X)+gP
U0

(u′)− 1
2∥X−u′∥2

)
= E

(
ef

P
U (X)+⟨u0,X⟩+gP

U (u′−u0)−⟨u0,u
′⟩+ 3

2∥u0∥2− 1
2∥X−u′∥2

)
and the (evident) change of variables u = u′ − u0 yields

E
(
ef

P
U0

(X)+gP
U0

(u+u0)− 1
2∥X−u+u0∥2

)
= E

(
ef

P
U (X)+⟨u0,X⟩+gP

U (u)−⟨u0,u+u0⟩+ 3
2∥u0∥2− 1

2∥X−(u+u0)∥2
)

= E
(
ef

P
U (X)+gP

U (u)− 1
2∥X−u∥2

)
= 1 U − a.s.

Therefore we obtain the first optimally condition

E
(
ef

P
U0

(X)+gP
U0

(u′)− 1
2∥X−u′∥2

)
= 1 U0 − a.s.
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On the other hand, note that

E
(
ef

P
U0

(x)+gP
U0

(U0)− 1
2∥x−U0∥2

)
= E

(
ef

P
U (x)+⟨u0,x⟩+gP

U (U0−u0)−⟨u0,U0⟩+ 3
2∥u0∥2− 1

2∥x−U0∥2
)

= E
(
ef

P
U (x)+⟨u0,x⟩+gP

U (U)−⟨u0,U+u0⟩+ 3
2∥u0∥2− 1

2∥x−U+u0∥2
)

= E
(
ef

P
U (x)+gP

U (U)− 1
2∥x−U∥2

)
= 1 P− a.s.

which implies the second optimally condition.

Proof of Lemma 3.9. Via Lemma 3.8, we only need to prove the invariance w.r.t. T0(u) = Ru with R a linear isommetry.
By definition of spherical measure, T0(U) ∼ U , for any U ∼ U , so the solutions of (6) are the same.

Proof of Proposition 3.10. Set Uδ = Tδ♯U and a pair (gPTδ♯U , f
P
Tδ♯U ) solving the dual formulation (6) of S1(P,Tδ♯U). The

optimality conditions yield

E
(
ef

P
Tδ♯U (X)+gP

Tδ♯U (uδ)− 1
2∥X−uδ∥2

)
= 1 Uδ − a.s.

where we can do a change of variables u = 1
δuδ to have

1
U−a.s.
= E

(
ef

P
Tδ♯U (X)+gP

Tδ♯U (δu)− 1
2∥X−δu∥2

)
U−a.s.
= E

(
ef

P
Tδ♯U (X)+gP

Tδ♯U (δu)− δ2

2 ∥ 1
δ X−u∥2

)
.

Set X 1
δ
= T 1

δ
(X) = 1

δX, then

1
U−a.s.
= E

(
e
δ2

(
1
δ2

fP
Tδ♯U (δX 1

δ
)+ 1

δ2
gP
Tδ♯U (δu)− 1

2∥X 1
δ
−u∥2

))
.

The same argument also shows (with the obvious notation) that

1
P 1

δ
−a.s.

= E

(
e
δ2

(
1
δ2

fP
Tδ♯U (δx 1

δ
)+ 1

δ2
gP
Tδ♯U (δU)− 1

2∥x 1
δ
−U∥2

))
,

which means that the pair
(

1
δ2 f

P
Tδ♯U (δ · ),

1
δ2 g

P
Tδ♯U (δ · )

)
=

(
f
T 1

δ
♯P

U, δ , 1
δ2 g

T 1
δ
♯P

U, δ

)
solves the dual formulation (6) of

Sϵ(T 1
δ
♯P,U), for ϵ = 1

δ2 . The same, verbatim, can be done for Q. Finally, we note that

E
(
gPTδ♯U (Uδ)− gQTδ♯U (Uδ)

)2
= E

(
gPTδ♯U (δU)− gQTδ♯U (δU)

)2
= δ4E

(
g
T 1

δ
♯P

U, δ (U)− g
T 1

δ
♯Q

U, δ (U)

)2

,

and

0 = E
(
gPTδ♯U (Uδ)

)
= δ2E

(
g
T 1

δ
♯P

U, δ (U)

)
, 0 = E

(
gQTδ♯U (Uδ)

)
= δ2E

(
g
T 1

δ
♯Q

U, δ (U)

)
,

which allows to conclude.

