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Abstract

Various logit-adjusted parameterizations of
the cross-entropy (CE) loss have been pro-
posed as alternatives to weighted CE for train-
ing large models on label-imbalanced data far
beyond the zero train error regime. The driv-
ing force behind those designs has been the
theory of implicit bias, which for linear(ized)
models, explains why they successfully induce
bias on the optimization path towards solu-
tions that favor minorities. Aiming to extend
this theory to non-linear models, we investi-
gate the implicit geometry of classifiers and
embeddings that are learned by different CE
parameterizations. Our main result charac-
terizes the global minimizers of a non-convex
cost-sensitive SVM classifier for the uncon-
strained features model, which serves as an
abstraction of deep-nets. We derive closed-
form formulas for the angles and norms of
classifiers and embeddings as a function of
the number of classes, the imbalance and the
minority ratios, and the loss hyperparameters.
Using these, we show that logit-adjusted pa-
rameterizations can be appropriately tuned to
learn symmetric geometries irrespective of the
imbalance ratio. We complement our analysis
with experiments and an empirical study of
convergence accuracy in deep-nets.

1 INTRODUCTION

In the modern overparameterized regime, when train-
ing continues beyond zero-training error, traditional
techniques, such as oversampling minorities or minimiz-
ing a weighted cross-entropy (CE) loss can be ineffec-
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tive in mitigating label-imbalances (Byrd and Lipton,
2019; Sagawa et al., 2020). In a growing literature,
several alternatives have been proposed to guarantee
equitable performance across majorities and minorities
(e.g., Menon et al., 2020; Ye et al., 2020; Kini et al.,
2021; Cao et al., 2019; Khan et al., 2017; Lin et al.,
2018; Kim and Kim, 2020; Kang et al., 2020). Among
these, the vector-scaling (VS) loss (Kini et al., 2021; Ye
et al., 2020) introduces multiplicative hyperparameters
on the logits of the CE loss.

The idea behind this parameterization is rooted in the
theory of implicit bias, which seeks characterizing the
bias introduced by gradient-based algorithms during
training (Soudry et al., 2018; Ji and Telgarsky, 2018;
Lyu and Li, 2019). Specifically for binary linear models,
Kini et al. (2021) uncovers a favorable bias of the VS
loss towards classifiers with larger margin for the mi-
nority. However, this leaves open the question how the
VS loss changes learned models in non-linear settings
where embeddings and classifiers are jointly learned.
Unfortunately, implicit bias characterizations for non-
linear models are more obscure compared to the linear
case (Lyu and Li, 2019; Ji and Telgarsky, 2020). Partic-
ularly, it is unclear how to gain concrete insights from
them on the way the learned models affect minorities.

This paper investigates the implicit geometry of classi-
fiers and embeddings learned by CE parameterizations
when trained on imbalanced data. The notion of im-
plicit geometry, pioneered by Papyan et al. (2020) and
further investigated by many others (e.g., Fang et al.,
2021; Galanti et al., 2021; Graf et al., 2021; Han et al.,
2021; Hui et al., 2022; Ji et al., 2021; Lu and Steiner-
berger, 2020; Mixon et al., 2020; Tirer and Bruna, 2022;
Xie et al., 2022; Zhu et al., 2021; Zhou et al., 2022a;
Thrampoulidis et al., 2022), is intimately related to
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Figure 1: Ratio of classifier norms between majorities and minorities for (R = 10, ρ=1/2)-STEP imbalanced
data (see Defn. 1) on (Left) UFM, (Middle) 6-layer MLP and MNIST, (Right) ResNet18 and CIFAR10. We
train four different CE parameterizations with varying hyperparameter γ ∈ [−0.5, 1]: (1) weighted CE with
ωminor/ωmaj ∶= Rγ ; (2,3) CDT, LDT losses with ∆ ∶= δmaj/δminor = Rγ ; (4) LA loss with ιmaj−ιminor = γ log R.
γ = 0 corresponds to CE loss. Markers denote empirically measured quantities. Solid lines follow theoretical
formulas (Eqn. (1)). See text for details.

that of implicit bias.1 On the one hand, it is more re-
strictive as it focuses only on the classifiers and on the
embeddings, rather than all the weights of the model.
Also, it is insensitive to the specific architecture or
dataset. On the other hand, it offers a more explicit
characterization describing the entire geometry of the
weights and promises to be “cross-situationally invari-
ant” across architectures and datasets (Papyan et al.,
2020).

Contributions. We study two parameterizations of
the CE loss: (i) the class-dependent temperature (CDT)
loss (Ye et al., 2020), which is a special case of the VS
loss (Kini et al., 2021), and (ii) the label-dependent
temperature (LDT) loss, which we introduce here as an
alternative to the CDT loss. For both losses, we study
the implicit geometry of learned features and classifiers
when trained on label-imbalanced data without explicit
regularization beyond zero training error. To do this,
we rely on the unconstrained features model (UFM)
(Mixon et al., 2020; Fang et al., 2021), which serves as
a proxy for large overparameterized models and has
been used recently to study the implicit geometry of
the CE loss (see Related work). Relying on the im-
plicit bias results, we relax the question of implicit
geometry of the solutions found by stochastic gradient
descent (SGD), to a question about the geometry of
the global minimizers of a non-convex Cost-Sensitive
Support-Vector Machines (CS-SVM) problem, which
takes different forms for the CDT and LDT losses. Our

1Initially, Papyan et al. (2020) referred to their discovered
geometry as “Neural Collapse” (NC). Later, to differenti-
ate between the geometries learned by CE for balanced vs
imbalanced data, Thrampoulidis et al. (2022) introduced
the terms ETF and SELI geometries for the former and
latter, respectively. We show here that different CE param-
eterizations result in yet different geometries, prompting
us to adopt the more general term “implicit geometry”.

main result characterizes the global minimizers of the
CDT and LDT CS-SVM problems in terms of a new
geometry, which we call the (δ, R)-geometry and is
parameterized by a vector δ of hyperparameters and
the data imbalance ratio R. The new geometry has
the following favorable properties: (i) It includes the
previously discovered ETF (Papyan et al., 2020) and
SELI (Thrampoulidis et al., 2022) geometries as special
cases. Also, it captures both CDT and LDT. (ii) It
admits an explicit characterization that involves closed-
form formulas of the norms and angles in terms of
the number of classes, the minority ratio, the imbal-
ance ratio, and the vector of hyperparameters. (iii) It
reveals appropriate tuning recipes for the hyperparam-
eters to learn symmetric geometries with respect to
minorities and majorities irrespective of the imbalance
ratio. (iv) It shows that LDT and CDT can both mit-
igate minority collapse, i.e., the collapse of minority
classifiers in the large imbalance-ratio limit. Beyond
these, we also show numerically that SGD training
on the UFM converges to the uncovered geometries.
However, we observe that convergence slows down for
increasing imbalance ratios and increasing values of
the hyperparameters. This observation motivates fur-
ther theoretical and algorithmic investigations towards
faster training with CE parameterizations. As evidence
of the utility of our geometry characterizations for the
UFM, we present results on deep-net architectures and
complex imbalanced datasets.

Example. Fig. 1 provides a graphical illustration of
the impact of different CE parameterizations on the
implicit geometry. Here, we focus on classifiers and
specifically their norms.

In Fig. 1(Right), we train a ResNet18 on a (10,1/2)-
STEP imbalanced CIFAR10 dataset (see Defn. 1). For
the training we use four different parameterizations of
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the CE loss, namely the weighted CE (wCE), CDT (Ye
et al., 2020) (Eqn. (3a)), LDT (Eqn. (3b)) and LA (Cao
et al., 2019; Menon et al., 2020) losses. Each of these,
comes with a set of corresponding hyperparameters,
which we control by varying a single parameter γ ∈
R in the interval [−0.5, 1]. For γ = 0, all the losses
reduce to standard CE loss. For each loss and for
each value of γ, we compute the ratio of the classifier
norms for each pair of majority-minority classes, and
the markers report the average of these ratios. First,
observe for γ = 0 (CE) that ∥wmaj∥2 ≈ 2.8∥wminor∥2.
This is different from the case of balanced classes where
ETF geometry suggests ∥wmaj∥2 ≈ ∥wminor∥2 (Papyan
et al., 2020). The fact that, under class imbalances, CE
loss learns classifiers with larger norm for majorities
compared to minorities has been empirically observed in
the imbalanced deep-learning literature (Kim and Kim,
2020; Kang et al., 2020; Menon et al., 2020) and various
heuristic methods have been proposed to mitigate this
effect towards favoring minorities. One of these, the LA
loss (Menon et al., 2020) is seen here to have minimal
effect on changing the classifiers’ imbalance ratio. The
wCE loss has similar behavior as the ratio reduces
only marginally with increasing γ. On the other hand,
both CDT and LDT offer flexibility in tuning the ratio
over a wide range by varying γ: as γ increases the
norm of minorities increases relative to the majorities.
Interestingly, for appropriate γ values the ratio can be
made 1 (as in the balanced case).

Fig. 1(Middle) repeats the above experiment on a 6-
layer MLP with imbalance MNIST data. The behavior
is analogous: For CE the ratio is ≈ 2.8, while appro-
priately tuning LDT and CDT losses can tweak the
classifiers’ geometry and change the norm ratio.

Finally, Fig. 1(Left) repeats the experiment on the
synthetic unconstrained features model (UFM) (see
Sec. 3). Observe that the behavior is remarkably re-
flective of the trends seen previously on ResNet/MLP
architectures and CIFAR10/MNIST data. Compared
to the latter, the UFM is amenable to mathematical
analysis. Specialized to classifiers’ norms, our analysis
yields the following explicit formulas for the CDT/LDT
solutions of the UFM for hyperparameter ∆ ∶= Rγ :

CDT:
∥wmaj∥22
∥wminor∥22

=

√
R

∆ (k − 2)(1 +∆2
)

3/2
+ 2∆2√R + 1

(k − 2)(1 +∆2)
3/2
+ 2
√

R + 1
,

LDT:
∥wmaj∥22
∥wminor∥22

=

(k − 2)
√

R +
√

(R +∆2)/2
(k − 2)∆ +

√

(R +∆2)/2
. (1)

The solid blue (CDT) and green (LDT) curves graph
those formulas for k = 10 classes and imbalance ratio
R = 10. Note that the very same formulas capture
the empirical trend for UFM Fig. 1(Left) and also for
MLP and ResNet in Fig. 1(Middle,Right). For LDT
simply setting ∆ =

√
R (γ = 1/2) makes the norms of

majorities and minorities equal. We will prove that the
same choice also guarantees maximal angle separation
and alignment of classifiers and embeddings. On the
other hand, for CDT, the value of ∆ (eqv. γ) making
∥wmaj∥2 ≈ ∥wminor∥2 depends on k and R in general.

