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Abstract

Thompson sampling has become a ubiquitous ap-
proach to online decision problems with bandit
feedback. The key algorithmic task for Thomp-
son sampling is drawing a sample from the pos-
terior of the optimal action. We propose an al-
ternative arm selection rule we dub TS-UCB,
that requires negligible additional computational
effort but provides significant performance im-
provements relative to Thompson sampling. At
each step, TS-UCB computes a score for each
arm using two ingredients: posterior sample(s)
and upper confidence bounds. TS-UCB can be
used in any setting where these two quantities
are available, and it is flexible in the number of
posterior samples it takes as input. TS-UCB
achieves materially lower regret on a comprehen-
sive suite of synthetic and real-world datasets,
including a personalized article recommendation
dataset from Yahoo! and a suite of benchmark
datasets from a deep bandit suite proposed in
Riquelme et al. (2018). Finally, from a theoreti-
cal perspective, we establish optimal regret guar-
antees for TS-UCB for both the K-armed and
linear bandit models.

1 INTRODUCTION

This paper studies the stochastic multi-armed bandit prob-
lem, a classical problem modeling sequential decision-
making under uncertainty. This problem captures the in-
herent tradeoff between exploration and exploitation. We
study the Bayesian setting, in which we are endowed with
an initial prior on the mean reward for each arm.

Thompson sampling (TS) (Thompson, 1933), has in recent
years come to be a solution of choice for the multi-armed
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bandit problem. This popularity stems from the fact that the
algorithm performs well empirically (Scott, 2010; Chapelle
and Li, 2011) and also admits near-optimal theoretical per-
formance guarantees (Agrawal and Goyal, 2012, 2013b;
Kaufmann et al., 2012b; Bubeck and Liu, 2013; Russo and
Van Roy, 2014, 2016). Perhaps one of the most attractive
features of Thompson sampling though, is the simplicity
of the algorithm itself: the key algorithmic task of TS is
to sample once from the posterior on arm means, a task
that is arguably the simplest thing one can hope to do in a
Bayesian formulation of the multi-armed bandit problem.

This Paper: Against the backdrop of Thompson sampling,
we propose TS-UCB. Given one or more samples from the
posterior on arm means, TS-UCB simply provides a dis-
tinct approach to scoring the possible arms. The only addi-
tional ingredient this scoring rule relies on is the availabil-
ity of so-called upper confidence bounds (UCBs) on these
arm means.

Now both sampling from a posterior, as well as comput-
ing a UCB can be a potentially hard task, especially in the
context of bandit models where the payoff from an arm is
a complex function of unknown parameters. A canonical
example of such a hard problem variant is the contextual
bandit problem wherein mean arm reward is given by a
complicated function (say, a deep neural network) of the
context. Riquelme et al. (2018) provide a recent bench-
mark comparison of ten different approaches to sampling
from an approximate posterior on unknown arm parame-
ters. They show that an approach that chooses to model
the uncertainty in only the last layer of the neural network
defining the mean reward from pulling a given arm at a
given context is an effective and robust approach to poste-
rior approximation. In such an approach, not only is (ap-
proximate) posterior sampling possible, but UCBs have a
closed-form expression and can be easily computed, mak-
ing possible the use of TS-UCB.

Our Contributions: We show that TS-UCB provides ma-
terial improvements over Thompson sampling across the
board on comprehensive sets of synthetic and real-world
datasets. The real-world datasets include personalizing
news article recommendations for the front page of Ya-
hoo!, and a benchmark set of deep bandit problems studied
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in Riquelme et al. (2018). Importantly, the performance
of TS-UCB either matched or improved upon the state-
of-the-art algorithm Information-Directed Sampling (IDS)
(Russo and Van Roy, 2018), which requires approximately
three orders of magnitude more sampling (and thus com-
pute) than either TS or TS-UCB.

TS-UCB’s arm scoring rule can be seen as a modification
of the one used in IDS. In particular, TS-UCB essentially
replaces the role of the “information gain” term used in IDS
to a quantity that is much easier to compute: the radius of
the confidence interval. This modification makes TS-UCB
orders of magnitude cheaper in terms of computation than
IDS, and the experimental results show that this does not
come at the cost of any degradation in performance.

Theoretically, we analyze TS-UCB in two specific ban-
dit settings: the K-armed bandit and the linear bandit. In
the first setting, there are K independent arms. In the lin-
ear bandit, each arm is a vector in Rd, and the rewards are
linear in the chosen arm. In both settings, TS-UCB is ag-
nostic to the time horizon. We prove the following Bayes
regret bounds for TS-UCB:

For the K-armed bandit, the Bayes regret of TS-UCB is at
most O(

√
KT log T ).

For the linear bandit of dimension d, the Bayes regret of
TS-UCB is at most O(d log T

√
T ).

Both of these results match the lower bounds up to log fac-
tors. The results are stated formally in Theorems 1 and 2.

1.1 Related Literature

Given the vast literature on bandit algorithms, we restrict
our review to literature heavily related to our work, namely,
literature on UCB, TS, and methods of applying deep learn-
ing models to bandit problems.

The UCB algorithm (Auer et al., 2002) computes an up-
per confidence bound for every action, and plays the ac-
tion whose UCB is the highest. In the Bayesian setting,
‘Bayes UCB’ is defined as the α’th percentile of this dis-
tribution, and Kaufmann et al. (2012a) show that using
α = 1 − 1

t logc t achieves the lower bound of Lai and
Robbins (1985) for K-armed bandits. For linear bandits,
Dani et al. (2008) prove a lower bound of Ω(d

√
T ) for in-

finite action sets, and the UCB algorithms from Dani et al.
(2008); Rusmevichientong and Tsitsiklis (2010); Abbasi-
Yadkori et al. (2011) match this up to log factors.

TS, though it was initially proposed in Thompson (1933),
has only recently gained a surge of interest, largely influ-
enced by the strong empirical performance of TS demon-
strated in Chapelle and Li (2011) and Scott (2010). Since
then, many theoretical results on regret bounds for TS
have been established (Agrawal and Goyal, 2012, 2013a,b,
2017; Kaufmann et al., 2012b). In the Bayesian set-

ting, Russo and Van Roy (2014) prove a regret bound of
O(

√
KT log T ) and O(d log T

√
T ) for TS in the K-armed

and linear bandit setting respectively. Bubeck and Liu
(2013) improve the regret in the Bayesian K-armed setting
to O(

√
KT ), and they show this is order-optimal.

The ideas in this paper were heavily influenced by our read-
ing of Russo and Van Roy (2014, 2018). In the former pa-
per, the authors use UCB algorithms as an analytical tool
to analyze TS. This begs the natural question of whether
an appropriate decomposition of regret can provide insight
on algorithmic modifications that might improve upon TS.
Russo and Van Roy (2018) provide such a decomposition
and proposes Information Directed Sampling (IDS). IDS
has been shown to provide significant performance im-
provement over TS in some cases, but has heavy sampling
(and thus, computational) requirements. The present paper
presents yet another decomposition, providing an arm se-
lection rule that does not require additional sampling (i.e.
a single sample from the posterior continues to suffice),
but nonetheless provides significant improvements over TS
while being competitive with IDS.

Zhang (2022) also proposes a modification of TS to han-
dle special information structures by altering the sampling
distribution to sample more from parameters that yield a
large reward. On the other hand, our work does not change
the posterior distribution, and it does not have the same
motivation of being able to deal with special information
structures.

