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Abstract

A neural networks-based stagewise decomposi-
tion algorithm called Deep Value Function Net-
works (DVFN) is proposed for large-scale multi-
stage stochastic programming (MSP) problems.
Traditional approaches such as nested Benders
decomposition and its stochastic variant, stochas-
tic dual dynamic programming (SDDP) approxi-
mates value functions as piecewise linear convex
functions by gradually accumulating subgradient
cuts from dual solutions of stagewise subprob-
lems. Although they have been proven effective
for linear problems, nonlinear problems may suf-
fer from the increasing number of subgradient
cuts as they proceed. A recently developed algo-
rithm called Value Function Gradient Learning
(VFGL) replaced the piecewise linear approxima-
tion with parametric function approximation, but
its performance heavily depends upon the choice
of parametric forms like most of traditional para-
metric machine learning algorithms did. On the
other hand, DVFN approximates value functions
using neural networks, which are known to have
huge capacity in terms of their functional repre-
sentations. The art of choosing appropriate para-
metric form becomes a simple labor of hyperpa-
rameter search for neural networks. However,
neural networks are non-convex in general, and
it would make the learning process unstable. We
resolve this issue by using input convex neural net-
works that guarantee convexity with respect to in-
puts. We compare DVFN with SDDP and VFGL
for solving large-scale linear and nonlinear MSP
problems: production optimization and energy
planning. Numerical examples clearly indicate
that DVFN provide accurate and computationally
efficient solutions.
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1 INTRODUCTION

Sequential decision-making problems under uncertainty are
addressed with various theories including stochastic control,
reinforcement leaning (RL), and multistage stochastic pro-
gramming (MSP). Stochastic control usually tries to find
and analyze analytic solutions based on carefully defined
random variables and their dynamics in a continuous-time
setting. On the other hand, both RL and MSP approximate
the problem and underlying uncertainties within a discrete-
time setting. RL learns in a trial-and-error manner mostly in
discretized state and action spaces, while MSP is based on
mathematical formulations that represent every consequence
of actions that are usually continuous. Therefore, RL would
be more suitable when the environment can be simulated,
and MSP would be suitable when the environment can be
well represented by mathematical formulas.

In this paper, we focus on the latter case (i.e., MSP), where
production optimization, hydropower production planning,
and asset liability management (Shiina and Birge, 2003;
Carino et al., 1994; Fleten and Kristoffersen, 2008) are typi-
cal examples. MSP incorporates the uncertain environment
via scenario trees that approximates the underlying stochas-
tic process by a set of finite scenarios with discretized time
points. Then, the original stochastic problem can be trans-
formed into a single large deterministic equivalent problem.
However, deterministic equivalent problems often become
computationally intractable because the number of scenarios
increases exponentially as the number of stages and/or the
number of nodes per stage increase. So called “the curse of
dimensionality” is a critical drawback of MSP when dealing
with large-scale problems.

Various decomposition-based algorithms are proposed to
resolve the curse of dimensionality of large-scale MSP prob-
lems. There are mainly two types of decomposition algo-
rithms: stagewise and scenario decomposition. They have
different approaches to handle nonanticipativity constraints,
which make sure that decisions are made without anticipat-
ing what is going to happen in the future.

For the stagewise decomposition approach, stochastic pro-
grams are broken down into stagewise subproblems and
they are sequentially solved. For each subproblem, the ef-
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fect of immediate decision on later stages is reflected by the
“value function”. Even for a simple problem, it is extremely
difficult to find the exact explicit form of the value function.
Thus, the main goal of stage decomposition methods is to
approximate the value function as accurately and efficiently
as possible. The most popular stagewise decomposition al-
gorithm would be the stochastic dual dynamic programming
(SDDP) (Pereira and Pinto, 1991), which is an extension of
nested Benders decomposition. Here, value functions are
approximated as piecewise linear convex functions, which
are constructed gradually based on the dual solution of each
subproblem. While the SDDP is guaranteed to converge
to the optimal solution under mild conditions, its compu-
tational time increases every iteration because the size of
piecewise linear approximation increases monotonically.

For the scenario decomposition approach, stochastic pro-
grams are decomposed scenario-wise, and thus, the nonan-
ticipativity constraint can be relaxed within each subprob-
lem. Such decomposition algorithms include the dual de-
composition algorithm (Carøe and Schultz, 1999) and pro-
gressive hedging (Rockafellar and Wets, 1991) which have
been widely adopted for various large-scale stochastic pro-
grams (Triki et al., 2005; Berg et al., 2014; Fadda et al.,
2019). However, in order to obtain solutions that satisfy
the nonanticipativity constraints after combining subprob-
lems, every scenario should be considered at every iteration.
Therefore, the scenario decomposition methods would be
inefficient for extremely large-scale MSP problems.

A recently proposed stagewise decomposition algorithm
called “value function gradient learning” (VFGL) (Lee et al.,
2022) approximates the value function within a predeter-
mined parametric function form. It learns parameters by
using the gradient information of the true value function
as in SDDP. Since the value function is approximated with
a fixed parametric form, the size of subproblems remains
almost constant at every iteration. Thus, VFGL is compu-
tationally stable, even for large iterations. However, the
performance of VFGL is heavily dependent upon the choice
of parametric form, and it affects the convergence to the
optimality. This is a common problem for most parametric
machine learning models, and the choice of good parametric
form is often regarded as an "art".

In this paper, we propose a neural networks based stage-
wise decomposition algorithm called “deep value function
network” (DVFN), which replaces the parametric approxi-
mation of VFGL using neural networks. Given neural net-
works’ extreme capability in function approximation, users
do not need an artistic sense of choosing the appropriate
functional form. Instead, DVFN requires an ordinary hyper-
parameter search for neural networks. Just like parametric
machine learning models have evolved into deep learning
models, algorithms for stochastic optimization are evolving
in the same direction. One concern would be that neural
networks are non-convex with respect to inputs in general,

and it would severely disturb the stability of the stagewise
decomposition. Hence, DVFN uses input convex neural
networks (Amos et al., 2017) which are scalar-valued neural
networks that are always convex functions with respect to
the inputs. The approximation of value function of SDDP,
VFGL, and DVFN are illustrated in Figure 1.

Here we note the difference between DVFN and the Neural
SDDP (ν-SDDP) proposed by Dai et al. (2021) and Neural
Two-stage Stochastic Programming (Neur2SP) proposed by
Dumouchelle et al. (2022). While ν-SDDP and Neur2SP
also use neural networks to extend stochastic programming,
but its purpose is clearly different from DVFN (and SDDP
and VFGL as well). They both learns how to solve a specific
MSP problem from a large number of actual runs of SDDP
or 2SP. They are useful when MSP problems with a fixed
form are needed to be solved over and over again with
slightly changing settings. This can happen in practice
when a problem should be solved on a daily basis or when
a problem needs to be solved for each of a large number
of customers. Of course, if one wants to solve a different
type of problem (e.g., different set of constraints, different
number of decision variables), ν-SDDP and Neur2SP need
to be trained again with a large number of SDDP or 2SP
runs. Therefore, in terms of solving an arbitrary stochastic
programming problem, ν-SDDP and Neur2SP would be
extremely inefficient, and thus, it would not be appropriate
to directly compare ν-SDDP or Neur2SP with SDDP, VFGL,
and DVFN.

The remainder of the paper is organized as follows. First, we
provide the background of SDDP and VFGL with problem
formulations in Section 2. DVFN is derived in Section 3.
Input convex neural networks, quasi-Newton based primal-
dual algorithm, and stopping criterion are described. Sec-
tion 4 provides numerical experiments that compare SDDP,
VFGL and DVFN approaches for solving large-scale produc-
tion optimization and hydrothermal scheduling problems.
Finally, Section 5 concludes the paper.

