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Abstract
Total correlation (TC) is a fundamental concept
in information theory which measures statistical
dependency among multiple random variables.
Recently, TC has shown noticeable effectiveness
as a regularizer in many learning tasks, where
the correlation among multiple latent embeddings
requires to be jointly minimized or maximized.
However, calculating precise TC values is chal-
lenging, especially when the closed-form distribu-
tions of embedding variables are unknown. In this
paper, we introduce a unified framework to esti-
mate total correlation values with sample-based
mutual information (MI) estimators. More specif-
ically, we discover a relation between TC and
MI and propose two types of calculation paths
(tree-like and line-like) to decompose TC into MI
terms. With each MI term being bounded, the TC
values can be successfully estimated. Further, we
provide theoretical analyses concerning the statis-
tical consistency of the proposed TC estimators.
Experiments are presented on both synthetic and
real-world scenarios, where our TC estimators
demonstrate effectiveness in all TC estimation,
minimization, and maximization tasks. The code
is available at https://github.com/Linear95/TC-
estimation.

1 INTRODUCTION
Statistical dependency measures the association (correla-
tion) of variables or factors in models and systems, and
constitutes one of the key considerations in various scien-
tific domains including statistics (Granger and Lin, 1994;
Jiang et al., 2015), robotics (Julian et al., 2014; Charrow
et al., 2015), bioinformatics (Lachmann et al., 2016; Zea
et al., 2016), and machine learning (Chen et al., 2016; Alemi
et al., 2016; Hjelm et al., 2018). In deep learning, statistical
dependency has been applied as learning objective or reg-
ularizer in many well-known training frameworks, such as
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information bottleneck (Alemi et al., 2016), disentangled
representation learning (Chen et al., 2018; Peng et al., 2019;
Cheng and Li, 2022) and contrastive learning (Chen et al.,
2020; Gao et al., 2021). Recent neural network studies have
also demonstrated the benefits of considering statistical de-
pendency in terms of model robustness (Zhu et al., 2020),
fairness (Creager et al., 2019), interpretability (Chen et al.,
2016; Cheng et al., 2020b), etc.

Among diverse measurement approaches for statistical de-
pendency, the concept of mutual information (MI) is one of
the most commonly used, especially in deep model train-
ing (Alemi et al., 2016; Belghazi et al., 2018; Chen et al.,
2020). Given two random variables x and y with joint and
marginal distributions p(x,y), p(x) and p(y), respectively,
their mutual information is defined as:

I(x;y) = Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
. (1)

Recently, mutual information has been used as a training
criterion to deliver noticeable performance improvement for
deep models on various learning tasks such as conditional
generation (Chen et al., 2016; Cheng et al., 2020b), domain
adaptation (Gholami et al., 2020; Cheng et al., 2020a), repre-
sentation learning (Chen et al., 2020; Gao et al., 2021; Yuan
et al., 2021), and model debiasing (Song et al., 2019; Cheng
et al., 2021). However, standard MI in equation 1 only
handles the statistical dependency between two variables.
When considering correlation among multiple variables, MI
requires computation between each pair of variable, which
leads to a quadratic scaling in computation cost. To address
this problem, total correlation (TC) (Watanabe, 1960) or
multi-information (Studenỳ and Vejnarová, 1998) has been
proposed for multi-variable scenarios:

T C(X) =T C(x1,x2, . . . ,xn) (2)

=Ep(x1,x2,...,xn)

[
log

p(x1,x2, . . . ,xn)

p(x1)p(x2) . . . p(xn)

]
.

TC has been also proven effective to enhance machine learn-
ing models in many tasks such as independent component
analysis (Cardoso, 2003), structure discovery (Ver Steeg
and Galstyan, 2014) and disentangled representation learn-
ing (Chen et al., 2018; Locatello et al., 2019a; Kim and
Mnih, 2018). However, TC suffers from the same practical
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problem as MI, namely, that the exact values of TC are
difficult to calculate without the availability of the closed-
form distributions, or only relying on samples either via
the kernel density estimation (KDE) (Kandasamy et al.,
2015; Singh and Póczos, 2014) and k-Nearest Neighbor
(k-NN) (Pál et al., 2010; Kraskov et al., 2004a; Gao et al.,
2018), which may perform well on data with low dimen-
sionality but failed on the high one. Furthermore, previous
works on disentangled representation learning (Chen et al.,
2018; Gao et al., 2019) strongly assume that both the joint
distribution p(x1,x2, . . . ,xn) and marginal distributions
{p(xi)}ni=1 follow Gaussian distributions, so that the TC
value can be calculated in closed-form. Poole et al. (2019)
proposed an upper bound of TC by further introducing an
auxiliary variable y. With a strong assumption that given
y and xi|y, all variables are conditionally independent,
p(X|y) =

∏n
i=1 p(xi|y), Poole et al. (2019) showed that

T C(X) =
∑n

i=1 I(xi;y) − I(X;y), i.e., that the TC
value can be bounded by MI estimators (Belghazi et al.,
2018; Poole et al., 2019; Cheng et al., 2020a). All these TC
estimation methods require additional strong assumptions
on the distributions of data samples, which heavily limits
their application in practice.

In this paper, we propose a new Total Correlation Estimator
via Linear Decomposition (TCeld), which importantly, does
not require any assumptions about sample distributions.
More specifically, we discover a linear decomposition rela-
tion between TC and mutual information (MI). Based on
this relationship, we linearly split the TC into several MI
terms, then estimate each MI term aided with variational
MI estimators. With two different TC decomposition paths
(line-like and tree-like), we obtain two types of TC estima-
tors, T̂ CTree and T̂ CLine, respectively. Moreover, we prove
that the nice properties of MI estimators, such as consistency,
are maintained in the corresponding TC estimators, thanks
to the linearity of the proposed TC decomposition. In the
experiments, we first test the estimation quality of our TC
estimators on simulation data sampled from multi-variate
Gaussian distributions, then apply the TC estimators to two
real-world TC optimization tasks. The numerical results
demonstrate the effectiveness of the proposed TC estimators
under both TC estimation and optimization scenarios.

2 BACKGROUND

2.1 Sample-based Mutual Information Estimators

Although mutual information (MI) is a fundamental tool
for measuring statistical dependency between two variables,
calculating MI values with only samples provided is chal-
lenging, especially when the closed-form distributions of
variables are unknown. To estimate MI values with samples,
several variational MI estimators have been introduced. Bar-
ber and Agakov (2003) approximate the conditional distri-
bution p(x|y) between x and y by a variational distribution
q(x|y), and derive:

IBA := H(x) + Ep(x,y)[log q(x|y)], (3)

with H(x) as the entropy of x. Utilizing the Donsker-
Varadhan representation (Donsker and Varadhan, 1983) of
KL-divergence, Belghazi et al. (2018) obtain an MI Neural
Estimator (MINE) with a score network ϕ(·, ·):

IMINE :=Ep(x,y)[ϕ(x,y)] (4)
− log(Ep(x)p(y)[exp(ϕ(x,y))].