On the deep learning front, one idea that has been
used to sequential decision making problems is to use
TS (Riquelme et al., 2018; Lu and Van Roy, 2017;
Dwaracherla et al., 2020), since TS requires just a single
sample from the posterior. Riquelme et al. (2018) use this
idea and evaluates TS on ten different posterior approxima-
tion methods for neural networks, ranging from variational
methods (Graves, 2011), MCMC methods (Neal, 2012),
among others. The authors find that the approach of mod-
eling uncertainty on just the last layer of the neural network
(the ‘Neural-Linear’ approach) (Snoek et al., 2015; Hinton
and Salakhutdinov, 2008; Calandra et al., 2016) was over-
all one of the most effective approaches. This neural linear
approach provides not just a tractable approach to approx-
imate posterior sampling, but further provides a tractable
UCB for the problem as well. As such, the neural linear
approach facilitates the use of the TS-UCB arm selection
rule.

2 MODEL

Let A be a compact set of all possible actions. At time
t, an agent is presented with a possibly random subset
At ⊆ A in which they choose an action to play from. If
action a is chosen at time t, the agent immediately ob-
serves a random reward Rt(a) ∈ R. For each action
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a, the sequence (Rt(a))t≥1 is i.i.d. and independent of
plays of other actions. The mean reward of each action
a is fθ(a), where θ ∈ Θ is an unknown parameter, and
{fθ : A → R|θ ∈ Θ} is a known set of deterministic func-
tions. That is, E[Rt(a)|θ] = fθ(a) for all a ∈ A and t ≥ 1.

Let Ht = (A1, A1, R1(A1), . . . ,At−1, At−1, Rt−1(At−1),
At) denote the history of observations available when
the agent is choosing the action for time t, and let H
denote the set of all possible histories. We often re-
fer to Ht as the “state” at time t. A policy (πt)t≥1

is a deterministic sequence of functions mapping the
history to a distribution over actions. An agent employ-
ing the policy plays the random action At distributed
according to πt(Ht), where Ht is the current history.
We will often write πt(a) instead of πt(Ht)(a), where
πt(a) = Pr(At = a|Ht). Let A∗

t : Θ → At be a function
satisfying A∗

t (θ) ∈ argmaxa∈At
fθ(a), which represents

the optimal action at time t if θ were known. We use A∗
t

to denote the random variable A∗
t (θ), where θ is the true

parameter. The T -period regret of policy π is defined as

Regret(T, π, θ) =

T∑
t=1

E[fθ(A∗
t )− fθ(At)|θ].

We study the Bayesian setting, in which we are endowed
with a known prior q on the parameter θ. We take an ex-
pectation over this prior to define the T -period Bayes regret

BayesRegret(T, π) =

T∑
t=1

E[fθ(A∗
t )− fθ(At)].

We assume that the agent can perform a Bayesian update
to their prior at each step after the reward is observed. Let
q(Ht) denote to the posterior distribution of θ given the
history Ht. In our work, we assume that the agent is able
to sample from the distribution q(Ht) for any state Ht.

We end this section by describing two concrete bandit mod-
els that are the focus of our regret analysis.

K-armed Bandit: In this setting, At = A = [K] for all t,
and each of the entries of the unknown parameter θ ∈ RK

correspond to the mean of each action. That is, fθ(i) = θi
for every i ∈ [K]. We assume that θa ∈ [0, 1] for all a, and
the rewards Rt(a) are also bounded in [0, 1] for all a and
t. The prior distribution q on θ, supported on [0, 1]K , can
otherwise be arbitrary.

Linear Bandit: In the linear bandit setting, there is a
known vector X(a) ∈ Rd associated with each a ∈ A,
and the mean reward takes on the form fθ(a) = ⟨θ,X(a)⟩,
for θ ∈ Θ ⊆ Rd. We assume that ||θ||2 ≤ S ≤

√
d,

||X(a)|| ≤ L, and fθ(a) ∈ [−1, 1] for all a ∈ A. Lastly,
we assume that Rt(a)− fθ(a) is r-sub-Gaussian for every
t and a for some r ≥ 1. All of these assumptions are stan-
dard and are the same as in Abbasi-Yadkori et al. (2011).

A special case of linear bandits is contextual linear bandits
in which there are K arms and there is an unknown
parameter βk ∈ Rd for each arm k ∈ [K]. A random
context Xt ∈ Rd is observed at the start of each time
step, and the mean reward for arm k at time t is ⟨βk, Xt⟩.
This is equivalent to a linear bandit problem of dimen-
sion dk where the action set (transposed) at time t is
{(X⊤

t , 0d, . . . , 0d), (0d, X
⊤
t , . . . , 0d), . . . , (0d, . . . , X

⊤
t )},

where 0d is the transposed 0-vector of dimension d, and
the unknown parameter is θ⊤ = (β⊤

1 , . . . , β⊤
K).

3 ALGORITHM

TS-UCB requires a set of functions U, µ̂ : H × A → R
to first be specified, where U(h, a) represents the upper
confidence bound of action a at history h, and µ̂(h, a)
represents an estimate of fθ(a) at history h. We require
that U(h, a) − µ̂(h, a) > 0 on every input. We write
Ut(a) = U(Ht, a) and µ̂t(a) = µ̂(Ht, a), and we refer
to the quantity radiust(a) ≜ Ut(a) − µ̂t(a) as the radius
of the confidence interval.

TS-UCB proceeds as follows. At state Ht, draw m inde-
pendent samples from the posterior distribution q(Ht), for
some integer parameter m ≥ 1. Denote these samples by
θ̃1, . . . , θ̃m, and let f̃i = fθ̃i(A

∗
t (θ̃i)) be the mean reward

of the best arm when the true parameter is θ̃i. (Conditioned
on Ht, the distribution of f̃i is the same as the distribution
of fθ(A∗).) Let f̃t = 1

m

∑m
i=1 f̃i. For every action a, de-

fine the ratio Ψt(a) as

Ψt(a) ≜
f̃t − µ̂t(a)

Ut(a)− µ̂t(a)
=

f̃t − µ̂t(a)

radiust(a)
. (1)

TS-UCB chooses an action that minimizes this ratio,
which we assume exists.1 That is, if ATS-UCB

t is the ran-
dom variable for the action chosen by TS-UCB at time t,
then,

ATS-UCB
t ∈ argmin

a∈At

Ψt(a). (2)

We parse the ratio Ψt(a): µ̂t(a) is an estimate of the ex-
pected reward E[fθ(a)|Ht] from playing action a, and f̃t
is an estimate of the optimal reward E[fθ(A∗)|Ht] (indeed,
f̃t → E[fθ(A∗)|Ht] as m → ∞). Then, the numerator of
the ratio estimates the expected instantaneous regret from
playing action a. We clearly want this to be small, but min-
imizing only the numerator would result in the greedy pol-
icy. The denominator enforces exploration by favoring ac-
tions with larger confidence intervals, corresponding to ac-
tions in which not much information is known about. This
ratio is similar to the information ratio that is minimized in
the IDS algorithm — the main difference is that the denom-
inator in IDS is information gain.

1Clearly it exists if A is finite. Otherwise, since A is assumed
to be compact, it exists if µ̂t and Ut are continuous functions.
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Comparison to TS, IDS, and UCB. TS-UCB can be de-
rived from optimizing a Bayes regret analysis of TS. In the
regret analysis in Section 5, a crucial step is to upper bound
the ratio Ψt(a). We show an upper bound for Ψt(a) under
TS, while TS-UCB optimizes this quantity by definition.
Second, TS-UCB can be thought of as an approximation
to IDS, where the usual denominator of information gain
is replaced with a confidence radius. In many settings, the
information gain and confidence radius both represent un-
certainty, where the latter is much simpler to compute. This
is not the case in all settings; we note that TS-UCB does
not have the same purpose of IDS of being able to exploit
complex information structures. Lastly, TS-UCB can also
be thought of as a UCB policy whose tuning parameter is
automatically and dynamically adjusted — see Appendix A
for a detailed description of this interpretation.