Proof of Proposition 3.11. For ease of notation we suppose that ϵ = 1. First note that

∥gPU − gQU ∥L2(U) ≤ ∥gPU − gPU ′∥L2(U) + ∥gPU ′ − gQU ′∥L2(U) ++∥gQU − gQU ′∥L2(U)

≤ diam(Ω)
(
∥gPU − gPU ′∥∞ + ∥gQU − gQU ′∥∞

)
+ ∥gPU ′ − gQU ′∥L2(U).

Using (del Barrio et al., 2022a, Theorem 4.5), we obtain that

∥gPU − gPU ′∥∞ ≤ ∥U − U ′∥s
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∥gQU − gQU ′∥∞ ≤ ∥U − U ′∥s.

The last term of the bound can be written as

∥gPU ′ − gQU ′∥L2(U) =

(∫
(gPU ′(x)− gQU ′(x))

2d(U − U ′)(x) +

∫
(gPU ′(x)− gQU ′(x))

2dU ′(x)

) 1
2

≤
(∫

(gPU ′(x)− gQU ′(x))
2d(U − U ′)(x) +

∫
(gPU ′(x)− gQU ′(x))

2dU ′(x)

) 1
2

≤

(∣∣∣∣∣
∫

(gPU ′(x)− gQU ′(x))2

∥(gPU ′ − gQU ′)2∥Cs(Ω)

∥(gPU ′ − gQU ′)
2∥Cs(Ω)d(U − U ′)(x)

∣∣∣∣∣+
∫

(gPU ′(x)− gQU ′(x))
2dU ′(x)

) 1
2

≤

(
∥(gPU ′ − gQU ′)

2∥Cs(Ω) sup
f∈Cs(Ω)

∣∣∣∣∫ f(x)d(U − U ′)(x)

∣∣∣∣+ ∫ (gPU ′(x)− gQU ′(x))
2dU ′(x)

) 1
2

.

Now note on the first hand that

sup
f∈Cs(Ω)

∣∣∣∣∫ f(x)d(U − U ′)(x)

∣∣∣∣ ≤ ∥U − U ′∥s.

On the other hand recall that

∥(gPU ′ − gQU ′)
2∥Cs(Ω) =

s∑
i=0

∑
|α|=i

∥Dα(gPU ′ − gQU ′)
2∥∞,

with the same notation Dα as in Section 2.1.

But for |α| ≥ 1, Dα(gPU ′ − gQU ′)2 is a linear combination of product of derivatives of gPU ′ − gQU ′ , which enables to write that

s∑
i=0

∑
|α|=i

∥Dα(gPU ′ − gQU ′)
2∥∞ ≤

s∑
i=0

∑
|α|=i

∥Pα(g
P
U ′ − gQU ′ , ∂1(g

P
U ′ − gQU ′), . . . , D

α(gPU ′ − gQU ′))∥∞

for Pα polynomial functions. Since all functions are continuous and evaluated on a compact set Ω, their supremum norm
is bounded, which enables to write that

∥Dα(gPU ′ − gQU ′)
2∥Cs(Ω) ≤ Cα(Ω)∥gPU ′ − gQU ′∥Cs(Ω)

for a constant Cα(Ω) which depends on P,Q, α and Ω. Since

∥(gPU ′ − gQU ′)
2∥Cs(Ω) ≤ Cα(Ω)∥P−Q∥s

we obtain that

∥gPU ′ − gQU ′∥L2(U) ≤
(
∥U − U ′∥s∥P−Q∥s +

∫
(gPU ′(x)− gQU ′(x))

2dU ′(x)

) 1
2

≤ ∥gPU ′ − gQU ′∥L2(U ′) + (∥U − U ′∥s∥P−Q∥s)
1/2

,

which gives the inequality

∥gPU ′ − gQU ′∥L2(U) − ∥gPU ′ − gQU ′∥L2(U ′)

≤ (∥U − U ′∥s∥P−Q∥s)
1/2

+ 2diam(Ω)∥U − U ′∥s.