Nguyen, Wainwright, and Jordan (NWJ) derive an-
other lower bound considering MI as in a f-divergence
form Nguyen et al. (2010), which also requires a score
network ϕ(·, ·):

INWJ := Ep(x,y)[ϕ(x,y)]− Ep(x)p(y)[e
ϕ(x,y)−1]. (5)

With Noise Contrastive Estimation (NCE) (Gutmann and
Hyvärinen, 2010), Oord et al. (2018) propose a MI lower
bound called InfoNCE, based on a group of samples
{(xi,yi)}Ni=1, to obtain a low-variance estimator:

IInfoNCE := E[
1

N

N∑
i=1

log
exp(ϕ(xi,yi))

1
N

∑N
j=1 exp(ϕ(xi,yj))

]. (6)

Different from the MI lower bounds introduced above,
Cheng et al. (2020a) derive a Contrastive Log-ratio Up-
per Bound (CLUB), which is also based on a variational
approximation q(x|y) of p(x|y):

ICLUB := Ep(x,y)[log q(x|y)]−Ep(x)p(y)[log q(x|y)] (7)

2.2 Statistical Properties of Estimators

Given observed samples x1,x2, . . .xm ∼ p(x), a statis-
tic is defined as T (x1,x2, . . . ,xm), where T (·) is an ar-
bitrary real-valued function taking samples x1,x2, . . .xm

as inputs (DeGroot and Schervish, 2012). Sample-based
estimators to calculate statistical dependency, i.e. mutual
information and total correlation, are also examples of statis-
tics. To evaluate the performance of a statistic, statistical
properties are introduced to describe behaviors of the statis-
tic under different data situations (DeGroot and Schervish,
2012) (e.g., with large/small sample number, with/without
outlier). For estimation of mutual information and total cor-
relation, we follow prior works (Paninski, 2003; Belghazi
et al., 2018) and will mainly consider the following three
key properties:

Definition 2.1 (Unbiasedness). An estimator R̂ =
T (x1,x2, . . . ,xm) is unbiased of the ground true value
Rp with respect to the distribution p(x), if Ep(x)[R̂] = Rp.

Definition 2.2 (Consistency). An estimator R̂m =
T (x1,x2, . . . ,xm) is consistent to the ground true value
Rp with respect to the distribution p(x), if ∀ε > 0,
limm→∞ P{|R̂m −Rp| ≥ ε} = 0.
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Definition 2.3 (Strong Consistency). An estimator R̂m =
T (x1,x2, . . . ,xm) is strongly consistent to the ground true
value Rp with respect to the distribution p(x), if ∀ε >
0, there exists an integer M > 0 such that ∀m > M ,
|R̂m −Rp| ≤ ε almost surely.

3 TOTAL CORRELATION ESTIMATION

Suppose m groups of data samples {Xj}mj=1 =

{(xj
1,x

j
2, . . . ,x

j
n)}mj=1 are observed from an unknown dis-

tribution p(X) = p(x1,x2, . . . ,xn). We seek to estimate
the total correlation (TC) of these n variables as in equa-
tion 2. Below we first describe the proposed sample-based
TC estimators, then analyze their statistical properties.

3.1 Sample-based TC Estimators

With the definition of total correlation (TC) and mutual
information (MI) in equation 2 and equation 1, we discover
a connection between TC and MI and summarize it in the
following Theorem 3.1.

Theorem 3.1. Let X = (x1,x2, . . . ,xn) be a group of
random variables. Suppose set A = {i1, i2, . . . , ik} ⊆
{1, 2, . . . , n} is an index subgroup. Ā = {i : i /∈ A} is the
complementary set of A. Denote XA = (xi1 ,xi2 , . . . ,xik)
as the selected variables from X with the indexes A. Then
we have T C(X) = T C(XA) + T C(XĀ) + I(XA;XĀ).

Theorem 3.1 underscores the insight that the TC of a group
of variables X can be decomposed into the TC of two sub-
groups T C(XA) and T C(XĀ) and the MI between the
two subgroups I(XA;XĀ). Therefore, we can recursively
represent the TC of the subgroups in terms of MI terms for
lower-level subgroups. With this decomposition strategy, we
can effectively cast T C(X) into a summation of MI terms
between variable subgroups. Note that the decomposition
form depends on the separation of variables in each sub-
group. In the following, we introduce two types of variable
separation strategies: line-like and tree-like decomposition
as shown in Figure 1.

Line-like Decomposition In each variable subgroup sep-
aration, our line-like decomposition strategy splits out a
single variable. Let Xi:j = (xi,xi+1, . . . ,xj) denote a
subset of variables with indexes from i to j. Then we can
extend Theorem 3.1 to the following Corollary 3.1.1 and
Corollary 3.1.2. Based on Corollary 3.1.1, the line-like
decomposition can be dynamically described as:

T C(X1:i+1) = T C(X1:i) + I(X1:i;xi+1). (8)

Iteratively applying equation 8 to the remaining TC term,
we derive the representation of T C(X) as the summation
of MI terms in Corollary 3.1.2. With a given MI estimation
method Î applied to each MI term in Corollary 3.1.2, our

line-like TC estimator can be calculated as:

T̂ CLine[Î](X) =

n−1∑
i=1

Î(X1:i;xi+1). (9)

Corollary 3.1.1. Given the group X and another variable
y, T C(X ∪ {y}) = T C(X) + I(X;y).

Corollary 3.1.2. Given X = (x1,x2, . . . ,xn), we have
T C(X) =

∑n−1
i=1 I(X1:i;xi+1).

Tree-like Decomposition In each variable subgroup separa-
tion, the tree-like decomposition strategy separates variables
Xi:j into balanced variable subgroups with similar sizes in
the following way:

T C(Xi:j) =T C(Xi:⌊(i+j)/2⌋) + T C(X⌊(i+j)/2⌋+1:j)

+ I(Xi:⌊(i+j)/2⌋;X⌊(i+j)/2⌋+1:j), (10)

where ⌊t⌋ indicates the largest integer smaller than t. In ac-
cordance with the line-like decomposition, iteratively apply-
ing this dichotomous dynamic will finally convert T C(X)
into the summation of MI terms. Since the closed-form
of this tree-like TC estimator is hard to summarize in an
equation, we describe it recursively in Algorithm 1.

We call this novel TC estimator as Total Correlation
Estimation with Linear Decomposition (TCeld). From the
linearity of the above two decomposition strategies, one can
easily derive:

Theorem 3.2. If an MI estimator Î is an MI upper
(or lower) bound, then the corresponding T̂ CLine[Î] and
T̂ CTree[Î] are both the TC upper (or lower) bounds.

Therefore, by selecting an MI lower bound Î0 and an MI
upper bound Î1, we can limit the ground-truth TC value in
a certain range, T̂ C

∗
[Î0](X) ≤ T C(X) ≤ T̂ C

∗
[Î1](X),

where T̂ C
∗

can be either line-like T̂ CLine or tree-like T̂ CTree.

Both the line-like and tree-like TC estimators have no addi-
tional requirement on the selection of MI estimators. How-
ever, the statistical performance of the proposed TC esti-
mators highly depends on the selected MI estimators. To
further analyze the influence of MI bounds choice for TC
estimators, we discuss the statistical properties between the
TC estimators and MI estimators in the next subsection.

3.2 Statistical Properties of TC Estimators

As introduced in Section 2.2, TC estimators can be also
regarded as a type of statistics based on observed groups of
sample data. Therefore, the aforementioned statistical prop-
erties (unbiasedness, consistency, and strong consistency
in Section 2.2) are applicable to TC estimators. Thanks
to the form of linear combinations of MI terms in our TC
estimators, we find the following relations between TC and
MI estimators in terms of statistical properties:
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Figure 1: Two decomposition paths of total correlation T C(x1,x2, . . . ,xn). Left (tree-like decomposition): Divide the
variables in a group into two subgroups with similar sizes. Calculate the MI between the subgroups and recursively calculate
the TC of both subgroups. ⌈n/2⌉ is the smallest number larger than n/2. Right (line-like decomposition): Calculate the MI
between the current group of variables and the next variable, and then add the next variable into current group.