TS-UCB can be applied whenever the quantities f̃t =
1
m

∑m
i=1 f̃i and {Ut(a), µ̂t(a)}a∈A can be computed,

which are exactly the quantities needed for TS (m = 1)
and UCB respectively. The following example shows that
TS-UCB can be applied in a general setting where the re-
lationship between actions and rewards is modeled using a
deep neural network.

Example 1 (Neural Linear (Riquelme et al., 2018)). Con-
sider a contextual bandit problem where a context Xt ∈
Rd′

arrives at each time step, and the expected reward of
taking action a ∈ A is g(Xt, a), for an unknown function g.
The ‘Neural Linear’ method models uncertainty in only the
last layer of the network by considering a specific class of
functions g. Specifically, consider that g allows the decom-
position g(Xt, a) = h(Xt)

⊤βa where h(Xt) ∈ Rd repre-
sent the outputs from the last layer of some neural network
and βa ∈ Rd is some parameter vector. If the function h(·)
were known, then the resulting problem is a linear bandit
problem for which both sampling from the posterior on βa

for all a ∈ A as well as computing a (closed form) UCB
on βa are easy. In reality h(·) is unknown but the Neural
Linear method approximates this quantity from past obser-
vations and ignores uncertainty in the estimate. As such, it
is clear that TS-UCB can be used as an alternative to TS in
the Neural Linear approach.

We now apply TS-UCB for the K-armed bandit and linear
bandit using the standard definitions of upper confidence
bounds found in the literature, and we formally state the
main theorems.

3.1 K-armed Bandit

We assume T ≥ K, and we pull every arm once in the
first K time steps. Let Nt(a) =

∑t−1
s=1 1(As = a) be

the number of times that action a was played up to but not
including time t. We define the upper confidence bounds in

a similar way to Auer et al. (2002); namely,

µ̂t(a) ≜
1

Nt(a)

t−1∑
s=1

1(As = a)Rs(a) (3)

Ut(a) ≜ µ̂t(a) +
√

3 log T/Nt(a). (4)

This implies radiust(a) =
√
3 log T/Nt(a). Because the

term
√
3 log T appears as a multiplicative factor in the ra-

dius and the same term is used for all actions and time steps,
the algorithm is agnostic to this value. That is, TS-UCB
reduces to picking the action which minimizes√

Nt(a)(f̃t − µ̂t(a)). (5)

This implies that TS-UCB does not have to know the time
horizon T a priori. We now state our main result for this
setting.

Theorem 1. For the K-armed bandit, using the UCBs as
defined in (4),

BayesRegret(T, πTS-UCB) = O(
√

KT log T ). (6)

This result matches the Ω(
√
KT ) lower bound Bubeck and

Liu (2013) up to a logarithmic factor.

3.2 Linear Bandit.

For the linear bandit, to define the functions µ̂t and Ut, we
first need to define a confidence set Ct ⊆ Θ, which contains
θ with high probability. We use the confidence sets devel-
oped in Abbasi-Yadkori et al. (2011). Let Xt = X(At)
be the vector associated with the action played at time t.
Let Xt be the t × d matrix whose s’th row is X⊤

s . Let
Yt ∈ Rt be the vector of rewards seen up to and includ-
ing time t. At time t, define the positive semi-definite
matrix Vt = I +

∑t
s=1 XsX

⊤
s = I + X⊤

t Xt, and con-
struct the estimate θ̂t = V −1

t X⊤
t Yt. Using the notation

||x||A =
√
x⊤Ax, let Ct = {ρ : ||ρ − θ̂t||Vt

≤
√
βt},

where
√
βt = r

√
d log(T 2(1 + tL)) + S.

Using this confidence set, the functions needed for
TS-UCB are defined as

µ̂t(a) ≜ ⟨X(a), θ̂t⟩ Ut(a) ≜ max
ρ∈Ct

⟨X(a), ρ⟩. (7)

Since Ut(a) is the solution to maximizing a linear function
subject to an ellipsoidal constraint, it has a closed form
solution: Ut(a) = ⟨X(a), θ̂t⟩ +

√
βt||X(a)||V −1

t
, which

implies radiust(a) =
√
βt||X(a)||V −1

t
. Then, TS-UCB

reduces to picking the action which minimizes

f̃t − ⟨X(a), θ̂t⟩
||X(a)||V −1

t

.

Note that the
√
βt term disappears, implying TS-UCB

does not depend on the exact expression of this term. Like
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the K-armed bandit, the algorithm does not have to know
the time horizon T a priori.

We state our main result for this setting.

Theorem 2. For the linear bandit, using the UCBs as de-
fined in (7), if ||X(a)||2 = 1 for all a ∈ A,

BayesRegret(T, πTS-UCB) = O(d log T
√
T ). (8)

This result matches the Ω(d
√
T ) lower bound (Dani et al.,

2008) up to a logarithmic factor. We believe the additional
assumption that ||X(a)||2 = 1 is an artifact our proof,
which we believe can be likely removed with a more re-
fined analysis. We note that TS and IDS has been shown to
achieve a regret of O(

√
dT log(|A|)) (Russo and Van Roy,

2016, 2018), which is dependent on the total number of ac-
tions |A|.

We give an outline of the proofs of Theorem 1 and 2 in
Section 5, and we provide the full proof in the Appendix.

4 COMPUTATIONAL RESULTS

We conduct three sets of experiments for the contextual
bandit problem. The first set is entirely synthetic for an
ensemble of linear contextual bandit problems where ex-
act posterior samples (and a regret analysis) are available
for all methods considered. Our objective here is to un-
derstand the level of improvement TS-UCB can provide
over TS and how the level of this improvement depends on
natural problem features such as the number of arms and
the level of noise. The next two experiments are on real-
world datasets, where the exact Bayesian structure is not
available. The second set of experiments studies person-
alizing news article recommendations on the front page of
the Yahoo! website, and the last set of experiments consid-
ers a deep bandit benchmark on seven different real-world
datasets. Our goal is to show that TS-UCB provides state
of the art performance while being computationally cheap
and robust to prior misspecification. In all experiments, we
compare TS-UCB to TS, UCB, Greedy, and IDS.

4.1 Synthetic Experiments

First, we simulate synthetic instances of the linear con-
textual bandit with varying number of actions and size of
the prior covariance. Let d be the dimension and K be
the number of actions. For each action k ∈ [K], we in-
dependently sample βk ∼ N(0, Id), where Id is the d-
dimensional identity matrix. At each time t, a context Xt

is drawn i.i.d. from N(0, 1
dId). The reward for arm k

at time t is ⟨βk, Xt⟩ + ϵt, where ϵt is drawn i.i.d. from
N(0, σ2). We set d = 10 and vary the number of actions as
K ∈ {3, 5, 10, 20, 60}. We also vary the magnitude of the
noise as σ ∈ {0.05, 0.1, 0.5, 1, 2}, which results in a total
of 25 instances.

We run the following algorithms:

• TS: We run Thompson Sampling as our baseline al-
gorithm. All results are stated relative to the perfor-
mance of TS.

• TS-UCB: We run our algorithm as defined in Sec-
tion 3.2 with m = 1 and m = 100, denoted as
TS-UCB(1) and TS-UCB(100) respectively.

• Greedy: We pull the arm that maximizes ⟨β̂k, Xt⟩,
where β̂k is the posterior mean of βk.

• UCB: We pull the arm with the highest Ut(a) as de-
fined in Section 3.2 (this is the OFUL algorithm of
Abbasi-Yadkori et al. (2011)).

• IDS: We run the sample variance-based IDS (Algo-
rithm 6 from Russo and Van Roy (2018)) with m =
1000 samples.

All algorithms are given knowledge of the prior for the pa-
rameters and the variance of the noise, σ2, so that correct
posteriors can be computed if the algorithm requires it.