2 PRELIMINARY

We begin by formally defining the multistage stochastic pro-
gramming problem. Then, we will briefly introduce SDDP
and VFGL before presenting DVFN in the next section.

2.1 Problem Setting

We consider a sequential decision-making problem with
multiple time periods where the stochastic process that gov-
erns underlying uncertainties is gradually observed. Denote
the stochastic process as ξ[T ] = (ξ1, . . . , ξT ) and the deci-
sion process x[T ] = (x1, . . . , xT ) where ξ1 is deterministic
and xt ∈ Rnt . Here, it is assumed that each ξt has finite
moments and that each xt is determined with only the infor-
mation up to time t. Specifically, the two processes proceed
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Figure 1: Construction of approximation in each algorithm

alternately according to the following sequence (Shapiro
et al., 2021):

x1 ⇝ ξ2 ⇝ x2 ⇝ . . .⇝ ξT ⇝ xT

A nested formulation of T -stage stochastic program is as
follows.

min
x1∈X1

f1(x1) + E[ min
x2∈X2(x1,ξ2)

f2(x2, ξ2) (1)

+ E·|ξ[2] [. . .+ E·|ξ[T−1]
[ min
xT∈XT (xT−1,ξT )

fT (xT , ξT )]]]

where E·|ξ[t] is the conditional expectation with respect
to ξ[t], ft(xt, ξt) is a convex objective function in xt,
and Xt(xt−1, ξt) is a convex feasible region for xt given
xt−1 and ξt. Specifically, the feasible region is an in-
tersection of sublevel sets of convex functions and hy-
perplanes, which is expressed as Xt(xt−1, ξt) = {xt :
gt,i(xt, ξt) ≤ −ht,i(xt−1, ξt), i = 1, . . . , pt} ∩ {xt :
lt,j(xt, ξt) = bt,j(xt−1, ξt), j = 1, . . . , qt}, where gt,i is
a twice-differentiable convex function in xt, lt,j is a linear
function in xt, ht,j is a twice-differentiable convex function
in xt−1 and bt,j is a linear function in xt−1.

The usual MSP approach solves (1) by constructing a large
deterministic equivalent convex optimization problem with a
scenario tree which approximate the stochastic process ξ[T ]

with finite realization. However, the constructed problem
often becomes intractable, and thus, stagewise decomposi-
tion algorithms decompose the problem into the following
stagewise subproblems.

For t = 1,
min
x1∈X1

f1(x1) + V2(x1)

For t = 2, . . . , T ,

min
xt∈Xt(xt−1,ξt)

ft(xt, ξt) + Vt+1(xt, ξ[t]) (2)

where the value function Vt is recursively defined by the
following Bellman Equation.

For t = T, . . . , 2,

Vt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{ft(xt, ξt) + Vt+1(xt, ξ[t])}

Vt+1(xt, ξ[t]) = E·|ξ[t] [Vt+1(xt, ξ[t+1])] (3)

with VT+1 = 0.

Most stagewise decomposition algorithms make the follow-
ing assumptions.

1) Stagewise independence: For stage t = 1, . . . , T − 1,
ξt+1 is independent of ξ[t]

2) Relatively complete recourse: For stage t = 2, . . . , T
for any previous stage solution xt−1, and for any obser-
vation ξt, the feasible region Xt(xt−1, ξt) is bounded
and nonempty.

If ξt+1 is independent of ξ[t], the conditional expectation
operator in (3) becomes redundant, i.e. Vt+1(xt, ξ[t]) does
not depend on ξ[t]. Therefore, Vt+1(xt, ξ[t]) is equivalent to
Vt+1(xt)

2.2 Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP) (Pereira
and Pinto, 1991) is one of the most popular stagewise de-
composition methods for large-scale multistage stochastic
programming problems. SDDP solves (2) by approximating
Vt as a convex piecewise linear function based on Benders
decomposition. Each iteration of SDDP consists of forward
and backward pass.

In forward pass starting from t = 0, trial solutions of each
stage are obtained by solving stagewise subproblems using
current approximation of future value function Vt+1. Specif-
ically, for the n-th iteration of stage t with sample ξst , a trial
solution xt can be obtained as follows.

xt = argmin
xt∈Xt(xt−1,ξst )

ft(xt, ξ
s
t ) + V n

t+1(xt)

Here, V n
t+1 is the current approximation of value function

Vt+1 which is expressed as

V n
t+1(xt) = max

k=1,...,n
{(βk

t+1)
⊤xt + αk

t+1}

where βk
t+1 and αk

t+1 are calculated from backward pass.
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Then, we can transform the stage t subproblem into an
equivalent form without value function Vt+1 as

min
xt∈Xt(xt−1,ξst )

ft(xt, ξ
s
t ) + θt+1

s.t − (βk
t+1)

⊤xt + θt+1 ≥ αk
t+1, k = 1, . . . , n

In backward pass starting from t = T , the approximated
value function V n

t is updated by adding linear cut (lin-
ear constraints) derived from optimal solutions of stage
t subproblem. Specifically, for the n-th iteration of stage
t with sample ξst , the approximated value function V n

t is
updated into V n+1

t using primal and dual optimal solutions
(x∗t , u

∗
t , v

∗
t ) of the stage t subproblem as follows.

V n+1
t (xt−1) = max{V n

t (xt−1), (β
n+1
t )⊤xt−1 + αn+1

t }

where

βn+1
t =

1

S

S∑
s=1

(

pt∑
i=1

u∗t,i∇xt−1
ht,i(xt−1, ξ

s
t )

+

qt∑
j=1

v∗t,j∇xt−1
bt,j(xt−1, ξ

s
t ))

αn+1
t =

1

S

S∑
s=1

ft(x
∗
t , ξ

s
t ) + V n

t+1(x
∗
t )

2.3 Value Function Gradient Learning

Value Function Gradient Learning (VFGL) (Lee et al., 2022)
is a gradient-learning based algorithm for large-scale mul-
tistage stochastic programming problems. The main idea
of VFGL is to approximate the value function Vt(xt−1) as
a specific parametric convex function V̂t(xt−1, θt) instead
of piecewise linear functions as in SDDP. It finds parameter
θt by matching the gradient of the parametric function to
that of the true value function by utilizing the duality of
optimization problems (Boyd et al., 2004). More specif-
ically, it can utilize a stochastic gradient descent type of
algorithm to minimize the difference between the gradients
of the parametric function and the true value function.

As in many parametric machine learning models, it is crucial
to choose an appropriate parametric function form for the
model to perform well. Lee et al. (2022) suggested that the
indefinite integral form of the stagewise objective function
would be a good candidate to start with. They showed that
a sufficiently good optimal solution can be obtained if an
appropriate parametric function form is used.

3 DEEP VALUE FUNCTION NETWORKS

Although VFGL has many computational advantages for
solving large-scale multistage stochastic optimization prob-
lems, it requires an appropriate choice of convex parametric

family to approximate the value function. Even a person
familiar with the structure of the optimization problem, find-
ing an appropriate parametric form is extremely difficult and
new parameter form must be set for other types of problems.
As in many other parametric machine learning algorithms,
choosing the right parametric form is very tricky. To over-
come this limitation, DVFN replaces parametric function
approximations of VFGL by approximations via neural net-
works.

Both DVFN and VFGL approximate value functions by
using their gradient information. More specifically, the
gradient learning approach is motivated from the Karush-
Kuhn-Tucker (KKT) conditions (Boyd et al., 2004). The
KKT conditions are necessary conditions for optimization
problems with differentiable objective and constraint func-
tions that achieve strong duality, but they become sufficient
conditions for convex optimization problems. Consider a
stage t subproblem of (2) where Vt+1(xt) is replaced by
approximation V̂t+1(xt, θt+1).

min
xt∈Xt(xt−1,ξt)

ft(xt, ξt) + V̂t+1(xt, θt+1) (4)

Then its KKT conditions are as follows.