Related works. In their inspiring work, Papyan et al.
(2020) discover that the geometry of classifiers and em-
beddings that are learned by overparameterized models
trained with CE far beyond zero-training error can be
characterized in terms of a few simple properties. (i)
Neural Collapse (NC): the embeddings collapse to their
class means. (ii) Simplex Equiangular Tight-Frame
(ETF) geometry: the classifiers align with the embed-
dings of the corresponding class, they all have the
same norm, and, they are maximally separated from
each other. Notably, this characterization is shown
to be cross-situationally invariant across different ar-
chitectures and datasets. Important follow-up works
(Mixon et al., 2020; Fang et al., 2021; Graf et al., 2021)
introduce the Unconstrained Features Model (UFM),
as a proxy model to complex deep-nets, and uses it
(Zhu et al., 2021; Zhou et al., 2022a; Ji et al., 2021;
Thrampoulidis et al., 2022; Zhou et al., 2022b) to give
(partial) theoretical justification of the discovery made
by Papyan et al. (2020). Extensions of the geometry
characterization to mean-square loss and of the UFM
to mean-square loss are also studied in Mixon et al.
(2020); Zhou et al. (2022a); Tirer and Bruna (2022). A
line of work also investigates potential connections to
generalization (Hui et al., 2022; Han et al., 2021) and
transfer-learning (Galanti et al., 2021, 2022), although
this is an arguably less-understood topic. All these
works assume that data are balanced. On the other
hand, when data are imbalanced, Fang et al. (2021)
shows a minority collapse phenomenon, i.e., the minor-
ity classifiers collapse to each other as the imbalance ra-
tio R grows to infinity. The complete geometry of both
classifiers and embeddings at finite imbalance ratios
was only very recently characterized in Thrampoulidis
et al. (2022) under the name: Simplex-Encoded Label
Interpolation (SELI) geometry. The SELI geometry is
parameterized by the imbalance ratio R, and it includes
the ETF geometry as a special case. It also recovers
the minority collapse when evaluating angles asymptot-
ically in R. Extending this literature, we formulate a
new and more general geometry (which includes SELI
and ETF as special cases) and show that it describes
the learned embeddings and classifiers of two CE pa-
rameterizations, the CDT and the LDT losses. Closely
related are also the works Xie et al. (2022); Yang et al.
(2022) which design loss functions for class-imbalanced
learning in an attempt to enforce a geometry alike the
ETF geometry for balanced data. However, they do
not characterize the joint geometry of classifiers and
embeddings as we do here. Besides, the loss functions
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that they consider are different in nature from the CDT
and LDT losses. The latter originate from Cao et al.
(2019); Menon et al. (2020); Ye et al. (2020); Kini et al.
(2021), which propose various logit-adjustments to the
CE loss with the goal of mitigating label imbalances.
Specifically, the CDT loss is proposed in Ye et al. (2020)
and is a special case of the VS loss in Kini et al. (2021).
Here, we also introduce a new loss, the LDT loss, and
show that it forms a canonical extension of the binary
VS loss of Kini et al. (2021). Unlike those prior works
limiting their analytical studies to binary and linear
models, our implicit geometry approach allows further
investigating multiclass and feature-learning regimes.

Notation. For matrix V ∈ Rm×n, V[i, j] denotes
its (i, j)-th entry, vj denotes the j-th column, VT its
transpose. Vj∶k ∈ Rm×(k−j+1) chooses columns j, j +
1, . . . , k of V, and VT

j∶k ∈ Rn×(k−j+1) does so on VT .
We denote ∥V∥F the Frobenius norm of V. We use
V ∝ X whenever the two matrices are equal up to
a scalar constant. For a vector v ∈ Rk, diag(v) ∈
Rk×k is the diagonal matrix with v on its diagonal. ⊗
denotes Kronecker products. We use 1m to denote
an m-dimensional vector of all ones and Im for the
m-dimensional identity matrix. For vectors/matrices
with all zero entries, we simply write 0, as dimensions
are easily understood from context. Finally, we denote
the set of positive rational numbers by Q+.

2 BACKGROUND

The Vector-Scaling (VS) loss is the following parame-
terization of the CE loss (Kini et al., 2021):

LVS(W, θ) =∶

∑
i∈[n]

log(1 + ∑
c≠yi

e−(δyi
wyi
−δcwc)T hθ(xi)+ιyi

−ιc). (2)

Here xi, i ∈ [n] are n examples, hθ(.) is the feature map
parameterized by trainable parameters θ (e.g. weights
of hidden layers of a neural network), yi ∈ [k], i ∈ [n]
are labels, and wc, c ∈ [k] are classifier vectors (e.g.
head of the network) in a k-class classification setting.
The parameters δc, and ιc, c ∈ [k] are multiplicative
and additive hyperparameters, respectively. Setting
δc = 1, ιc = 0, recovers the CE loss. Setting δc = 1 and
only varying ιc gives the LA loss (Menon et al., 2020),
while setting ιc = 0 and only varying δc gives the CDT
loss (Ye et al., 2020).

Prior art: Binary linear classification. In a binary
setting with fixed feature map (non-trainable θ) Kini
et al. (2021) studies the implicit bias of binary VS loss.

Proposition 1 (Kini et al. (2021)). Consider a fixed
feature map hθ, binary labels υi ∈ {±1}, hi ∶= hθ(xi)

for i ∈ [n] and hyperparameters δ±1. Then GD with

sufficiently small learning rate on the binary VS loss
LVS,bin(w) ∶= ∑i∈[n] log(1 + e−δυi

υiwT hi+ιυi ) converges
(asymptotically in the number of training steps) in di-
rection to the Cost-Sensitive SVM (CS-SVM) classifier:
arg minw∥w∥2 subj. to υiδυiwT hi ≥ 1, i ∈ [n].

Prop. 1 explicitly describes how the hyperparameters
affect training asymptotically: the GD path is implic-
itly biased towards a classifier that assigns margins
to the two classes with relative ratio δ−1/δ+1. Thus,
tuning δ−1 > δ+1 if class υ = +1 is minority, favors the
minority by assigning larger margin to it. Note, the ad-
ditive hyperparameters ιc do not have any effect on the
implicit bias asymptotically. Our focus here is on the
asymptotic training regime, hence onwards we restrict
attention to the multiplicative hyperparameters.

Open problem: Beyond linear models. Prop. 1 is
limited to a setting with fixed features. While an ex-
tension of the loss to the learned-feature setting is easy
to heuristically derive (see (2)), it is an open question
to explicitly characterize the effect of the hyperparam-
eters on the learned solution. For instance, how do
they affect the relative margin between majorities and
minorities or between minorities and minorities?

3 AN IMPLICIT GEOMETRY VIEW
To better understand the impact of different CE modi-
fications, we propose studying their implicit geometry,
i.e., the geometry of classifiers and embeddings learned
(asymptotically in the number of training steps) by GD.
For this, we adopt the unconstrained features model
(UFM) (Mixon et al., 2020; Fang et al., 2021). To
describe the model, let Wd×k = [w1, w2,⋯, wk] and
Hd×n = [h1, h2,⋯, hn] be the matrix of k classifiers and
n feature embeddings corresponding to each example in
the training set. Here, d ≥ k−1 is the feature dimension.
We assume each class c ∈ [k] has nc ≥ 1 examples and
∑c∈[k] nc = n. Without loss of generality, we assume
examples are ordered. Formally, defining n0 = 0, exam-
ples i = ∑

c−1
c′=0 nc′ + 1, . . . ,∑

c
c′=0 nc′ are in class c. In the

UFM, features hi, i ∈ [n] are trained jointly with the
weights wc, c ∈ [k] and are unconstrained, i.e. trained
without abiding by an explicit parameterization by
some weight vector θ (as in (2)).

CDT and LDT losses on the UFM. Consider
training on the UFM with the following two parame-
terization of the CE loss:

LCDT(WT H; δ) ∶= ∑
i∈[n]

log (1 + ∑
c≠yi

e−(δyi
wyi
−δcwc)T hi),

(3a)

LLDT(WT H; δ) ∶= ∑
i∈[n]

log (1 + ∑
c≠yi

e−(δyi
(wyi

−wc))T hi).

(3b)
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Both losses are parameterized by a positive vector δ =

[δ1, δ2, . . . , δk]
T
∈ Rk
+ of multiplicative hyperparameters.

The CDT loss in (3a) was previously introduced by
Ye et al. (2020); Kini et al. (2021) (which is a special
case of (2) when ignoring the additive ιc). Here, we
also introduce the LDT loss in (3b) as an alternative
parameterization.

CDT vs LDT. Observe the subtle distinction: CDT
associates δ with the class label of the classifiers wc,
while LDT associates the same hyperparameters with
the label of the feature vectors hi. Our initial motiva-
tion for introducing LDT is the following observation.

Lemma 3.1. Assume binary linearly separable data
and training of linear classifiers without regularization.
The LDT classification rule coincides with the rule
of the binary VS loss assuming same δ-tuning. On
the other hand, minimizing CDT results in the same
classification rule as CE, irrespective of the δ-tuning.

In other words, for binary linear settings CDT does not
improve over CE, while LDT does so by reducing to the
binary VS loss of Prop. 1. While Lem. 3.1 motivates
LDT, our results below show that the intuition gained
from binary linear settings can be restrictive. Indeed,
we show that both LDT and CDT losses induce rich
behaviors in the multiclass learned-feature regime.

Unconstrained-features cost-sensitive SVM. We
minimize the losses in (3) without explicit regulariza-
tion. Note that in the UFM, minimization over the
embedding map is not parameterized in terms of θ,
as say in (2). Thus, the minimization is (joint) over
classifiers W and embeddings H. Specifically, con-
sider performing this minimization using gradient flow
(i.e. GD with infinitesimal step-size.) Then, by inter-
preting the UFM as a two-layer linear model it can
be shown following Lyu and Li (2019) that gradient
flow will converge (asymptotically in time) in direc-
tion to a KKT point of the following two non-convex
minimizations for CDT and LDT losses respectively:
minW,H ∥W∥2F + ∥H∥2F

subj. to (δyi
wyi
− δcwc)

T hi ≥ 1, i ∈ [n], c ≠ yi, (4a)
subj. to δyi(wyi −wc)

T hi ≥ 1, i ∈ [n], c ≠ yi. (4b)

Note the resemblence to the CS-SVM minimization
of Prop. 1. But unlike that, the problems here are
non-convex since minimization is also over H. We refer
to (4) as unconstrained CS-SVM or simply CS-SVM.