For each algorithm and problem instance, we simulate 200
runs over a time horizon of T = 10, 000. We report the
average regret as a percentage of the regret from the TS
policy (that is, we estimate 100 · E

[
Regret(ALG)
Regret(TS)

]
). The

results are shown in Figure 1.

Results. We see that both TS-UCB(1) and TS-UCB(100)
outperforms TS across the board, almost halving regret
in many instances. The general trend is that TS-UCB
has a greater performance improvement over TS when
σ is higher, which correspond to the “harder” instances.
Over the 25 instances, the regret from TS-UCB(1) and
TS-UCB(100) was 67.9% and 66.6% of the regret of TS
respectively.

We see that TS-UCB(100) performs better than
TS-UCB(1) overall. However, this improvement is
small relative to the performance gain over TS; most of
the benefit of TS-UCB is captured by using just a single
sample.

Both greedy and UCB have inconsistent performances rel-
ative to TS. The greedy algorithm outperforms TS and per-
forms similarly to TS-UCB when the number of actions
is small. This is consistent with the result of Bastani et al.
(2020), which prove greedy is rate optimal when K = 2
and the contexts are diverse. However, when K is large,
context diversity becomes insufficient to guarantee enough
exploration for every arm, resulting in poor performance.
For UCB, we see that performance is poor when the noise
is small; this is likely due to UCB being too conservative.

IDS performs well across the board compared to TS. Its
performance is similar to TS-UCB but slightly worse on
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(a) TS-UCB(1)
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(b) TS-UCB(100)
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(c) Greedy
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(d) UCB
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Figure 1: TS-UCB improves on TS across the board. Grid reports mean regret of each policy as a percentage of regret of Thompson
Sampling over 200 runs. A number smaller than 100 means the regret of that policy is smaller than TS; otherwise the regret is
larger than TS. TS-UCB(m) refers to the algorithm using m samples.

average — across the 25 instances, regret for IDS was
5.6% higher than TS-UCB(100) and 3.8% higher than
TS-UCB(1). IDS was expected perform well, as it is con-
sidered the state-of-the-art algorithm. However, we see that
a much simpler algorithm, TS-UCB, performs as well, and
often better, than IDS.

4.2 Personalized News Article Recommendation

We test the same set of bandit algorithms on a real-world
dataset for personalizing news article recommendations for
users that land on the front page of the Yahoo! website.
In this setting, when a user goes on the website, the web-
site must choose one article to recommend out of a pool of
available articles at that time, in which the user may click
on the article to read the full story. The pool of available
articles changes throughout the day. The goal is to recom-
mend articles that maximize the click-through rate.

We use a dataset that was generated by an experiment done
by Yahoo! from 10 days in October 2011, made available
through the Yahoo Webscope Program2. In the experiment,
when a user appeared, the article that was recommended
was chosen uniformly at random out of all available at
the time, and whether the user clicked on the article was
logged. Each of these users is associated with a context
vector of dimension d = 136 that corresponds to user co-

2https://webscope.sandbox.yahoo.com/

variates such as gender and age. Refer to the Appendix for
further details on the simulation setup. We report the regret
of each policy as a percentage of the regret of TS, shown in
Table 1.

Results. TS-UCB(100) performed the best overall, hav-
ing the lowest average regret in 7 out of 10 days. We
see that TS-UCB(1), TS-UCB(100) and IDS significantly
outperform TS in all instances — reducing regret by more
than 10% on average. The relative performance of these
three algorithms are comparable, where TS-UCB(100)
slightly outperforms IDS, and IDS slightly outperforms
TS-UCB(1). Greedy performs similarly to TS, while UCB
is clearly outperformed by TS. Overall, we see a similar
pattern in performance as compared to the synthetic exper-
iments; TS-UCB clearly outperforms TS, and moreover,
often outperforms IDS while being much cheaper than IDS
computationally.

4.3 Deep Bandit Benchmark

In challenging bandit models such as the deep contextual
bandit discussed in Example 1, computing exact posteri-
ors are difficult. Riquelme et al. (2018) evaluate a large
number of posterior approximation methods on a variety of
real-world datasets for such a contextual bandit problem.
Their results suggest that performing posterior sampling
using the “Neural Linear” method, described in Example 1,
is an effective and robust approach. We evaluate TS-UCB
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Table 1: Yahoo! article recommendation simulation results from 10 days in October 2011. TS-UCB provides an improvement over
TS across the board. For each policy, we report the regret as a percentage of regret of Thompson Sampling (with 95% confidence
intervals) for that approach. For each day, the policy with the lowest average regret is bolded. IDS requires one thousand samples
from the posterior at each time step; TS-UCB(1) and TS-UCB(100) requires one and one hundred samples respectively.

Day TS-UCB(1) TS-UCB(100) IDS Greedy UCB

1 91.0± 1.5 89.1± 1.6 90.0± 1.5 106.1± 6.2 106.2± 1.1
2 86.3± 1.3 82.2± 1.9 84.8± 2.2 100.6± 9.8 121.9± 1.7
3 85.8± 1.9 84.1± 1.4 84.8± 1.7 122.3± 7.0 124.9± 1.6
4 92.5± 1.7 91.6± 2.0 90.9± 1.6 107.0± 6.2 123.8± 2.1
5 91.1± 1.8 89.8± 1.7 90.9± 1.7 100.7± 3.2 110.7± 1.4
6 85.1± 1.4 83.7± 0.7 83.2± 1.2 105.6± 4.4 102.2± 1.1
7 96.2± 1.5 96.3± 1.9 94.0± 2.2 88.5± 7.3 121.8± 1.2
8 90.7± 2.4 89.5± 2.1 90.0± 2.4 106.9± 4.3 119.8± 2.0
9 92.3± 1.7 88.8± 2.4 90.4± 2.0 92.4± 7.7 116.4± 2.1
10 88.1± 1.9 86.4± 3.0 86.7± 1.3 93.1± 5.9 122.8± 1.6

Overall 89.9± 0.7 88.2± 0.8 88.6± 0.7 102.3± 2.4 117.1± 1.2

on the benchmark problems in Riquelme et al. (2018) and
compare its performance to TS, IDS, greedy, and UCB.

For a finite action set of size K, Neural Linear maintains
one neural network, ht : Rd′ → Rd, as well as posterior
distributions on K parameter vectors βa ∈ Rd and K scalar
parameters σ2

a ∈ R. At time t, the posteriors on βa and σ2
a

are computed ignoring the uncertainty in the estimate of
ht(·) so that this computation is equivalent to bayesian lin-
ear regression. Specifically, we assume a linear contextual
bandit model on the context representation ht(X).

While the original dimension, d′, varies across datasets, the
last layer of the neural network has same dimension d = 50
for every dataset. We use a neural network with two fully
connected layers of size 50 for ht(·). The network is up-
dated every 50 time steps, in which the network minimizes
mean squared error for the observed rewards using the RM-
SProp optimizer (Hinton et al., 2012).

We replicate the experiments from Riquelme et al. (2018)
with the same real-world datasets. These datasets vary
widely in their properties; see Appendix A of Riquelme
et al. (2018) for the details of each dataset. We simulate
200 runs for each dataset and algorithm. For each dataset,
one “run” is defined as 10,000 data points randomly drawn
from the entire dataset; that is, there are 10,000 time steps3,
and each data point (or “context”) arrives sequentially in a
random order. We report the regret of each policy as a per-
centage of the regret of TS, shown in Table 2.

Results. Riquelme et al. (2018) establish TS along with the
neural linear approach to posterior sampling as a bench-
mark algorithm for deep contextual bandits. We see here
that TS-UCB improves upon TS on every dataset ex-

3The financial dataset did not have 10,000 data points, so we
used 3, 000 data points for this dataset only.

cept possibly mushroom, and it offers significant improve-
ments in datasets financial and statlog. Similarly to the
synthetic experiments, TS-UCB(100) always outperforms
TS-UCB(1).

