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Abstract

Recent works have shown that high probability
metrics with stochastic gradient descent (SGD)
exhibit informativeness and in some cases advan-
tage over the commonly adopted mean-square
error-based ones. In this work we provide a
formal framework for the study of general high
probability bounds with SGD, based on the the-
ory of large deviations. The framework allows
for a generic (not-necessarily bounded) gradient
noise satisfying mild technical assumptions, al-
lowing for the dependence of the noise distri-
bution on the current iterate. Under the pre-
ceding assumptions, we find an upper large de-
viations bound for SGD with strongly convex
functions. The corresponding rate function cap-
tures analytical dependence on the noise distri-
bution and other problem parameters. This is
in contrast with conventional mean-square error
analysis that captures only the noise dependence
through the variance and does not capture the ef-
fect of higher order moments nor interplay be-
tween the noise geometry and the shape of the
cost function. We also derive exact large devia-
tion rates for the case when the objective function
is quadratic and show that the obtained function
matches the one from the general upper bound
hence showing the tightness of the general upper
bound. Numerical examples illustrate and cor-
roborate theoretical findings.

1 INTRODUCTION

The large deviations theory represents a well-established
principled approach for studying rare events that occur
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with stochastic processes, e.g., (Dembo et al. 1993). Typ-
ically, we are concerned with a sequence of rare events
Ek related with the stochastic process of interest, indexed
by, e.g., time k. In this setting, the probability of event
Ek, k = 1, 2, ... typically decays exponentially in k; the
large deviations theory then enables to quantify this expo-
nential rate. Such an approach has found many applica-
tions in statistics (Bucklew 1990), mechanics (Touchette
2009), communications (Shwartz et al. 1995), and infor-
mation theory (Cover et al. 1991).

To be more concrete, consider an example of a sequence
of random vectors Xk taking values in Rd that converge,
e.g., almost surely, to a (deterministic) limit point x⋆ ∈
Rd. The rare event of interest Ek can then be, for example,
Ek = {∥Xk−x⋆∥ ≥ δ}, for some positive quantity δ, with
∥ · ∥ denoting the Euclidean norm. Equivalently, Ek can be
represented as {Xk ∈ Cδ}, where Cδ is the complement
of the l2 ball of radius δ centered at x⋆. Large deviations
analysis then aims at discovering the corresponding rate of
decay, i.e., the inaccuracy rate I(Cδ):

P (Xk ∈ Cδ) = e−k I(Cδ)+o(k), (1)

where o(k) denotes terms growing slower than linearly
with k. The inaccuracy rate I(Cδ) can usually be expressed
via the so called rate function I : Rd 7→ R, according to
the following formula (Bahadur 1960):

I(Cδ) = inf
x∈Cδ

I(x). (2)

Differently from the set function I, the rate function I does
not depend on the region Cδ; that is, when Cδ changes, only
the region over which we minimize in (2) changes, while
the function remains unchanged. Furthermore, this is true
for arbitrary set Cδ . This means that, once the rate func-
tion is computed, the corresponding inaccuracy rate can be
obtained via (2) for a new given region of interest.

In this paper, we are interested in applying the large devi-
ations theory to analyzing the stochastic gradient descent
(SGD) method. SGD is a simple but widely used op-
timization method that finds numerous practical applica-
tions, such as training machine learning and deep learning
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models, e.g., (Niu et al. 2011; Gorbunov, Hanzely, et al.
2020; Lei et al. 2020). More precisely, we consider uncon-
strained optimization problems where the goal is to mini-
mize a smooth, strongly convex function f : Rd → R, via
the SGD method of the form:

Xk+1 = Xk − αk (∇f(Xk)− Zk). (3)

Here, k = 1, 2, ... is the iteration counter, αk = a/k, a > 0
is the step-size, and Zk is a zero-mean gradient noise that
may depend on Xk. In this context, we are interested in
solving for (1) and (2) for the SGD method (3), where
now x⋆ is interpreted as the (deterministic) global mini-
mizer of f . In other words, we are interested in finding (or
approximating) the rate function I(x) that quantifies the
“tails” or “rare events” of how the SGD sequence iterates
Xk deviate from the solution x⋆.

Clearly, evaluating (2) for SGD is of significant interest. It
readily provides insights into the high-probability bounds
for SGD that have been subject of much research effort re-
cently, (Ghadimi et al. 2012; Ghadimi et al. 2013; Juditsky
et al. 2019; Gorbunov, Danilova, et al. 2020; Davis et al.
2021). However, unlike the typical high probability bound
studies, the large deviations approach here is fully flexi-
ble with respect to the choice of set Cδ; e.g., the l2-ball
complement may be replaced with an arbitrary open set,
such as lp norm complement of an arbitrary lp-norm. While
large deviations theory is a well-established field, there has
been a limited body of work that applies large deviations to
the analysis of SGD. Reference (Woodroofe 1972) is con-
cerned with large deviations analysis for a scalar stochastic
process equivalent to SGD in one dimension. The authors
of (W. Hu et al. 2019) study large deviations of SGD when
the step-size converges to zero; however, they are not con-
cerned with large deviations when the iteration counter k
increases – the case of our interest here.

Contributions. In this paper, we are interested in eval-
uating the large deviations rates in (1) and (2) for the
SGD method, when the objective function f is smooth and
strongly convex. Our main contributions are as follows.
When f is a (strongly convex) quadratic function, we es-
tablish the so-called full large deviations principle for the
sequence Xk. This means that we evaluate rate function
I(x) exactly, i.e., the corresponding rare event probability
is computed exactly, with upper and lower bounds matched,
up to exponentially decaying factors. We further explicitly
quantify the rate function I(x) as a function of the distribu-
tion of the gradient noise. This reveals a significant influ-
ence of higher order moments on the performance (in the
sense of rare event probabilities) of SGD. This is in con-
trast with conventional SGD analyses, that typically cap-
ture only the dependence on the gradient noise variance.
The large deviations principle for quadratic functions is es-
tablished under a very general class of gradient noise dis-
tributions that are essentially only required to have a finite

moment generating function. Next, for generic smooth and
strongly convex costs f , we establish a large deviations up-
per bound (a lower bound on function I(x)) that certifies an
exponential decay of the rare event probabilities in (1) with
SGD. This is achieved when the distribution of the gradient
noise is sub-Gaussian. We further show that the obtained
large deviations upper bound is tight, as the corresponding
rate function actually matches, up to higher order factors,
the exact rate function that we formerly establish for the
quadratic costs.

Our results are related with high probability bounds-type
studies of SGD and related stochastic methods (Harvey et
al. 2019; Ghadimi et al. 2012; Ghadimi et al. 2013; Judit-
sky et al. 2019; Gorbunov, Danilova, et al. 2020). Therein,
for a given δ > 0 and a confidence level 1− β, β ∈ (0, 1),
the goal is to find K(δ, β) such that f(Xk) − f(x⋆) ≤ δ
with probability at least 1 − β, for all k ≥ K(δ, β). The
works (Ghadimi et al. 2012; Ghadimi et al. 2013; Judit-
sky et al. 2019; Gorbunov, Danilova, et al. 2020) provide
estimates of K(δ, β) that depend logarithmically on β. In
more detail, (Ghadimi et al. 2012; Ghadimi et al. 2013) es-
tablish high probability bounds for the stochastic gradient
methods therein assuming sub-Gaussian gradient noises.
The work (Juditsky et al. 2019) calculates the correspond-
ing bounds for the basic SGD and the mirror descent that
utilize a gradient truncation technique, while relaxing the
noise sub-Gaussianity. The work (Gorbunov, Danilova, et
al. 2020) establishes high probability bounds for an accel-
erated SGD that also utilizes a clipping nonlinearity. The
large deviations rates in (1) and (2) - give estimates of
K(δ, β) that also depend logarithmically on β, when β is
small (goes to zero).1