1) Stationarity:

∇xt
ft(xt, ξt) +∇xt

V̂t+1(xt, θt+1)

+

pt∑
i=1

ut,i∇xt(gt,i(xt, ξt) + ht,i(xt−1, ξt))

+

qt∑
j=1

vt,j∇xt
(lt,j(xt, ξt)− bt,j(xt−1, ξt)) = 0

2) Primal and dual feasibility: For i = 1, . . . , pt, j =
1, . . . , qt,

gt,i(xt, ξt) ≤ −ht,i(xt−1, ξt)

lt,j(xt, ξt) = bt,j(xt−1, ξt), ut,i ≥ 0

3) Complementary slackness: For i = 1, . . . , pt,

ut,i∇xt(gt,i(xt, ξt) + ht,i(xt−1, ξt)) = 0

Let (x̂∗t , û
∗
t , v̂

∗
t ) be a solution to the KKT conditions. Then it

is the optimal solution to the stage t subproblem, in which Vt
is replaced by V̂t. Since the approximated problem has the
same set of constraints, (x̂∗t , û

∗
t , v̂

∗
t ) still satisfies the primal

feasibility, dual feasibility and complementary slackness of
original problem, while left side of the stationarity condition
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become

∇xt
ft(x̂

∗
t , ξt) +∇xt

Vt+1(x̂
∗
t )

+

pt∑
i=1

û∗t,i∇x̂∗
t
(gt,i(x̂

∗
t , ξt) + ht,i(xt−1, ξt))

+

qt∑
j=1

v̂∗t,i∇x̂∗
t
(lt,j(x̂

∗
t , ξt)− bt,j(xt−1, ξt))

= ∇xt
Vt+1(x̂

∗
t )−∇xt

V̂t+1(x̂
∗
t , θt+1)

Given this insight, DVFN approximates the value function
with neural networks by minimizing the squared sum of
gradient error of each stagewise subproblem expressed as
∥∇xt

Vt+1(x̂
∗
t )−∇xt

V̂t+1(x̂
∗
t , θt+1)∥2. Note that Lee et al.

(2022) showed for VFGL that the approximated solution
(x̂∗t , û

∗
t , v̂

∗
t ) converges to the true optimal solution as this

error term approaches zero, and this can be directly applied
to DVFN with input convex neural networks as well.

3.1 Input Convex Neural Networks

It is well known that any continuous function can be closely
approximated by neural networks from the universal ap-
proximate theorem (Cybenko, 1989; Hornik et al., 1989;
Funahashi, 1989). However, for stability of the algorithm,
it is necessary to keep the neural networks convex to the
input, since the value function Vt+1 in Problem (2) is convex
under mild conditions (see Appendix A for proof). We stabi-
lize DVFN algorithm by using input convex neural networks
(ICNN) that have special network architecture to ensure con-
vexity with respect to inputs. To ensure convexity, certain
constraints on weights and activation functions are required.
In Appendix E, we compare the performance of DVFN
with plain feedforward networks and DVFN with ICNN. It
clearly indicates that maintaining the convexity of neural
networks is actually helpful for the algorithm convergence.

Amos et al. (2017) proposed two kind of ICNNs, fully input
convex neural networks (FICNN) and partially input convex
neural networks (PICNN). Since we need the convexity
with respect to the entire input space, FICNN is used. For
i = 0, . . . , l − 1, FICNN is described by

yi+1 = gi(W
(y)
i yi +W

(x)
i x+ bi), F (x, θ) = yl

where x is the input features, yi+1 denotes the output of the i-
th layer (with y0,W

(y)
0 = 0), θ = {W (y)

0:l−1,W
(x)
1:l−1, b0:l−1}

are weights of networks, gi are activation functions, and F
denotes FICNN. All weights W (y)

0:l−1 are constrained to be
non-negative, and all activation functions gi’s are restricted
to be non-decreasing and convex. Then, the output yi is
convex with respect to the input features x. The convexity
of FICNN follows from basic properties that non-negative
sums of convex functions and compositions of a convex
function and a convex non-decreasing function are also
convex. Notable difference compared to vanilla feedforward

neural networks is that ‘pass-through (or skip)’ connections
from the input layer to hidden layers are introduced. That
is, yi depends on the input x as well as the output of the
previous layer yi−1.

3.2 Primal-dual interior point method with ICNN

Consider the stage t subproblem of Problem (4) where
V̂t+1(xt, θt+1) is represented by FICNN. This subprob-
lem can be solved by the primal-dual interior point method
(Wright, 1997). The perturbed KKT conditions are given as
follows.

rdual = ∇ft(xt, ξt) +∇V̂t+1(xt, θt+1)

+∇gt(xt, ξt)ut +∇lt(xt, ξt)vt = 0,

rcent = Ut(gt(xt, ξt) + ht(xt−1, ξt)) + τ1 = 0,

rprim = lt(xt, ξt)− bt(xt−1, ξt) = 0,

gt(xt, ξt) ≤ −ht(xt−1, ξt), ut > 0

where ∇gt(xt, ξt) = [∇gt,1(xt, ξt), . . . ,∇gt,pt(xt, ξt)],
∇lt(xt, ξt) = [∇lt,1(xt, ξt), . . . ,∇lt,qt(xt, ξt)] and Ut =
diag(ut). The perturbed KKT conditions , which are non-
linear equations, can be solved by approximating them
into linear equations using the Newton’s method. Define
GHt = diag(gt(xt, ξt)+ht(xt−1, ξt)) and r(xt, ut, vt) =
[rdual, rcent, rprim]⊤.

Then, the first order Taylor approximation of r(xt +
∆xt, ut +∆ut, vt +∆vt) is

r(xt +∆xt, ut +∆ut, vt +∆vt)

≈ r(xt, ut, vt) +∇r(xt, ut, vt)

∆xt∆ut
∆vt

 ,
and we can find (∆xt,∆ut,∆vt) by solving

∇r(xt, ut, vt)

∆xt∆ut
∆vt

 = −r(xt, ut, vt).

The primal-dual interior point method finds the optimal
solution by gradually updating the primal and dual solu-
tion using ∆xt, ∆ut, and ∆vt. The step size γ for the
update can be determined by the backtracking line search.
However, calculating the Hessian∇2V̂t+1 of FICNN is com-
putationally expensive. Thus, we approximate the Hessian
with a matrix Bt and updated it using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update (Fletcher, 1987). In BFGS
update, Bt is initialized with an identity matrix and updated
by the rule

Bt ← Bt −
Btsts

⊤
t Bt

s⊤t Btst
+
yty

⊤
t

y⊤t st

where yt = ∇V̂t+1(x
+
t )−∇V̂t+1(xt), and st = x+t −xt =

γ∆xt.
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3.3 Sobolev training and loss function

When approximating a function with neural networks, the
loss function is usually designed to make the neural net-
works to output a value that is close to the value of the
target function for a given input. However, VFGL and
DVFN approximates value functions based on their gradi-
ent information, not outputs, so the loss function should
incorporate the difference between the gradient of FICNN
and that of the target function. Czarnecki et al. (2017) pro-
posed the Sobolev training, which approximates not only
the output of the function but also its gradient. Specifi-
cally, suppose that when learning a function F from input
xi, we know not only the function value F (xi) but also
the j-th order derivative ∇jF (xi). In other words, typi-
cal training data pairs {(xi, F (xi))}Ni=1 can be extended to
{(xi, F (xi),∇F (xi),∇2F (xi), . . . ,∇KF (xi))}Ni=1. For
our problem, the Sobolev training objective would be to
minimize

N∑
i=1

[L(F̂ (xi, θ), F (xi)) +

K∑
j=1

Lj(∇jF̂ (xi, θ),∇jF (xi))]

where F̂ (x, θ) is FICNN parameterized by θ, and Lj is a
loss function for the j-th order derivative. Czarnecki et al.
(2017) showed that minimizing this loss function is effective
for complex learning. Since DVFN considers only the first
order derivative information, we use Sobolev training with
K = 1 without L, while L1 is set as the typical mean-square
error loss function.