The performance of the other algorithms relative to both
TS and TS-UCB is also similar to the results of the
synthetic experiments. IDS usually outperforms TS, and
has a similar performance to TS-UCB but slightly worse
in some cases. On average, the regret for IDS was
4.1% higher than TS-UCB(100) and 0.02% higher than
TS-UCB(1). Greedy has a very inconsistent performance
across datasets. It outperforms all other algorithms in three
datasets (census, covertype, jester), suggesting that no ex-
ploration is needed in these cases. However, its poor per-
formance in mushroom and statlog suggest that exploration
is indeed necessary in several real-world settings. UCB is
consistently outperformed by both TS and TS-UCB.

In summary, both the synthetic and real-world experiments
suggest the same conclusion: TS-UCB outperforms TS
across a comprehensive suite of experiments with essen-
tially no additional computation. Moreover, TS-UCB con-
sistently matches or improves upon the state-of-the-art al-
gorithm IDS, while being a much simpler algorithm than
IDS both computationally and conceptually.

5 OUTLINE OF REGRET ANALYSIS

In this section, we give an outline of the proofs of Theo-
rem 1 and 2. The full proofs can be found in the Appendix.

We first state two known results results on upper bounding∑T
t=1 E[radiust(At)] for the two bandit settings that fol-

low from standard UCB analyses. For the K-armed setting,
the proof of Proposition 2 of Russo and Van Roy (2014)
implies the following result.
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Table 2: Deep Bandit benchmark Riquelme et al. (2018) results for the Neural Linear posterior approximation method. For each
posterior approximation approach, the regret is reported as a percentage of regret of Thompson Sampling (with 95% confidence
intervals) for that approach. For each dataset, the policy with the lowest average regret is bolded.

Dataset d′ K TS-UCB(1) TS-UCB(100) IDS Greedy UCB

adult 14 86 98.8± 0.2 98.6± 0.2 98.6± 0.2 103.4± 0.7 101.0± 0.2
census 369 9 99.4± 0.5 99.2± 0.5 99.2± 0.5 92.2± 0.5 105.2± 0.5
covertype 54 7 98.7± 0.6 98.6± 0.6 98.4± 0.6 91.5± 0.6 110.3± 0.5
financial 21 8 60.0± 0.9 54.7± 0.7 56.3± 0.8 101.6± 9.8 160.7± 2.3
jester 32 8 99.4± 0.3 99.2± 0.3 99.6± 0.3 96.6± 0.4 113.1± 0.8
mushroom 117 2 108.0± 11.1 98.6± 5.1 118.6± 15.7 189.5± 32.4 918.3± 53.0
statlog 9 7 89.7± 0.6 74.9± 0.6 73.9± 0.6 317.5± 27.8 322.9± 2.0

Theorem 3. For the K-armed bandit, using the UCBs as
defined in (4),

∑T
t=K+1 E[radiust(At)] ≤ 2

√
3KT log T ,

for any sequence of actions At.

Similarly, in the linear bandit setting, the proof of Theorem
3 of Abbasi-Yadkori et al. (2011) (using the parameters δ =
T−3, λ = 1) implies the following result.
Theorem 4. For the linear bandit, using the UCBs
as defined in (7), for any sequence of actions At,∑T

t=1 E[radiust(At)] = O(d log T
√
T ).

Next, it is useful to extend the definition of Ψt to random-
ized actions. If ν is a probability distribution over A, define

Ψ̄t(ν) ≜
f̃t − EAt∼ν [µ̂t(At)]

EAt∼ν [radiust(At)]
. (9)

Using this definition, we show (Lemma 2 in the Appendix)
that for any policy (πt)t≥1, surely,

Ψt(A
TS-UCB
t ) ≤ Ψ̄t(πt). (10)

Now, suppose the following two approximations hold at ev-
ery time step (a rigorous version of these approximations
are used in the proof in the Appendix):

(i) f̃t approximates the expected optimal reward: f̃t ≈
E[fθ(A∗)|Ht].

(ii) µ̂t(a) approximates the expected reward of action a:
µ̂t(a) ≈ E[fθ(a)|Ht].

The Bayes regret for TS-UCB can be decomposed as

BayesRegret(T, πTS-UCB)

=

T∑
t=1

E[E[fθ(A∗
t )− fθ(A

TS-UCB
t )|Ht]]

≈
T∑

t=1

E[f̃t − µ̂t(A
TS-UCB
t )]

=

T∑
t=1

E
[
Ψt(A

TS-UCB
t )radiust(A

TS-UCB
t )

]
, (11)

where the second step uses (i)-(ii), and the third step uses
the definition (1).

(11) decomposes the regret into the product of two terms:
the ratio Ψt(A

TS-UCB
t ) and the radius of the action taken.

For the second piece, standard analyses for the UCB al-
gorithm found in the literature bound regret by bounding
the sum

∑T
t=1 E[radiust(At)] for any sequence of actions

At. Therefore, if Ψt(A
TS-UCB
t ) can be upper bounded by a

constant, the regret bounds found for UCB can be directly
applied.

We show Ψ̄t(π
TS
t ) ⪅ 1, where TS is the Thomp-

son Sampling policy (this is stated formally and shown
in Lemma 3 in the Appendix). In light of (10),
this implies Ψt(A

TS-UCB
t ) ⪅ 1. Plugging this

back into (11) gives us BayesRegret(T, πTS-UCB) ⪅∑T
t=1 E

[
radiust(A

TS-UCB
t )

]
, which lets us apply UCB re-

gret bounds from the literature and finishes the proof.

This method of decomposing the regret into the product of
two terms (as in (11)) and minimizing one of them was
used in Russo and Van Roy (2018) for the IDS policy. The
optimization problem in IDS is difficult, as the term that
is minimized involves evaluating the information gain, re-
quiring computing integrals over high-dimensional spaces.
The optimization problem for TS-UCB is almost trivial,
but it trades off on the ability to incorporate complicated
information structures as IDS can.

The above proof outline can be used to prove the following
proposition.

Proposition 1. Suppose radiust(a) ∈ [rmin, rmax] for all
a ∈ A and t ≥ 1. Using the UCBs as defined in (4) for the
K-armed bandit, and (7) for the linear bandit,

BayesRegret(T, πTS-UCB) ≤ 2

T∑
t=1

E[radiust(ATS-UCB
t )]

+
rmax

rmin

(
1 +

2T√
m

)
+ T−2. (12)

The approximation f̃t ≈ E[fθ(A∗)|Ht] used in the proof
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sketch only holds when m is large; the fact that this doesn’t
hold contributes to the 1√

m
term in (12), which goes to zero

as m → ∞. To cover the case when m is small, we also
show the following proposition, which has the opposite re-
lationship with respect to m.

Proposition 2. Using the UCBs as defined in (4) for the
K-armed bandit, and (7) for the linear bandit,

BayesRegret(T, πTS-UCB)

≤ 2

T∑
t=1

E[radiust(ATS-UCB
t )] + (m+ 1)T−2.

The main results follow from combining the above two
propositions with the known bounds of Theorems 3 and
4. The formal proofs of the theorems can be found in the
Appendix.
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A INTERPRETATION OF TS-UCB AS A DYNAMIC UCB ALGORITHM

Recall that a UCB algorithm chooses the arm with the highest upper confidence bound. Often, the radius of the confidence
interval takes the form α · radiust(a), where α is a scalar parameter. For example, the UCB1 algorithm of Auer et al.