Compared with existing high probability bound works, our
results give the exact (tight) exponential decay rate in (2),
and for an arbitrary set that does not contain x⋆, not only
the Euclidean ball complements. To be concrete, the clos-
est results to ours are obtained in (Harvey et al. 2019).
While they are not directly concerned with obtaining large
deviations rates, their results (with some additional work)
lead to an exponential decay rates for Euclidean ball com-
plements. In contrast, our results work for arbitrary open
sets. Furthermore, focusing only on Euclidean ball com-
plements, our results provide much tighter exponential rate
bounds. Specifically, as we show in the paper, the exponen-
tial rate that we provide captures the interplay between the
noise geometry and the cost function curvature, see Sec-
tion 4.2 for details. From the technical perspective, this
is achieved by working directly with the SGD iterates, as
opposed to working with the distance of the iterates from
the solution. To do so, we derive a novel set of techniques

1It is easy to see this by noting that, for µ-strongly convex
costs, we have f(x) − f(x⋆) ≥ µ

2
∥x − x⋆∥2, for all x ∈ Rd,

requiring that the the right hand side of (1) be less than β, and
reverse-engineering the smallest iterate k for which the latter
holds.
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that build upon the large deviations theory rather than on
martingale concentration inequalities.

The current paper is also related with large deviations anal-
yses of stochastic processes that arise with distributed in-
ference, such as estimation and detection. Distributed de-
tection has been studied in (Bajovic, Jakovetic, Xavier,
et al. 2011), for Gaussian observations, and in (Bajovic,
Jakovetic, Moura, et al. 2012), for generic observations.
The work (Matta et al. 2016a) evaluates large deviations of
the local states with a distributed detection method, when
the step size parameter decreases. Reference (Matta et al.
2016b) further analyzes the non-exponential terms and con-
sider directed networks for a similar problem. The pa-
per (Marano et al. 2019) considers distributed detection
with 1-bit messages. (P. Hu et al. 2022) consider so-
cial learning problems. Reference (Bajovic 2022) analyzes
large deviations for distributed estimation and social learn-
ing. Unlike these works on distributed inference, we are not
directly concerned with distributed systems; also, the cost
functions that we consider are more general and, unlike the
works above, do not result in linear (distributed averaging)
dynamics; hence, novel tools for large deviations analysis
are required here.

The rest of the paper is organized as follows. Section 2 ex-
plains the problem that we consider and gives the required
preliminaries. Section 3 provides the main results of the pa-
per – a large deviations upper bound for generic costs, and
the full (exact) large deviations rates for quadratic costs.
Specializing to the Gaussian noise, Section 4 provides an-
alytical, closed-form expressions for the large deviations
rate function. Finally, we conclude in Section 5. Appendix
contains additional insights and examples, numerical re-
sults, and missing proofs.

2 SETUP AND PRELIMINARIES

We consider unconstrained optimization problems of the
form

min
x∈Rd

f(x). (4)

We assume that f is L-smooth and µ-strongly convex, and
that the stepsize in algorithm (3) is of the form αk =
a/(k + b), where a, b > 0.

Assumption 1. We assume that f is twice differentiable,
L-smooth and µ-strongly convex, where 0 < µ ≤ L.

Strong convexity implies uniqueness of the solution
of (4), which is denoted by x⋆. We make the following
assumption regarding the stepsize parameter a.

Assumption 2. The stepsize parameter a satisfies aµ > 1.

Assumption 1 is standard in the analysis of optimization
methods, i.e., it corresponds to a standard class of functions

over which an optimization method analysis is carried out.
Assumption 2 is required for some asymptotic arguments
ahead, as k → ∞. In practice, it may be restrictive that the
constant a is too large in the step-size choice a/k, as at the
initial iterations (small k’s), we would have very large step-
sizes. This is alleviated by having an appropriately chosen
constant b > 1.

We denote by g̃(Xk) the stochastic gradient of f returned
by the gradient oracle at the current iterate Xk, and by
g(Xk) the (exact) gradient of f at the current iterate Xk.
The difference between g̃(Xk) and g(Xk) (the gradient
“noise”) is denoted by Zk = g(Xk) − g̃(Xk). We make
the following assumptions on Zk.

Assumption 3. 1. For each k, Zk depends on the past
iterates only through Xk.

2. For each k, the distribution of Zk given Xk depends
on Xk only through its realization and does not de-
pend on the current iterate index, k.

3. For any given x, E[Zk|Xk = x] = 0, i.e., conditioned
on the current iterate, the noise is zero-mean.

Assumption 3 allows for a general gradient noise that may
actually depend on the current iterate Xk. This is a more
general setting than the frequently studied case when Zk

is i.i.d. and independent of Xk. Item 3. of Assumption 3
says that, conditioned on the current iterate, the noise is
zero-mean on average. This is also a standard bias-free
noise assumption. Finally, note that items 1. and 2. in
Assumption 3 typically hold in machine learning settings.
Therein, the goal is typically to minimize a population loss
f(x) = E[ϕ(x, v)] where the expectation is taken over the
distribution of the data v, and ϕ is an instantaneous loss
function. Given that, at some iteration k, Xk takes a value
x, the gradient noise equals ∇xϕ(x, vk) − E[∇xϕ(x, v)],
where vk is the data point sampled at iteration k. Then,
items 1. and 2. are clearly satisfied, provided that the data
sampling process is independent of the evolution of Xk.

For x ∈ Rd, we denote by H(x) the Hessian matrix of f
computed at x. For compactness, we denote H⋆ = H(x⋆),
i.e., H⋆ is the Hessian matrix of f computed at x⋆. For any
x ∈ Rd, define h : Rd 7→ Rd as the residual of the first
order Taylor’s approximation of the gradient g at x⋆,

h(x) = g(x)−H⋆(x− x⋆), (5)

for x ∈ Rd. For each δ > 0, define also

h(δ) = sup
x∈Bx⋆ (δ)

∥h(x)∥, (6)

where Bx(δ) denotes the closed Euclidean ball in Rd of
radius δ ≥ 0, centered at x. The following result holds by
a well-known corollary of Taylor’s remainder theorem.

Lemma 1. There holds h(δ) = o(δ), i.e., limδ→0
h(δ)
δ =

0.
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Remark 1. Clearly, when f is quadratic, H(x) is constant
for all x ∈ Rd and equal to H⋆, implying h(x) ≡ 0 and
also h(δ) ≡ 0.

Remark 2. Lemma 1 holds by the twice continuous dif-
ferentiability of f . The quantity h(x) can be explic-
itly characterized if, in addition, it is assumed that the
Hessian of function f is Lipschitz continuous, i.e., if
∥H(x)−H(y)∥ ≤ LH ∥x − y∥, for all x, y ∈ Rd, for
some nonnegative constant LH . It is easy to show that,
in this case, we have ∥h(x)∥ ≤ LH ∥x − x⋆∥2, for any
x ∈ Rd. The latter implies a quadratic upper bound in δ on
h(δ), i.e., h(δ) ≤ LHδ2, for each δ ≥ 0.

2.1 Distance to solution recursion

For analytical purposes, it is of interest to study the squared
distance to solution of the current iterates ∥Xk − x⋆∥2. To
characterize the evolution of this quantity, we use standard
arguments that follow from strong convexity and Lipschitz
smoothness:

∥Xk+1 − x⋆∥2 ≤
(
1− 2αkµ+ 2α2

kL
2
)
∥Xk − x⋆∥2

+ 2αk(Xk − x⋆)⊤Zk + 2α2
k∥Zk∥2;

(7)

details of the derivations can be found in Appendix A.

We introduce the function βk : R2 7→ R, defined by
βk(u, v) = 1 − αku + α2

kv. Similarly, for any two it-
eration indices l ≤ k, we define βk,l : R2 7→ R by
βk,l(u, v) = βk(u, v) · · ·βl(u, v). The following techni-
cal lemma providing bounds on the product functions βk,l

will be useful for the study of recursion (7) as well as other
similar recursions that will emerge from the analysis.