3.4 Stopping criterion

The convergence of weights of FICNN can be used as
the stopping criterion of DVFN. In particular, the total
weight change in the i-th iteration can be defined as ∆θi =∑T

t=2 ∆θ
i
t, where ∆θit = ∥θit − θi−1

t ∥ is the change of
weights of V̂t+1 in the i-th iteration. One can conclude that
the DVFN converges when ∆θi becomes sufficiently small.

The entire procedure of DVFN is presented in Algorithm 1.

4 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments. Two
popular problems in optimization community are consid-
ered: production optimization and energy planning. Note
that these two problems can be easily extended to many
other operations research problems. Both are formulated
as convex multistage stochastic programs. Each problem is
solved using four different approaches: MSP, SDDP, VFGL,
and DVFN. Here, we used a large-scale scenario tree for
the MSP approach without considering computational cost
so that it can provides a benchmark solution. Hence, we
can see the optimality of the solutions from SDDP, VFGL,
and DVFN by comparing them with the solution from MSP.

Algorithm 1 Deep Value Function Networks

Require: N (maximum iteration), S (sample size), ε (stop-
ping threshold), V̂t+1 for t = 1, . . . , T − 1 (ICNNs)

Ensure: i ← 1 (iteration counter), ∆θi ← ∞ (total theta
update level)
while ∆θi > ε and i < N do

∆θi ← 0
for t = 1, . . . , T do

if t = 1 then
Solve stage 1 subproblem 2
and save optimal solution xi1

else if t > 1 then
Sample random variables ξst for s = 1, . . . , S
for s = 1, . . . , S do

Solve stage t subproblem 2
and sample∇xt−1

Vt(xt−1, ξ
s
t )

end for
Train V̂t with sample (xit−1,∇xt−1Vt(xt−1))

and save xit for random sample ξs
′

t

∆θi ← ∆θi + ∥θi+1
t − θit∥

end if
end for
i← i+ 1

end while

For VFGL, we use three different types of parametric forms
(exponential, quadratic, and linear) so that we can see the
performance change depending on the choice of paramet-
ric form. The hyperparameters for FICNN in DVFN are
tuned as in Schalbetter (2020). More details are shown in
Appendix D. All the experiments were done using an Intel
i5-9400F processor with 64 GB of RAM and GeForce RTX
3070. 1.

We compare algorithms based on three aspects: objective
function value, first stage solutions, and computation time.
We present averaged values and their standard errors after
20 repeated experiments.The purpose of the algorithms is to
obtain an objective function value that is as close as possible
to that of MSP (oracle) with low computational cost. In
MSP studies, first stage solutions are often analyzed in
detail, because they are the solutions that would be actually
deployed when MSP is used for real-world decision-making
problems.

4.1 Production optimization

We consider an 11-stage factory production optimization
problem with 3 scenario branches, in which the objective is
to determine the optimal production amount of three prod-
ucts at each stage to satisfy random demands while mini-
mizing the sum of manufacturing, delivery, and inventory

1Codes for DVFN and all of our experiments can be found at:
https://github.com/HyunglipBae/DVFN

https://github.com/HyunglipBae/DVFN
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(a) SDDP (b) VFGLexp (c) DVFN

Figure 2: First stage decisions of different algorithms for production optimization for each iteration

(a) SDDP (b) VFGLexp (c) DVFN

Figure 3: First stage decisions of different algorithms for energy planning for each iteration

Table 1: Performance comparisons of algorithms for pro-
duction optimization

Algorithm Objective Production 1 Production 2 Production 3 Time (s)

MSP 210 1.00 0.00 1.50 10215
SDDP 210 (0.30) 1.00 (0.00) 0.00 (0.00) 1.05 (0.01) 1074 (4.67)
VFGLexp 210 (0.00) 0.99 (0.00) 0.00 (0.00) 1.03 (0.01) 798 (3.73)
VFGLquad 217 (0.00) 1.99 (0.00) 0.00 (0.00) 0.00 (0.00) 774 (1.13)
VFGLlinear 219 (0.00) 0.50 (0.49) 0.00 (0.00) 0.00 (0.00) 551 (2.66)
DVFN 210 (0.14) 0.99 (0.00) 0.00 (0.00) 1.45 (0.01) 574 (1.36)

costs. Variants of this problem has been extensively studied
in various literature (e.g.(Wagner and Whitin, 1958; Shapiro,
1993; Karimi et al., 2003)). The formulation and details of
decision variables and parameters are in Appendix B.1.

In VFGL, the following parametric form was used to reflect
the insight that the optimal solution would create nonempty
storage to avoid outsourcing and that the disutility of storage
would increase at a certain point.

V̂t(st−1, θt = (θ1t , θ
2
t )) = st−1θ

1
t +

3∑
i=1

e−θ2
t,ist−1,i

where θ1t , θ2t ∈ R3. In this paper, the solutions from VFGL
with following other parametric form are also compared.

V̂ quad
t (st−1, θt = (θ1t , θ

2
t )) = st−1θ

1
t + s2t−1θ

2
t

V̂ linear
t (st−1, θt = (θ1t , θ

2
t )) = st−1θ

1
t

The results are presented in Figure 2 and Table 3. First,
Table 3 summarizes the average performances of SDDP,
VFGL, and DVFN after 20 repeated experiments, where val-
ues in parentheses are standard errors. We can see that there
is no substantial difference in objective values between dif-
ferent algorithms except for VFGL with linear and quadratic
parametric form. It shows that VFGL may severly under-
perform when a bad parametric form is chosen. DVFN and
VFGLexp achieve almost the same objective values with the
benchmark (MSP). However, we can see that the standard
error of DVFN is slightly larger than VFGLexp but smaller
than SDDP. As for first stage solutions, DVFN is closest to
MSP. SDDP and VFGLexp generate quite different from
MSP, but considering the objective value, the seem to be
another optimal solution. Also, Figure 2 shows that DVFN
finds optimal solutions in a quite stable way compared to
SDDP and VFGL. There are more fluctuations in solutions
in SDDP and VFGL. Also, for computation time, we can see
that DVFN is much better than MSP, SDDP. In particular,
although VFGL requires a fixed parametric form, DVFN is
slightly better than VFGL. Overall, we can say that DVFN
can achieve quality solution with reasonable computation
time without specifying any parametric form in advance.
Time elapsed per iteration scaled by first iteration time are
presented in Figure 4a. The computation time of SDDP in-
creases almost linearly with the number of iterations. How-
ever, DVFN exhibits almost constant computation time over
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all iterations. Similar results can be obtained with different
parameters and more number of stages, which are presented
in Appendix C.1.

4.2 Energy planning

We consider a 15-stage energy planning problem with 2
scenario branches, in which the objective is to determine
optimal hydro and thermal electricity generation levels to
satisfy deterministic demand while minimizing the sum of
expected cost for electricity production and the penalty from
the reservoir level. This example is a slightly simplified
version of Guigues (2014). The formulation and details of
decision variables and parameters are in Appendix B.2.

In VFGL, the following parametric form was used to cap-
ture the cost reduction by increasing the portion of hydro
generation and the decreased disutility from the increased
reservoir level.

V̂t(r
final
t−1 , θt = (θ1t , θ

2
t )) = θ1t r

final
t−1 + e−θ2

t r
final
t−1 +bt

where θ1t , θ2t ∈ R. In this paper, the solutions from VFGL
with following other parametric forms are also compared.