Finally by symmetry, we obtain that

|∥gPU − gQU ∥L2(U) − ∥gPU ′ − gQU ′∥L2(U ′)| ≤ (∥U − U ′∥s∥P−Q∥s)
1/2

+ 2diam(Ω)∥U − U ′∥s,

which proves the result.
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B ADDITIONAL CONTENT FOR SECTION 4

B.1 Likelihood in Regression

In regression, we consider a dataset µ1, y1, . . . , µn, yn, with yi = Z(µi) where Z is a centered GP with covariance
function in {Kθ,u}. We let Un be the list (µ1, . . . , µn) and write Kθ,u(Un, Un) for the n × n matrix with compo-
nent i, j equal to Kθ(µi, µj). We also write Yn for the n × 1 vector (y1, . . . , yn)

⊤. Then the likelihood function is
gN (Yn,0,Kθ,u(Un, Un)), where for any vectors m and x and matrix Σ, in dimension n,

gN (x,m,Σ) =
1

(2π)n/2
√

det(Σ)
e−

1
2 (x−m)⊤Σ−1(x−m) (19)

is the Gaussian density at x with mean m and covariance Σ. Then θ,u can be selected by maximizing the likelihood
function. Note that in regression, one can also use cross validation to estimate θ and u (Bachoc, 2013; Rasmussen and
Williams, 2006; Zhang and Wang, 2010).

B.2 Likelihood in Classification

In classification, Z is as before and we consider a dataset µ1, y1, . . . , µn, yn, where, conditionally to Z, y1, . . . , yn are
independent with, for i = 1, . . . , n,

P(yi = 1) = 1− P(yi = 0) =
eZ(µi)

1 + eZ(µi)
.

Then, from for instance Equation 3.30 in Rasmussen and Williams (2006), the likelihood function is∫
Rn

gN (v,0,Kθ,u(Un, Un)) g(Yn|v)dv,

with the density of Yn given (Z(µ1), . . . , Z(µn)) = v:

g(Yn|v) =
n∏

i=1

((
evi

1 + evi

)yi

+

(
1

1 + evi

)1−yi
)
. (20)

Above, gN is as in (19).

B.3 Discussion of Microergodicity

For both regression and classification, a natural theoretical question is the consistency of estimators for θ and u as n → ∞.
This question is essentially open for distributional inputs, as only a few results exist (Bachoc et al., 2017). In contrast, most
existing results address standard vector inputs (Bachoc, 2014; Stein, 1999; Zhang, 2004). A necessary condition for this
consistency is that θ and u are microergodic, which means that changing them always changes the Gaussian measure of Z
on the set of functions from the input space to R. We refer to Bachoc et al. (2020); Stein (1999) for more formal details.
Related to our setting, Bachoc et al. (2020) shows that microergodicity typically holds when the input space is a Hilbert
ball. This result provides positive indications that θ and u may be microergodic in fairly general frameworks.

B.4 Prediction

We now aim at predicting a new output, associated to a new measure µ0, based on y1, . . . , yn, that is to compute the
conditional distribution of the new output given y1, . . . , yn.

First, consider regression, where the output is Z(µ0) and y1, . . . , yn are as in Section B.1. The conditional mean of Z(µ0)
given y1, . . . , yn is

Eθ,u (Z(µ0)|Z(µ1), . . . , Z(µn)) = Kθ,u(µ0, Un)Kθ,u(Un, Un)
−1Yn, (21)

where Kθ,u(µ0, Un) is the 1 × n vector with component i equal to Kθ,u(µ0, µi), i = 1, . . . , n. Thus, classically, GP
prediction in regression consists in the conditional mean (also the L2 projection). We also have the well-known error
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indicator (conditional variance)

varθ,u (Z(µ0)|Z(µ1), . . . , Z(µn)) = (22)

Kθ,u(µ0, µ0)−Kθ,u(µ0, Un)Kθ,u(Un, Un)
−1Kθ,u(Un, µ0),

where we let Kθ,u(Un, µ0) = Kθ,u(µ0, Un)
⊤.