Lemma 2. Let l and k be two iteration indices such that
l < k. For any nonnegative u, v ∈ R, and αk = a/(k+b),
where b ≥ 1, there holds:

1. βk,l(u, v) ≤
(

l+b
k+b+1

)au
e

a2v
l+b−1 ;

2. for each l such that l + b ≥ 5au
2 , there holds

βk,l(u, v) ≥
(

l+b−1
k+b

)au
e−

a2u2

l+b−1 ;

The proof of Lemma 2 is given in Appendix A.

Finally, for each iteration index k, we denote by µk the
Borel measure on Rd induced by Xk. Similarly, we denote
by νk the Borel measure induced by ∥Xk − x⋆∥.

2.2 Large deviations preliminaries

We next give a definition of the rate function and the large
deviations principle.

Rate function I and the large deviations principle.

Definition 1 (Rate function I (Dembo et al. 1993)). Func-
tion I : Rd 7→ [0,+∞] is called a rate function if it is lower
semicontinuous, or, equivalently, if its level sets are closed.
If, in addition, the level sets of I are compact (i.e., closed
and bounded), then I is called a good rate function.

Definition 2 (The large deviations principle (Dembo et al.
1993)). Suppose that I : Rd 7→ [0,+∞] is lower semicon-
tinuous. A sequence of measures µk on

(
Rd,B

(
Rd
))

, k ≥
1, is said to satisfy the large deviations principle (LDP)
with rate function I if, for any measurable set D ⊆ Rd, the
following two conditions hold:

1. lim sup
k→+∞

1

k
logµk(D) ≤ − inf

x∈D
I(x);

2. lim inf
k→+∞

1

k
logµk(D) ≥ − inf

x∈Do
I(x).

Log-moment generating functions of the noise Zk and
the iterates Xk. Following Assumption 3, we define the
conditional LMGF of Zk given the last iterate Xk.

Definition 3 (Conditional LMGF of Zk). We denote by
Λ(·;x) the log-moment generating function (LMGF) of Zk

given Xk = x,

Λ(λ;x) := logE
[
eλ

⊤Zk

∣∣∣Xk = x
]
, for λ, x ∈ Rd. (8)

It will also be useful to define the conditional moment-
generating function of ∥Zk∥2, which we denote by
M(·;x):

M(ν;x) := E
[
eν∥Zk∥2

∣∣∣Xk = x
]
, (9)

for ν ∈ R, x ∈ Rd. By the inequality ex ≤ x + ex
2

,

which holds for all x ∈ R, we have E
[
eλ

⊤Zk

∣∣∣Xk

]
≤

E[λ⊤Zk|Xk] + E
[
e(λ

⊤Zk)2|Xk

]
≤ E

[
e∥λ

2∥∥Zk∥2
∣∣∣Xk

]
,

where we used the Cauchy-Schwartz inequality, for the sec-
ond term, and the fact that Zk is zero-mean, for the first
term. Thus,

Λ(λ;x) ≤ logM(∥λ2∥;x) (10)

for any realization x of Xk.

Lemma 3 lists properties of Λ that will be used in the paper.

Lemma 3 (Properties of Λ). For any given x ∈ Rd the
following properties hold:

1. Λ(·;x) is convex and differentiable in the interior of
its domain;

2. Λ(0;x) = 0 and ∇Λ(0;x) = E[Zk|Xk = x] = 0;

3. Λ(λ;x) ≥ 0, for each λ.
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Proof. Convexity and differentiability are general prop-
erties of log-moment generating functions (Dembo et al.
1993), as well as the zero value at the origin property and
also that the gradient at the origin equals the mean vec-
tor; ∇Λ(0;x) = 0 follows by the assumption that the
noise is zero-mean, Assumption 3. The non-negativity
from Part 3 follows by invoking convexity and exploit-
ing the two properties from part 2, i.e., for any x ∈ Rd:
Λ(λ;x) ≥ Λ(0;x) +∇Λ(0;x)⊤λ = 0.

Example 1. To illustrate the LMGF function Λ, we con-
sider the case when, conditioned on an arbitrary realiza-
tion Xk = x, the gradient noise Zk is Gaussian, with mean
vector equal to zero vector and covariance matrix Σ(x).
Using standard formula for the LMGF of a Gaussian mul-
tivariate, we have

Λ(λ;x) =
1

2
λ⊤S(x)λ, (11)

for λ ∈ Rd. We note that when the gradient noise Zk is
independent of the current iterate Xk, the indices Xk in
the preceding formula can be omitted, i.e., the expression
for Λ simplifies to Λ(λ;Xk) =

1
2λ

⊤Sλ, for all realizations
Xk.

It will also be of interest to define the (unconditional) log-
moment generating function of the iterates Xk.

Definition 4 (LMGF of Xk − x⋆). We let Γk denote the
(unconditional) moment generating function of Xk,

Γk(λ) := E
[
eλ

⊤(Xk−x⋆)
]
, (12)

for λ ∈ Rd. The (unconditional) log-moment generating
function of Xk is then given by log Γk.

We assume that the initial iterate X1 is deterministic2.
Hence, Γ1 is finite for all λ ∈ Rd.

We assume that the family of functions Λ(·;x) satisfy the
following regularity conditions.

Assumption 4 (Lipschitz continuity in x). There exists a
constant LΛ such that for every λ, x, y ∈ Rd, there holds:

|Λ(λ;x)− Λ(λ; y)| ≤ LΛ∥λ∥2∥x− y∥. (13)

Remark 3. We note that Assumption 4 is trivially satisfied
when the noise distribution does not depend on the current
iterate. For another illustration, consider Gaussian ran-
dom noise distribution from Example 1, for which we have:

Λ(λ;x)− Λ(λ; y) =
1

2
λ⊤(S(x)− S(y))λ (14)

≤ 1

2
∥λ∥2∥S(x)− S(y)∥. (15)

2We note that this assumption can be relaxed to allow for ran-
dom initial iterate; see Appendix D for details.

Comparing with the condition in (13), we see that (13) is
satisfied when entries of the covariance matrix S, as func-
tions of x, are Lipschitz continuous.

The assumption below will be used for the proof of the
main result of the paper, when the case of general convex
functions is considered.

Assumption 5 (Sub-Gaussian noise). There exists a con-
stant C1 > 0 such that, for each λ, x ∈ Rd

Λ(λ;x) ≤ C1
∥λ∥2

2
. (16)

Remark 4. Assumption 5 means that the gradient noise
has “light tails,” i.e., there exist positive constants c1, c2,
such that the probability that the magnitude of the norm of
the noise vector is above ϵ is upper bounded by c1 e

−c2ϵ
2

,
for any ϵ > 0. Clearly, a Gaussian zero-mean multivari-
ate distribution satisfies this property, and also any noise
distribution with compact support.

This assumption also ensures that, for each given λ, the
value of the variance “proxy” C1 cannot grow without
bound as the domain of iterates x enlarges. For a Gaussian
distribution, this means that the variance, as a function of
the current iterate should be uniformly bounded over the
domain of the iterates, which is a typical assumption in re-
lated works.

We also use the following implications of Assumption 5.

1. There exists C2 > 0 such that

E
[
exp

(
∥Z2

k∥
C2

)∣∣∣∣Xk

]
≤ e. (17)

2. For any ν ∈ [0, 1/C2] there holds

M(ν;Xk) ≤ exp(νC2). (18)

Proof. The proof of part 1 can be derived by applying prop-
erties of sub-Gaussian random variables to ∥Zk∥; see, e.g.,
Proposition 2.5.2 in (Vershynin 2018) and also (Jin et al.
2019) for a treatment of sub-Gaussian random vectors.