Algorithm 1 Tree-like TC estimator T̂ CTree[Î] calculation.

Prerequisite: MI estimation method Î, samples
{Xj

1:n}mj=1 = {(xj
1,x

j
2, . . . ,x

j
n)}mj=1

Function T̂ CTree[Î](Xi:j):
if j − i < 1 then

return 0
else
m = ⌊(i+ j)/2⌋
return T̂ CTree[Î](Xi:m) + T̂ CTree[Î](Xm+1:j) +

Î(Xi:m;Xm+1:j)
end if

Theorem 3.3. If an MI estimator Î is unbiased, then the
corresponding TC estimators T̂ CLine[Î] and T̂ CTree[Î] are
both unbiased.

Theorem 3.4. If an MI estimator Î is (strongly) consis-
tent, then the corresponding TC estimators T̂ CLine[Î] and
T̂ CTree[Î] are both (strongly) consistent.

The definitions of unbiasedness and consistency are intro-
duced in Section 2.2. The details of the proofs for both
theorems are shown in the Supplementary Material. These
two Theorems indicate that the unbiasedness and the con-
sistency of the MI estimators is conveniently inherited by
the corresponding TC estimators. Note that Belghazi et al.
(2018) have shown that MINE (in equation 4) MI estimator
is strongly consistent. Consequently, we have: n

Corollary 3.4.1. There exists an score network function
family {ϕ(·, ·)} (as described in equation 4), such that
T̂ CLine[ÎMINE] and T̂ CTree[ÎMINE] are strongly consistent.

Apart from the MINE MI estimator, we also analyze the
asymptotic behaviors of other MI variational estimators (In-
foNCE in equation 6, NWJ in equation 5, and CLUB in
equation 7). We found that both InfoNCE and NWJ are
strongly consistent while CLUB does not guarantee the con-
sistency (supportive proofs are provided in Supplementary
Material). Therefore, we summarize the consistency of the
corresponding TC estimators in the corollaries below:

Corollary 3.4.2. For any MI estimator Î ∈
{ÎInfoNCE, ÎNWJ}, there exists a score network func-

tion family {ϕ(·, ·)}, such that T̂ CLine[Î] and T̂ CTree[Î] are
both strongly consistent.

Moreover, strong consistency is a sufficient condition for
consistency (DeGroot and Schervish, 2012), hence all of
TC-MINE, TC-NWJ and TC-InfoNCE estimators are also
consistent statistics. For unbiasedness, though Theorem 3.3
indicates that unbiased MI estimators can lead to unbiased
TC estimators, to the best of our knowledge, none of the
previous variational MI estimators (Belghazi et al., 2018;
Oord et al., 2018; Poole et al., 2019; Cheng et al., 2020a)
are unbiased. Therefore, we leave the study of unbiased
TC estimators for future work. Besides the above theoretic
analysis, we empirically test our TC estimator in Section 5
with the application tasks introduced in Section 4.

4 RELATED WORK
Disentangled Representation Learning Disentangled
representation learning (DRL) seeks to map each data in-
stance into independent latent subspaces, while different
subspaces meaningfully represent different attributes of the
instance (Locatello et al., 2019b). Recently, DRL meth-
ods have attracted considerable interest on various learning
tasks such as domain adaptation (Gholami et al., 2020),
conditional generation (Burgess et al., 2018), and few-shot
learning (Yuan et al., 2021). DRL methods are mainly rec-
ognized into two categories as unsupervised and supervised
DRL. Prior unsupervised DRL works (Burgess et al., 2018;
Kim and Mnih, 2018) utilize different regularizers to make
each dimension of latent space to be as independent as pos-
sible, which has been challenged by Locatello et al. (2019b)
in that each embedding dimension may not be related to a
meaningful data attribute. Alternatively, supervised DRL
methods (Hjelm et al., 2018; Kim and Mnih, 2018; Cheng
et al., 2020b; Yuan et al., 2021) add different supervision
terms on different embedding components, which effec-
tively learn meaningful embedding while enabling disentan-
glement. Both supervised and unsupervised DRL methods
require correlation reduction technique to prevent the em-
bedding information from leaking into other embedding
components. To reduce embedding correlation, Hjelm et al.
(2018); Kim and Mnih (2018) use adversarial training meth-
ods, while Chen et al. (2018); Cheng et al. (2020b); Yuan
et al. (2021) minimize statistical dependency (i.e., MI and
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Figure 2: Simulation performance of TC line-like and tree-like estimators with different MI estimators.

TC), between different embedding components.

Contrastive Representation Learning Contrastive repre-
sentation learning is a fundamental training methodology
which maximizes the difference of positive and negative
data pairs to obtain informative representations. In con-
trastive learning, a pairwise distance/similarity score func-
tion is always set to measure data pairs. Then, the learning
objective is to maximize the margin between scores of posi-
tive and negative data pairs. Prior contrastive learning has
achieved satisfying performance in numerous tasks, such
as metric learning (Weinberger et al., 2006; Davis et al.,
2007), word embedding learning (Mikolov et al., 2013),
and graph embedding learning (Tang et al., 2015; Grover
and Leskovec, 2016). Recently, contrastive learning has
been recognized as a powerful tool in unsupervised or semi-
supervised learning scenarios (He et al., 2020; Chen et al.,
2020; Gao et al., 2019), which significantly narrows the
gap of performance of supervised and unsupervised learn-
ing methods. Among these unsupervised methods, Gao
et al. (2021) proposed a contrastive text representation learn-
ing framework (SimCSE). For each sentence, SimCSE use
the dropout mechanism to generate sentence augmentation
pairs, then maximize the mutual information within the aug-
mented embedding pairs. The empirical results demonstrate
contrastive learning obtains high-quality embeddings even
with little supervision (Gao et al., 2021).

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of
our TCeld on three tasks: TC estimation, minimization, and
maximization. For TC estimation, we generate synthetic
data from correlated multi-variate Gaussian distributions,
then compare the predictions from our TC estimator with the
ground-truth TC values. For TC minimization, we conduct
a multi-component disentangled representation learning ex-
periment on Colored-MNIST (Esser et al., 2020) dataset, to
minimize the total correlation among the digit, style, and
color embeddings of digit images. To test the TC maximiza-
tion ability, we apply our TC estimator into a contrastive
text learning framework to maximize the TC value among
different sentence augmentations. Since our proposed TC es-
timators can be flexibly induced by different MI estimators,
for convenience, we refer the TC estimator as TC-(MI esti-

mator name), or TC-(Line/Tree)-(MI estimator name) if the
decomposition strategy is specified. For example, TC-Line-
MINE denotes the TC estimator by line-like decomposition
with the MINE MI estimator.

5.1 TC Estimation on Simulation Data

We first test the estimation quality of our TC estimators
under simulation scenarios. We selected four MI estima-
tors, MINE (Belghazi et al., 2018), NWJ (Nguyen et al.,
2010), InfoNCE (Oord et al., 2018), and CLUB (Cheng
et al., 2020a), to induce our TC estimators. Then we test
TCeld with both tree-like and line-like strategies. The de-
tailed description and implementation of the four MI esti-
mators are shown in the Supplementary Material, where the
results of non-variational methods like KDE, k-NN and their
variants are also reported.