Remark 1. It is straightforward to extend our results
to a modified objective ∥W∥2F + β∥H∥2F , for some β > 0,
as also suggested in Thrampoulidis et al. (2022). The
global solutions of the two objectives have a one-to-one
correspondence, differing only by a proper scaling.

4 CS-SVM GEOMETRIES

In this section, we characterize the global minimizers
(W∗, H∗) of the non-convex programs in (4a) and
(4b). We use Md×k = [µ1,⋯, µk] to denote the mean-
embeddings of H, i.e. µc = (1/nc)∑i∶yi=c hi,∀c ∈ [k].
For simplicity, we focus on a STEP-imbalanced setting.
In this case, it is reasonable to assume (and we do so)
that δ also shares this STEP structure.
Definition 1 ((R, ρ)-STEP imbalance and STEP logit
adjustment). In a setting with imbalance ratio R ≥ 1
and minority fraction ρ ∈ (0, 1), an (R, ρ)-STEP imbal-
anced dataset has ρk minority classes with nmin samples
each, and ρk = (1 − ρ)k majority classes with Rnmin
samples. For STEP logit adjustment, the hyperparame-
ter vector δ shares this step structure: for majorities
δc = δmaj > 0 and for minorities δc = δminor > 0.

Our results about CDT/LDT describe the geometry of
the CS-SVM solutions in terms of an encoding matrix
Ẑ, which we call (δ, R)-SEL matrix and define below
together with its SVD.
Definition 2 ((δ, R)-SEL matrix). For hyperparam-
eters δ ∈ Rk

+, minority fraction ρ (ρ̄ ∶= 1 − ρ), and k
number of classes, define Ξ ∈ Rk×k such that ∀c, j ∈ [k],

Ξ[c, j] =

⎧⎪⎪
⎨
⎪⎪⎩

δ−1
c (1 − δ−2

c /∑c′∈[k] δ−2
c′ ) , c = j

−δ−1
c (

δ−2
j /∑c′∈[k] δ−2

c′ ) , c ≠ j
.

Then, for a rational imbalance ratio R ∈ Q+,2 the (δ, R)-
Simplex-Encoding Label (SEL) matrix Ẑ ∈ Rk×n with
n ∶= αk(Rρ + ρ) is defined as,

Ẑ = [Ξ1∶ρk ⊗ 1
T
αR Ξ(ρk+1)∶k⊗1

T
α] , (5)

where α ∈ N is such that αR is an integer. Further let

Ẑ =VΛ [UT
1∶ρk⊗1

T
αR UT

(ρk+1)∶k⊗1
T
α] , (6)

be the compact SVD of Ẑ, where Λ ∈ R(k−1)×(k−1) is a
positive diagonal matrix and U ∈ Rk×(k−1), V ∈ Rk×(k−1)

have orthonormal columns.

The pattern of the (δ, R)-SEL matrix Ẑ is clearly de-
termined by the imbalance ratio R and the hyperpa-
rameters δ. However, it also depends on the number of
classes k and the minority ratio ρ. We choose to drop
the latter dependence from the name (δ, R)-SEL since
our results focus on R, δ and k, ρ are easily understood
from context. When δ = 1k, Ẑ takes a special form:
it reduces to a matrix with entries 1 − 1/k and −1/k,
which Thrampoulidis et al. (2022) calls the SEL matrix
and shows that it characterizes the implicit geomtery

2This assumption is not restrictive since under STEP im-
balance R ∶= nmaj/nminor for integers nmaj, nminor.
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of the CE loss for imbalanced data. Our definition
is strictly more general allowing us to describe the
implicit geometry learned by CDT/LDT losses. We
gather useful properties about the eigen-structure of
Ẑ in Sec. B. Here, we note that ẐT diag (δ)−1

1k = 0.
Thus, rank(Ẑ) = k − 1. The (δ, R)-SEL matrix and its
SVD induce a geometry, which is central to our results
and we define it next.
Definition 3 ((δ, R)-SELI geometry). Consider a
(δ, R)-SEL matrix Ẑ, with SVD factors U, Λ and V
as defined in (6). The classifier and mean-embeddings
matrices W, M ∈ Rd×k follow the (δ, R)-SELI geometry
if the following conditions are satisfied:

(i) WT W ∝ VΛVT , (ii) MT M ∝ UΛUT ,
(iii) WT M∝VΛUT = Ξ.

The first two statements characterize the relative norms
and pair-wise angles of classifiers and mean embeddings,
respectively. The third statement determines the rel-
ative margins between classes. The characterization
is in terms of the SVD factors of an appropriate SEL-
type encoding matrix. In Sec. D, we derive closed-form
expressions for the norms, angles and margins as a func-
tion of R, k, δ by explicitly computing the SVD factors
of Ẑ. Setting (δ = 1k, R) recovers the SELI geometry
(Thrampoulidis et al., 2022), and (δ = 1k, R = 1) the
ETF geometry (Papyan et al., 2020). We are now ready
to state our main result. See Sec. C for proofs.
Theorem 1. Suppose d ≥ k − 1 and (R, ρ)-STEP
imbalance setting with STEP logit adjustments. Let
(W∗, H∗) be any minimizers of either (4a) and (4b),
and M∗ be the optimal class-wise mean-embeddings.
Then, the following statements are true:

(i) [NC] All embeddings collapse to their class means,
i.e., ∀i ∈ [n] it holds that h∗i = µ∗yi

.

(ii) [CDT (4a)] For CDT, (W∗, M∗) follow the (δ, R)-
SELI geometry.

(iii) [LDT (4b)] For LDT, (W∗, M∗ diag (δ)) fol-
low the (1k, R̃)-SELI geometry, where R̃ ∶=

R(δminor/δmaj)
2, provided R̃ ∈ Q+.3

Thm. 1 describes the geometry of both classifiers and
embeddings that correspond to solutions of the non-
convex CS-SVM for either CDT or LDT. Statement
(i) shows that all optimal embeddings within the same
class are equal. Thus, to analyze their geometry, it
suffices to study their respective class means, which
we arrange as columns of M∗. Statements (ii) and (iii)
describe the optimal classifiers and mean-embeddings
in terms of the geometry in Defn. 3. Hence, we can
3This a technical requirement. In our experiments we apply
the same formulas even when R̃ is not rational.

find the angles and norms (up to a constant) of the
classifiers/embeddings. It is also easy to see that the ge-
ometry only depends on the ratio ∆ ∶= δmaj/δminor and
not on the absolute magnitude of the hyperparameters.

When δ = 1k, i.e., when the model is trained by CE loss,
both statements (ii) and (iii) reduce to the SELI geom-
etry of Thrampoulidis et al. (2022). Further assuming
R = 1 (i.e., a balanced training set), recovers the ETF
geometry (Papyan et al., 2020). For general R and
tuning of δ, the LDT/CDT geometries are different
than both the SELI and ETF geometries. We visualize
changes in the geometry in Fig. 2.

Angles and Norms. Expressing the geometry of the
optimal solutions in terms of Defn. 3, enables us to
derive explicit closed-form expressions for the angles
between individual classifiers and embeddings, as well
as, their norms. For example, the norm ratio for the
classifiers is given by Eqn. (1). As an example for angle
formulas, we can show for any R and ∆ that:

CDT: cos(wmin, w′min) =
−2 + 2

√

R + 1 (
√

1 +∆2)
−3

k − 2 + 2
√

R + 1 (
√

1 +∆2)
−3 ,

LDT: cos(wmin, w′min) =
−2∆ +

√

(R +∆2)/2
(k − 2)∆ +

√

(R +∆2)/2
. (7)

See Sec. D for the complete list of closed-form formulas,
all derived thanks to Thm. 1. Such explicit formulas
allow studying optimal tunings and interesting asymp-
totics as R increases. We show these next.

Special tunings. We emphasize two notable special
cases of geometries that arise respectively for LDT and
CDT when setting δc =

√
nc⇔∆ =

√
R.

Corollary 1.1 (Achieving alignment with CDT). In
(4a), set ∆ =

√
R. Then, cos(w∗yi

, h∗i ) = 1,∀i ∈ [n],
i.e., each feature embedding h∗i perfectly aligns with its
corresponding classifier w∗yi

.

This results from the angle calculations detailed in
Sec. D. While this simple tuning leads to perfect align-
ment of classifiers and mean-embeddings geometries, it
does not guarantee equal norms or maximal separation.
Thus, the geometry is in general still different from
the ETF geometry for balanced data. In contrast, we
show next that under the same tuning the implicit
geometry of the LDT is an ETF modulo the scaling of
the embeddings.
Corollary 1.2 (Achieving ETF with LDT). In (4b),
set ∆ =

√
R. Then, (W∗, M∗ diag (δ)) follows the

ETF geometry.

Cor. 1.2 follows immediately from Thm. 1 by noting
that δc =

√
nc yields R̃ = 1 and the (1k, 1)-SELI geom-

etry coincides with the ETF geometry. This implies
that classifiers and embeddings are perfectly aligned,
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CE LDT CDT

Figure 2: Geometries induced by CE, LDT and CDT
for the respective CS-SVM minimizers. k = 3 with
2 minority and 1 majority classes, imbalance ratio
R = 10 and hyperparameters ratio ∆ = δmaj/δminor =√

R. See Cors. 1.1 and 1.2.

but also all classifiers w∗c , c ∈ [k] have equal norms, and
both the classifiers and embeddings are maximally sep-
arated, i.e., cos(w∗c , w∗c′) = cos(h∗c , h∗c′) = −1/(k − 1).
Notably, this holds irrespective of the imbalance ratio
R. See Fig. 2 for the visualization.