To show part 2, fix ν ∈ [0, 1/C2]. By Hölder’s inequality
(applied for “p” = 1/(νC2) ≥ 1)

M(ν;Xk) ≤
(
E
[
exp

(
1/C2∥Zk∥2

)∣∣Xk

])νC2 (19)
≤ exp(νC2) (20)

where in the second inequality we used part 1.

Remark 5. When the distribution of Zk is Gaussian, zero
mean and with covariance matrix Σ, and independent of
the current iterate, we have

Λ(λ) =
1

2
λ⊤Σλ ≤ 1

2
σ2
max∥λ∥2, (21)
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where σ2
max is the maximal eigenvalue of Σ. Comparing

with Assumption 5, we see that condition (16) holds with
C1 = σ2

max. It can also be shown that part 1. of Proposi-
tion 2.2 holds for C2 ≥ 2σ2

max.

2.3 Key technical lemma

Definition 5. The Fenchel-Legendre transform, or the con-
jugate, of a given function Ψ : Rd 7→ R is defined by

I(x) = sup
λ∈Rd

x⊤λ−Ψ(λ), for x ∈ Rd. (22)

Lemma 4. Let Ψk be a sequence of log-moment generat-
ing functions associated to a given sequence of measures
µk : B(Rd) 7→ [0, 1]. Suppose that, for each λ ∈ Rd, the
following limit exists:

lim sup
k→+∞

1

k
Ψk(kλ) ≤ Ψ(λ). (23)

If Ψ(λ) < ∞ for each λ ∈ Rd, then the sequence µk satis-
fies the LDP upper bound with the rate function I equal to
the Fenchel-Legendre transform of Ψ. If, in addition, (23)
holds as a limit and with equality, then the sequence of
measures satisfies the LDP with rate function I.

The second part of the lemma follows by the Gärtner-Ellis
theorem. The first part can be proven by similar arguments
as in the proof of the upper bound of the Gärtner-Ellis theo-
rem; for details, see also the proof of Lemma 35 in (Bajovic
2022).

3 LARGE DEVIATIONS RATES FOR
SGD ITERATES Xk

3.1 Large deviations rates for ∥Xk − x⋆∥

To derive the main result – the large deviations rate func-
tion for the SGD sequence Xk, we first study large devia-
tions properties of the sequence ∥Xk − x⋆∥, k = 1, 2, ...
For the latter, we first exploit the idea from (Harvey et al.
2019) to obtain a high probability bound for the (scaled)
quantity ∥Xk − x⋆∥2, via its moment generating function.
We then use this bound to derive a rate function (bound) for
∥Xk − x⋆∥. Since our assumptions are distinct than those
in (Harvey et al. 2019) (e.g., the recursive form that we
work with here contains factors that require special treat-
ment than the one in (Harvey et al. 2019), also we do not as-
sume bounded noisy gradient, as is the case with the proof
available in (Harvey et al. 2019)), we provide full proof
details, see Appendix B.
Lemma 5. For any k, there holds

P (∥Xk − x⋆∥ ≥ δ) ≤ ee−(k+k0)Bδ2 , (24)

where B = min{ 1
k0∥X1−x⋆∥ ,

2aµ−1
4max{C1,2C2}a2 } and k0 =

4a2L2/(2aµ− 1).

Remark 6. The preceding theorem establishes a large de-
viations upper bound for the sequence of squared distance
to solution iterates ξk, by exploiting noise sub-Gaussianity.
By its nature, this result is a rough characterization of the
large deviations rate function for the sequence Xk. In ad-
dition to being a result of independent interest, the utility
consists in bounding the tails of distribution µk, as an en-
abling step towards deriving a fine, close to exact rate func-
tion for the SGD iterates Xk, as the main contribution of
this paper. The latter is the subject of the next section.

3.2 Main result: Large deviations rates for Xk

We now present our result for general convex functions sat-
isfying assumptions from Section 2. The pillar of the anal-
ysis is the limit of the sequence of log-moment generating
functions log Γk of the SGD iterates.

Lemma 6. Suppose that Assumptions 1-5 hold and that the
stepsize is given by αk = a/(k + k0). For any λ ∈ Rd,

lim sup
k→+∞

1

k
log Γk(kλ) ≤ Ψ(λ) := Ψ⋆(λ) + r(λ), (25)

where Ψ⋆ is defined by

Ψ⋆(λ) =

∫ 1

0

Λ(aQD(θ)Q⊤λ;x⋆)dθ, (26)

where H⋆ = QDQ⊤, QQ⊤ = I , D =
diag{ρ1, ..., dn}, D(θ) = diag{θaρ1−1, ..., θadn−1},

r(λ) = 4a2γ2LΛ

B2 ∥λ∥4 + a∥λ∥h
(

2γ∥λ∥
B

)
, and γ =

max{1,
√

(1− aµ)2 + a2(L2 − µ2)}.

The proof of Lemma 6 is given in Appendix C. Having the
limit in (25), LDP upper bound follows by Lemma 4.

Theorem 1. Suppose that Assumptions 1-5 hold and that
the stepsize is given by αk = a/(k + k0). Then, the se-
quence of iterates Xk satisfies the LDP upper bound with
rate function I given as the Fenchel-Legendre transform of
Ψ from Lemma 6, i.e., for any closed set F :

lim sup
k→+∞

1

k
logP (Xk ∈ F ) ≤ − inf

x+x⋆∈F
I(x). (27)

Remark 7. The rate function I depends on the Hessian
matrix at the solution, H(x⋆). However, coarser exponen-
tial rate bounds can be obtained by uniformly bounding the
eigenvalues of H(x⋆), as by our assumptions they are all
confined in the interval [µ,L]. See Appendix D for details.

3.3 Discussions and interpretations

3.3.1 Positivity of I and exponential decay

From the fact that Ψ⋆, r ≥ 0, and that both Ψ⋆ and r are
finite on Rd, it can be shown that I ≥ 0 and that I is a good
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rate function. Specifically, I(0) = 0 and I(x) > 0 for any
x ̸= 0. Therefore, for any closed set F such that x⋆ /∈ F,
we have

inf
x+x⋆∈F

I(x) > 0, (28)

that is, the exponent in (27) is strictly positive ensuring the
exponential decay of the probabilities P (Xk ∈ F ). To il-
lustrate this in intuitive terms, we take as a special case the
set F = Bc

x⋆(δ), for some δ > 0. Then, the event of inter-
est becomes {Xk ∈ F} = {∥Xk − x⋆∥ ≥ δ}. Thus, for
any δ > 0, Theorem 1 implies that

lim sup
k→+∞

1

k
logP (∥Xk − x⋆∥ ≥ δ) ≤ −R(δ), (29)

where R(δ) = inf∥x∥≥δ I(x) > 0.

3.3.2 Remainder term r

Recalling Lemma 1, it is easy to see that r(λ) = o(∥λ∥2),
i.e., lim∥λ∥→0

r(λ)
∥λ∥2 = 0. Also, for a function f that has

Lipschitz Hessian, see Remark 2, the residual function r
behaves roughly as ∼ ∥λ∥3.

Further, for the special case when f is quadratic, h(δ) = 0,
and hence r contains only the first term, and thus r(λ) ∼
∥λ∥4. Similarly, when the noise distribution does not de-
pend on the current iterate, we have that LΛ = 0, and hence
r(λ) = o(∥λ∥2). Finally, for the case when both of the
preceding conditions hold, the residual term is zero at all
points: r ≡ 0, and hence the rate function I = I⋆, where
I⋆ is the Fenchel-Legendre transform of Ψ⋆.

3.3.3 Small deviations regime

When high precision estimates are sought, or equivalently,
for small δ in (29), the candidate values of I in the mini-
mization are very close to 0. By the fact that the remainder
term r(λ) = o(∥λ2∥), it can be shown that, in the small de-
viations regime, I is determined by Ψ⋆ only, i.e., I ≈ I⋆,
and, also, its behaviour is dominantly characterized by the
noise variance.