(2002) plays the arm that maximizes µ̂t(a) +
√

2 log t
Nt(a)

; here we can think of α =
√
2. It is well known that tuning this

parameter can vastly improve empirical performance (Russo and Van Roy, 2014).

TS-UCB can be interpreted as a UCB algorithm whose α parameter is dynamically tuned. TS-UCB plays the arm with
the highest µ̂t(a) + αt · radiust(a), where

αt = min{α : max
a∈A

{µ̂t(a) + α · radiust(a)} ≥ f̃t}. (13)

That is, after sampling f̃t, αt is the smallest α such that there exists an arm whose UCB, µ̂t(a) + α · radiust(a), is
at least as large as f̃t. This ends up being equivalent to setting αt = Ψt(A

TS-UCB
t ). Indeed, for any a ∈ At, since

Ψt(A
TS-UCB
t ) ≤ Ψt(a) by definition of the algorithm, we have

µ̂t(a) + Ψt(A
TS-UCB
t ) · radiust(a) ≤ µ̂t(a) + Ψt(a) · radiust(a) = f̃t,

where the inequality is an equality if and only if a ∈ argmina∈A Ψt(a). In other words, for the action that TS-UCB
chooses, its (dynamically tuned) UCB is exactly f̃t; for other actions, their UCB is smaller. In this sense, TS-UCB is a
method of automatically (since the parameter αt is adjusted using posterior samples) and dynamically (since αt changes
with t) tuning the UCB algorithm.

B REGRET ANALYSIS

For our analysis, we introduce lower confidence bounds (Lt)t≥1, which we define in a symmetric way to upper confidence
bounds: Lt(a) ≜ µ̂t(a)− (Ut(a)− µ̂t(a)).

We first state a lemma that says that the confidence bounds are valid with high probability

Lemma 1. Using the functions {µ̂t}t≥1, {Ut}t≥1 as defined in (4) in the K-armed setting and (7) in the linear bandit
setting, for any t ≤ T , Pr(fθ(A) < Ut(A)) ≤ T−3, where A is any deterministic or random action. The analogous
bounds hold for lower confidence bounds, i.e. Pr(fθ(A) > Lt(A)) ≤ T−3.

For completeness, the proof of Lemma 1 can be found in B.4. The following corollary is immediate using the law of total
expectation and the fact that fθ(A) ≥ −1.

Corollary 1. For any t ≤ T , E[−fθ(A)] ≤ E[−Lt(A)] + T−3, where A is any deterministic or random action.

The next two subsections prove Proposition 1 and 2 respectively. The final step of the proof combines these propositions
with the known bounds for

∑T
t=1 E[radiust(At)] from Theorems 3 and 4, and can be found in Appendix B.3.

B.1 Proof of Proposition 1.

We first state the result claimed in (10) whose proof is deferred to Appendix B.4.

Lemma 2. For any distribution τ over At, Ψt(A
TS-UCB
t ) ≤ Ψ̄t(τ) almost surely.

Next, we upper bound the ratio Ψt(A
TS-UCB
t ) by analyzing the Thompson Sampling policy.

Lemma 3. Ψt(A
TS-UCB
t ) ≤ 1+ 1

rmin
(Pr(fθ(A

∗) > Ut(A
∗)|Ht) + f̃t −E[fθ(A∗)|Ht]) almost surely. Equivalently, using

(1),

f̃t − µ̂t(A
TS-UCB
t ) ≤ radiust(A

TS-UCB
t )(1 +

1

rmin
(Pr(fθ(A

∗) > Ut(A
∗)|Ht) + f̃t − E[fθ(A∗)|Ht])). (14)

Proof. Let πTS be the Thompson sampling policy. We show the inequality for Ψ̄t(π
TS
t ) instead, and then use

Ψt(A
TS-UCB
t ) ≤ Ψ̄t(π

TS
t ) from Lemma 2 to get the desired result.
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By definition of TS, πTS
t = πTS

t (Ht) is the distribution over At corresponding to the posterior distribution of A∗

conditioned on Ht. Then, if At is the action chosen by TS at time t, we have E[Ut(At)|Ht] = E[Ut(A
∗)|Ht] and

E[µ̂t(At)|Ht] = E[µ̂t(A
∗)|Ht]. Using this, we can write Ψ̄t(π

TS
t ) as

Ψ̄t(π
TS
t ) =

f̃t − E[µ̂t(At)|Ht]

E[Ut(At)− µ̂t(At)|Ht]
=

f̃t − E[µ̂t(A
∗)|Ht]

E[Ut(A∗)− µ̂t(A∗)|Ht]
. (15)

By conditioning on the event {fθ(A∗) ≤ Ut(A
∗)}, the following inequality follows from the fact that fθ(A∗) ≤ 1.

E[fθ(A∗)|Ht] ≤ E[Ut(A
∗)|Ht] + Pr(fθ(A

∗) > Ut(A
∗)|Ht). (16)

Consider the numerator of (15). We add and subtract E[fθ(A∗)|Ht] and use (16):

f̃t − E[µ̂t(A
∗)|Ht] = E[fθ(A∗)− µ̂t(A

∗)|Ht] + f̃t − E[fθ(A∗)|Ht]

≤ E[Ut(A
∗)− µ̂t(A

∗)|Ht] + Pr(fθ(A
∗) > Ut(A

∗)|Ht) + f̃t − E[fθ(A∗)|Ht]. (17)

The first term of (17) is equal to the denominator of Ψ̄t(π
TS). Therefore,

Ψ̄t(π
TS) ≤ 1 +

Pr(fθ(A
∗) > Ut(A

∗)|Ht) + f̃t − E[fθ(A∗)|Ht]

E[Ut(A∗)− µ̂t(A∗)|Ht]

≤ 1 +
1

rmin
(Pr(fθ(A

∗) > Ut(A
∗)|Ht) + f̃t − E[fθ(A∗)|Ht]).

□

The next lemma simplifies the expectation of (14) using Cauchy-Schwarz.

Lemma 4. For any t, E[f̃t − µ̂t(A
TS-UCB
t )] ≤ E[radiust(ATS-UCB

t )] + rmax

rmin

(
1
T + 2√

m

)
.

Proof. Taking the expectation of (14) gives us

E[f̃t − µ̂t(A
TS-UCB
t )]

≤E[radiust(ATS-UCB
t )(1 +

1

rmin
(Pr(fθ(A

∗) > Ut(A
∗)|Ht) + f̃t − E[fθ(A∗)|Ht]))]

=E[radiust(ATS-UCB
t )]

+
1

rmin
E[radiust(ATS-UCB

t ) Pr(fθ(A
∗) > Ut(A

∗)|Ht)] (18)

+
1

rmin
E[radiust(ATS-UCB

t )(f̃t − E[fθ(A∗)|Ht])]. (19)

We will now upper bound (18) and (19) with rmax

rmin
· 1
T and rmax

rmin
· 2√

m
respectively, in which case the result will follow.

First, consider (18). Using Cauchy-Schwarz yields
1

rmin
E[radiust(ATS-UCB

t ) Pr(fθ(A
∗) > Ut(A

∗)|Ht)]

≤ 1

rmin

√
E[radiust(ATS-UCB

t )2]E[Pr(fθ(A∗) > Ut(A∗)|Ht)2]

≤ 1

rminT

√
E[radiust(ATS-UCB

t )2]

≤ 1

T
· rmax

rmin
, (20)

where the second step uses the following.

E[Pr(fθ(A∗) > Ut(A
∗)|Ht)

2] = E[E[1(fθ(A∗) > Ut(A
∗))|Ht]

2]

≤ E[E[1(fθ(A∗) > Ut(A
∗))2|Ht]]

= E[E[1(fθ(A∗) > Ut(A
∗))|Ht]]

≤ Pr(fθ(A
∗) > Ut(A

∗))

≤ 1

T 2
,
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where the first inequality uses Jensen’s inequality, and the last inequality uses Lemma 1.