Mitigating Minority Collapse. (Fang et al., 2021)
discovered that when R →∞, the minority classifiers
collapse, i.e., cos(wminor, w′minor) → 1 for any two mi-
nority classes. We show here that CDT and LDT losses
can mitigate this effect when appropriately tuned. For
this, we simply evaluate our closed-form formulas in
(7) for R →∞. To obtain non-trivial results, we allow
the hyperparameter ∆ to scale with R, i.e., set ∆ = Rγ

for constant γ ∈ R. This gives the following two results.
Corollary 1.3 (Mitigating classifier collapse with
LDT). In (4b), set ∆ = Rγ , γ ∈ R. Then, as R → ∞
the minority/majority angles satisfy

cos(wc, w′c) γ < 0.5 γ = 0.5 γ > 0.5
c, c′ ∈ minority 1 − 1

k−1
1−2
√

2
1+
√

2(k−2)

c, c′ ∈ majority 1−2
√

2
1+
√

2(k−2) − 1
k−1 1

Corollary 1.4 (Mitigating classifier collapse with
CDT). In (4a), set ∆ = Rγ , γ ∈ R. Then, as R → ∞
the minority/majority angles satisfy

cos(wc, w′c) γ < 1/6 γ = 1/6 γ > 1/6
c, c′ ∈ minority 1 0 − 2

k−2
cos(wc, w′c) γ < 0 γ = 0 γ > 0

c, c′ ∈ majority − 2
k−2

1−2
√

2
1+
√

2(k−2) 0

From Cor. 1.3, LDT with γ ≥ 0.5 avoids the minority
collapse. However, for γ > 0.5, majority classifiers
collapse instead. Thus, we find that γ = 0.5 the only
choice that keeps both majority and minority classifiers
from collapsing. In fact, for this choice the angles of
majorities and minorities are all equal, as expected by
Cor. 1.2. On the other hand, from Cor. 1.4, CDT avoids
minority collapse for any choice of γ ≥ 1/6. Also, in

this entire range the majority classifiers do not collapse
either. Thus, for R → ∞, CDT offers a wide tuning
range for γ that avoids classifier collapse. Compare
this to the single value of γ = 0.5 for LDT. Specifically
for γ = 0.5, when classifiers and features are aligned in
both CDT and LDT (see Cors. 1.1 and 1.2), the CDT
minority angles are larger from the LDT angles since
−2/(k − 2) < −1/(k − 1); see also Fig. 2.

5 NUMERICAL RESULTS

For both CDT and LDT loss, we examine the conver-
gence of the models trained by SGD to the implicit
geometry proposed by Thm. 1. We train (i) UFM, (ii)
MLP on MNIST, and (iii) ResNet18 on CIFAR10. All
the models are trained in a (R = 10, ρ = 1/2)-STEP
imbalanced setting. We further use STEP logit ad-
justment, and choose ∆ = Rγ with γ ∈ [−1.5, 1.5]. We
train the UFM by minimizing unregularized CDT/LDT,
while for MLP and ResNet models, following the setup
in Papyan et al. (2020), we use a small weight-decay
(10−5). We defer other experimental details to Sec. E.1.

Fig. 3 illustrates the empirical geometry discovered
by SGD vs the prediction of Thm. 1. For the trained
classifiers and embeddings, we compute: (1) squared
ratios of majority-minority norms, (2) cosine of angles
between pairs of majority-majority, minority-minority,
majority-minority for classifiers and mean-embeddings.
For each choice of γ and loss function, we compute
each metric on all the respective pairs, and compare
their average to the closed-form expressions that result
from Thm. 1 (see Sec. D). As reported in the figures,
the empirical quantities follow the predicted theoretical
trends. However, convergence becomes more challeng-
ing for the deep-net models, particularly for larger ∣γ∣.
Moreover, we encounter cases with non-zero training
error for CDT loss for large ∣γ∣ values. In addition
to γ, the imbalance ratio R also affects the conver-
gence to theory (see Sec. E.2 for details). Further, the
theory gives a more accurate prediction of the mean-
embeddings’ geometry in case of the LDT, and of the
classifiers’ in case of the CDT loss. This is consistent
for both UFM and deep-net models. For LDT, the
prediction is well followed by UFM and ResNet em-
pirics around the interesting value of γ = 0.5, with
an exception of the majority classifier angles in the
ResNet experiments. The mismatch is less severe for
the 6-layer MLP. Also, as predicted by the theorem, for
γ = 0.5 (∆ =

√
R), the LDT geometry is the ETF, up

to a scaling on the features: In Fig. 3 the LDT cosine
plots intersect with the ETF angles, i.e., −1/(k − 1),
thus achieving equiangularity and maximal angular
separation. The classifier norm ratios also attain the
value 1, which along with the equiangularity describe
an ETF structure for classifiers.
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Figure 3: Comparison of models trained by SGD (markers) minimizing the CDT (3a)/LDT (3b) loss and
the global minimizers of the CS-SVM in (4a), (4b) as given by Thm. 1 (solid line) in a (10, 1/2)-STEP
imbalanced setting. The dashed line marks the ETF geometry (Papyan et al., 2020). See Sec. E.1 for details.

While the experiments in Fig. 3 correspond to a finite
imbalance ratio of R = 10, there is resemblance to the
asymptotic behavior of the classifier angles on LDT-
trained UFM. Cor. 1.3 suggests γ = 0.5 is the only
choice for R → ∞ that avoids minority or majority
classifiers collapsing. A similar trend is seen in Fig. 3,
where the cosine of the minority classifiers goes towards
1 for γ < 0.5, while that of the majority classifiers
approaches 1 for the complementary open interval of
γ > 0.5. On the other hand, CDT does not attain
equiangularity, but majority and minority angles are
well controlled for a wider range of γ. This suggests
that the CDT geometry is more robust to small changes
in the hyperparameter γ compared to LDT geometry.
Remark 2. In all our experiments with CDT and LDT,
we center the embeddings before computing norms and
angles. This is consistent with centering performed for
experiments with balanced data in Papyan et al. (2020);
Zhu et al. (2021); Thrampoulidis et al. (2022). In our
case, the exact centering vector is different for each loss
function (see Sec. D.1.3/D.2.3 for CDT/LDT loss).

6 CONCLUDING REMARKS

Our paper is motivated by and contributes to two re-
cent thrusts in the literature. The first seeks structural
properties of the deep-nets trained far beyond the zero-

train error regime (e.g., Papyan et al., 2020; Fang et al.,
2021; Galanti et al., 2021; Graf et al., 2021; Han et al.,
2021; Hui et al., 2022; Ji et al., 2021; Lu and Steiner-
berger, 2020; Mixon et al., 2020; Tirer and Bruna, 2022;
Xie et al., 2022; Zhu et al., 2021; Zhou et al., 2022a;
Thrampoulidis et al., 2022). The second investigates
approaches to coping with class imbalances in training
overparameterized models (e.g., Byrd and Lipton, 2019;
Sagawa et al., 2019, 2020; Cao et al., 2019; Kang et al.,
2020; Kim and Kim, 2020; Menon et al., 2020; Ye et al.,
2020; Kini et al., 2021; Wang et al., 2021; Jitkrittum
et al., 2022). We already discussed some of the most
closely related works within each thrust as well as a few
recent works (Fang et al., 2021; Xie et al., 2022; Yang
et al., 2022) at the intersection (see Related Work). The
goal of this section is to outline main take-aways of our
work in the form of both contributions and limitations,
together with some pointer for future directions.

Contributions. We extend the scope of the geome-
try characterizations of the embeddings and classifiers
learned by deep-nets initiated by Papyan et al. (2020).
To the best of our knowledge, all prior works study
the geometries for either the CE or mean-square loss.
Instead, we formulate a more general geometry that
describes two alternative CE parameterizations and in-
cludes the previous geometries as special cases. Unlike
previous works, our new geometry is parameterized in
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terms of the loss hyperparameters, thus it involves rich
structures (in terms of angles and norm-ratios) as these
hyperparameters vary. Yet, like in previous works, the
geometry is rather simple to describe, either implicitly
in terms of a special encoding matrix or explicitly in
terms of closed-form formulas for the angles and norms.
We arrive at this new geometry by analyzing the sim-
plified unconstrained features-model (specifically, its
cost-sensitive version in Eqns. (4a),(4b)). Thus, we
also extend the scope of the UFM model beyond the
previously studied CE and square loss. Finally, we un-
dertake an implicit-geometry view to loss modifications
for imbalanced learning. Unlike the previously con-
sidered implicit-bias view in Byrd and Lipton (2019);
Sagawa et al. (2020); Kini et al. (2021); Wang et al.
(2021), which is limited to linear (thus, fixed-feature)
models and/or binary settings, our approach applies
to learned-feature models and multiclass settings.

Limitations. In the spirit of previous works (Papyan
et al., 2020; Fang et al., 2021; Thrampoulidis et al.,
2022) that our result builds upon, it also shares some of
the same limitations. First, the characterizations of the
involved geometries are asymptotic in the number of
training epochs, and the convergence to the prescribed
geometry can be (very) slow. The specific convergence
behavior that we see for CDT/LDT losses is of similar
nature to the CE loss in Papyan et al. (2020); Zhu et al.
(2021); Thrampoulidis et al. (2022). For CDT/LDT
losses, we also observe that convergence speed can vary
significantly for different hyperparameter values. This
issue appears already for the UFM itself and is con-
sistent for deep-nets and complex data (see Sec. E.2).
Second, the level of convergence reached in realistic
training settings generally varies between architectures,
data models and the loss function. For example, we
find that CDT classifier geometry converges very well
to its prescribed limit, but the same is not true for the
CDT embeddings geometry or for the LDT classifiers
geometry. Consistently, the experiments in Papyan
et al. (2020) show different levels of convergence be-
tween different metrics (e.g., classifiers vs embeddings,
norms vs angles) and different architectures/datasets.
Third, there is no explicit known link between implicit
geometry and generalization. This is one of the most
pressing questions in the emerging literature and we
expect more investigations to follow.4 Finally, like
Thrampoulidis et al. (2022), we also utilize findings
of Lyu and Li (2019) on gradient flow convergence in
homogeneous networks towards the KKT points of ap-
propriate CS-SVM problems. Although we focus on the
UFM, which falls under the homogeneous network cat-
egory, exploring more intricate models (possibly using
4Initial findings and further discussion on generalization
are included in the extended version of this paper, which
can be accessed publicly on arXiv.

ideas from (Le and Jegelka, 2022; Jacot, 2022)) could
provide insight into other aspects of deep-net training
such as the inferior convergence of embeddings.