3.4 LDP for quadratic functions

In this section we provide the full LDP for the case when f
is a quadratic function. The proof of Theorem 2 is given in
Appendix E.

Theorem 2. Suppose that the objective function f is
quadratic, that Assumptions 2-3 hold, with the step size
given by αk = a/k. Suppose also that the noise distri-
bution does not depend on the current iterate and that it
has a finite log-moment generating function Λ. Then, the
sequence Xk satisfies the large deviations principle with
the rate function I⋆ given as the conjugate of Ψ⋆ defined
in (26), with Λ(·;x⋆) replaced by Λ.

The rate function I⋆ depends on the distribution of Zk and
fully captures all moments of this distribution. In particu-
lar, for non-Gaussian distributions, it captures exactly the
dependence not only on the variance, but also on higher
order moments.
Remark 8. We note that, in contrast with Theorem 1, for
Theorem 2 the conditional distribution of Zk can be ar-
bitrary, as long as Λ is finite. In particular, it allows for
distributions that are not light-tailed, such as Laplacian.
Remark 9. Recalling the discussion from subsection 3.3.2,
we see that the upper bound rate function from Theorem 1
and the rate function from Theorem 2 match, hence show-
ing that the bound in Theorem 1 is tight.

4 GAUSSIAN NOISE: ANALYTICAL
CHARACTERIZATION OF THE RATE
FUNCTION

If the noise Zk has a Gaussian distribution with mean value
zero and covariance matrix Σ, then Ψ⋆ is computed by

Ψ⋆(λ) =
a2

2

∫ 1

0

λ⊤QD(θ)Q⊤ΣQD(θ)Q⊤λdθ. (30)

To simplify the notation, let S = Q⊤ΣQ, and
M(θ) = D(θ)SD(θ). It is easy to verify that Mij(θ) =
Sijθ

a(ρi+ρj)−2, for any i, j = 1, ..., d, and thus∫ 1

0
Mij(θ)dθ = Sij/(a(ρi + ρj) − 1). Hence, we obtain

the following closed-form expression for Ψ⋆ :

Ψ⋆(λ) =
a2

2
λ⊤QS⋆Qλ, (31)

where S⋆
ij = Sij/(a(ρi + ρj)− 1), for i, j = 1, ..., d.

Recalling the Definition 5, it can be shown that the Fenchel-
Legendre transform I⋆ of Ψ⋆ is given by

I⋆(z) =
1

2a2
z⊤Q⊤S⋆−1Qz. (32)

To obtain further intuition about the rate function I⋆, we
consider the special case when the Hessian matrix H⋆ and
the covariance matrix Σ share the same eigenspace (given
by the columns of the matrix Q). Intuitively, the latter
means that the orientation of the quadratic approximation
of f at the origin is aligned with the gradient noise dis-
tribution in each of the axes. In this case, it follows that
S = Q⊤ΣQ is diagonal with Sii = σ2

ii, where σ2
ii is the i-

th eigenvalue of Σ (i.e., the eigenvalue of Σ corresponding
to its eigenvector given by the i-th column of matrix Q). It
follows that S⋆ is also diagonal with S⋆

ii = σ2
ii/(2aρi− 1).

Thus, the following neat expression for the rate function I⋆

emerges:

I(z) =
1

2a2
z⊤Q⊤diag

(
2aρ1 − 1

σ2
11

, ...,
2aρd − 1

σ2
dd

)
Qz.

(33)
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4.1 Decay rates with l2 balls

We consider the case when in the large deviations event of
interest {Xk ∈ F} the set F is given as the complement of
an l2 ball around the solution x⋆ : F = Bc

x⋆(δ), i.e., {Xk ∈
F} = {∥Xk − x⋆∥ ≥ δ∥. Assuming that the residual is
zero (see the result for quadratic functions in Section 3.4),
by Theorem 1, we have

lim sup
k→+∞

1

k
logP (∥Xk − x⋆∥ ≥ δ) ≤ inf

∥z∥≥δ
I(z)

=: I(Bc
x⋆(δ)). (34)

For the Gaussian noise assumed in this section, we have:

I(Bc
x⋆(δ)) = inf

∥z∥≥δ

1

2a2
z⊤Q⊤S⋆−1Qz

=
δ2

2a2
inf

∥w∥≥1
w⊤Q⊤S⋆−1Qw

=
δ2

2a2
1

λmax(S⋆)
, (35)

where λmax(S
⋆) is the largest eigenvalue of the matrix S⋆.

Hence, to find the value of the exponent I for any given
ball-shaped set, it suffices to find (once) the maximal eigen-
value of S⋆, and the exponent I would be easily computed
by the quadratic function (35).

We close the analysis with a particularly elegant solution
for the special case when H⋆ and Σ are axes-aligned. As
detailed at the beginning of the section, in the latter case,
S⋆ is diagonal, with S⋆

ii = σ2
ii/(2aρi − 1), and the rate

function is given by (33). Thus, to find the maximal eigen-
value of S⋆ reduces to finding the index i for which σ2

ii

2aρi−1

is highest, or, equivalently, 2aρi−1
σ2
ii

the lowest, which then
yields:

I(Bc
x⋆(δ)) =

δ2

2a2
min{2aρi − 1

σ2
ii

: i = 1, ...d}, (36)

where, we recall, ρi is the i-th eigenvalue of H⋆. What
the expression above is saying is that, in order to find the
exponential decay rate for an l2 ball, we should search for
the direction i in which the value σ2

ii

2ρi−1 is highest. In a
sense, the latter quantity can be thought of as the effective
noise variance, capturing the interplay between the noise
distribution and the shape of the function at the solution.
Specifically, if along the direction where the noise variance
is highest, say i⋆, the function has a high curvature (i.e.,
large ρi⋆ ), this will effectively alleviate the effects of noise
and increase the rate function, in comparison to the case
when the curvature along i is lower, and therefore result in
faster convergence.

Finally, when the noise is isotropic, i.e., such that σ2
ii = σ2,

for all i, exploiting the fact that the spectrum of H⋆ lies

inside the interval [µ,L], the rate function is found by:

I(Bc
x⋆(δ)) =

δ2

2a2
2aµ− 1

σ2
. (37)

4.2 Comparison with the rate from Lemma 5

We now compare the rate function bounds obtained from
Lemma 5 and Theorem 1. To gain deeper insights, we will
assume that the residual term r equals zero (compare with
Section 3.4). We also assume that the noise is Gaussian and
axes-aligned with the matrix H⋆ (see the preceding subsec-
tion). The exponent B from 5 can be upper bounded by3

B ≤ 2aµ− 1

4σmax
2a2

,

where we exploited the fact that, for Gaussian noise, C1 =
σ2
max, see Remark 5. Hence, for an l2 ball of radius δ, the

exponent that Lemma 5 provides is bounded by

Bδ2 ≤ δ2

4a2
2aµ− 1

σ2
max

. (38)

The counterpart obtained from Theorem 1 is given by ex-
pression (36). To show direct comparison with (38), we
further upper bound this value by decoupling the minimiza-
tion over i :

I(Bc
x⋆(δ)) =

δ2

2a2
min{2aρi − 1

σ2
ii

: i = 1, ...d}

≥ δ2

2a2
min{2aρi − 1 : i = 1, .., d}

max{σ2
ii : i = 1, .., d}

=
δ2

2a2
2aµ− 1

σ2
max

. (39)

Comparing with (38) (and ignoring the scaling constant 2),
the following important point can be noted: on an intuitive
level, the derivation of the rate B is equivalent to that of de-
coupling the effects of the noise distribution and the shape
of the function f at the origin. Hence, in contrast with I⋆,
the rate B is oblivious to the interplay between these two
quantities – from a purely technical perspective, this dis-
tinction is a consequence of relying on recursions on the
iterates’ distance to the solution, ∥Xk −x⋆∥, as opposed to
working directly with the iterates Xk, as is the case in the
proof of Theorem 1.