To evaluate TCeld’s estimation performance with differ-
ent ground-truth values, we sample simulated data from a
four-dimensional Gaussian distributions (x1,x2,x3,x4) ∼
N (0,Σ), where Σ is a covariance matrix with all diag-
onal elements equal to 1, which means the variance of
each xi is normalized to 1. With this Gaussian assump-
tion, the true TC value can be calculated in a closed-form
as T C(x1,x2,x3,x4) = − 1

2 logDet(Σ), where Det(Σ) is
the determinant of Σ. Therefore, we can adjust the corre-
lation coefficients (non-diagonal elements) in Σ to set the
ground-truth TC values in the set {2.0, 4.0, 6.0, 8.0, 10.0}
(described in details in the Supplementary Material). The
sample dimension is set to 20. The dimension of hidden
states for variational estimators is 15. For each fixed TC
value, we sample data 4000 times, with batch size 64 and
learning rate 0.001 to train the estimators.

In Figures 2 we report the performance of TCeld with differ-
ent MI bounds at each training step. In each figure, the true
TC value is shown as a step function drawn as a black line.
The line-like and tree-like estimation values are presented
for different steps as shaded blue and orange curves respec-
tively. The dark blue and orange curves illustrate the local
averages of the estimated values, with a bandwidth equal to
200. With both tree-like and line-like decomposition, the
estimation values for TC-MINE, TC-NWJ and TC-InfoNCE
stay below the truth TC step functions, supporting the claims
in Theorem 3.2. For the only MI upper bound CLUB, the
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Figure 3: TC disentangling framework: x is an input image.
zc, zd, zs are the color, digit, style embeddings respectively.
xrec is the reconstruction. x† is a generated sample from the
shuffled latent space for adversarial training.

estimated values initially lie beneath the ground-truth TC,
but finally converge above the step function. This is because
at the beginning of the estimator training, the parameters
are not well learned from the synthetic samples, and fail to
support a valid MI upper bound. With the training progress
going on, the estimator performs better and finally converges
to the desired upper-bound estimation.

Furthermore, we provided the bias, variance, and the mean
squared error (MSE) of TC estimation values in the Supple-
mentary Material. The tree-like and line-like strategies have
insignificant effects on variance of our TC estimators, where
TC-NWJ always keep the lowest variance. However, as for
bias and MSE, TC-CLUB works uniformly better than other
estimators under line-like step, while TC-InfoNCE outper-
forms others mostly under tree-like decomposition. By
further analyzing this phenomenon, we find that when esti-
mating I(v;u), CLUB requires a variational approximation
qθ(v|u). When we use the line-like decomposition strat-
egy, v = xi+1 is always a single variable, and u = X1:i

is the concatenation of (x1, . . . ,xi). The qθ(v|u) with a
neural network implementation can have better performance
with output v in a fixed low dimension. However, all the
other MI estimators need to learn a score function ϕ(v,u),
where the imbalanced inputs v = xi+1 and u = X1:i can
hinder the learning of function ϕ. In contrast, the tree-like
TC estimators split variables equally into subgroups, which
facilitate the learning of ϕ(u,v) with u = Xi:⌊(i+j)/2⌋
and u = X⌊(i+j)/2⌋+1:j for the lower-bound methods. For
CLUB, the tree-like decomposition increases the output
dimension of the variational net qθ(v|u) and makes the
learning more challenging, explaining TC-CLUB’s lower
performance than TC-InfoNCE in Supplementary Material.

5.2 TC Minimization for Disentangled Representation
Learning

For the TC minimization task, we conduct an experiment
on a ColorMNIST hand-writing dataset (LeCun et al., 1998;
Esser et al., 2020) to learn disentangled digit, color, and
style representations of each hand-written number image.
Each input data (xi,yi

d,y
i
c) contains three components: a

image xi, its digit label yi
d ∈ {0, 1, . . . , 9}, and its color

Figure 4: Generated examples with latent embedding swap-
ping: The latent embeddings zcolor(left-side), zdigit(right-
side) of the bottom row (source) are swapped to the corre-
sponding embeddings of images in the right column (target).

label vector yi
c = (Ri, Gi, Bi), where Ri, Gi, Bi ∈ [0, 1]

represents the intensity of colors (Red, Green, Blue).

To learn the digit, color, and style representations from in-
put images, we use the neural encoder E(·) to map each
image xi to the corresponding latent representations zd,
zc, zs, respectively. The digit representation zi

d is sup-
posed to include sufficient digit information from xi, hence
we use a digit classifier Fd(·) to predict the digit label
with loss Ldigit = Cross-Entropy(Fd(z

i
d),y

i
d). Similarly,

we set a color regression function Fc(·) on the color em-
bedding zi

c to ensure representativeness by minimizing l-
2 norm Lcolor = ∥Fc(z

i
c) − yi

c∥2. Excluding the digit
and color information, the remaining part from the im-
age should be the human hand-writing style information,
which is assumed to be independent of the digit and color
information. Therefore, we minimize the total correlation
LTC = T C(zd, zc, zs) as a regularizer to make sure differ-
ent representation components do not include information
from the others. Finally, we introduce a decoder D(·) to
reconstruct the original image xi from (zd, zc, zs) to in-
duce sufficient information into the latent representations
with loss Lrecons = ∥D(zd, zc, zs) − x∥2. To further en-
hance the generation quality of the decoder D(·) , we adapt
an adversarial learning regularizer, where we randomize
the combination of the latent representation components
in each batch, then treat the corresponding decoder output
as artificial (synthesized) data x†. With a discriminator H,
we use adversarial training (Goodfellow et al., 2014) to en-
sure the decoder to generate high-quality samples with loss
Ladv = Ex[logH(x)] + Ex† [log(1 − H(x†))]. Figure 3
illustrates the whole framework. More details about the
framework are shown in the Supplementary Material.

Evaluations To evaluate the quality of our disentangled
representations, we conduct a controllable generation test-
ing task to check whether the learned embedding compo-
nents (zd, zc, or zs) can control the corresponding attributes
(digit, color, or style) of the generated sample D(zd, zc, zs).
Hence, we consider three perspectives to evaluate the dis-
entanglement: (i) digit transfer: Select another real sample
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Table 1: Controllable generation results on ColorMNIST.
“✓” means adversary training is applied. Accd and Accc are
generated digit classification accuracy. Res.l2 measures the
residual l2-distance for color transferred samples.

Adv. Methods Accd Accc Res. l2

AE 2.70 91.65 168.95
TC (Ours) 92.70 97.69 28.66

✓ AE 0.14 98.82 389.73
✓ VAE 20.24 92.21 254.83
✓ DIIN 94.57 97.45 79.38
✓ TC (Ours) 96.38 98.23 43.04

x′ from testing set and obtain its digit embedding z′
d. Next,

feed the new latent embedding combination (z′
d, zc, zs)

into the decoder to generate a sample x† = D(z′
d, zc, zs),

which is supposed to share the same digit information with
x′, so we predict the digit label on x† then report the clas-
sification accuracy Accd. (ii) digit preservation: Select
another testing sample x′′, and replace zc with z′′

c to gen-
erate x‡ = D(zd, z

′′
c , zs). Then predict the digit label of

x‡ and report the digit classification accuracy Accc. (iii)
color transfer: For selected x′′ in (ii), we have its color
label vector y′′

c . Hence, we can directly synthesize a x̄‡ by
setting y′′

c on x. We report the l2-distance (Res.l2) between
generated x‡ and synthetic x̄‡ as color transfer quality.