V̂ quad
t (rfinalt−1 , θt = (θ1t , θ

2
t )) = θ1t r

final
t−1 + θ2t (r

final
t−1 )2

V̂ linear
t (rfinalt−1 , θt = (θ1t , θ

2
t )) = θ1t r

final
t−1

Experiment results are presented in Figure 3 and Table 4 in
the same way of the previous example. Here, we can make
similar observations as well. For this example, VFGL is
showing worse performance in terms of both objective value
and first stage solutions compared to SDDP and DVFN re-
gardless of the chosen parametric form. VFGL requires
smallest computation time, but this would be less meaning-
ful since the objective value and first stage solutions are
worse than the others. Between SDDP and DVFN, we can
see that DVFN is performing much better than SDDP, be-
cause it shows smaller standard error for the objective and
much smaller computation time. Also, Figure 3 shows that
DVFN converges to the optimal solution in a very stable
way. Time elapsed per iteration are presented in Figure 4b,
where DVFN maintains almost constant computation time
per iteration just like the previous example. Again, similar
results can be obtained with different parameters and more
number of stages, which are presented in Appendix C.2.

5 CONCLUSION

A neural-networks based novel stagewise decomposition
algorithm, DVFN, was proposed to solve large-scale mul-
tistage stochastic programs efficiently. DVFN approxi-
mates the value function using input convex neural networks
(ICNN) and finds the weights of ICNN by closely match-
ing the gradient (with respect to inputs) of ICNN to that
of the true value function. Numerical experiments showed

Table 2: Performance comparisons of algorithms for energy
planning

Algorithm Objective Hydro Thermal Time (s)

MSP 769 3.85 16.15 1132
SDDP 769 (1.89) 3.86 (0.02) 16.14 (0.02) 1115 (2.43)
VFGLexp 783 (2.97) 0.00 (0.00) 20.00 (0.00) 206 (1.43)
VFGLquad 1168 (2.22) 16.45 (0.23) 3.55 (0.23) 190 (1.02)
VFGLlinear 776 (2.24) 0.00 (0.00) 20.00 (0.00) 149 (0.14)
DVFN 769 (1.70) 3.84 (0.03) 16.16 (0.03) 519 (1.14)

(a) Production Optimization

(b) Energy Planning

Figure 4: Time elapsed per iteration

that DVFN can find optimal solutions of large-scale MSP
problems in a stable way. The performance of DVFN was
better than SDDP and almost the same as VFGL with the
best parametric choice. Hence, DVFN can achieve almost
the state-of-the-art performance without the need to spec-
ify parametric form of value functions in advance. The art
of choosing appropriate parametric form became a simple
labor of hyperparameter search for neural networks. Exper-
iments with perturbed problems in Appendix C also show
that DVFN can be very useful for real-world applications
where a lot of similar problems with slightly different prob-
lem settings should be solved (Bertsimas and Stellato, 2021).
Still, there is room for improvement for DVFN in terms of
standard errors of objective and first stage solutions and
computation time. We believe that these can be much re-
solved if we can make the primal-dual interior point method
with ICNN more efficient.
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Codes of DVFN, all experiments in the paper, and additional experiments can be found at: https://github.com/
HyunglipBae/DVFN.

A PROOF OF CONVEXITY OF VALUE FUNCTION

Consider the stage t value function Vt+1(xt, ξ[t]) = E·|ξ[t] [Vt+1(xt, ξ[t+1])]. Its convexity with respect to xt can be shown
by the convexity of Vt+1(xt, ξ[t+1]), because expectation preserves convexity. We show the convexity of Vt+1(xt, ξ[t+1])
by mathematical induction.

Assume that Vt+1(xt, ξ[t+1]) is convex in xt.

Then, we us show that Vt(xt−1, ξ[t]) is convex in xt−1. From Equation (3),

Vt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{ft(xt, ξt) + Vt+1(xt, ξ[t])} = inf
xt

ψ(xt−1, xt, ξ[t]),

where
ψ(xt−1, xt, ξ[t]) = ft(xt, ξt) + Vt+1(xt, ξ[t]) + IXt(xt−1,ξt)(xt),

IC(·) =

{
0 if · ∈ C
+∞ otherwise

Here, ft(xt, ξt) is convex in xt by definition, and Vt+1(xt, ξ[t]) is convex by the induction hypothesis. Let us extend the
feasible region Xt(xt−1, ξt), which is a set of xt’s given xt−1, into the set of (xt−1, xt) pair. Then, it is a convex set, because
it is an intersection of hyperplanes and sublevel sets of convex functions. Thus, IXt(xt−1,ξt)(xt) is convex in (xt−1, xt).
Since the sum of convex functions is again convex, ψ(xt, xt−1, ξ[t]) is convex in (xt−1, xt). Therefore, Vt(xt−1, ξ[t]), an
infimal projection of ψ(xt, xt−1, ξ[t]) with respect to xt, is convex in xt−1.

For t = T , Vt+1 = 0. Hence, VT+1 is convex in xT .

By the mathematical induction, Vt+1(xt, ξ[t+1]) is convex with respect to xt, for t = T − 1, . . . , 1

B FORMULATION OF NUMERICAL EXAMPLES

In this section, we present the details of decision variables, parameters, and stagewise subproblem formulations of production
optimization and energy planning problems shown in Section 4.

B.1 Production Optimization

The factory can produce, outsource, and store three products (i = 1, 2, 3) to meet uncertain demands. The decision variables
and parameters are presented in Table 3.

An important assumption is that their is an upper limit to the total resource for production (e.g., human resource, machine
operation time) for each stage and remainders cannot be reused in next stage. This assumption is expressed as resource limit
constraints. ∑

i∈I

xt,iat,i ≤ rt

Therefore, at each stage, the factory manager must decide how much to produce, outsource and store each product considering
the current realized demand and future uncertain demand. This is reflected as the storage balance constraints.

st,i = st−1,i + xt,i + yt,i − dt,i

Any product remaining after satisfying the demand is stored for later stages, which incurs storage cost st,ict,i. When the
demands cannot be met with current storage and production, the factory manager can outsource the shortage at relatively
high cost yt,ibt,i. The objective at stage t is to minimize the total cost considering current and future stage which is expressed
as follows. ∑

i∈I

yt,ibt,i +
∑
i∈I

st,ict,i + Vt+1(st)

https://github.com/HyunglipBae/DVFN
https://github.com/HyunglipBae/DVFN
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Table 3: Variables for production optimization problem

Description Value

Decision
variables

xt,i Product i produced at stage t -

yt,i Product i outsourced at stage t -

st,i Product i stored at the end of stage t -

Parameters

at,i Production cost of product i at stage t (1, 2, 5)

bt,i Outsourcing cost of product i at stage t (6, 12, 20)

ct,i
Storage cost of product i
from the end of stage t
to beginning of stage t

(3, 7, 10)

rt
Maximum production resource

available at stage t
10

dt,i Random demand of product i at stage t {(5, 3, 1), (6, 2, 1), (1, 2, 2)}

As shown in Table 3, all parameters at,i, bt,i, ct,i, rt, dt,i are assumed to have identical values or distributions in all stages
for simplicity. (dt,1, dt,2, dt,3) takes one of three values given in the table with equal probability.

Formulations of stagewise sumproblems are given below.