Second, consider classification, where the output is y0, such that conditionally to Z, y0 is independent from y1, . . . , yn
(defined as in Section B.2) and P(y0 = 1) = 1 − P(y0 = 0) = eZ(µ0)/(1 + eZ(µ0)). Then, as follows from instance
from Equations 3.9 and 3.10 in Rasmussen and Williams (2006), the conditional probability that y0 = 1 given y1, . . . , yn
is given by

1

κ

∫
Rn+1

gθ,u(v|Yn)gθ,u(z|v)
ez

1 + ez
dvdz.

Above, gθ,u(z|v) is the Gaussian density of Z(µ0) at z given Z(µi) = vi, i = 1, . . . , n, as obtained from (21) and (22),
κ =

∫
Rn gθ,u(v|Yn)dv and

gθ,u(v|Yn) = gN (v, 0,Kθ,u(Un, Un)) g(Yn|v),

with gN as in (19).

C PROOFS FOR SECTION 4

Proof of Proposition 4.1. Let dZ be the canonical distance on Pδ of the covariance function in (12), given by, for P,Q ∈
Pδ ,

dZ(P,Q) =
√

2F (0)− 2F
(
∥gP − gQ∥L2(U)

)
.

For ϵ > 0, let N (ϵ,Pδ, dZ) be the minimum number of dZ-balls in Pδ of radius ϵ needed to cover Pδ . From for instance
Theorem 1.1 in Adler (1990), in order to conclude the proof, it is sufficient to show that∫ ∞

0

√
log(N (ϵ,Pδ, dZ))dϵ < ∞. (23)

Let αd = ⌈d/a⌉+ 2 and sd = dαd. Proposition 3.2 yields that for P,Q ∈ Pδ ,

∥gP − gQ∥L2(U) ≤ Bd∥P−Q∥sd ,

where ∥ · ∥sd is defined in (2) and Bd is a constant not depending on ϵ. For any P and Q in Pδ , with densities p and q, we
have, with ∥ · ∥Csd (Ω) defined in (1),

dZ(P,Q) ≤
√
2A∥gP − gQ∥aL2(U)

≤
√
2ABa

d∥P−Q∥asd

=
√

2ABa
d sup

f∈Csd (Ω),∥f∥Csd (Ω)≤1

(∫
Ω

f(x)(p(x)− q(x))dx

)a/2

. (24)

For f ∈ Csd(Ω), ∥f∥Csd (Ω) ≤ 1, we can multiply f by an infinitely differentiable function that is zero on {t ∈
Ω, d(t, ∂Ω) ≤ b/2}, and one on {t ∈ Ω, d(t, ∂Ω) ≥ b} (that exists by Lemma C.1). Let us write f̃ the result of this
multiplication. Since P and Q above are in Pδ , we have∫

Ω

f(x)(p(x)− q(x))dx =

∫
Ω

f̃(x)(p(x)− q(x))dx. (25)

By taking the infinitely differentiable function the same for each f , we obtain ∥f̃∥Csd (Ω) ≤ Dd, where Dd is a constant.
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Now we consider a bounded compact hyper-rectangle R such that Ω belongs to the interior of R. Above, p and q are
summable and continuous on Ω and are zero on {x ∈ Ω, d(x, ∂Ω) ≤ b}, so we can extend them to summable continuous
functions on R, that take the value 0 on R\Ω. Let us also extend f̃ on R by taking values zero on R\Ω. We then have
∥f̃∥Csd (R) ≤ Dd, by defining ∥ · ∥Csd (R) as in (1) (replacing Ω by R).