Results and Analysis We compared our method
with vanilla auto-encoder (AE), variational auto-encoder
(VAE) (Kingma and Welling, 2013), and DIIN (Esser et al.,
2020), and report the aforementioned evaluation metrics
in Table 1. Implementation and setup details are provided
in the Supplementary Material. Vanilla AE fails on Accd
because without any disentangled regularizer, zs can con-
tain the information revealed from zd and zc VAE partially
solves the embedding entanglement problem with its KL
divergence term in the learning objective, which encour-
ages the latent embedding being close to a dimension-wise-
independent standard Gaussian. DIIN(Esser et al., 2020)
achievers more significant improvement, by projecting the
latent space of an auto-encoder to a multi-variate Gaussian
distribution using normalizing flow (Kingma and Dhari-
wal, 2018). Our TC-based method uniformly outperforms
the vanilla AE without the adversarial training. Among all
method with adversarial training, the vanilla AE reaches
the highest color classification accuracy, for which our TC
method is also strongly competitive. Moreover, our TC is
in the lead on the other two metrics and leave a significant
performance gap to the vanilla AE, which indicates our
TC-based method can learn more balanced attribute embed-
dings in terms of representativeness and disentanglement.
In addition, we show the generated image examples of digit
transfer (i) and color transfer (iii) in Figure 4, where both
color and digit information can be successfully preserved in
the transferred images.

5.3 TC Maximization for Contrastive Representation
Learning

To test the performance of TCeld on TC maximization, we
conduct a unsupervised text representation learning experi-
ment following the SimCSE (Gao et al., 2021) setups. More
specifically, we aim to train a encoder E(·) to map each
sentence x into representative embedding z = E(x). Ac-
cording to SimCSE (introduced in Section 4), one can learn
in a unsupervised way the encoder E(·), by first generating
several data augmentations (x̃1, x̃2, . . . , x̃n), then maximiz-
ing the correlation of corresponding (z̃1, z̃2, . . . , z̃n). Most
of the previous contrastive learning methods (Chen et al.,
2020; Gao et al., 2021; Jiang et al., 2022) focus on two-
augmentation cases, where the mutual information between
the two augmentations I(z̃1; z̃2) is maximized for each
input x. Moreover, none of current text contrastive learn-
ing method handles multi-augmentation (n ≥ 3) situations.
However, Tian et al. (2020) point out that contrastive learn-
ing with more augmentations can further enhance the latent
embedding quality. Therefore, for testing our TC estima-
tors while attempting the first multi-augmentation text con-
trastive learning, we plan to maximize T C(z̃1, z̃2, . . . , z̃n)
to train the text encoder E .

Model Frameworks We conduct our multi-augmentation
text contrastive leaning by extending prior two-
augmentation methods, SimCSE (Gao et al., 2021)
and PromptBERT (Jiang et al., 2022) with four augmenta-
tions for each text input. Both SimCSE and PromptBERT
maximize the InfoNCE MI estimator between the two
augmentation embeddings with a BERT(Devlin et al.,
2018)-based pretrained text encoder. Correspondingly, our
extended SimCSE-TC and PromptBERT-TC utilize the
same encoder structure but maximize TC-InfoNCE of four
augmentation embeddings for each sentence. Following
SimCSE (Gao et al., 2021) and PromptBERT (Jiang
et al., 2022), we finetine the text encoder E on pretrained
BERTbase (Devlin et al., 2018) and RoBERTabase (Liu et al.,
2019). Based on our observation in Section 5.1, tree-like
decomposition empirically works better for InfoNCE
estimator. Therefore, we select TC-Tree-InfoNCE for this
text contrastive learning task. More setup details can be
found in the Supplementary Material.

Evaluation Following previous work (Gao et al., 2021;
Jiang et al., 2022), we evaluate models on 7 semantic
textual similarity (STS) datasets: STS12 (Agirre et al.,
2012), STS13 (Agirre et al., 2013), STS14 (Agirre et al.,
2014), STS15 (Agirre et al., 2015), STS16 (Agirre et al.,
2016), STS Benchmark (Cer et al., 2017) and SICK-
Relatedness (Marelli et al., 2014). The task is to predict the
similarity (ranging from 0 to 5) between paired sentences
with learned text representations. We report Spearman’s
correlation (Myers et al., 2013) between model prediction
and the ground truth. More details about the model design,
hyperparameter settings and evaluation metrics are in the
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(a) MI-fix (b) MI-sample (c) Core-View (d) Full-Graph (e) TC-Tree

Figure 5: Correlation maximization strategy for multiple augmentations. Nodes A1, A2, A3, A4 mean four input augmenta-
tions. Each solid line indicates an MI maximization between the connected two augmentations. Each dashed line means the
connected augmentation pair is randomly selected.

Table 2: Text representation evaluation on STS tasks (Spearman’s correlation with “all” setting). Methods with “ -TC”
means that total correlation is used as the loss function.

Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

IS-BERTbase (Zhang et al., 2020) 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
ConSERTbase (Yan et al., 2021) 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE-BERTbase (Gao et al., 2021) 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-BERTbase-TC 68.66 81.45 74.34 81.81 79.24 78.85 72.46 76.69
PromptBERTbase (Jiang et al., 2022) 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54±0.15

PromptBERTbase-TC 72.05 84.61 77.23 84.73 80.34 81.89 70.23 78.72±0.10

SimCSE-RoBERTabase (Gao et al., 2021) 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
SimCSE-RoBERTabase-TC 71.46 82.16 74.14 82.17 80.93 80.02 68.24 77.02
PromptRoBERTabase (Jiang et al., 2022) 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15±0.25

PromptRoBERTabase-TC 72.58 85.06 78.24 85.82 81.95 82.94 70.47 79.58±0.25

Table 3: Ablation study of different correlation maximiza-
tion strategies. Average Spearman coefficient is reported
over the seven STS tasks.

Method
Model Prompt

BERT
Prompt

RoBERTa

MI-fix 78.54±0.15 79.28±0.23

MI-sample 78.41±0.13 79.27±0.34

Core-View (Tian et al., 2020) 78.64±0.22 79.41±0.25

Full-Graph (Tian et al., 2020) 78.52±0.13 79.49±0.26

TC 78.72±0.10 79.58±0.25

Supplementary Material.

Results and Analysis We report the mean and standard de-
viation over 10 runs with different random seeds in Table 2.
On most of the evaluation datasets, our TC-based methods
outperform their corresponding baselines, in which Prompt-
BERT/RoBERTa are the state-of-the-art unsupervised sen-
tence representation learning methods. These results also
underline the claim that more augmentations lead to higher
representation quality in contrastive learning.

For the ablation study, we fix the number of augmenta-
tions to 4, and test the influence of different embedding
correlation maximization strategies. Since there is no prior
work on multi-augmentation text contrastive learning, we
proposed several substitute strategies by ourselves in Fig-
ure 5: (a) MI-fix: only select the first two augmentations and

omit the others; (b) MI-sample: randomly select two aug-
mentations and omit the others; (c) Core-View (Tian et al.,
2020): calculate the MI between one fixed augmentation
and each augmentation in the rest. (d) Full-Graph (Tian
et al., 2020): calculate the MI values between each augmen-
tation pairs. From the results in Table 3, MI-fix and MI-
sample which only utilized two augmentations, have lower
Spearman score than the other methods using all augmenta-
tions’ information. Our TC-based correlation maximization
strategy slightly outperforms Core-View and Full-Graph.
Core-View does not consider the correlation among the
other augmentations (A2, A3, A4 in Figure 5c). Full-Graph
uses expensive MI estimators, which quadratically increases
the computational complexity of augmentation correlation
maximization, while being more prone to overfitting than
TC with the same data size.