Similarly, we apply Cauchy-Schwarz to (19).

1

rmin
E[radiust(ATS-UCB

t )(f̃t − E[fθ(A∗)|Ht])] ≤
1

rmin

√
E[radiust(ATS-UCB

t )2]E[(f̃t − E[fθ(A∗)|Ht])2]. (21)

Recall that f̃t = 1
m

∑m
i=1 f̃i, and f̃i has the same distribution as fθ(A

∗) conditioned on Ht. Therefore, E[f̃t|Ht] =
E[fθ(A∗)|Ht]. Then, we have

E[(f̃t − E[fθ(A∗)|Ht])
2] = E[E[(f̃t − E[fθ(A∗)|Ht])

2|Ht]]

= E[Var(f̃t|Ht)]

= E[
1

m
Var(f̃i|Ht)]

≤ 4

m
.

The last inequality follows since f̃i ∈ [−1, 1]. Combining this with (21), we get

1

rmin
E[radiust(ATS-UCB

t )(f̃t − E[fθ(A∗)|Ht])] ≤
2

rmin
√
m

√
E[radiust(ATS-UCB

t )2]

≤ 2√
m

· rmax

rmin
(22)

Substituting (20) and (22) into (19) yields the desired result. □

Proof of Proposition 1. Conditioned on Ht, the expectation of fθ(A∗) and f̃t is the same, implying E[fθ(A∗)] = E[f̃t] for
any t. Therefore, the Bayes regret can be written as

∑T
t=1 E[f̃t − fθ(A

TS-UCB
t )]. By adding and subtract µ̂t(A

TS-UCB
t ), we

derive

BayesRegret(T, πTS-UCB) =

T∑
t=1

E[f̃t − µ̂t(A
TS-UCB
t )] +

T∑
t=1

E[µ̂t(A
TS-UCB
t )− fθ(A

TS-UCB
t )]. (23)

The first sum in (23) can be bounded by
∑T

t=1 E[radiust(ATS-UCB
t )]+ rmax

rmin

(
1 + 2T√

m

)
using Lemma 4. Using Corollary 1,

the second sum in (23) can be bounded by
∑T

t=1(E[µ̂t(A
TS-UCB
t )−Lt(A

TS-UCB
t )]+T−3) ≤

∑T
t=1 E[radiust(ATS-UCB

t )]+
T−2. Substituting these two bounds results in

BayesRegret(T, πTS-UCB) ≤ 2

T∑
t=1

E[radiust(ATS-UCB
t )] +

rmax

rmin

(
1 +

2T√
m

)
+ T−2

as desired. □

B.2 Proof of Proposition 2.

The main idea of this proof is captured in the following lemma, which says that we can essentially replace the term
E[fθ(A∗)] with E[Ut(A

TS-UCB
t )].

Lemma 5. For every t, E[fθ(A∗)] ≤ E[Ut(A
TS-UCB
t )] +mT−3.

Proof. Fix t, Ht, and f̃t. For an action a ∈ At, if Ut(a) ≥ f̃t, then Ψt(a) ≤ 1 since the denominator of the ratio is
always positive. Otherwise, if Ut(a) < f̃t, then Ψt(a) > 1. This implies that an action whose UCB is higher than f̃t will
always be chosen over an action whose UCB is smaller than f̃t. Therefore, in the case that f̃t ≤ maxa∈At

Ut(a), it will be
that Ut(A

TS-UCB
t ) ≥ f̃t. Since f̃t ≤ 1, we have

E[f̃t|Ht] ≤ Ut(A
TS-UCB
t ) Pr(f̃t ≤ max

a∈At

Ut(a)|Ht) + Pr(f̃t > max
a∈At

Ut(a)|Ht)

≤ Ut(A
TS-UCB
t ) + Pr(f̃t > max

a∈At

Ut(a)|Ht).
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Since f̃t = 1
m

∑m
i=1 f̃i, if f̃t is larger than maxa∈At Ut(a), it must be that at least one of the elements f̃i is larger than

maxa∈At
Ut(a). Then, the union bound gives us Pr(f̃t > maxa∈At

Ut(a)|Ht) ≤
∑m

i=1 Pr(f̃i > maxa∈At
Ut(a)|Ht).

By definition of f̃i, the distribution of f̃i and fθ(A
∗
t ) are the same conditioned on Ht.Therefore,

E[f̃t|Ht] ≤ Ut(A
TS-UCB
t ) +mPr(fθ(A

∗
t ) > max

a∈At

Ut(a)|Ht).

Using the fact that E[f̃t|Ht] = E[fθ(A∗
t )|Ht] and taking expectations on both sides, we have

E[fθ(A∗
t )] ≤ E[Ut(A

TS-UCB
t )] +mPr(fθ(A

∗
t ) > max

a∈At

Ut(a))

≤ E[Ut(A
TS-UCB
t )] +mPr(fθ(A

∗
t ) > Ut(A

∗
t ))

≤ E[Ut(A
TS-UCB
t )] +mT−3.

The last inequality uses Lemma 1. □

Proof of Proposition 2.

BayesRegret(T, πTS-UCB) =

T∑
t=1

E[fθ(A∗
t )− fθ(A

TS-UCB
t )]

≤
T∑

t=1

(E[Ut(A
TS-UCB
t )− fθ(A

TS-UCB
t )] +mT−3)

≤
T∑

t=1

(E[Ut(A
TS-UCB
t )− Lt(A

TS-UCB
t )] + T−3) +mT−2

= 2

T∑
t=1

E[radiust(ATS-UCB
t )] + (m+ 1)T−2,

where the first inequality uses Lemma 5 and the second inequality uses Corollary 1. □

B.3 Final step of proof.

Proof of Theorem 1. The UCBs in (4) imply that radiust(a) ∈ [
√

3 log T
T ,

√
3 log T ] for all a and t, therefore rmax

rmin
≤

√
T .

Then, Propositions 1 and 2 result in the following two inequalities respectively:

BayesRegret(T, πTS-UCB) ≤ 2

T∑
t=1

E[radiust(ATS-UCB
t )] +

√
T + 2

√
T 3

m
+ T−2,

BayesRegret(T, πTS-UCB) ≤ 2

T∑
t=1

E[radiust(ATS-UCB
t )] +

m

T 2
+ T−2.

Combining these two bounds results in

BayesRegret(T, πTS-UCB) ≤ 2

T∑
t=1

E[radiust(ATS-UCB
t )] +

√
T + T−2 +min

{
2

√
T 3

m
,
m

T 2

}
.

For any value of m > 0, min

{
2
√

T 3

m , m
T 2

}
≤ 2

√
T . Plugging in the known bound for

∑T
t=1 E[radiust(ATS-UCB

t )] from

Theorem 3 finishes the proof of Theorem 1.4 □

4The statement of Theorem 1 has an additional +K term since the first K time steps are used to pull each arm once, which we did
not include in the proof to simplify exposition.
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Proof of Theorem 2. The following lemma, whose proof is deferred to Section B.4, allows us to bound rmax

rmin
by 4

√
2T .

Lemma 6. For the linear bandit, using the UCBs as defined in (7), if ||X(a)||2 = 1 for every a, then radiust(a) ∈
[r
√

d log T
T , 4r

√
2d log T ] for every t and a.