• Stage 1 subproblem

minimize
∑
i∈I

y1,ib1,i +
∑
i∈I

s1,ic1,i + V2(s1)

subject to
∑
i∈I

x1,ia1,i ≤ r1 ∀i ∈ I Resource limit

s1,i = x1,i + y1,i ∀i ∈ I Storage balance
x1,i, y1,i, s1,i ≥ 0 ∀i ∈ I Non-negativity

• Stage t subproblem (t = 2, . . . , T − 1)

minimize
∑
i∈I

yt,ibt,i +
∑
i∈I

st,ict,i + Vt+1(st)

subject to
∑
i∈I

xt,iat,i ≤ rt ∀i ∈ I Resource limit

st,i = st−1,i + xt,i + yt,i − dt,i ∀i ∈ I Storage balance
xt,i, yt,i, st,i ≥ 0 ∀i ∈ I Non-negativity

• Stage T subproblem

minimize
∑
i∈I

yT,ibT,i

subject to
∑
i∈I

xT,iaT,i ≤ rT ∀i ∈ I Resource limit

sT,i = sT−1,i + xT,i + yT,i − dT,i ∀i ∈ I Storage balance
xT,i, yT,i, sT,i ≥ 0 ∀i ∈ I Non-negativity
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B.2 Energy planning

In this problem, there are hydro plants and thermal plants for electricity generation. The decision variables and parameters
are presented in Table 4

Hydro power generation requires a low cost, but resources are limited by the size of reservoirs where the amount of water
inflow to reservoirs is uncertain. The initial water reservoir level at the beginning of stage t can be expressed as the final
water reservoir level at the end of stage t− 1 plus the uncertain water inflow between stages t− 1 and t as follows.

rinitt = rfinalt−1 + It

During stage t, Wt is used for power generation from the reservoir rinitt . Of course, the final reservoir level should be
non-negative.

rfinalt = rinitt −Wt

rfinalt ≥ 0

On the other hand, the thermal power generation has no resource limits but requires a higher cost. Of course, the amount of
power generation from hydro and thermal plants should satisfy the demand.

Wt +Ht ≥ dt

The objective of each subproblem is to minimize total cost associated with power generation. At stage t, we set the objective
as follows.

cWt Wt + cHt Ht + e−atr
final
t +bt + Vt+1(r

final
t )

Here, cWt Wt + cHt Ht is the cost of hydro and thermal power generation, e−atr
final
t +bt is the environmental disutility from

the remaining reservoir level, and Vt+1(r
final
t ) is the value function for later stages. As shown in Table 4, all parameters

cWt , cHt , dt, at, bt, It are assumed to have identical values or distributions in all stages for simplicity. The water inflow to
reservoir in each stage is independent and identically distributed, which follows a normal distribution with mean 20 and
standard deviation 5. The stagewise sumproblems are as follows

• Stage 1 subproblem

minimize cW1 W1 + cH1 H1 + e−a1r
final
1 +b1 + V2(r

final
1 )

subject to rinit1 = rinit0 Initial reservoir

rfinal1 = rinit1 −W1 Reservoir balance
W1 +H1 ≥ d1 Demand

rfinal1 ,W1, H1 ≥ 0 Non-negativity

• Stage t subproblem (t = 2, . . . , T − 1)

minimize cWt Wt + cHt Ht + e−atr
final
t +bt + Vt+1(r

final
t )

subject to rinitt = rfinalt−1 + It Initial reservoir

rfinalt = rinitt −Wt Reservoir balance
Wt +Ht ≥ dt Demand

rfinalt ,Wt, Ht ≥ 0 Non-negativity
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• Stage T subproblem

minimize cWT WT + cHT HT + e−aT rfinal
T +bT

subject to rinitT = rfinalT−1 + IT Initial reservoir

rfinalT = rinitT −WT Reservoir balance
WT +HT ≥ dT Demand

rfinalT ,WT , HT ≥ 0 Non-negativity

Table 4: Variables for energy planning problem

Description Value

Decision
variables

rinit
t

Water reservoir level
at the beginning of stage t

-

rfinal
t

Water reservoir level
at the end of stage t

-

Wt
Hydro electricity generation level

at stage t
-

Ht
Thermal electricity generation level

at stage t
-

Parameters

rinit
0 Initial water reservoir level 40

cWt
Cost of hydro electricity production

per unit at stage t
2

cHt
Cost of thermal electricity production

per unit at stage t
7

dt Electricity demand at stage t 20

at Reservoir level utility coefficient 0.1

bt Reservoir level utility scaling constant 5

It
Water inflow to reservoir
at the beginning of stage t

Normally distributed
with mean 20, standard deviation 5

C PERTURBED PROBLEMS

In this section, we present the results from perturbed problems to confirm that the observations shown in the main text
are not limited to those specific settings. More specifically, we compare the first stage solutions of perturbed problems
obtained by SDDP, VFGL and DVFN, where VFGL uses three different parametric forms as in the main text. For production
optimization problem, we perturbed the maximum resource rt, outsourcing cost for product 2 bt,2 and the number of
stages. For energy planning, the cost of hydro electricity cWt , thermal electricity cHt , reservoir level utility coefficient at and
reservoir level utility scaling constant bt are perturbed. The results are summarized in Tables 5, 6 for production optimization
and Tables 7, 8 for energy planning and they clearly show that the performance of VFGL is unstable depending on the
chosen parametric form and especially in the energy planning problem, depending on the perturbed parameters.

Furthermore, we performed additional experiments with larger number of stages than the ones considered in the main text.
Note that 11-stage production optimization with 3 scenario branches and 15-stage energy planning with 2 scenario branches
are considered in the main text, because these are the maximum problem size that MSP could handle with our PC with 64GB
RAM. Here, we consider 12, 13, 14-stage production optimization problems and 15, 16, 17-stage energy planning problems.
For these problems, benchmark solutions from MSP cannot be obtained. Therefore, we run each algorithm (SDDP, VFGL,
DVFN) until the change in the objective value in the recent three iterations is less than 0.02%. The results are summarized
in Table 10 for production optimization and Table 9 for energy planning. For both problems, DVFN shows almost same
objective value with less computational time. VFGL is faster than others, but again, it is very sensitive to predetermined
parametric form. We can see that DVFN finds accurate solutions efficiently without worrying about parametric forms.
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Table 5: Comparison of perturbed problems of rt with MSP, SDDP, VFGLexp, VFGLquad, VFGLlinear and DVFN for
production optimization problem

MSP SDDP VFGLexp VFGLquad VFGLlinear DVFN

rt x1,1, x1,2, x1,3 Obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj

8.0 2.00, 0.00, 1.20 312 2.00, 0.00, 1.20 312 1.74, 0.24, 1.13 312 3.17, 0.00, 0.00 318 0.00, 0.00, 0.00 323 2.02, 0.20, 1.12 312

8.5 2.50, 0.00, 1.19 286 2.50, 0.00, 1.17 286 1.77, 0.00, 1.15 286 2.51, 0.00, 0.00 293 0.00, 0.00, 0.00 297 2.49, 0.00, 1.20 286

9.0 2.00, 0.00, 1.36 260 2.00, 0.00, 1.03 260 1.65, 0.00, 1.13 260 2.08, 0.00, 0.00 268 0.00, 0.00, 0.00 271 1.98, 0.00, 1.37 262

9.5 1.50, 0.00, 1.41 235 2.50, 0.00, 1.02 235 1.49, 0.00, 1.03 235 2.06, 0.00, 0.00 242 0.00, 0.00, 0.00 245 1.51, 0.00, 1.51 235

10.5 0.50, 0.00, 1.46 187 0.50, 0.00, 1.06 187 0.48, 0.00, 1.01 187 1.51, 0.00, 0.00 195 0.00, 0.00, 0.00 196 0.50, 0.00, 1.01 187

11.0 0.00, 0.00, 1.44 165 2.00, 0.00, 1.10 165 0.00, 0.00, 1.04 165 1.09, 0.00, 0.00 172 0.00, 0.00, 0.00 173 0.00, 0.00, 1.00 165

11.5 0.00, 0.00, 1.27 146 0.00, 0.00, 1.37 146 0.00, 0.00, 0.95 146 1.00, 0.00, 0.00 152 0.00, 0.00, 0.00 153 0.00, 0.00, 0.90 146

12.0 0.00, 0.00, 1.10 127 0.00, 0.00, 0.89 127 0.00, 0.00, 0.81 127 1.01, 0.00, 0.00 132 0.00, 0.00, 0.00 133 0.00, 0.00, 0.80 127