6 CONCUCLUSION

We have derived a Total Correlation Estimation with Linear
Decomposition (TCeld), which converts total correlation
into summation of mutual information terms along two sep-
aration paths (i.e., line-like and tree-like). By applying
variational estimators to each MI term in TCeld, we have
obtained TC-Line and TC-Tree estimators. Further, we have
analyzed the statistical properties of the proposed TC esti-
mators and claimed their strong consistency when induced
by appropriate MI estimators such as MINE, NWJ, and In-
foNCE. Moreover, we have empirically demonstrated the
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effectiveness of the proposed TC estimators on both TC
estimation and optimization tasks. The experimental results
show that our TC estimators can only provide reliable esti-
mation from samples, but also serve as an effective learning
regularizer for model training. More properties of TCeld,
such as sample complexity, unbiasedness, and low-variance,
remain to be explored both theoretically and empirically. We
hope this study can serve to promote TC, as a multi-variate
information concept, to apply into cutting-edge deep learn-
ing models, such as representation learning, controllable
generation, model distillation and ensemble.
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A PROOFS

Proof of Theorem 3.1. Note that XA := (xi1 ,xi2 , . . . ,xim) and XÂ = X/XA. Denote XÂ = (xj1 ,xj2 , . . . ,xjl).
Then

T C(X) = Ep(X)

[
log

p(x1,x2, . . . ,xn)

p(x1)p(x2) . . . p(xn)

]
=Ep(X)

[
log

(
p(XA)

p(xi1)p(xi2) . . . p(xim)
·

p(XÂ)

p(xj1)p(xj2) . . . p(xjl)
· p(X)

p(XA)p(XÂ)

)]
=T C(XA) + T C(XÂ) + I(XA;XÂ)

Proof of Corollary 3.1.2. We denote Xi:j := (xi,xi+1, . . . ,xj−1,xj). Note that

T C(X1:n) =Ep(x1,x2,...,xn)

[
log

p(x1,x2, . . . ,xn)

p(x1)p(x2) . . . p(xn)

]
=Ep(x1,x2,...,xn)

[
log

(
p(x1,x2, . . . ,xn−1,xn)

p(x1,x2, . . . ,xn−1)p(xn)
· p(x1,x2, . . . ,xn−1)

p(x1)p(x2) . . . p(xn−1)

)]
=I(x1,x2, . . . ,xn−1;xn) + TC(X1:n−1)

=I(X1:n−1;xn) + T C(X1:n−1)

Similarly,

T C(X1:n) = I(X1:n−1;xn) + I(X1:n−2;xn−1) + T C(X1:n−2) =

n−1∑
i=1

I(X1:i;xi+1) (11)

Proof of Theorem 3.3. First consider line-like TC estimator T̂ CLine[Î](X) =
∑n−1

i=1 Î(X1:i;xi+1). If the MI estimator Î
is unbiased, by definition, E[Î(X1:i;xi+1)] = I(X1:i;xi+1). Taking expectation for the TC estimator,

E[T̂ CLine[Î](X)] =

n−1∑
i=1

E[Î(X1:i;xi+1)] =

n−1∑
i=1

I(X1:i;xi+1) = T C(X), (12)

which means that T̂ CLine[Î](X) is unbiased. Similarly, we can show that T̂ CTree[Î](X) is unbiased.

Proof of Theorem 3.4. For the convenience of notation, we show the proof with our T̂ CLine[Î] estimator. The proof can be
easily applied to T̂ CTree[Î], since both T̂ CLine[Î] and T̂ CTree[Î] are linear combination of MI terms. We denote Îm(x;y) =

Î({(xk,yk)}mk=1) and T̂ C[Î]m(X) = T̂ C[Î]({Xk}mk=1) as the estimators with m samples {(xk,yk)}mk=1 ∼ p(x,y), and
{Xk}mk=1 ∼ p(X) respectively.

Strong Consistency: If Î is a strong consistent estimator, by the Definition 2.3, ∀ε > 0, with a fix variable dimension
n ∈ N+, for each variable pair (X1:i,xi+1) (i = 1, 2, . . . , n− 1), ∃Mi > 0, such that ∀m > Mi,

P
{ ∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)

∣∣∣ ≤ ε

n

}
= 1. (13)

Let M̄ = max{M1,M2, . . . ,Mn−1}, then ∀m > M̄ ,

P
{ ∣∣∣T̂ CLine[Î]m(X)− T C(X)

∣∣∣ ≤ ε
}

(14)

=P
{ ∣∣∣∣∣

n−1∑
i=1

Îm(X1:i;xi+1)−
n−1∑
i=1

I(X1:i;xi+1)

∣∣∣∣∣ ≤ ε
}

(15)

≥P

[
n−1⋂
i=1

{ ∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)
∣∣∣ ≤ ε

n

}]
. (16)
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The inequality between equation 15 and equation 16 is because the condition in equation 15 is sufficient to deduce the
condition in equation 15: ∣∣∣∣∣

n−1∑
i=1

Îm(X1:i;xi+1)−
n−1∑
i=1

I(X1:i;xi+1)

∣∣∣∣∣
≤

n−1∑
i=1

∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)
∣∣∣ ≤ n− 1

n
ε < ε.

Denote event Bi =
{ ∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)

∣∣∣ ≤ ε
n

}
, by equation 13, P[Bi] = 1. Consider the union Bi ∪ Bj ,

we have:
1 = P[Bi] ≤ P[Bi ∪ Bj ] = P[Bi] + P[Bj ]− P[Bi ∩ Bj ] = 2− P[Bi ∩ Bj ] ≤ 1, (17)

which means P[Bi ∩ Bj ] = 1. Iteratively applying this conclusion, we know P[∩n−1
i=1 Bi] = 1. Therefore,

P
[⋂n−1

i=1

{ ∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)
∣∣∣ ≤ ε

n

}]
= P[∩n−1

i=1 Bi] = 1. Combining with equation 14 and equation 16,

we conclude that ∀ε, ∃M̂ , such that ∀m > M̂ ,
∣∣∣T̂ CLine[Î]m(X)− T C(X)

∣∣∣ ≤ ε almost surely, which supports T̂ CLine[Î] is
strongly consistent.

Consistency: If Î is a consistent estimator, by the Definition 2.2, ∀ε > 0 and σ > 0, with a fixed variable dimension
n ∈ N+, for each variable pair (X1:i,xi+1) (i = 1, 2, . . . , n− 1), ∃Mi, such that ∀m > Mi,

P
{ ∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)

∣∣∣ < ε

n

}
> 1− σ

n
. (18)

Let M̂ = max{M1,M2, . . . ,Mn−1}, then ∀m > M̂ , similar to equation 14, equation 15, and equation 16,

P
{ ∣∣∣T̂ CLine[Î]m(X)− T C(X)

∣∣∣ < ε
}

(19)

=P
{ ∣∣∣∣∣

n−1∑
i=1

Îm(X1:i;xi+1)−
n−1∑
i=1

I(X1:i;xi+1)

∣∣∣∣∣ < ε
}

(20)

≥P

[
n−1⋂
i=1

{ ∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)
∣∣∣ < ε

n

}]
. (21)

Denote Bi =
{ ∣∣∣Îm(X1:i;xi+1)− I(X1:i;xi+1)

∣∣∣ < ε
n

}
. Since 1 ≥ P[Bi ∪ Bj ] = P[Bi] + P[Bj ]− P[Bi ∩ Bj ], we have

P[Bi ∩ Bj ] ≥ P[Bi] + P[Bj ] − 1 > (1 − σ
n ) + (1 − σ

n ) − 1 = 1 − 2
nσ. Similarly, we can obtain P[Bi ∩ Bj ∩ Bk] ≥

P[Bi∩Bj ]+P[Bk]−1 ≥ (1− 2
nσ)+(1− σ

n ) = 1− 3
nσ and P{

∣∣∣T̂ CLine[Î]m(X)− T C(X)
∣∣∣ < ε} ≥ P

[
∩n−1
i=1 Bi

]
≥ 1−σ.