Then, using the same steps from the proof of Theorem 1, we derive

BayesRegret(T, πTS-UCB) ≤ 2

T∑
t=1

E[radiust(ATS-UCB
t )] + 4

√
2T + T−2 +min

{
8

√
2T 3

m
,
m

T 2

}
. (24)

For any m, min

{
8
√

2T 3

m , m
T 2

}
≤ 8

√
2T . Plugging in the known bound for

∑T
t=1 E[radiust(ATS-UCB

t )] from Theorem 4

gives us (8), finishing the proof of Theorem 2. □

B.4 Deferred Proofs of Lemmas

Proof of Lemma 1. In the linear bandit, this lemma follows directly from Theorem 2 of Abbasi-Yadkori et al. (2011) (using
the parameters δ = T−3, λ = 1). In the K-armed setting, if µ̂(n, a) is the empirical mean of the first n plays of action a,

Hoeffding’s inequality implies Pr(fθ(a) − µ̂(n, a) ≥
√

3 log T
n ) ≤ T−6 for any n. Then, since the number of plays of a

particular action is no larger than T , we have

Pr(fθ(a)− µ̂t(a) ≥

√
3 log T

Nt(a)
) ≤ Pr(∪T

n=1{fθ(a)− µ̂(n, a) ≥
√

3 log T

n
}) ≤ T−5.

Since |A| = K ≤ T and A∗, At ∈ A, the result follows after taking another union bound over actions (which proves a
stronger bound of T−4). □

Proof of Lemma 2. Fix Ht and f̃t. For every action a, let ∆a = f̃t − µ̂t(a), and hence Ψt(a) = ∆a

radiust(a)
. Let ν be a

distribution over At. Then,

Ψ̄t(ν) =
Ea∼ν [∆a]

Ea∼ν [radiust(a)]
. (25)

radiust(a) > 0 for all a, but ∆a can be negative. We claim that the above ratio is minimized when τ puts all of its mass
on one action — in particular, the action a∗ ∈ argmina

∆a

radiust(a)
.

For a ̸= a∗, let ca = radiust(a)
radiust(a∗) > 0. Then, since Ψt(a) ≥ Ψt(a

∗), we can write ∆a = ca∆a∗ + δa for δa ≥ 0 for all a.
Let pa∗ = Pr(a = a∗). Let E = {a ̸= a∗} Substituting into (25), we get

Ψ̄t(ν) =
E[ca∆a∗ + δa]

E[caradiust(a∗)]

=
pa∗∆a∗ + E[ca∆a∗ + δa|E] Pr(E)

pa∗radiust(a∗) + E[caradiust(a∗)|E] Pr(E)

=
∆a∗ (pa∗ + E[ca|E] Pr(E)) + E[δa|E] Pr(E)

radiust(a∗) (pa∗ + E[ca|E] Pr(E))

=
∆a∗

radiust(a∗)
+

E[δa|E] Pr(E)

radiust(a∗) (pa∗ + E[ca|E] Pr(E))

≥ ∆a∗

radiust(a∗)

= Ψt(a
∗)

□
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Proof of Lemma 6. We have

radiust(a) =
√
βt||X(a)||V −1

t
=

√
βt||V −1/2

t X(a)||2.

Then, since ||X(a)||2 = 1 for all a,√
βtσmin(V

−1/2
t ) ≤ radiust(a) ≤

√
βtσmax(V

−1/2
t ).

First, we lower bound σmin(V
−1/2
t ). To do this, we can instead upper bound ||Vt||2, since σmin(V

−1/2
t ) =

√
σmin(V

−1
t ) =

1√
σmax(Vt)

= 1√
||Vt||2

. The triangle inequality gives ||Vt||2 ≤ ||I||2 +
∑t

s=1 ||XsX
⊤
s ||2. Since XsX

⊤
s is a rank-1 matrix,

the only non-zero eigenvalue is ||Xs||22 = 1 with eigenvector Xs, since (XsX
⊤
s )Xs = Xs(X

⊤
s Xs). Therefore, ||Vt||2 ≤

||I||2 +
∑t

s=1 ||Xs||22 ≤ 1+ T , which implies σmin(V
−1/2
t ) ≥ 1√

T+1
≥ 1√

2T
. Recall

√
βt = r

√
d log(T 2(1 + t)) +S ≥

r
√
d log T , implying radiust(a) ≥ r

√
d log T
2T .

Next, we upper bound σmax(V
−1/2
t ) = 1√

σmin(Vt)
by lower bounding σmin(Vt). σmin(Vt) ≥ σmin(I) = 1. Therefore,

σmax(V
−1/2
t ) ≤ 1. We can upper bound

√
βt by r

√
d log(T 4) + S ≤ 2r

√
4d log(T ), since we assumed r ≥ 1 and

S ≤
√
d. Therefore, we have

radiust(a) ≤
√

βt ≤ 4r
√

d log(T ).

□

C SIMULATION SETUP FOR PERSONALIZED NEWS ARTICLE RECOMMENDATION

Each sample in the dataset corresponds to the user context, the set of articles available, the article recommended, and
whether the user clicked on the article. There are 1.3 - 2.2 million samples for each of the 10 days. A very similar
dataset was used in Chapelle and Li (2011), which was one of the first papers to display superior empirical performance of
Thompson Sampling.

Given this dataset, we use the following method to evaluate a bandit policy. For each article, we first learn a mapping from
user features to their click probabilities using a logistic regression model on the entire dataset. We only considered articles
that had more than 5000 samples so that we could learn an accurate mapping. We then use this logistic regression model
to compute p̂ua, an estimate of the probability that a user u will click an article a. We then simulate a bandit policy, where
the reward observed from the chosen arm is a Bernoulli random variable with parameter p̂ua5. Then, the total regret is
computed as

∑T
t=1 (maxa∈At

p̂ua − p̂uAt
). We consider each of the 10 days as separate bandit problem instances, and we

also randomly sample 2% of the dataset so that we have around 25,000-45,000 samples for each problem instance (each
“run” used a new random sample). Furthermore, at each time step, out of the articles that were marked to be available in
the dataset at that time (this pool contained 20-40 articles), we chose only 10 articles to be available to the bandit algorithm,
chosen as the first 10 alphabetically6.

We model this setting as a linear contextual bandit and use the Bayesian structure of Riquelme et al. (2018). Each article
corresponds to an arm, and each arm is associated with unknown parameters βa ∈ Rd and σ2

a ∈ R. The reward for arm
a corresponding to context X is modeled as Y = β⊤

a X + ϵ where ϵ ∼ N(0, σ2
a). We model the joint distribution of the

parameters βa and σ2
a, where we assume they are distributed according to a Gaussian and an Inverse Gamma distribution

respectively. At time t, suppose there have been ta pulls of arm a, corresponding to the contexts Xt ∈ Rta×d and rewards
Yt ∈ Rta .

Then, the posterior distributions are σ2
a ∼ IG(at, bt), and βa|σ2

a ∼ N(µt, σ
2
aΣt), where

Σt = (X⊤
t Xt + Λ0)

−1 µt = Σt(Λ0µ0 +X⊤
t Yt), (26)

at = a0 + ta/2 bt = b0 +
1

2
(Y ⊤

t Yt + µ0Σ0µ0 − µ⊤
t Σ

−1
t µt). (27)

5The motivation for this bandit evaluation method was solely to speed up computation for the IDS algorithm. We initially tried the
offline evaluation of Li et al. (2011), which does not require learning a separate regression model; however, running this method once
for one day’s worth of data using the IDS policy took over 3 days. Using the logistic regression model reduced the simulation time by
more than 20×.

6Reducing the number of arms was done to also to speed up the computation for IDS, as the runtime of IDS is quadratic in the number
of arms.
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We initialize the prior parameters to be a0 = b0 = 6, µ0 = 0d, and Λ0 = 4Id. At each time step, for each arm, we
first sample σ̃2 from its posterior, and then we use the conditional posterior for βa, N(µt, σ̃

2Σt), to run the following
linear contextual bandit algorithms: TS, TS-UCB(1), TS-UCB(100), IDS, Greedy, and UCB. For each of the 10 days,
we simulated 20 runs for each policy.