We can thus write ∫
Ω

f̃(x)(p(x)− q(x))dx =

∫
R

f̃(x)(p(x)− q(x))dx, (26)

where we use the same notation p, q, f̃ both for the original functions on Ω and their extensions on R. The function f̃ is
sd times differentiable on R, with all the derivatives of order sd or less that cancel out on the boundary of R. Write the
hyper-rectangle R as

∏d
j=1[ℓj , uj ]. Let for i = 0, . . . , d, I(1,i)q be the function defined on R by, for i = 0, I(1,0)q = q and

for i ≥ 1, (x1, . . . , xd) ∈ R,

(I(1,i)q)(x1, . . . , xd) =

∫ xi

ℓi

(I(1,i−1)q)(x1, . . . , xi−1, t, xi+1, . . . , xd)dt.

Let for i = 0, . . . , d, I(2,i)q be the function defined on R by, for i = 0, I(2,0)q = I(1,d)q and for i ≥ 1, (x1, . . . , xd) ∈ R,

(I(2,i)q)(x1, . . . , xd) =

∫ xi

ℓi

(I(2,i−1)q)(x1, . . . , xi−1, t, xi+1, . . . , xd)dt.

We iterate like that until defining I(αd,d)q from R to R that satisfy D(α1,...,αd)I(αd,d)q = q. We define I(αd,d)p similarly.

Hence, we can apply multi-dimensional integration by part on R to obtain∫
R

f̃(x)(p(x)− q(x))dx = (−1)dαd

∫
R

(D(α1,...,αd)f̃)(x)
(
(I(αd,d)p)(x)− (I(αd,d)q)(x)

)
dx

= (−1)dαd

∫
Ω

(D(α1,...,αd)f̃)(x)
(
(I(αd,d)p)(x)− (I(αd,d)q)(x)

)
dx.

Hence going back to (24), (25) and (26), with ℓd denoting Lebesgue measure, we have

dZ(P,Q) ≤
√
2ABa

d sup
f∈Csd (Ω),∥f∥Csd (Ω)≤1

(∫
Ω

(D(α1,...,αd)f̃)(x)
(
(I(αd,d)p)(x)− (I(αd,d)q)(x)

)
dx

)a/2

≤
√
2ABa

dD
a/2
d ℓd(Ω)

a/2
∣∣∣∣∣∣I(αd,d)p− I(αd,d)q

∣∣∣∣∣∣a/2
∞

. (27)

Since p is a density function, we can show by induction that we have, for any β1, . . . , βd ∈ N with β1 ≤ α1 − 1, . . . , βd ≤
αd−1, ∥D(β1,...,βd)I(αd,d)p∥∞ ≤ max(1,maxj=1,...,d(uj−ℓj))

d(αd−1). Let Ed = max(1,maxj=1,...,d(uj−ℓj))
d(αd−1).

Define the space Cαd−1
Ed

(Ω) as the ball with the norm ∥ · ∥Cαd−1(Ω) given by (1), with center 0 and radius Ed. For ϵ > 0,
consider a ϵ-covering of this ball, with norm ∥ · ∥∞, with cardinality N . From Theorem 2.7.1 in van der Vaart and Wellner
(2013), we can select N such that

log(N) ≤ Fdϵ
−d/(αd−1),

with a constant Fd that does not depend on ϵ. For each of the N balls that contains one function of the form I(αd,d)q
where q is the density of some Q ∈ Pδ , we consider such a function I(αd,d)q. There are N ′ such functions that we write
I(αd,d)q1, . . . , I

(αd,d)qN ′ . For each P ∈ Pδ with density p, I(αd,d)p belongs to Cαd−1
Ed

and thus belongs to the same ball
as some I(αd,d)qi with i ∈ {1, . . . , N ′} and thus ∥I(αd,d)p− I(αd,d)qi∥∞ ≤ 2ϵ. Hence from (27) we have, with Qi ∈ Pδ

having density qi,
dZ(P, Qi) ≤

√
2ABa

dD
a/2
d ℓd(Ω)

a/2(2ϵ)a/2.

Hence, there are constants Gd, Hd such that for 0 < t ≤ 1,

N (t,Pδ, dZ) ≤ Gde
Hdt

−2d/a(αd−1)

.

Since d/a(αd − 1) < 1, we thus obtain that (23) holds.