Therefore, ∀ε > 0, limm→∞ P{|T̂ CLine[Î]m(X)− T C(X)| ≥ ε} = 0. T̂ CLine[Î] is consistent.

Proof of Corollary 3.4.2. By Theorem 3.4, only need to show both ÎInfoNCE and ÎNWJ are strongly consistent. Inspired by
the proof of Theorem 2 in Belghazi et al. (2018), we only need to proof the following two lemmas:

Lemma A.1. For any η > 0, there exists a feedforward score network function ϕ̂ : Ω → R such that |I(x,y) −
Î[ϕ̂]| ≤ η, where Î ∈ {ÎInfoNCE, ÎNWJ}, ÎInfoNCE[ϕ̂] = Ep(x,y)[ϕ̂(x,y)] − Ep(x)[logEp(y)[exp ϕ̂(x,y)]] and ÎNWJ[ϕ̂] =

Ep(x,y)[ϕ̂(x,y)]− Ep(x)p(y)[exp(ϕ̂(x,y)− 1)]

Lemma A.2. For any η > 0, let H be the family of functions ϕ : Ω → R defined by a give network architecture. Assume the
parameter θ of network ϕ are restricted to some compact domain Θ ⊂ Rk. Then there exists N ∈ N+, such that, ∀m ≥ N ,
|Îm(x,y)− supϕ∈H Î[ϕ]| ≤ η with probability one. Here Î ∈ {ÎInfoNCE, ÎNWJ}.

To proof Lemma A.1, for NWJ, we select function ϕ∗(x,y) = 1 + log p(x,y)
p(x)p(y) . Then Ep(x,y)[ÎInfoNCE[ϕ

∗]] = I(x,y).
The difference can be calculated as

I(x,y)− ÎNWJ[ϕ] = Ep(x,y)[ϕ
∗ − ϕ]− exp(−1)Ep(x)p(y)[exp(ϕ

∗)− exp(ϕ)]. (22)



Ke Bai∗, Pengyu Cheng∗, Weituo Hao, Ricardo Henao, Lawrence Carin

The right-hand side of equation 22 has the same form as equation (25) in Belghazi et al. (2018), except a coefficient exp(−1)
for the second term. Therefore, we can exactly follow the proof of Section 6.2.1 of Belghazi et al. (2018) to prove our
Lemma A.1 for the NWJ estimator, with only adjusting the coefficient weight of term |ϕ∗−ϕ| and term | exp(ϕ∗)− exp(ϕ)|.

For InfoNCE, we select ϕ∗(x,y) = log p(x|y), so that Ep(x,y)[ÎInfoNCE[ϕ
∗]] = I(x;y). The difference can be written as

I(x;y)− ÎInfoNCE[ϕ] =Ep(x,y)[ϕ
∗ − ϕ]− Ep(x)[logEp(y)[exp(ϕ

∗)]− logEp(y)[exp(ϕ)]]. (23)

Similarly to Section 6.2.1 in (Belghazi et al., 2018), we can consider the cases whether ϕ is bounded, then apply the universal
approximation theorem to show Lemma A.1 for InfoNCE.

To proof Lemma A.2, we denote P = p(x,y),Q = p(x)p(y), and Pm,Qm for emprical distribution with m samples. For
NWJ, we calculate the difference

|Îm(x,y)− sup
ϕ∈H

Î[ϕ]| ≤ sup
ϕ∈H

|EP[ϕ]− EPm
[ϕ]|+ exp(−1) sup

ϕ∈H
|EQ[exp(ϕ)]− EQm

[exp(ϕ)]|, (24)

where the second term of right-hand side has the same form as equation (32) in Secion 6.2.2 in Belghazi et al. (2018).
Therefore, we can follow the proof in Secion 6.2.2 of Belghazi et al. (2018) to prove Lemma 2 for NWJ. Similarly, the
similar proving process can be applied to InfoNCE.

B EXPERIMENTAL DETAILS

All experiments are executed on a single NVIDIA Titan Xp GPU with 12,196M memory.

B.1 TC estimation

Experiment Design Mutual information between two multivariate Guassian distributions X1 ∼ N (0,Σ1), X2 ∼
N (0,Σ2) is 1

2 log
Det(Σ1)Det(Σ2)

Det(Σ) , where Σ is the covariance matrix of the joint distribution [X1, X2].

In our setting, our training samples are sampled from a joint distribution with n variables [Xi, i ∈ {0, 1, 2, 3, n − 1}],
the marginal distribution of each variable have zero mean and identity covariance matrix with dimension d. Therefore,
the determinant of covariance matrix of single variable Σi is 1 and the mutual information between two variables i, j is
− 1

2 logDet(Σij). The total correlation among variables are − 1
2 logDet(Σ). To prove this, we use the idea of line-like

structure. Assume that the total correlation of first k variables are − 1
2 logDet(Σ[:k]), the total correlation of the first k + 1

variables are

−1

2
logDet(Σ[:k+1]) = −1

2
logDet(Σ[:k]) +

1

2
log

Det(Σ[:k])

Det(Σ[:k+1])
, (25)

where Σ:k is the covariance matrix of the first k variables.

In our proof-of-concept experiments, we set n = 4, d = 10. The covariance matrix is
Id σId 0 0
σId Id 0 0
0 0 Id σId
0 0 σId Id


The total correlation under such a design is −d log(1− σ2).

As we mentioned in the paper, we can adjust the correlation coefficients (non-diagonal elements) σ to set the ground truth
TC values in the set {2.0, 4.0, 6.0, 8.0, 10.0}.

Hyper-parameters All MI lower bounds require the learning of a value function f(x,y); the CLUB upper bound requires
the learning of a network approximation qθ(y|x). To make a fair comparison, we set the value function and the neural
approximation with one hidden layer and the same hidden units. For the multivariate Gaussian setup, the number of hidden
units is 20. On the top of the hidden layer output, we add the ReLU activation function. The learning rate for all estimators
is set to 1× 10−4.
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Figure 6: Bias, variance and MSE of line-like TC estimators.

Figure 7: Bias, variance and MSE of tree-like TC estimators.

Table 4: Comparison between ours(Tree-based CLUB) with other non-parametric methods under two circumstance with
different data dimensionality (n = 2 and n = 10. The table shows the absolute error between predicted and ground truth.
Bold means the minimal error and the best predication.

n = 2 n = 10

Total Correlation 2 4 6 8 10 2 4 6 8 10

KNN ((Kraskov et al., 2004b; Pál et al., 2010) 0.08 0.29 0.66 1.29 2.27 1.34 2.66 4.05 5.47 6.98
Bias-improved KNN ((Gao et al., 2018)) 0.2 0.59 1.24 2.21 3.54 1.48 2.97 4.51 6.07 7.67
Kernel Density Estimation 1.44 1.40 1.40 1.41 1.37 9.02 8.89 8.98 9.00 8.97
Ours 0.03 0.04 0.55 0.88 1.63 0.23 0.37 0.22 1.03 1.96

Bias, Variance, Mean Squared Error Figure 6 7 show the bias, variance and mean squared error using different mutual
information estimators. The explanation to this figure is shown in the main paper.

Non-Parametric Methods Since the probability can be directly estimated using non-parametric methods, we can also
use non-parametric methods to estimate the total correlation directly. Here we compare with KDE, k-NN based methods
(Kraskov et al., 2004b; Pál et al., 2010) and its variant (Gao et al., 2018). As shown table Table 4, the non-parametric
methods can only estimate the total correlation decently when the dimension of input n is low. Note that the experiment
setting is exactly the same as the main paper except for dimension.