Outlook and future directions. While it is impor-
tant to realize these shortcomings, it is equally impor-
tant realizing that the quest for implicit geometries is
by nature highly non-trivial: we seek geometry charac-
terizations for classifiers and mean-embeddings that are
learned by different complex deep architectures over dif-
ferent complex datasets. In our setting, we further have
different losses (LDT vs CDT), different loss hyperpa-
rameters, and different imbalance ratios. Paraphrasing
Papyan et al. (2020): one might anticipate that the
classifier and embeddings being by-product of training
in such complex environments display no underlying
structure. In view of these, we find the level of agree-
ment of the empirically measured angles/norms to the
respective (closed-form) (δ, R)-SELI geometry values
rather striking. For example, see first row of Fig. 3.
Similarly, inspecting Fig. 1, why should one expect a
priori that there is a simple formula parameterized by
the loss hyperparameters that captures the norm-ratio
of the classifiers learned by an MLP on MNIST and a
ResNet on CIFAR10? In view of these, we deem our
findings encouraging and supportive of the quest set by
the emerging literature on such structural characteriza-
tions. At the same time, our findings are suggestive of
several important research directions. First, while the
UFM has proven powerful to be predictive of behaviors
across different levels of imbalances and different losses,
a major limitation remains that it does not capture
the required centering needed for the embeddings (see
Remark 2). This is a common theme also in previous
works and is further highlighted here since in the new
geometries the “correct” centering, done at a heuristic
level in our experiments, is more intricate as it involves
scaling with hyperparameter values. Second, while we
characterize global minima of the CS-SVMs, it is not
yet known whether SGD converges to those minima in
our settings. Third, is it possible to speed up training
for faster convergence to the asymptotic limits? Finally,
more investigations are required both on theory and
experiments to distill connections between geometries
and generalization. We hope that some of our find-
ings motivate further such investigations, which are
otherwise beyond the scope of this paper.
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Notation. For matrix V ∈ Rm×n, V[i, j] denotes its (i, j)-th entry, vj denotes the j-th column, VT its transpose.
Vj∶k ∈ Rm×(k−j+1) chooses columns j, j+1, . . . , k of V, and VT

j∶k ∈ Rn×(k−j+1) does so on VT . We denote ∥V∥F , ∥V∥2,
and, ∥V∥∗ the Frobenius, spectral, and, nuclear norms of V. tr(V) denotes the trace of V. We use V ∝ X
whenever the two matrices are equal up to a scalar constant. For a vector v ∈ Rk, diag(v) ∈ Rk×k is the diagonal
matrix with v on its diagonal. ⊙ and ⊗ denote Hadammard and Kronecker products, respectively. We use 1m to
denote an m-dimensional vector of all ones and Im for the m-dimensional identity matrix. For vectors/matrices
with all zero entries, we simply write 0, as dimensions are easily understood from context. ej is the j-th standard
basis vector, a column vector with a single non-zero entry of 1 in the j-th entry. Finally, we denote the set of
positive rational numbers by Q+.

A PROOF OF LEMMA 3.1

Lemma A.1 (Binary). Consider k = 2, linear model, separable data and minimizing un-regularized
LDT/CDT/binary-CE/binary-VS losses. The LDT rule coincides with the classification rule of the binary
VS loss assuming same δ-tuning. On the other hand, minimizing CDT results in the same classification rule as
CE, irrespective of the δ-tuning.

Proof. Let WCDT, WLDT ∈ Rd×2 denote the CDT and LDT classifiers respectively. The corresponding classification

rules is: (w1 −w2)
T x

ŷ(W)=1
≷

ŷ(W)=2
0 for W = [w1, w2] either WCDT or WLDT, respectively. On the other hand, the

CE or binary VS loss decision rule is xT w∗
υ̂(w∗)=1
≷

υ̂(w∗)=−1
0, where w∗ denotes a minimizer of either the CE or the

binary VS loss. Here, we use υ ∈ {±1} to denote the label encoding for binary CE loss, differentiating from the
multiclass encoding y ∈ {1, 2} above. From the above two, we conclude that w⋆ = α(w1 −w2), α > 0 implies
ŷ(W) = 1⇐⇒ υ̂(w∗) = 1 (eqv. ŷ(W) = 2⇐⇒ υ̂(w∗) = −1).

Since we minimize all losses without regularization and data are separable, it suffices by implicit bias (Soudry
et al., 2018; Kini et al., 2021) to consider the solutions to the corresponding max-margin problems, i.e.,

WCDT
∶= arg min

W
∥W∥2F subj. to (δyiwyi − δcwc)

T hi ≥ 1, c ≠ yi (8a)

WLDT
∶= arg min

W
∥W∥2F subj. to δyi(wyi −wc)

T hi ≥ 1, c ≠ yi (8b)

wCE,binary
⋆ ∶= arg min

w
∥w∥22 subj. to υiwT

⋆ hi ≥ 1, (8c)

wVS,binary
⋆ ∶= arg min

w
∥w∥22 subj. to υiδυiwT

⋆ hi ≥ 1, (8d)

First, we show ŷ(WLDT) = 1⇐⇒ υ̂(wVS,binary
∗ ) = 1 provided that the LDT and VS loss parameters are matching,

i.e. δLDT
1 = δVS,binary

1 and δLDT
2 = δVS,binary

−1 . This follows from the fact that wLDT
1 +wLDT

2 = 0 (see Lem. A.2).
Thus, the minimization in (8b) does not change by adding the constraint w2 = −w1. But then, the solution set of
(8b) is the same as the solution set of the minimization

min
w1
∥w1∥

2 subj. to
⎧⎪⎪
⎨
⎪⎪⎩

2δ1wT
1 hi ≥ 1 i ∶ yi = 1

−2δ2wT
1 hi ≥ 1 i ∶ yi = 2

.

Comparing this to (8d), it follows immediately that wLDT
1 = wVS,binary

⋆ /2. Hence, wLDT
1 −wLDT

2 = wVS,binary
⋆ ,

which proves the desired.

Second, we show that ŷ(WCDT) = ŷ(wCE
∗ ). This is a consequence of the fact that δ−1

1 wCDT
1 + δ−1

2 wCDT
2 = 0

(see Lem. A.2). Indeed, we then have that the solution set of (8a) does not change by adding the constraint
w2 = −(δ2/δ1)w1. But then, optimization is equivalent to:

min
w1
∥w1∥

2 subj. to
⎧⎪⎪
⎨
⎪⎪⎩

(δ1w1 − δ2w2)
T hi = (δ1 + δ2

2/δ1)wT
1 hi ≥ 1 i ∶ yi = 1

(δ2w2 − δ1w1)
T hi = −(δ1 + δ2

2/δ1)wT
1 hi ≥ 1 i ∶ yi = 2

.
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Comparing this to (8c), we find that wCDT
1 = δ1

δ2
1+δ2

2
wCE,binary
⋆ . Thus also, wCDT

2 = − δ2
δ2

1+δ2
2
wCE,binary
⋆ . In conclusion,

wCDT
1 −wCDT

2 = δ1+δ2
δ2

1+δ2
2
wCE,binary
⋆ , from which the desired follows since δ1, δ2 > 0.

Lemma A.2. For the CDT/LDT-SVM classifiers WCDT, WLDT defined in (8b) and (8a), it holds that wLDT
1 +

wLDT
2 = 0 and δ−1

1 wCDT
1 + δ−1

2 wCDT
1 = 0.

Proof. We prove the claim for CDT. The proof for LDT is the same and is omitted for brevity. We use a
symmetrization argument as follows. Set

w̄ ∶= (δ−1
1 wCDT

1 + δ−1
2 wCDT

2 )/(δ−2
1 + δ−2

2 ),

and assume for the sake of contradiction that w̄ ≠ 0. Consider a new classifier defined as w̃1 = wCDT
1 − δ−1

1 w̄ and
w̃2 = wCDT

2 − δ−1
2 w̄. Clearly, it holds that δ1w̃1 − δ2w̃2 = δ1wCDT

1 − δ2wCDT
2 . Thus, [w̃1, w̃2] is feasible in (8b).

Moreover,
∥w̃1∥

2
2 + ∥w̃2∥

2
2 = ∥wCDT

1 ∥
2
2 + ∥wCDT

2 ∥
2
2 − (δ

−2
1 + δ−2

2 )∥w̄∥2 < ∥wCDT
1 ∥

2
2 + ∥wCDT

2 ∥
2
2.

But, these together contradict the optimality of WCDT.

B EIGEN-STRUCTURE OF THE (δ, R)-SEL MATRIX

In this section, we compute the eigen-structure of (δ, R)-SEL matrix Ẑ (Defn. 2) for a (δ, R)-STEP imbalanced
setting with STEP logit adjustments. For simplicity, we let δminor = 1, δmaj = ∆ and α = 1 (i.e. R ∈ N).5
For m ∈ [k], define Pm ∈ Rm×(m−1) as an orthonormal basis of the subspace orthogonal to 1m, i.e. PmP

T
m =

Im −
1
m
1m1

T
m and PT

mPm = Im−1, and Sm(σ) ∶= Im − σ1m1
T
m ∈ Rm. Throughout the rest of the paper, we let

U⊗ = [UT
1∶ρk⊗1

T
αR UT

(ρk+1)∶k⊗1
T
α]

T
.