Lemma C.1. Let Ω be compact and let b > 0. There exists an infinitely differentiable function that is zero on {t ∈
Ω, d(t, δΩ) ≤ b/2}, and one on {t ∈ Ω, d(t, δΩ) ≥ b}.
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Proof of Lemma C.1. Let g be an infinitely differentiable function with integral one and which support is included in the
Euclidean ball of Rd with center 0 and radius b/4. Let for r ≥ 0, Ωr = {t ∈ Ω, d(t, δΩ) ≥ r}. Consider the function h
on Rd defined by, for t ∈ Rd,

h(t) =

∫
Rd

1{x∈Ω3b/4}g(x− t)dx.

Then h is infinitely differentiable by dominated convergence. For t ∈ Ωb and x such that ∥t− x∥ ≤ b/4, then x ∈ Ω3b/4.
Hence

h(t) =

∫
Rd

g(x− t)dx = 1.

For t ∈ Ω with d(t, δΩ) ≤ b/2, and x such that ∥t− x∥ < b/4, then d(x, δΩ) < 3b/4. Hence

h(t) =

∫
Rd

0dx = 0.

This concludes the proof.

D ALGORITHMIC DETAILS FOR SECTION 5

D.1 Kernel

We use the kernel:

K(P,Q) = σ2 exp

(
−∥gPu − gQu ∥2

2l2

)
. (28)

Here the parameters are the tuple θ = (l, σ) where l > 0 is the length scale and σ > 0 the scalar variance.

For simplicity we only train a Gaussian process with zero mean function. This does not prevent the GP to reach satisfying
levels of EVS/accuracy as illustrated in the experiments.

The RBF kernel uses a similar form:

KRBF(x,y) = σ2 exp

(
−∥x− y∥2

2l2

)
. (29)

Hence the RBF kernel can be applied to vectors (or matrices representing images), but cannot handle general point clouds.

D.2 Sinkhorn’s Algorithm

Sinkhorn’s algorithm is an iterative algorithm that takes advantage of approximately good solutions. Hence, the dual
variables are re-used from one optimization step to the other. Using small steps guarantees that the initialization is not far
away from the optimum. It allows the algorithm to benefit from a significant speed-up.

D.3 L-BFGS

We apply the Limited Memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS), which is an order 2 method, to
enjoy faster convergence than order-1 methods such as Gradient Descent. The dominant cost of the algorithm is induced
by the size of the support u and by the dimension of the points xi ∈ Rd since (σ, l) ∈ R2. The total dimension of search
space is hence nd+ 2.

We select the optimal stepsize at each iteration with a zoom line search (Algorithm 3.6 of Nocedal and Wright (1999), pg.
59-61. Tries cubic, quadratic, and bisection methods of zooming).
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Number of clouds Cloud size Sinkhorn with |u| = 6 Sinkhorn with |u| = 12 MMD
n = 50 m = 100 0.009s 0.001s 0.001s
n = 100 m = 100 0.013s 0.011s 0.005s
n = 100 m = 400 0.007s 0.021s 0.055s
n = 400 m = 400 0.018s 0.059s 0.683s
n = 400 m = 625 0.026s 0.088s 1.681s
n = 1000 m = 625 0.064s 0.147s 10.834s
n = 1000 m = 1000 0.090s 0.158s 14.207s

Table 3: Runtime cost of Sinkhorn u-Kernel (ours) against MMD. The cost reported corresponds to the overall process:
computation of regularized OT plan and of the kernel for Sinkhorn u, and computation of MMD distance for MMD. Clouds
are in dimension d = 2.

D.4 Runtime Cost Against MMD

We choose the MMD distance with RBF as inner kernel:

MMD2(P,Q) = EP(KRBF(X,X′)) + EQ(KRBF(Y,Y′))− 2EP,Q(KRBF(X,Y)), (30)

with X,X′ ∼ P, Y,Y′ ∼ Q, with X, X′ Y, Y′ independent.

The MMD distance is turned into a kernel with an additional parameter σ:

KMMD(P,Q) = σ2 exp (−MMD2(P,Q)). (31)

The kernel in (31) is universal (see Theorem 2.2 of Christmann and Steinwart (2010) for example).