Considering MINE (Belghazi et al., 2018) has already performs better than k-NN based methods (Kraskov et al., 2004b; Pál
et al., 2010) and MINE is one of our baselines, our performance should perform better. This is also reflected in the table.
Meanwhile, k-Nearest Neighbor estimation method focuses on total correlation estimation only with non-differentiable
operation. The estimated value is devoted to variable independence and correlation analysis. While in our neural network-
based methods, we calculate the total correlation in a derivative way and get meaningful gradient information for efficient
back-propagation. The results are shown in our disentangle and representation learning experiments.

B.2 TC Maximization: Disentanglement

Model Design The dimension of latent space z, zcolor, zdigit is 128, 32, 32. The structures of each model are shown in
Table 5 6 7. We use TC-InfoNCE as our total correlation estimator. Note that when the number of variables is three. There
is no difference between tree-based and line-based methods. Both of which require two mutual information estimators, one
for mutual information estimation of any pair, the other is to capture the mutual information between the left one and the
preselected pair. The parameters of these two estimators are listed in Table 7.
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Table 5: Structure of the encoder E(·), decoder D(·) described in Section B.2. The terms in brackets of Conv2d and
DeConv2d are (input channel, output channel, filter size, stride size, zero padding size, bias included). IN means instance
normalization. DeConv2d represents the deconvolution operator.

Encoder Decoder

0 Conv2d(3, 64, 4, 2, 1, False), IN, LeakyReLU DeConv2d(128, 512, 2, 1, 0, True)
1 Conv2d(64, 128, 4, 2, 1, False), IN, LeakyReLU DeConv2d(512, 256, 4, 2, 1, False), IN, LeakyReLU
2 Conv2d(128, 256, 4, 2, 1, False), IN, LeakyReLU DeConv2d(256, 128, 4, 2, 1, False), IN, LeakyReLU
3 Conv2d(256, 512, 4, 2, 1, False), IN, LeakyReLU DeConv2d(128, 64, 4, 2, 1, False), IN, LeakyReLU
4 Conv2d(512, 128, 2, 1, 0, True), , DeConv2d(256, 128, 4, 2, 1, False), ,Tanh

Table 6: Structure of classifier Fd(·) and regressor Fc(·) described in Section B.2. The terms in the bracket of Linear are
(input dimension, output dimension, bias included).

Color Regressor Digit Classifier

0 Linear(32, 16, True), ReLU Linear(32, 16, True), ReLU
1 Linear(16, 3, True), Sigmoid Linear(16, 10, True),

We compare our method with autoencoder and variational autoencoder. Apart from the reconstruction loss Lrecons and
KL loss used in AE and VAE, we also take regression loss Lcolor, classification loss Ldigit into account. We illustrate the
failure transfer case under the AE setup to show the difference without the total correlation term in Figure 8. Both the color
and digit are not successfully transferred from the source (bottom row) to the target (rightmost column).

Hyper-parameters The total training epoch and batch size are 300 and 512. Learning rate is 5e−3 for encoder and
decoder, 1e−4 for the adversarial discriminator, 1e−3 for the digit classifier and color regressor. All the optimizers are
Adam. Since the final loss is the summation of each term, the weight of each term is one except for the color regressor loss,
which is ten. We also add spectral normalization (Miyato et al., 2018) to the adversarial discriminator to further stabilize the
adversarial training.

B.3 TC Minimization: Sentence Representation

Training Setup We train the model with 106 randomly sampled sentences from the English Wikipedia (Foundation)
dataset.

Model Structure The model consists of two parts, f is the transformer-based large pretrained language model and g is a
multiple layer perception with one hidden layer and ReLU activation function. The hidden neurons and output neurons are
256. The structure of the model follows Gao et al. (2021); Jiang et al. (2022).

Hyper-parameters Considering that f and g are initialized in different ways, we scale up the learning rate of g. In
detail, the learning rate and learning rate scale are 1e−5 and 10 for models with SimCSE-BERT, SimCSE-RoBERTa and
PromptBERT as baselines, 5e−6 and 100 for the model with PromptRoBERTa as baselines. These hyper-parameters are
selected according to the validation set. The batch size is 256. The maximum length of a sentence is limited to 32. The
training epoch is one. The best model selected based on the performance of the validation set is applied to the testing set.
The validation set is evaluated every 250 steps.

Augmentations Following the simple but effective data augmentation techniques in SimCSE, we get four augmentations
by feeding the same input to the network four times and sample four dropout samples independently. Prompt-BERT also
applies this dropout strategy, while they modify the inputs as well as the output feature representation neuron.

SimCSE and PromptBERT both apply the InfoNCE with cosine similarity as the score function and use the large masked
language pretrained model like BERT(Devlin et al., 2018) as the initialization of the feature encoder f(·). The difference
is how they construct the paired distribution p(x, y). SimCSE feeds the same sentence to the encoder twice and obtains
different output embeddings by independently sampling two dropout masks of the encoder f(·) ([CLS] representation is
taken as the representation of the sentence). PromptBERT adapts two fixed cloze-style templates to augment the original
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(a) color transfer (b) digit transfer

Figure 8: Failure case of disentangle transfer, using autoencoder without the total correlation constraint. The bottom row is
the source image and rightmost column is the target image.

Table 7: Structure of the adversarial discriminator H(·) and two total correlation estimators described in Section B.2. The
terms in brackets of Conv2d and DeConv2d are (input channel, output channel, filter size, stride size, zero padding size,
bias included). The terms in the bracket of Linear are (input dimension, output dimension, bias included). BN means batch
normalization.

Discriminator TC estimator 1 TC estimator 2

0 Conv2d(3, 32, 5, 1, 2, False), BN, ReLU Linear(128, 90, True), ReLU Linear(64, 64, True), ReLU
1 Conv2d(32, 64, 5, 1, 2, False), BN, ReLU Linear(90, 90, True), ReLU Linear(64, 64, True), ReLU
2 Linear(4096, 1), , Linear(90, 1, True), Softplus Linear(64, 1, True), Softplus

Table 8: Four templates used in PromptBERT-T C and PromptRoBERTa-T C. [CLS],[MASK], [SEP] are special tokens used
in BERT. [X] is the placeholder of the input sentence.

BERT RoBERTa

Template 0 [CLS] This sentence of "[X]" means[MASK].[SEP] [CLS] This sentence of ’[X]’ means[MASK].[SEP]
Template 1 [CLS] The sentence : "[X]" means [MASK].[SEP] [CLS] The sentence : ’[X]’ means [MASK].[SEP]
Template 2 [CLS] The sentence ’ [X] ’ has the same meaning with [MASK].[SEP] [CLS] The sentence ’ [X] ’ has the same meaning with [MASK].[SEP]
Template 3 [CLS] [MASK] has similar meaning with sentence : ’[X]’.[SEP] [CLS] [MASK] has similar meaning with sentence : ’[X]’.[SEP]

sentence. For example, a template could be “this sentence : [X] means [MASK].”, where [X] is the placeholder of the origin
input sentence and [MASK] is a special placeholder token. The representation of [MASK] token f(X)[MASK] is donated as
the sentence embedding.

In our total correlation estimation experiments, we augment the input sentence four times. More specifically, we sample
four drop-outs for SimCSE and design four cloze-style templates for Prompt-BERT ( Table 8). Our design of the template
partially follows Jiang et al. (2022).
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