12.5 0.00, 0.00, 0.92 108 0.00, 0.00, 0.87 108 0.00, 0.00, 0.70 108 1.01, 0.00, 0.00 112 0.00, 0.00, 0.00 113 0.00, 0.00, 0.70 109

13.0 0.00, 0.00, 0.75 89 0.00, 0.00, 0.65 89 0.00, 0.00, 0.60 89 1.00, 0.00, 0.00 92 0.00, 0.00, 0.00 93 0.00, 0.00, 0.60 89

13.5 0.00, 0.00, 0.57 70 0.00, 0.00, 0.52 70 0.00, 0.00, 0.50 70 1.00, 0.00, 0.00 72 0.00, 0.00, 0.00 73 0.00, 0.00, 0.50 70

14.0 0.00, 0.00, 0.40 51 0.00, 0.00, 0.40 51 0.00, 0.00, 0.39 51 0.98, 0.00, 0.00 52 0.00, 0.00, 0.00 53 0.00, 0.00, 0.40 52

14.5 0.00, 0.00, 0.20 32 0.00, 0.00, 0.20 32 0.00, 0.00, 0.20 32 0.49, 0.00, 0.00 33 0.00, 0.00, 0.00 33 0.00, 0.00, 0.23 33

15.0 0.00, 0.00, 0.00 13 0.00, 0.00, 0.00 13 0.00, 0.00, 0.00 13 0.00, 0.00, 0.00 13 0.00, 0.00, 0.00 13 0.00, 0.00, 0.00 14

Table 6: Comparison of perturbed problems of bt,2 with MSP, SDDP, VFGLexp, VFGLquad, VFGLlinear and DVFN for
production optimization problem

MSP SDDP VFGLexp VFGLquad VFGLlinear DVFN

bt,2 x1,1, x1,2, x1,3 Obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj x1,1, x1,2, x1,3 obj

7.0 0.00, 0.00, 1.00 182 0.00, 0.00, 1.00 182 0.00, 0.00, 1.00 182 1.00, 0.00, 0.00 189 0.00, 0.00, 0.00 190 0.00, 0.00, 1.01 182

8.0 0.00, 0.00, 1.45 203 0.00, 0.00, 1.10 204 0.00, 0.00, 1.09 203 1.00, 0.00, 0.00 212 0.00, 0.00, 0.00 213 0.00, 0.00, 1.33 204

9.0 0.00, 0.00, 1.59 205 0.00, 0.00, 1.10 205 0.00, 0.00, 1.11 205 1.13, 0.00, 0.00 214 0.00, 0.00, 0.00 215 0.01, 0.00, 1.50 206

10.0 0.49, 0.00, 1.53 207 0.70, 0.00, 1.10 207 0.03, 0.00, 1.09 207 1.28, 0.00, 0.00 215 0.00, 0.00, 0.00 232 0.56, 0.00, 1.38 207

11.0 1.00, 0.00, 1.47 208 1.00, 0.00, 1.00 208 0.89, 0.00, 1.02 208 1.50, 0.00, 0.00 216 0.00, 0.00, 0.00 232 1.00, 0.00, 1.43 208

13.0 1.00, 0.00, 1.43 210 1.00, 0.00, 1.10 210 0.99, 0.00, 1.00 210 1.85, 0.00, 0.00 217 0.00, 0.00, 0.00 219 1.01, 0.00, 1.43 210

14.0 1.00, 0.00, 1.52 210 1.00, 0.00, 1.00 210 1.00, 0.00, 1.04 210 1.79, 0.00, 0.00 217 0.00, 0.00, 0.00 219 1.00, 0.00, 1.52 210

15.0 1.00, 0.00, 1.52 210 1.00, 0.00, 1.00 210 0.98, 0.00, 1.00 210 1.91, 0.00, 0.00 217 0.00, 0.00, 0.00 219 1.01, 0.00, 1.54 210

16.0 1.00, 0.00, 1.52 210 1.00, 0.00, 1.10 210 0.99, 0.00, 1.00 210 1.92, 0.00, 0.00 217 0.00, 0.00, 0.00 219 0.98, 0.00, 1.43 210

17.0 1.00, 0.00, 1.51 210 1.00, 0.00, 1.10 210 1.00, 0.00, 1.12 210 1.91, 0.00, 0.00 217 0.00, 0.00, 0.00 234 0.98, 0.00, 1.52 210

18.0 1.00, 0.00, 1.42 210 1.00, 0.00, 1.10 210 0.98, 0.00, 1.02 210 1.77, 0.00, 0.00 217 0.00, 0.00, 0.00 219 1.01, 0.00, 1.52 210

19.0 1.00, 0.00, 1.38 210 1.00, 0.00, 1.10 210 1.00, 0.00, 1.09 210 1.86, 0.00, 0.00 217 0.00, 0.00, 0.00 219 0.95, 0.00, 1.50 210
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Table 7: Comparison of perturbed problems of cWt , cHt with MSP, SDDP, VFGLexp, VFGLquad, VFGLlinear and DVFN
for energy planning problem

MSP SDDP VFGLexp VFGLquad VFGLlinear DVFN

cWt cHt W1, H1 Obj W1, H1 obj W1, H1 obj W1, H1 obj W1, H1 obj W1, H1 obj

2.0 5.0 0.00, 20.00 717 0.00, 20.00 721 0.00, 20.00 717 14.58, 5.42 1073 0.00, 20.00 727 0.01, 19.99 718

2.0 5.5 0.29, 19.71 731 0.28, 19.72 731 4.49, 15.51 762 16.14, 3.86 1113 3.89, 16.11 762 0.25, 19.75 731

2.0 6.0 1.62, 18.38 744 1.61, 18.39 745 0.00, 20.00 769 15.06, 4.94 1138 0.00, 20.00 748 1.51, 18.49 746

2.0 6.5 2.8, 17.2 757 2.79, 17.21 767 0.00, 20.00 767 14.50, 5.50 1135 0.00, 20.00 769 3.22, 16.78 757

2.0 7.5 4.81, 15.19 792 4.90, 15.10 792 1.10, 18.90 793 16.63, 3.37 1274 1.75, 18.25 792 4.68, 15.32 792

2.0 8.0 5.68, 14.32 1044 5.67, 14.33 1044 5.42, 14.58 1044 16.18, 3.82 1332 5.44, 14.56 1044 5.59, 14.41 1044

3.0 7.0 1.62, 18.38 1081 1.68, 18.32 1081 0.00, 20.00 1081 16.73, 3.27 1147 5.10, 14.90 1081 3.51, 16.49 1081

3.5 7.0 0.29, 19.71 1181 0.33, 19.67 1184 3.43, 16.57 1187 20.00, 0.00 1794 0.00, 20.00 1205 0.27, 19.73 1181

4.0 7.0 0.00, 20.00 1317 0.00, 20.00 1317 0.00, 20.00 1324 20.00, 0.00 1861 0.00, 20.00 1323 0.02, 19.98 1322

4.5 7.0 0.00, 20.00 1452 0.00, 20.00 1454 0.00, 20.00 1469 20.00, 0.00 1862 0.00, 20.00 1481 0.00, 20.00 1452

5.0 7.0 0.00, 20.00 1587 0.00, 20.00 1588 0.00, 20.00 1594 20.00, 0.00 1909 0.00, 20.00 1593 0.00, 20.00 1587

Table 8: Comparison of perturbed problems of at, bt with MSP, SDDP, VFGLexp, VFGLquad, VFGLlinear and DVFN for
energy planning problem

MSP SDDP VFGLexp VFGLquad VFGLlinear DVFN

at bt W1, H1 Obj W1, H1 obj W1, H1 obj W1, H1 obj W1, H1 obj W1, H1 obj

0.1 3.0 20.00, 0.00 670 20.00, 0.00 670 20.00, 0.00 671 20.00, 0.00 696 20.00, 0.00 670 20.00, 0.00 670