For a fair comparison the Sinkhorn u-Kernel and MMD kernel are benchmarked on the same hardware under ‘@jax.jit‘
compiled code to benefit from GPU acceleration.

We report runtime results in Table 3. The clouds all share the same coordinates (but not the same weights). The pairwise
distances between points of the clouds are pre-computed to speed-up both MMD and Sinkhorn iterations. We notice that
Sinkhorn takes advantage of pre-computing the low dimension embeddings in dimension |u| = 6, independent of the
cloud size. We chose ϵ = 10−2 as regularization parameter. The points u are sampled uniformly in the square [0, 1]2,
while points from the clouds Pi are a discretization of the square [0, 1]2 with equally spaced coordinates. Our Sinkhorn
u-kernel shows a speed-up of up to a factor 100 compared to the MMD one.

E RESULT DETAILS FOR SECTION 5

E.1 Visualizing Dual Variables

In Figure 4 we introduce an example with two distributions P and Q obtained by taking finite samples from isotropic
Gaussians. For P we sample 30 points from N ([−2,−2], 0.4) and for Q we sample 50 points from N ([−1, 1], 0.3). We
choose for u a finite sample of size 120 from the unit ball B(0, 1).

We plot both the distributions and the values taken by gP and gQ respectively, by sorting dual variables arbitrarily by
increasing error of |gPi − gQi |.

E.2 Dependence on Dimension

In figure 5 we illustrate the dependence of the dimension of ambient space d on the convergence speed. The reference
measure u is chosen to be 128 points sampled uniformly in unit ball. The task consists of m ∼ U([100; 200]) sampled at
random from a Gaussian whose center is also sampled uniformly at random in range µi ∼ U([−10, 10]). The regression
task is the prediction of the mean Yi = µi of each Gaussian from the finite sample. We use a Support Vector Regression
machine (SVR) to perform the task. We report the Normalized mean Square Error by dividing by the dimension d to allow
fair comparison on the same scale. We see that convergence speed is similar.
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Figure 4: Vizualization of dual variables gP and gQ. For P we sample 30 points from N ([−2,−2], 0.4) and for Q we
sample 50 points from N ([−1, 1], 0.3). We chose for u a finite sample of size 120 from the unit ball B(0,1).

Figure 5: Normalized Mean Square Error as function of dimension d and train set size n for the synthetic task of predicting
the mean µi ∼ U([−10, 10]) of a Gaussian from finite sample of size m ∈ [100; 200].
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Figure 6: Plot of the dual variables gPu for 5 × 4 = 20 distributions Pi from the toy example of Section 5.1. The position
of the center of each “blob” (i.e. mean of the Gaussian) can be clearly seen by looking at the dual variables.

Figure 7: Evolution of xi’s and wi’s for u in the “sneakers” versus “sandals” task.

E.3 Toy Dataset

All clouds are centered and rescaled so the overall dataset (obtained by merging all clouds) has zero mean and unit variance
across all dimensions.

We study a discretization of u in the experiment of Section 5.1. We choose u to be a discretization of the input space [0, 1]2

as a 50 × 50 grid. The density is chosen uniform over this discretization of 2500 points. Hence each regularized optimal
transportation plan is between a Gaussian and an uniform measure over the square [0, 1]2. In this case the dual variable gPu
can be visualized as an image in definition 50× 50.

For 20 train examples, we plot the images gPu in Figure 6. We see that all those images appear “blurry”, which shows the
role of regularization in OT. Moreover those images seem to correspond to a “blob” whose coordinates correspond to the
ones of the clouds Pi. This figure helps to understand what the dual variables exactly look like in toy examples.

E.4 Mnist and Fashion-Mnist Datasets

For RBF kernel, the images are normalized so that the pixel intensity lies in [0, 1] range.

Figure 7 illustrates the evolution of xi’s and wi’s for u in the case of an image of shoe from Fashion-Mnist.
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Figure 8: Mnist images with random affine transformations: translation uniformly at random in range [−6, 6] pixels.