5 CONCLUSIONS

We developed large deviations analysis for the stochastic
gradient descent (SGD) method, when the objective func-
tion is smooth and strongly convex. For (strongly convex)

3The dependence in B on X1 in Lemma 5 seems to be an
artifact of the conducted proof method, rather than an essential
property of the exponential rate that Lemma 5 pursues. Hence,
for unbiased comparison, we omit this factor in the analysis of
the rate B.
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quadratic costs, we establish the full large deviations prin-
ciple. That is, we derive the exact exponential rate of de-
cay of the probability that the iterate sequence generated
by SGD stays within an arbitrary set that is away from the
problem solution. This is achieved for a very general class
of gradient noises, that may be iteration-dependent and are
required to have a finite log-moment generating function.
For generic costs, we derive a tight large deviations upper
bound that, up to higher order terms, matches the exact rate
derived for the quadratics.
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A PROOFS OF AUXILIARY RESULTS

A.1 Proof of recursion (7)

For any k ≥ 1, we have:

∥Xk+1 − x⋆∥ = ∥Xk − αkg(Xk) + αkZk − x⋆∥
= ∥Xk − x⋆∥2 − 2αk(Xk − x⋆)⊤(g(Xk)− Zk)

+ α2
k∥g(Xk)− Zk∥2

≤ (1− 2αkµ)ξk + 2αk(Xk − x⋆)⊤Zk

+ 2α2
k∥g(Xk)∥+ 2α2

k∥Zk∥2

≤
(
1− 2αkµ+ 2α2

kL
2
)
ξk + 2αk(Xk − x⋆)⊤Zk

+ 2α2
k∥Zk∥2, (40)

where the first inequality follows from the strong convexity of f, Assumption 1, and the fact that, for a, b ∈ Rd, ∥a−b∥2 ≤
2∥a∥2 + 2∥b∥2, and the second inequality follows from the Lipschitz smoothness of f , Assumption 1.

A.2 Proof of Lemma 2

Fix l and k where 1 ≤ l ≤ k. Fix u, v ≥ 0. From the upper and the lower Darboux sum for the logarithmic function
applied to the interval [l, k], we obtain:

log
k + 1

l
≤ 1

l
+ . . .+

1

k
≤ log

k

l − 1
. (41)

For the 2-sum we use the following simple bound 1/l2 ≤ 1/(l(l − 1)) = 1/(l − 1)− 1/l to obtain:

1

l2
+ . . .+

1

k2
≤ 1

l − 1
− 1

l
+ . . .+

1

k − 1
− 1

k
≤ 1

l − 1
. (42)

To prove part 1, we use that 1 + x ≤ ex applied to each of the terms in the product βk,l, together with the left hand-side
inequality of (41) and the right hand-side inequality of (42):

βk,l(u, v) ≤ e
−au

∑k
j=l

1
j+b+a2v

∑k
j=l

1
(j+b)2

≤ e−au log( k+b+1
l+b )+ a2v

l+b−1

=

(
l + b

k + b+ 1

)au

e
a2v

l+b−1 . (43)

To prove part 2, we first note that, since v ≥ 0, there holds βk,l(u, v) ≥ βk,l(u, 0), i.e., βk,l(u, v) ≥ (1−αku) · · · (1−αlu).

We now use that, for x ≤ 2
5 , 1− x ≥ e−x−x2

:

βk,l(u, v) ≥ e
−au

∑k
j=l

1
j+b−a2u2 ∑k

j=l
1

(j+b)2

≥
(
l + b− 1

k + b

)au

e−
a2u2

l+b−1 . (44)

This completes the proof of the lemma.

A.3 Proof of recursion (69)

Here we prove an alternative recursion on ∥Xk − x⋆∥, used within the proof of Lemma 6. Specifically, we show that, for
any k,

∥Xk+1 − x⋆∥ ≤ γk∥Xk − x⋆∥+ αk∥Zk∥, (45)

where, we recall, γk =
(
1− 2αkµ+ α2

kL
2
)1/2

.
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From the triangle inequality applied to the Euclidean norm,

∥Xk+1 − x⋆∥ = ∥Xk − αkg(Xk) + αkZk − x⋆∥
≤ ∥Xk − αkg(Xk)− x⋆∥+ αk∥Zk∥ (46)

Exploiting L-smoothness and µ- convexity of f for the second term:

∥Xk − αkg(Xk)− x⋆∥2 ≤
∥Xk − x⋆∥2 − 2αk(Xk − x⋆)⊤g(Xk) + α2

k∥g(Xk)∥
≤ ∥Xk − x⋆∥2 − 2αkµ∥Xk − x⋆∥2 + α2

kL
2∥Xk − x⋆∥2

= γ2
k∥Xk − x⋆∥2. (47)

Taking the square root and replacing in (46) yields (45).

B PROOF OF LEMMA 5

First, we transform the recursion in (7) by defining Yk+1 = (k + k0)∥Xk+1 − x⋆∥2, to obtain:

Yk+1 ≤ akYk − bk
√

k + k0 − 1(Xk − x⋆)⊤Zk + ck∥Zk∥2, (48)

where

ak =
k + k0

k + k0 − 1
(1− 2αkµ+ 2α2

kL
2) (49)

bk =
a√

k + k0 − 1
(50)

ck =
a2

k + k0
. (51)

The key technical result behind Lemma 5 is the following upper bound on the tail probability of the Yk iterates:

P (Yk ≥ ϵ) ≤ ee−Bϵ, (52)

which holds for each k ≥ 1, and ϵ ≥ 0. The result of Lemma 5 directly follows from (52) by taking ϵk = kδ2, for each k.

Thus, in the remainder of the proof we focus on proving (24). It can be easily verified that, for each k,

ak = 1− 2aµ− 1

k + k0 − 1

(
1− 2a2L2

(2aµ− 1)(k + k0 − 1)

)
. (53)

Recalling Assumption 2 and the value of k0, we see that the above quantity is smaller than 1 for each k.

Denote by Φk the moment generating function of Yk, and by Φk+1|k(·;Xk) the moment generating function of Yk condi-
tioned on Xk :

Φk(ν) := E [exp(νYk)] (54)
Φk+1|k(ν;Xk) := E [ exp(νYk)|Xk] , (55)

for ν ∈ R; note that Φk+1(ν) = E
[
Φk+1|k(ν;Xk)

]
, for each ν ∈ R. From the recursion (7), we have:

Φk+1|k(ν;Xk) =

exp(akνYk)E
[
exp(−bk

√
k + k0 − 1(Xk − x⋆)⊤Zk + ck∥Zk∥2)

∣∣∣Xk

]
≤ exp(akνYk)

(
E
[
exp(−2bkν

√
k + k0 − 1(Xk − x⋆)⊤Zk)

∣∣∣Xk

])1/2
×(

E
[
exp(2ckν∥Zk∥2)

∣∣Xk

])1/2
≤ exp(akνYk) exp(2b

2
kν

2Yk)
(
E
[
exp(2ckν∥Zk∥2)

∣∣Xk

])1/2
(56)
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Recalling (2), the last term is finite for ν ≤ 1/(2a2C2) =: B0, and for such ν, the corresponding value is equal to
exp(C2ckν). Thus, for each ν ≤ B0,

Φk+1|k(ν;Xk) ≤ exp(ν(ak + 2b2kν)Yk + C2ckν). (57)

It is easy to see that B ≤ B0. Consider ν ≤ B. Taking the expectation on both sides of (57), the following recursive
inequality on Φk is obtained for any ν ≤ B and any k ≥ 1 :

Φk+1(ν) ≤ Φ((ak + 2b2kB)ν) exp(C2ckν). (58)

From this point, the proof proceeds similarly as in (Harvey et al. 2019), i.e., by induction, and using k = 1 as the base, it
can be shown that, for each ν ≤ B,

Φk(ν) ≤ e
ν
B . (59)

By exponential Markov, from (59), for each ν ≤ B,

P (Yk ≥ ϵ) ≤ E
[
exp νYke

−νϵ
]
. (60)

Taking ν = B yields the desired result.