0.1 3.5 18.85, 1.15 694 18.9, 1.10 697 20.00, 0.00 724 20.00, 0.00 717 19.17, 0.83 695 19.98, 0.02 699

0.1 4.0 13.85, 6.15 719 13.81, 6.19 719 8.53, 11.47 719 18.28, 1.72 734 7.35, 12.65 726 15.63, 4.37 719

0.1 4.5 8.85, 11.15 744 8.96, 11.04 744 1.67, 18.33 753 10.90, 9.10 750 1.78, 18.22 759 8.84, 11.16 749

0.1 5.5 0.00, 20.00 794 0.00, 20.00 797 0.00, 20.00 810 0.00, 20.00 794 0.00, 20.00 814 0.00, 20.00 794

0.1 6.0 0.00, 20.00 821 0.00, 20.00 826 0.00, 20.00 821 0.00, 20.00 832 0.00, 20.00 838 0.00, 20.00 826

0.2 5.0 19.42, 0.58 677 19.42, 0.58 677 17.91, 2.09 690 20.00, 0.00 687 17.68, 2.32 683 20.00, 0.00 687

0.25 5.0 20.00, 0.00 658 20.00, 0.00 658 20.00, 0.00 673 20.00, 0.00 686 20.00, 0.00 692 20.00, 0.00 658

0.3 5.0 20.00, 0.00 647 20.00, 0.00 650 20.00, 0.00 662 20.00, 0.00 668 20.00, 0.00 661 20.00, 0.00 647

0.35 5.0 20.00, 0.00 640 20.00, 0.00 640 20.00, 0.00 648 20.00, 0.00 677 20.00, 0.00 640 20.00, 0.00 640

0.4 5.0 20.00, 0.00 635 20.00, 0.00 635 20.00, 0.00 643 20.00, 0.00 665 20.00, 0.00 635 20.00, 0.00 635
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Table 9: Comparison of problems with larger number of stages with SDDP, VFGLexp, VFGLquad, VFGLlinear and DVFN
for production optimization problem

SDDP VFGLexp VFGLquad VFGLlinear DVFN

T x1,1.x1,2, x1,3 obj time x1,1.x1,2, x1,3 obj time x1,1.x1,2, x1,3 obj time x1,1.x1,2, x1,3 obj time x1,1.x1,2, x1,3 obj time

12 1.00, 0.00, 1.00 230 650 0.97, 0.00, 1.23 231 434 1.65, 0.00, 0.00 239 432 0.00, 0.00, 0.00 241 302 1.01, 0.00, 1.48 231 502

13 1.00, 0.00, 1.07 251 711 0.99, 0.00, 1.26 251 474 2.01, 0.00, 0.00 260 472 0.00, 0.00, 0.00 264 329 1.01, 0.00, 1.47 252 553

14 1.00, 0.00, 1.07 275 714 0.96, 0.00, 1.04 275 514 1.81, 0.00, 0.00 283 512 0.00, 0.00, 0.00 285 360 1.00, 0.00, 1.43 275 541

Table 10: Comparison of problems with larger number of stages with SDDP, VFGLexp, VFGLquad, VFGLlinear and DVFN
for energy planning problem

SDDP VFGLexp VFGLquad VFGLlinear DVFN

T W1, H1 obj time W1, H1 obj time W1, H1 obj time W1, H1 obj time W1, H1 obj time

16 3.28, 16.72 808 1601 0.00, 20.00 813 109 15.28, 4.72 1237 203 0.00, 20.00 823 85 3.20, 16.80 807 417

17 2.82, 17.18 864 1191 0.00, 20.00 857 116 15.48, 4.52 1274 217 0.00, 20.00 867 90 2.84, 17.16 848 369

18 2.37, 17.63 892 1450 0.00, 20.00 895 123 15.19, 4.10 1324 230 0.00, 20.00 903 184 2.79, 17.21 893 367

D HYPERPARAMETER SEARCH

For DVFN, the hyperparameters of FICNNs include the number of nodes in each layer, the number of hidden layers,
activation, epochs per iteration, optimizer, and learning rate. There are various methods to tune hyperparameters such as gird
search, random search, or line search for example (Bergstra and Bengio, 2012). Grid and random search optimize different
parameters simultaneously, whereas each parameter is tuned independently in line search. In this paper, we adopted the
line search as in Schalbetter (2020) due to enormous possible combinations of hyperparameters based on median value of
objective value and total elapsed time.

Table 11 shows the search range of hyperparameters, and the chosen hyperparameter are indicated with ∗. To see the
performance of DVFN depending on the values of hyperparameters, we solved the production and energy planning problems
with DVFN for 10 times, and the box plots of objective value and elapsed time are shown in Figure 5, 6, 7 and 8.

Table 11: Candidates of hyperparameters for the FICNNs for production optimization and energy planning problems (*
indicates the chosen hyperparameter)

Hyperparameters Production Optimization Energy Planning

Epochs per iteration 5∗, 10, 15, 20 5∗, 10, 15, 20

Number of Nodes 32, 64∗, 128, 256 32, 64∗, 128, 256

Number of Hidden Layers 1∗, 2, 3 1∗, 2, 3

Activation ReLU, ELU, Softplus∗ ReLU, ELU∗, Softplus

Optimizer
Adam∗, Adagrad,
SGD, RMSProp

Adam∗, Adagrad,
SGD, RMSProp

Learning rate
0.0005, 0.001,
0.0015∗, 0.002

0.0005, 0.001∗,
0.0015∗, 0.002
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Figure 5: Boxplots of objective value with various hyperparameters for production optimization
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Figure 6: Boxplots of total elapsed time with various hyperparameters for production optimization
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Figure 7: Boxplots of objective value with various hyperparameters for energy planning
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Figure 8: Boxplots of total elapsed time with various hyperparameters for energy planning
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E PRACTICAL BENEFIT OF INPUT CONVEX NEURAL NETWORKS

DVFN approximates the value function with input convex neural networks (ICNN). We have chosen ICNN because it has a
clear theoretical advantage that its convexity with respect to inputs guarantees the convergence to the optimal solution as in
VFGL (see Section 3). To further demonstrate the practical advantage of using ICNN, we tested DVFN by replacing ICNN
with feedforward networks (FFN). The average values and standard errors of objective function value, first stage solutions,
and computational time after 20 repeated experiments are represented in Tables 12, 13 and the evolution of the first stage
solutions for one instance is depicted in Figure 9.

In production optimization, DVFN (FFN) shows stable convergence to the optimal solution and generates quite accurate
solution compared to MSP. However, DVFN (FFN) shows almost double of the computational time compared to DVFN
(ICNN). Conversely, in energy planning, DVFN (FFN) shows almost same computational time with DVFN (ICNN). However,
DVFN (FFN) shows the first stage solution which is quite different to MSP with large variance and unstable convergence.
Both cases clearly indicate that the practical advantage of using ICNN.

(a) Production Optimization (b) Energy Planning

Figure 9: First stage decisions of DVFN (FFN)

Table 12: Comparison of ICNN and FFN for production optimization

Algorithm Objective Production 1 Production 2 Production 3 Time (s)

MSP 210 1.00 0.00 1.50 10215
DVFN (FFN) 210 (0.18) 0.98 (0.00) 0.00 (0.00) 1.37 (0.02) 1086 (46.28)
DVFN (ICNN) 210 (0.14) 0.99 (0.00) 0.00 (0.00) 1.45 (0.01) 574 (1.36)

Table 13: Comparison of ICNN and FFN for energy planning

Algorithm Objective Hydro Thermal Time (s)

MSP 769 3.85 16.15 1132
DVFN (FFN) 770 (1.18) 2.74 (0.33) 17.26 (0.33) 485 (5.20)
DVFN (ICNN) 769 (1.70) 3.84 (0.03) 16.16 (0.03) 519 (1.14)
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