Dataset u-Sinkhorn (ours) RBF Sliced Wasserstein (as reported by Kolouri et al. (2016))
UIUC Textures 87.2 87.3 88± 1

Mnist (1300 examples) 92.50 92.46 N/A

Table 4: Validation accuracy of C-SVM with different kernels on GLCM embeddings of UIUC texture dataset (Lazebnik
et al., 2005), and 1300 example of Mnist (10 classes), with 5 folds cross-validation.

E.4.1 Sensivity to Random Affine Transformations

In Figure 8 we plot a set of Mnist images on which random affine transformations have been applied. We follow the
protocol of Meunier et al. (2022) and we sample a translation uniformly at random in range [−6, 6] pixels, and a rotation
uniformly at random in range [−π

3 ,
π
3 ] rads.

In Figure 9 we study the influence of random affine transformations in dual variable space gPu , versus pixel space. In this
experiment the reference measure u is chosen to have full support in dimension 28 × 28 = 784. The reference measure
is chosen uniform on the pixel space. The images are processed as clouds of 28 × 28 = 784 pixels in dimension 2. The
regularization factor is chosen to be ϵ = 10−2.

We see that dual variables are less sensitive to translations than pixels. In the third row of Figure 9 the dual variables are
modified in a way that hints the direction and amplitude of translation, whereas in the fourth row the translation in pixel
space has major consequences on the image and exhibits a huge Euclidean norm. This shows that µ Sinkhorn dual variables
are better tailored to handle translates than conventional Euclidean metrics, thanks to the properties of OT in translations.

E.5 C-SVM Results

E.5.1 UIUC Dataset

We report here the results of classification with C-SVM on the University of Illinois Urbana Champaign (UIUC) texture
dataset (Lazebnik et al., 2005), using the same protocol as Kolouri et al. (2016). Samples are shown in Figure 10. The
dataset contains 25 different classes of texture on a total of 1000 images (only 40 images per class).

The Gray Level Co-occurrences Matrices (GLCM) is computed with the Scikit-image library (Van der Walt et al., 2014).
The images are illustrated in Figure 11. The parameter γ of the SVM is obtained by following the “scale” policy of Scikit-
learn library, applied on normalized features. We apply a grid search in logspace on the parameter C of SVM, ranging
from 10−1 to 103. The optimal parameter is selected by the highest average accuracy in 5-fold cross validation.

We compare the result against the RBF kernel applied to the raw (unprocessed) pixels. The results are reported in Table 4.
We see that the RBF kernel and our kernel have similar accuracies. We note that our implementation of the RBF kernel
provides an higher accuracy for it than the one reported in Kolouri et al. (2016).
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Figure 9: Visualization of translations on dual variables for an Mnist image for |u| = 28 × 28 = 784. Top row: original
image x with different affine transformations x̃. Second row: Dual variables of translated images g(x̃). Third row: pixel-
wise difference between the dual variables of original (non modified) image and translated images g(x) − g(x̃). Fourth
row: pixel-wise difference between original image and translated image x− x̃, in pixel space. We see that any translation
has major impact in the pixel space, but only mild consequences in the dual variables space. Moreover the map g(x)−g(x̃)
hints the nature of the translation, whereas x− x̃ is harder to interpret.

Figure 10: Random samples from the UIUC texture dataset.
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Figure 11: Gray Level Co-occurrences Matrix (GLCM) of random samples of UIUC texture dataset, which can be re-
normalized into a discrete 2D distribution.

E.5.2 Mnist C-SVM

We choose a measure u with full support as in Section E.4. We select 1300 examples at random in the Mnist train set
from all 10 classes, and we apply the protocol of Section E.5.1. The results of the best estimator found with 5 fold cross-
validation are reported on an independent test set of size 1000 in Table 4. Again, we have similar results as the RBF
kernel.

E.6 Hardware and Code

All the experiments were run on the publicly available GPU Colab hardware.

The code can be found on an anonymous repository: https://anonymous.4open.science/r/
SinkhornMuGP-D37E/README.md.

https://anonymous.4open.science/r/SinkhornMuGP-D37E/README.md
https://anonymous.4open.science/r/SinkhornMuGP-D37E/README.md
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