C PROOF OF LEMMA 6

Fix λ ∈ Rd. Fix k ≥ 1. Define ηl = Bk,lηk, Bk,l = (I − αlH
⋆) · · · (I − αkH

⋆), ηk = kλ. By Lemma 2,

∥ηl∥ ≤ k

(
l + k0

k + k0 + 1

)aµ

∥λ∥ ≤ (l + k0)∥λ∥. (61)

For an arbitrary l ≤ k, there holds

Γl+1(ηl) = E
[
exp

(
η⊤l (Xl+1 − x⋆)

)]
= E

[
E
[
exp

(
η⊤l (Xl − αlg(Xl) + αlZl − x⋆)

)
|Xl

]]
= E

[
exp

(
Λ(αlηl;Xl) + η⊤l (Xl − αlg(Xl)− x⋆)

)]
=

∫
x∈Rd

Γl+1|l(ηl;x)µl(dx), (62)

where Γl+1|l(·;x) denotes the conditional moment generating function of Xl+1, given Xl = x. We now fix δ > 0 (the exact
value to be chosen later) and split the analysis in two cases: 1) Al,δ = {Xl ∈ Bx⋆(δ)} ; and 2) Ac

l,δ = {Xl ∈ Bc
x⋆(δ)} .

Introduce

Γl+1|Al,δ
(ηl) := E

[
1∥Xl−x⋆∥≤δΓl+1|l(ηl;Xl)

]
=

∫
∥x−x⋆∥≤δ

Γl+1|l(ηl;x)µl(dx) (63)

Γl+1|Ac
l,δ
(ηl) := E

[
1∥Xl−x⋆∥>δΓl+1|l(ηl;Xl)

]
=

∫
∥x−x⋆∥>δ

Γl+1|l(ηl;x)µl(dx); (64)

note that
Γl+1(ηl) = Γl+1|Al,δ

(ηl) + Γl+1|Ac
l,δ
(ηl). (65)

C.1 Case 1: x ∈ Al,δ .

Fix x ∈ Rd such that ∥x∥ ≤ δ. We have:

Γl+1|l(ηl;x) = exp
(
Λ(αlηl;x) + η⊤l (x− αlg(x)− x⋆)

)
= exp

(
Λ(αlηl;x) + η⊤l ((I − αlH

⋆)(x− x⋆)− αlh(x)
)

≤ exp
(
Λ(αlηl;x

⋆) + LΛ∥η2l ∥∥x− x⋆∥+ αl∥ηl∥∥h(x)∥
)

× exp
(
η⊤l ((I − αlH

⋆)(x− x⋆)
)

(66)

≤ exp
(
Λ(αlηl;x

⋆) + LΛα
2
l ∥η2l ∥δ2 + αl∥ηl∥h(δ) + η⊤l−1(x− x⋆)

)
, (67)
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where in (66) we used Lipschitz continuity of Λ in x, Assumption 4, and in (67) we used the fact that ∥x − x⋆∥ ≤ δ. It
follows that

Γl+1|Aδ
(ηl) ≤ exp (Λ(αlηl;x

⋆) + r0(λ, δ)) Γl(ηl−1), (68)

where r0(λ, δ) = LΛa
2∥λ∥2δ2 + a∥λ∥h(δ).

C.2 Case 2: x ∈ Ac
l,δ

. By strong convexity and Lipschitz smoothness of f in Assumption 1, for each l ≥ 1, the following holds:

∥Xl − g(Xl)− x⋆∥ ≤ γl∥Xl − x⋆∥, (69)
≤ γ∥Xl − x⋆∥ (70)

where γl = (1− 2αlµ+ α2
lL

2)1/2, see Appendix A for the proof, and γ = sup{γl : l = 1, 2, ...}; it is easy to verify that
γ = max{1,

√
(1− aµ)2 + a2(L2 − a2)}.

For an arbitrary x ∈ Rd, we have:

Γl+1|l(ηl;x) = exp
(
Λ(αlηl;x) + η⊤l (x− αlg(x)− x⋆)

)
≤ exp

(
C1α

2
l ∥ηl∥2

2

)
exp (γ∥ηl∥∥x− x⋆∥) , (71)

≤ exp

(
C1a

2∥λ∥2

2

)
exp (γ(l + k0)∥λ∥∥x− x⋆∥) , (72)

where in (71) we used the assumption that Zk is sub-Gaussian, Assumption 5, for the first term, together with (69) and
Cauchy-Schwartz, for the second term, while in (72) we exploited (61). Recalling the induced measure νl, we now have

Γl+1|Ac
l,δ
(ηl) ≤ exp

(
C1a

2∥λ∥2

2

)∫
z≥δ

e(l+k0)γ∥λ∥zνl(dz). (73)

The idea of analysing the “tail” term Γl+1|Ac
l,δ
(ηl) is the following: by Lemma 5, we know that the probability density νl

at a given point z behaves roughly as e−(l+k0)Bz2

. If δ is sufficiently large, then, for all z ≥ δ, the negative exponential
rate of the measure νl(z) is in absolute terms higher than the exponent (l + k0)γ∥λ∥z. Integrating by parts, we obtain that
for δ = 2γ∥λ∥

B , the integral on the right hand-side of (73) is upper bounded by a constant K. Thus:

Γl+1|Ac
l,δ
(ηl) ≤ K exp

(
C1a

2∥λ∥2

2

)
. (74)

Combining with (68) and recalling (65),

Γl+1(ηl) ≤ exp (Λ(αlηl;x
⋆) + r(λ)) Γl(ηl−1) +K exp

(
C1a

2∥λ∥2

2

)
,

where r(λ) = r0

(
λ, 2γ∥λ∥

B

)
. Iterating the preceding recursion, where we exploit the nonnegativity of Λ, property 3. from

Lemma 3, we obtain:

Γk+1(kλ) ≤ exp

(
k∑

l=1

(Λ(αlηl;x
⋆) + r(λ))

)
Γ1(α1η1)

+K exp

(
C1a

2∥λ∥2

2

) k∑
l=1

e
∑k

j=l(Λ(αjηj ;x
⋆)+r(λ))

≤ (k + 1)K exp

(
C1a

2∥λ∥2

2
+ a∥λ∥∥X1 − x⋆∥

)
× e

∑k
l=1(Λ(αlηl;x

⋆)+r(λ)). (75)
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Taking the limit, dividing by k, and taking the lim sup

lim sup
k→+∞

1

k
log Γk+1(kλ) ≤

r(λ) + lim sup
k→+∞

1

k

k∑
l=1

Λ(αlηl;x
⋆). (76)

To complete the proof of the lemma, we next show that

lim
k→+∞

1

k

k∑
l=1

Λ(αlηl;x
⋆) =

∫ 1

0

Λ(aQD(θ)Q⊤λ;x⋆)dθ. (77)

C.3 Proof of (77)

Introduce step-wise constant function sk : [0, 1] 7→ R, defined by

sk(θ) =

{
Λ(αlηl;x

⋆), for l−1
k < θ ≤ l

k
0, for θ = 0

. (78)

It is easy to verify that the integral of sk over [0, 1] equals the desired sum in the right hand-side of (76), i.e.,∫ 1

0

sk(θ) =
1

k

k∑
l=1

Λ(αlηl;x
⋆). (79)

We next show that
lim

k→+∞
sk(θ) = Λ(aQD(θ)Q⊤λ;x⋆), (80)

where D(θ) is as defined in the claim of the theorem. To show the preceding limit, note that, for each θ ∈ (0, 1],

sk(θ) = Λ(kαlkQDk,lkQ
⊤λ;x⋆) (81)

where [Dk,lk ]ii = βk,lk(ρi, 0), lk is the index of the interval in the definition of sk to which θ belongs, lk = min{l =
1, .., k : θ ≤ l

k}, and ρi is, we recall, the i-th eigenvalue of H⋆.