Lemma B.1 ((δ, R)-SEL matrix SVD). Let R ∈ N and Ẑ ∈ Rk×n be the (δ, R)-SEL matrix described in Defn. 2,
where recall that n = k(Rρ + ρ). Define the SVD of Ẑ as follows,

Ẑ =VΛ [UT
1∶ρk⊗1

T
R UT

(ρk+1)∶k] =∶VΛUT
⊗ ,

and further let V = [Vmaj, v, Vmin] and U = [Umaj, u, Umin]. Then, the SVD factors are given by the following
equations:

Λ = diag ([
√

R
∆ 1T

(ρk−1)

√
ρ+Rρ

ρ+ρ∆2 1T
(ρk−1)]) , (9)

Vmaj = [
Pρk

0(ρk)×(ρk−1)
] v = 1

√
k(ρ + ρ∆2)

⎡
⎢
⎢
⎢
⎢
⎣

−∆
√

ρ
ρ
1ρk

√
ρ
ρ
1ρk

⎤
⎥
⎥
⎥
⎥
⎦

Vmin = [
0(ρk)×(ρk−1)

Pρk
] , (10)

Umaj = [
1√
R
Pρk

0(ρk)×(ρk−1)
] u = 1

√
k(ρ +Rρ)

⎡
⎢
⎢
⎢
⎢
⎣

−
√

ρ
ρ
1ρk

√
ρ
ρ
1ρk

⎤
⎥
⎥
⎥
⎥
⎦

Umin = [
0(ρk)×(ρk−1)

Pρk
] . (11)

Proof. To prove the lemma, we only need to verify the correctness of the formulas. In particular: (1) U⊗ and V
are unitary matrices, and (2) VΛUT

⊗ = Ẑ. By recalling that PT
mPm = Im−1 and PT

m1m = 0 for m ∈ {ρk, ρk}, it is
easy to confirm VT V = Ik−1 and UT

⊗U⊗ = Ik−1. Since U⊗ and Ẑ have the same pattern of repeated columns,
proving VΛUT = Ξ verifies the decomposition. So, we start by expressing Ξ in block-form as follows:

Ξ =
⎡
⎢
⎢
⎢
⎢
⎣

∆−1Sρk(
1

k(ρ+ρ∆2)) −
∆

k(ρ+ρ∆2)1ρk1
T
ρk

− 1
k(ρ+ρ∆2)1ρk1

T
ρk Sρk(

∆2

k(ρ+ρ∆2))

⎤
⎥
⎥
⎥
⎥
⎦

. (12)

5To relax these assumptions, we only need to change the scale of the eigen-factors. Particularly, singular values should be
scaled by

√
α/√δminor, and U by 1/√α. Thus, the results easily extend for general δminor and α, i.e., rational R.
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Now, we can verify the equation by direct calculations:

VΛUT
=

√
R

∆
VmajUT

maj +

√
ρ +Rρ

ρ + ρ∆2 vuT
+VminUT

min

= [
∆−1PρkP

T
ρk 0

0 0] +
1

k(ρ + ρ∆2)
[
∆ ρ

ρ
1ρk1

T
ρk −∆1ρk1

T
ρk

−1ρk1
T
ρk

ρ
ρ
1ρk1

T
ρk

] + [
0 0
0 PρkP

T
ρk
]

=

⎡
⎢
⎢
⎢
⎢
⎣

∆−1(Iρk −
1

k(ρ+ρ∆2)1ρk1
T
ρk) − ∆

k(ρ+ρ∆2)1ρk1
T
ρk

− 1
k(ρ+ρ∆2)1ρk1

T
ρk Iρk −

∆2

k(ρ+ρ∆2)1ρk1
T
ρk

⎤
⎥
⎥
⎥
⎥
⎦

= Ξ.

With the eigen-structure of Ẑ at hand, we prove a useful property of the singular space in Lem. B.2. We will use
this property later in Sec. C to characterize the solutions of the CS-SVM corresponding to CDT loss in (4a).
Lemma B.2. Recall the setting of Lem. B.1 and the SVD Ẑ =VΛU⊗T . The matrix B∗ =U⊗VT satisfies the
following element-wise strict inequalities: B∗ ⊙ ẐT > 0.

Proof. We compute B∗ ∶= [B
∗
11 B∗12

B∗21 B∗22
] by plugging in the explicit SVD expressions in Lem. B.1.

U⊗VT
= [

1√
R
PρkP

T
ρk ⊗ 1R 0

0 0
] +

1
k
√

ρ +Rρ
√

ρ + ρ∆2
[
∆ ρ

ρ
1ρk1

T
ρk ⊗ 1R −1ρk1

T
ρk ⊗ 1R

−∆1ρk1
T
ρk

ρ
ρ
1ρk1

T
ρk

] + [
0 0
0 PρkP

T
ρk
] .

Simplifying the expressions, we have

B∗11 =
1
√

R
(Iρk −

1
ρk
(1 −∆

√
Rρ

(R + ρ/ρ)(ρ + ρ∆2)
)1ρk1ρk)⊗ 1R ,

B∗12 = −
1

k
√

ρ +Rρ
√

ρ + ρ∆2
1ρk1

T
ρk ⊗ 1R ,

B∗21 = −
∆

k
√

ρ +Rρ
√

ρ + ρ∆2
1ρk1

T
ρk ,

B∗22 = Iρk −
1

ρk
(1 −

√
ρ

(1 +R (ρ/ρ))(ρ + ρ∆2)
)1ρk1

T
ρk.

From (12), we can write Ẑ in block-form:

ẐT
=

⎡
⎢
⎢
⎢
⎢
⎣

∆−1Sρk(
1

k(ρ+ρ∆2))⊗ 1R − 1
k(ρ+ρ∆2)1ρk1

T
ρk ⊗ 1R

− ∆
k(ρ+ρ∆2)1ρk1

T
ρk Sρk(

∆2

k(ρ+ρ∆2))

⎤
⎥
⎥
⎥
⎥
⎦

.

The signs of the off-diagonal blocks of both Ẑ and B∗ are negative. To inspect the sign agreement of the
on-diagonal blocks, it is enough to see the following inequalities are always strictly satisfied,

1 > 1 −∆
√

Rρ

(R + ρ/ρ)(ρ + ρ∆2)
> 0 and 1 > 1 −

√
ρ

(1 +R (ρ/ρ))(ρ + ρ∆2)
> 0.

C PROOF OF THEOREM 1

One of the paper’s main contributions is introducing the (δ, R)-SELI geometry (Defn. 3) as the “correct”
formalization that is able to capture the implicit geometries of both the CDT and LDT losses for all imbalance-
ratio values R.6 This property is captured by Thm. 1: thanks to the generality of Defn. 3, both CDT and LDT
6Since CE loss is a special case of CDT/LDT loss for δ = 1k, the new geometry includes the previously introduced SELI
(Thrampoulidis et al., 2022) and ETF (Papyan et al., 2020) geometries as special cases.
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geometries, albeit different to each other, are formalized in terms of appropriate parameterizations of the same
geometry. This unifying and concise formalization of the theorem is central to our work. For example, the
eigenstructure properties of the (δ, R)-SEL matrix in Sec. B and the closed-form angles/norm-formulas in Sec. D
apply immediately to both losses. Instead in this section, when proving Thm. 1, we find it more appropriate
to treat the two losses separately: the proofs for CDT and LDT losses are included in Sec. C.1 and Sec. C.2,
respectively.

Our proof in Sec. C.1 for CDT generalizes the proof of Thrampoulidis et al. (2022, Thm. 1), which only applies for
the CE loss (a special case of CDT). At a high-level, the key innovations making this possible are: (i) formalizing
the (δ, R)-SEL matrix (see Defn. 2) as the appropriate generalization of the SEL matrix in Thrampoulidis et al.
(2022); (ii) expressing the dual of the CS-SVM corresponding to CDT (Eqn. (4a)) in a form that involves the
(δ, R)-SEL and showing that it admits an explicit solution.

Our proof in Sec. C.2 for LDT relies on the following reduction idea: we prove that it is possible to re-parameterize
the CS-SVM corresponding to LDT (Eqn. (4b)) such that it reduces to a weighted version of the standard
unconstrained-features SVM (UF-SVM) for CE loss, CS-SVM with δ = 1k, (see Prop. 2), albeit the new UF-SVM
is over an artificial dataset with different imbalance ratio that is only introduced for the purpose of the proof.
This reduction, together with the general formalization of the (δ, R)-SEL matrix, then allows us to leverage
Thrampoulidis et al. (2022, Thm. 1).

C.1 CDT Loss: Theorem. 1 (ii)

Consider the CS-SVM of (4a):

p∗ = min
W,H

1
2
∥W∥2F +

1
2
∥H∥2F sub. to (δyiwyi − δcwc)

T hi ≥ 1, i ∈ [n], c ≠ yi, (13)

and let the optimal parameters of the problem be (W∗, H∗). We start by setting X = [
WT

HT ] [W H] ∈

R(k+n)×(k+n) and relaxing (13) as follows,

q∗ =min
X⪰0

1
2

tr (X) (14)

sub. to δyiX[yi, k + i] − δcX[c, k + i] ≥ 1, ∀i ∈ [n], c ≠ yi.

Clearly, p∗ ≥ q∗. Our key insight in the analysis of (14) is writing its dual in a way that involves explicitly the
(δ, R)-SEL matrix. Specifically, let Ẑ be the (δ, R)-SEL matrix of Defn. 2 with α = nmin. Then, we can formulate
the dual of (14) as follows:

d∗ = max
B∈Rn×k

tr(ẐB) (15)

sub. to [ Id −BT

−B In
] ⪰ 1

BD−11k = 0
B⊙ ẐT

≥ 0 , (16)

where B contains the dual variables and D = diag (δ) ∈ Rk×k. It is easy to see that strong duality holds for the
convex problem (14) by satisfying Slater’s condition. Thus, using the optimal solution of (15), we can characterize
the optimizers (14).

To solve (15), we first relax the problem by ignoring constraint (16), and substituting the first constraint using
Schur-complement argument:

max
∥B∥2≤1

tr(ẐB) sub. to BD−11k = 0. (17)

The optimal value of (17) is ∥Ẑ∥∗ and B∗ = U⊗VT is the unique solution (see Thrampoulidis et al. (2022,
Lem. C.1))7. By Lem. B.2, B∗ is strictly feasible in the relaxed condition (16). Therefore, the relaxation in (17)
7Thrampoulidis et al. (2022, Lem. C.1) holds for (1k, R)-SEL matrix Ẑ, but inspecting the proof it remains unchanged for
the general (δ, R)-SEL matrix.
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is tight and B∗ is in fact the dual optimal of (14). Since, strong duality holds for (14), we also have q∗ = ∥Ẑ∥∗
and the optimizer X∗ can be found by the complementary slackness conditions:

∀i ∈ [n], c ≠ yi ∶ B∗[i, c](1 − δyiX[yi, k + i] + δcX[c, k + i]) = 0

[
Ik −B∗T

−B∗ In
]X = 0.

Let X∗ = [X
∗
11 X∗12

X∗21 X∗22
], and recall that B∗ satisfies (16) strictly. Then, the complementary slackness conditions

imply:

∀i ∈ [n], c ≠ yi ∶ 1 − δyiX∗12[yi, i] + δcX∗12[c, i] = 0

X∗11 = B∗T X∗T
12, X∗22 = B∗X∗12, X∗12 = B∗T X∗22.

From the last condition, it is straightforward to see X∗22 =U⊗Λ̃VT , X∗12 =VΛ̃UT
⊗ and X∗11 =VΛ̃VT for some

Λ̃ ∈ R(k−1)×(k−1). Now, using the first condition, we have,

δ−2
c δyiX∗12[yi, i] − δ−1

c X∗12[c, i] = δ−2
c

∑c≠yi
Ô⇒ δyiX∗12[yi, i] ∑

c≠yi

δ−2
c − ∑

c≠yi

δ−1
c X∗12[c, i] = ∑

c≠yi

δ−2
c

Ô⇒ δyiX∗12[yi, i] ∑
c∈[k]

δ−2
c − ∑

c∈[k]
δ−1

c X∗12[c, i] = ∑
c≠yi

δ−2
c

(i)
Ô⇒ δyiX∗12[yi, i] ∑

c∈[k]
δ−2

c = ∑
c≠yi

δ−2
c

Ô⇒X∗12[yi, i] = δ−1
yi
(1 − δ−2

yi
/ ∑

c′∈[k]
δ−2

c′ ), X∗12[c, i] = −δ−1
c (δ

−2
yi
/ ∑

c′∈[k]
δ−2

c′ )

Ô⇒X∗12 = Ẑ. (18)

In (i), we use the fact that VT D−11k = 0 and thus X∗12
T D−11k = 0. By (18), and using VT V =UT

⊗U⊗ = Ik−1 it
is easy to show Λ̃ = Λ and thus,

X∗ = [ V
U⊗
]Λ [VT UT

⊗] . (19)

Now, it remains to show all the optimizers of (13) can be constructed by X∗ and that the relaxation in (14) is tight.
First, choose some partial orthonormal matrix R ∈ R(k−1)×d with RRT = Ik−1, and construct W∗ =RT Λ1/2VT

and H∗ =RT Λ1/2UT
R. Then, (W∗, H∗) is by construction feasible in (13) and,

q∗ ≤ p∗ ≤
1
2
∥W∗

∥
2
F +

1
2
∥H∗∥2F =

1
2

tr(X∗) = q∗.

Therefore, q∗ = p∗ and indeed the relaxation is tight. On the other hand, if (W̃, H̃) is a minimizer of (13),

X̃ = [W̃
T

H̃T ] [W̃ H̃] is feasible and optimal in (14) (since q∗ = p∗), which implies X̃ should satisfy (19). Hence,

any minimizer of the CS-SVM (13) satisfies,

[
W∗T

H∗T ] [W∗ H∗] = [ V
U⊗
]Λ [VT UT

⊗] . (20)

The statement of the theorem is easy to see by (20). Specifically, by noting that U⊗ has repeated columns, all
the embeddings belonging to the same class are equal (NC occurs) and,

W∗T W∗
=VΛVT , M∗T M∗

=UΛUT , W∗T M∗
= Ξ. (21)
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Remark 3. For simplicity of exposition, we set α = nmin when using the (δ, R)-SEL matrix to formulate the
dual problem. However, it is easy to see that by choosing some other α′, the SVD factors would only change by a
scaling factor. In particular, let τ =

√
α′/nmin, then U and Λ will be scaled by a factor of 1/τ and τ respectively,

and V remains unchanged. Hence, (21) changes as follows,

W∗T W∗
= τVΛVT , M∗T M∗

=
1
τ

UΛUT , W∗T M∗
= Ξ.

C.2 LDT Loss: Theorem. 1 (iii)

We start the proof by restating a result from Thrampoulidis et al. (2022) regarding the optimal solutions of the
unconstrained-features SVM.
Proposition 2 (Thrampoulidis et al. (2022, Sec. C.3)). Consider the following k-class β-weighted unconstrained-
features SVM (UF-SVM):

(Ŵβ , Ĥβ) ∈ arg min
W,H

1
2
∥W∥2F +

β2

2
∥H∥2F sub. to (wyi −wc)

T hi ≥ 1, i ∈ [n], c ≠ yi, c ∈ [k].

in an (R, ρ)-STEP imbalanced setting. For any β > 0, the NC property holds, and the optimal solutions (Ŵβ , M̂β)

follow the (1k, R)-SELI geometry. Specifically,

ŴT
β M̂β = Ξ, M̂T

β M̂β =
1
τ

UΛUT , ŴT
β Ŵβ = τVΛVT ,

where V, Λ, U are the SVD factors of the (1k, R)-SEL matrix as described in Defn. 2, and τ is a positive scalar
depending on β and nminor.

Consider the k-class CS-SVM problem of (4b), restated below for convenience:

(W∗, H∗) ∈ arg min
W,H

1
2
∥W∥2F +

1
2
∥H∥2F sub. to δyi(wyi −wc)

T hi ≥ 1, i ∈ [n], c ≠ yi. (22)

Also recall that nc, c ∈ [k] is the number of examples in class c. We will relate the above optimization problem to
an equivalent UF-SVM, whose solution can be found by Prop. 2. The resulting solution will be used to state the
minimizers of (22).

First, it is easy to verify the NC property: for a fixed W, the optimization in (22) is separable in hi, and for all
the samples in the same class, the separable problems are identical and strongly-convex. Thus, for all i ∶ yi = c
there is a unique minimzer for the fixed W. So, at the optimal solution, all the embeddings within a class are
equal to their means, i.e. ∀i ∈ [n] ∶ yi = c, hi = µc. Defining M = [µ1, . . . , µk], we can re-formulate (22) as follows,

(W∗, M∗
) ∈ arg min

W,M

1
2
∥W∥2F +

1
2 ∑c∈[k]

nc∥µc∥
2
2 sub. to δc(wc −wc′)

T µc ≥ 1, c, c′ ∈ [k], (23)

and by the NC property, there is a one-to-one correspondence between the optimal solutions of (22) and (23).

Now, let D = diag(δ) and M̃ =MD, i.e. µ̃c = δcµc. Applying this reparametrization to (23), we have,

(W∗, M̃∗
) ∈ arg min

W,M̃

1
2
∥W∥2F +

1
2 ∑c∈[k]

nc

δ2
c

∥µ̃c∥
2
2 sub. to (wc −wc′)

T µ̃c ≥ 1, c, c′ ∈ [k]. (24)

Define R̃ = R(δminor/δmaj)
2, which is rational by assumption. Thus, there exists α ∈ N such that αR̃ is an integer.

Now, set β2 = nmin/(αδ2
minor), and re-write (24) as follows:

(W∗, M̃∗
) ∈ arg min

W,M̃

1
2
∥W∥2F +

β2

2 ∑
c∈[k]

ñc∥µ̃c∥
2
2 sub. to (wc −wc′)

T µ̃c ≥ 1, c, c′ ∈ [k], (25)

where

ñc =

⎧⎪⎪
⎨
⎪⎪⎩

αR̃, if c ∈ {1, . . . , ρk},

α, if c ∈ {ρk + 1, . . . , k}
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By a similar argument that led to the equivalence of (22) and (23), it is easy to see (W∗, M̃∗) is the optimal
parameters of a β-weighted UF-SVM trained on an imbalanced dataset with imbalance ratio R̃ and ñc samples
per class for c ∈ [k]. Thus, (W∗, M̃∗) follows the (1k, R̃)-SELI geometry as in Prop. 2. The proof is complete by
noting that (W∗, M̃∗) = (W∗, M∗D).

D CLOSED-FORM FORMULAS FOR THE (δ, R)-SELI GEOMETRY

As stated in the Thm. 1, the optimal parameters of the CS-SVM under the CDT/LDT loss have a unique
description in terms of the SVD factors of a corresponding label-encoding matrix. In this section, we use this
characterization to derive explicit expressions for the parameters’ geometry as a function of R, ρ, k and of the
hyper-parameters δ.

Similar to Sec. B, throughout this section, we assume the data is STEP imbalanced and STEP logit adjustment
is adopted. For simplicity, we consider the case ρ = 1/2, δminor = 1 and δmaj =∆. This choice is without loss of
generality since the geometry only depends on the ratio δmaj/δminor. We use the closed-form SVD in Sec. B
derived by assuming α = 1. It is easy to see that a general α only introduces an appropriate scaling to the SVD
factors. (See Remark 3). Thus, using the closed-form expressions in Lemma B.1 for the corresponding V, Λ, and
U, the optimal parameters satisfy:

W∗T W∗
= τVΛVT , M∗T M∗

=
1
τ

UΛUT , W∗T M∗
= Ξ, (26)

for some positive scalar τ (that depends on nmin and α). Since, τ onlys affects the scale of the geometry, in the
lemmas we assume τ = 1 for brevity.

In Sec. D.1, we describe the geometric and asymptotic properties of the solutions of (4a), the CS-SVM under
CDT loss. In Sec. D.2 we characterize the same properties for problem (4b) corresponding to the LDT loss. In
the following lemmas, we use wmaj when referring to any majority classifier wc, c ∈ {1, . . . , k/2}, and wminor for
any minority classifier wc, c ∈ {k/2 + 1, . . . , k}. Similarly, hmaj denotes any hj with j ∈ {i ∈ [n] ∶ yi = 1, . . . , k/2}
and hminor denotes any hj with j ∈ {i ∈ [n] ∶ yi = k/2 + 1, . . . , k}.

D.1 CDT Loss

D.1.1 Norms and Angles

Lemma D.1 (CDT classifiers). Let V, Λ, U be the eigen-factors of the (δ, R)-SEL matrix. For the optimal
classifier W of the CS-SVM (4a):

(a) (Norms) All the majority/minority classes have equal norms,

∥wmaj∥
2
2 =

√
R

∆
(1 − 2/k) + 2∆2√R + 1

k(
√

1 +∆2)
3 , ∥wminor∥

2
2 = (1 − 2/k) + 2

√
R + 1

k(
√

1 +∆2)
3 , (27)

and the majority-minority norm-ratio is,

∥wmaj∥
2
2

∥wminor∥
2
2
=

√
R

∆ (k − 2)(1 +∆2)
3/2
+ 2∆2√R + 1

(k − 2)(1 +∆2)
3/2
+ 2
√

R + 1
.
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(b) (Angles) For each pair of majority/minority classifiers the angles are equal and,

cos(wmaj, w′maj) =
−2
√

R + 2
√

R + 1 (
√

1 +∆−2)
−3

(k − 2)
√

R + 2
√

R + 1 (
√

1 +∆−2)
−3

cos(wminor, w′minor) =
−2 + 2

√
R + 1 (

√
1 +∆2)

−3

k − 2 + 2
√

R + 1 (
√

1 +∆2)
−3

cos(wmaj, wminor) = −
2∆
√

R + 1

k (
√

1 +∆2)
3
∥wmaj∥2∥wminor∥2

.