Using the bounds from Lemma 2, it is easy to establish the by sandwiching argument that

lim
k→∞

kαlkβk,lk(ρi, 0) = aθaρi−1. (82)

The limit in (80) now follows by the continuity of Λ(·;x⋆), which follows by convexity of Λ(·;x⋆), Lemma 3.

Using the fact that sk can be uniformly bounded for all k and θ ∈ [0, 1], we can exchange the order of the limit and the
integral, to obtain:

lim
k→+∞

∫ 1

0

sk(θ)dθ =

∫ 1

0

lim
k→+∞

sk(θ)dθ =

∫ 1

0

Λ(aQD(θ)Q⊤λ;x⋆), (83)

establishing the claim in (77). This completes the proof of Lemma 6.

D DERIVATIONS FROM REMARKS

D.1 Derivations from Remark 7

Consider function Ψ(λ) = Ψ⋆(λ) + r(λ) in Lemma 6. We derive here a lower bound on rate function I in Theorem 1 that
does not explicitly depend on H(x⋆). In view of the fact that I is the Fenchel-Legendre transform of Ψ, a lower bound on
I is readily obtained by deriving an upper bound on Ψ(λ). Note that r(λ) does not explicitly depend on H(x⋆), hence we
only need to derive an upper bound on Ψ⋆. By Assumption 5, we have, for any θ ∈ [0, 1], that Λ(aQD(θ)Q⊤λ;x⋆) ≤
C1 a2

2 λ⊤(QDQ⊤)2λ≤ C1 a2

2 ∥λ∥2 ∥D(θ)∥2, where we recall that ∥ ·∥ denotes the 2-norm of its vector or matrix argument.
Next, note that ∥D(θ)∥ ≤ θaµ−1, for all θ ∈ [0, 1], because all eigenvalues ρi’s of H(x⋆) belong to the interval [µ,L].
Therefore, we obtain:

Ψ⋆(λ) ≤ C1 a
2

2
∥λ∥2

∫ 1

0

θ2aµ−2dθ =
C1 a

2

2(2 aµ− 1)
∥λ∥2.
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D.2 The case of random initial iterate X1

Recall that, by definition, Γ1(λ) = E
[
eλ

⊤(X1−x⋆)
]
. When X1 is random, Γ1, as a function of λ, is therefore the log-

moment generating function of X1 − x⋆. Provided its domain is Rd, all arguments in the proof of Theorem 1 remain the
same. In particular, in eq. (75), the factor e∥λ∥∥X1−x⋆∥ would be replaced by a (finite-valued) function (of λ), and the
subsequent results would be unaltered; a similar comment applies for the statement and the proof of Lemma 5.

E PROOF OF THEOREM 2

It is easy to show that for the assumed quadratic form, the iterates Xk have the following representation:

Xk+1 = Ak0X1 +

k∑
l=1

αlAk,l+1Zl, (84)

where Ak,l =
∏k

j=l(I − αjH). By the assumption that the noise realizations at different times are independent and with
a constant distribution, we obtain:

Γk+1(λ) = eλ
⊤X1e

∑k
l=1 Λ(αlAk,l+1λ). (85)

The proof now follows from Lemma 4 and the limit established in 77.

F NUMERICAL RESULTS

We now illustrate the achieved results through a numerical simulation. We consider a strongly convex quadratic cost
function f : Rd → R, defined by f(x) = 1

2x
⊤Ax+bx, d = 10, where the symmetric d×d matrix A and the d×1 vector b

are generated randomly. Specifically, we generate the entries of b mutually independently, according to the standard normal
distribution. The matrix A is generated as follows. We let A = QΛQ⊤, where Q is the matrix whose columns are the
orthonormal eigenvectors of matrix (B+B⊤)/2, and the entries of B are drawn mutually independently from the standard
normal distribution; the matrix Λ is the diagonal matrix whose diagonal entries are drawn from the uniform distribution on
the interval [1, 2]. Clearly, the optimal solution for the problem equals x⋆ = A−1b.

We consider the gradient noise that is generated in an i.i.d. manner over iterations and over the gradient noise vector
elements, independently from the solution iterate sequence. Two different noise distributions per gradient noise entry are
considered, such that the per-entry noise variance is kept equal for the two distributions, equal to σ2. In this way, we
evaluate the effects of higher order moments on the performance of SGD. The first distribution is zero-mean Gaussian with
variance σ2. The second distribution is the zero-mean Laplacian with the same variance. We set σ2 = 0.04.

We numerically estimate, via Monte Carlo simulations, the probability P (∥Xk − x⋆∥ > δ) along iterations k = 1, 2, ...
We denote the corresponding numerical estimate by pk. Two different values of δ are considered, δ = 0.3, and δ = 0.03.
For each Monte Carlo run, X1 is set to the zero vector. For the numerical example here, ∥x⋆∥ = 2.342, and hence δ = 0.3
corresponds to the relative error level δ/∥x⋆∥ ≈ 0.13, while δ = 0.03 corresponds to δ/∥x⋆∥ ≈ 0.013. Figure 1 plots
pk versus iteration counter k (in linear scale for the horizontal axis, and log10-scale for the vertical axis) for the Gaussian
noise case (blue line) and the Laplacian noise case (red line). The top Figure is for δ = 0.3, and the bottom Figure is for
δ = 0.03. We can see that, for a large value of δ, the two curves are very different: the Laplacian gradient noise case leads
to a worse performance. This is because, for large δ, the argument λ of the LMGF Λ that corresponds to the minimizer in
the rate function value I⋆ is large (see Theorem 1), and hence higher order polynomial coefficients (∼ λ3 and higher) play
a significant role. As the higher order moments of the Gaussian and Laplace distributions are very different (equal to zero
for the Gaussian and strictly positive for the Laplacian), the result is the different large deviations performance (worse for
the Laplacian case) as seen in Figure 1, top. On the other hand, for a small value of δ (bottom, Figure 1), the argument
λ of the LMGF that corresponds to the minimizer in the rate function expression I⋆ is small, and hence only the first two
order polynomial coefficients of Λ play a significant role. As the two distributions here are both zero mean and have equal
variance (hence having equal first and second order moments), the large deviation performance for the two noises matches,
as seen in Figure 1, bottom. This behavior is in accordance with the theory derived.
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Figure 1: Monte Carlo estimate of P (∥Xk − x⋆∥ > δ) along iterations k = 1, 2, ... for SGD with Gaussian (blue line) and Laplacian
(red line) gradient noise with equal per-entry variance σ2 = 0.04. Top Figure: δ = 0.3; Bottom Figure: δ = 0.03.


	INTRODUCTION
	SETUP AND PRELIMINARIES
	Distance to solution recursion
	Large deviations preliminaries
	Key technical lemma

	LARGE DEVIATIONS RATES FOR SGD ITERATES Xk
	Large deviations rates for Xk-x
	Main result: Large deviations rates for Xk
	Discussions and interpretations
	Positivity of I and exponential decay
	Remainder term r
	Small deviations regime

	LDP for quadratic functions

	GAUSSIAN NOISE: ANALYTICAL CHARACTERIZATION OF THE RATE FUNCTION
	Decay rates with l2 balls
	Comparison with the rate from Lemma 5

	CONCLUSIONS
	PROOFS OF AUXILIARY RESULTS
	Proof of recursion (7)
	Proof of Lemma 2
	Proof of recursion (69)

	PROOF OF LEMMA 5
	PROOF OF LEMMA 6
	Case 1: x Al,.
	Case 2: x Acl,
	Proof of (77)

	DERIVATIONS FROM REMARKS
	Derivations from Remark 7
	The case of random initial iterate X1

	PROOF OF THEOREM 2
	NUMERICAL RESULTS