Proof. Let m = k/2. From Thm. 1, WT W =VΛVT . Using Lem. B.1 we have,

VΛVT
=

√
R

∆
[
PmP

T
m 0

0 0] +
2
√

R + 1
k(
√

1 +∆2)3
[
∆21m1

T
m −∆1m1

T
m

−∆1m1
T
m 1m1

T
m
] + [

0 0
0 PmP

T
m
]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√
R

∆ Ik/2 −
2
k
(
√

R
∆ −

∆2√R+1
(
√

1+∆2)3 )1k/21
T
k/2 − 2∆

√
R+1

k(
√

1+∆2)31k/21
T
k/2

− 2∆
√

R+1
k(
√

1+∆2)31k/21
T
k/2 Ik/2 −

2
k
(1 −

√
R+1

(
√

1+∆2)3 )1k/21
T
k/2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Inspecting the diagonal entries proves the norm equations. To prove part (b), we use the off-diagonals entries
that specify the inner-product of each pair of classifiers. Particularly,

wT
majw′maj =

−2
√

R + 2
√

R + 1 (
√

∆−2 + 1)
−3

k∆
,

wT
minorw′minor =

−2 + 2
√

R + 1 (
√

1 +∆2)
−3

k
,

wT
minorwmaj =

−2∆
√

R + 1

k (
√

∆2 + 1)
3 .

These equations together with (27) complete the proof.

Lemma D.2 (CDT embeddings). Let V, Λ, U be the eigen-factors of the (δ, R)-SEL matrix. For the optimal
embeddings H of the CS-SVM (4a):

(a) (Norms) All the embeddings in the majority/minority classes have equal norms,

∥hmaj∥
2
2 =
(1 − 2/k)

∆
√

R
+

2
k
√

R + 1
√

1 +∆2
, ∥hminor∥

2
2 = (1 − 2/k) + 2

k
√

R + 1
√

1 +∆2
,

and the majority-minority norm-ratio is as follows,

∥hmaj∥
2
2

∥hminor∥
2
2
=

1
∆
√

R
(k − 2)

√
R + 1

√
1 +∆2 + 2

(k − 2)
√

R + 1
√

1 +∆2 + 2
.

(b) (Angles) For each pair of majority/minority embeddings the angles are equal, and,

cos(hmaj, h′maj) =
−2
√

∆−2 + 1
√

R + 1 + 2
√

R

(k − 2)
√

∆−2 + 1
√

R + 1 + 2
√

R

cos(hminor, h′minor) =
−2
√

∆2 + 1
√

R + 1 + 2
(k − 2)

√
∆2 + 1

√
R + 1 + 2

cos(hmaj, hminor) =
−2

k
√

∆2 + 1
√

R + 1 ∥hmaj∥2∥hminor∥2
.



Tina Behnia†§, Ganesh Ramachandra Kini⋆§, Vala Vakilian†§, Christos Thrampoulidis†

Proof. By the NC property, to find the norms and angles of the embeddings, it suffices to analyze the mean-
embeddings M, for which, following Thm. 1, we have MT M =UΛUT . By Lemma B.1,

UΛUT
=

√
R

∆
[

1
R
PmP

T
m ⊗ 1R1

T
R 0

0 0] +
2

k
√

R + 1
√

∆2 + 1
[
1Rm1

T
Rm −1Rm1

T
m

−1m1
T
Rm 1m1

T
m
] + [

0 0
0 PmP

T
m
]

=

⎡
⎢
⎢
⎢
⎢
⎣

( 1
∆
√

R
Ik/2 −

2
k
( 1

∆
√

R
− 1√

R+1
√

∆2+1
)1k/21

T
k/2)⊗ 1R1

T
R − 2

k
√

R+1
√

∆2+1
1k/21

T
k/2

− 2
k
√

R+1
√

∆2+1
1k/21

T
k/2 Ik/2 −

2
k
(1 − 1√

R+1
√

∆2+1
)1k/21

T
k/2

⎤
⎥
⎥
⎥
⎥
⎦

.

The diagonal entries determine the norm of the embeddings as in part (a) and the off-diagonals entries specify
the inner-product of each pair of the embeddings. Particularly,

hT
majh′maj = −

2
k
(

1
∆
√

R
−

1
√

R + 1
√

∆2 + 1
)

hT
minorh′minor = −

2
k
(1 − 1

√
R + 1

√
∆2 + 1

)

hT
minorhmaj = −

2
k
√

R + 1
√

∆2 + 1
.

Combining these with the norm calculations of part (a) completes the proof.

In the next lemma, we calculate the angles between an embedding and its corresponding classifier. Particularly,
we give closed-form expression for cos(wc, hi) for c ∈ [k], i ∶ yi = c, which can be thought of the degree of alignment
between classifiers and embeddings.
Lemma D.3 (CDT: Alignment of classifiers and embeddings). The angles between majority/minority embeddings
and the their corresponding classifiers are all equal:

cos(wmaj, hmaj) =
k∆2 + (k − 2)

k ∆ (∆2 + 1) ∥wmaj∥2∥hmaj∥2
,

cos(wminor, hminor) =
k∆−2 + (k − 2)

k (∆−2 + 1) ∥wminor∥2∥hminor∥2
.

Proof. Recalling WT H = Ẑ, for all c ∈ [k] and i ∶ yi = c it holds that wT
c hi =∆−1 (1 − 2

k(∆2+1)) if c is a majority

class, and wT
c hi = (1 − 2

k(∆−2+1)) otherwise.

D.1.2 Asymptotics

We present the limiting values of the norm-ratios and angles in the asymptotic regime ∆ = Rγ , γ ∈ R and R →∞.
This parameterization is interesting because it can guide us on how to maintain finite angles between classifiers
and embeddings as the imbalance ratio grows large. Specifically, the angles are as shown in Table 1.

cos(wc, w′c) γ < 1/6 γ = 1/6 γ > 1/6
c, c′ ∈ minority 1 0 − 2

k−2
cos(wc, w′c) γ < 0 γ = 0 γ > 0

c, c′ ∈ majority − 2
k−2

1−2
√

2
1+
√

2(k−2) 0

cos(hc, h′c) γ < 0 γ = 0 γ > 0
c, c′ ∈ minority 0 − 2

k−2 − 2
k−2

c, c′ ∈ majority 0 2−2
√

2
2+(k−2)

√
2 − 2

k−2

Table 1: Asymptotic values of angles for CDT with ∆ = Rγ , γ ∈ R and R →∞.
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D.1.3 Centering

Assuming that the classifiers follow the geometry in Thm. 1, w∗c , c ∈ [k] are centered around zero after some
re-weighting, i.e. ∑c∈[k]w∗c /δc = 0. This is immediate from VT D−11k = 0 and W∗T W∗ =VΛVT .
The embeddings hi, i ∈ [n] are also not centered around zero in general. Instead, it holds that

∑
i∈[n]

1
nyi

h∗i = 0. (28)

Note that this reduces to ∑i∈[n] h∗i for balanced data, and remains unchanged for any choice of the hyperparameters
δ. Eqn. (28) is also equivalent to ∑c∈[k]µ

∗
c = 0, with µ∗c , c ∈ [k] the mean embeddings of each class.

D.2 LDT Loss

D.2.1 Norms and Angles

From Thm. 1, solutions (W∗, M∗D) of the CS-SVM under LDT loss in (4b), follow the SELI geometry
(Thrampoulidis et al., 2022), with imbalance ratio R̃ = R(δmin/δmaj)

2. Thus, the corresponding norms and angles
can be found by analyzing the (1k, R̃)-SELI structure (up to a norm scaling by D for the mean embeddings M∗).
We refer the reader to Thrampoulidis et al. (2022, Sec. B.1) for closed form expressions of the (1k, R̃)-SELI. We
repeat some key formulas below for showing explicit dependence on ∆.
Corollary 1.5 (LDT: Norm ratios and classifier angles). For the optimal solution (W, H) of the CS-SVM (4b):

∥wmaj∥
2
2

∥wminor∥
2
2
=
(k − 2)

√
R +
√
(R +∆2)/2

(k − 2)∆ +
√
(R +∆2)/2

,

∥hmaj∥
2
2

∥hminor∥
2
2
=

1√
R
(k − 2) + 1√

(R+∆2)/2

(k − 2)∆ + ∆2√
(R+∆2)/2

,

cos(wmaj, w′maj) =
−2
√

R +
√
(R +∆2)/2

(k − 2)
√

R +
√
(R +∆2)/2

,

cos(wmin, w′min) =
−2∆ +

√
(R +∆2)/2

(k − 2)∆ +
√
(R +∆2)/2

.

D.2.2 Asymptotics

Similar to the calculations for the CDT case, we present the limiting values of the norm-ratios and angles in the
asymptotic regime ∆ = Rγ , γ ∈ R and R →∞. Then, the angles are as given in Table 2:

cos(wc, w′c) γ < 1/2 γ = 1/2 γ > 1/2
c, c′ ∈ minority 1 − 1

k−1
1−2
√

2
1+
√

2(k−2)

c, c′ ∈ majority 1−2
√

2
1+
√

2(k−2) − 1
k−1 1

cos(hc, h′c) γ < 1/2 γ = 1/2 γ > 1/2
c, c′ ∈ minority − 2

k−2 − 1
k−1

2−2
√

2
2+
√

2(k−2)

c, c′ ∈ majority −
√

2
−
√

2+k(1+
√

2) − 1
k−1 − 2

k−2

Table 2: Asymptotic values of angles for LDT with ∆ = Rγ , γ ∈ R and R →∞.

D.2.3 Centering

The optimal classifiers and features (W∗, M∗D) follow the (1k, R̃)-SELI structure. Thus (see Thrampoulidis
et al. (2022, Sec. B.1.4)), the classifiers w∗c , c ∈ [k] are centered around zero. However the embeddings are
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centered around zero after a reweighting that depends both on δc and nc, c ∈ [k]. Specifically, ∑c∈[k] δcµ∗c = 0, or
equivalently,

∑
i∈[n]

δyi

nyi

h∗i = 0. (29)

E NUMERICAL RESULTS

In this section, we provide additional details and discussions on our experiments.

E.1 Additional Experimental Details

As mentioned in Sec. 5, we investigate the convergence of SGD steps for CDT/LDT loss in (3a)/(3b) to the
implicit geometries of Thm. 1. Here, we describe the experimental setup in more details.

UFM experiments. We train the UFM as a two-layer network (no biases) with n = 275 inputs, d = 20 hidden
units and k = 10 classes, trained on the basis vectors in Rn. The labels for each vector are chosen such that
the dataset is (R = 10, ρ = 1/2)-STEP imbalanced, with nmin = 5 and a batch size of 5. We further use STEP
logit adjustment, and choose ∆ = Rγ with γ ∈ [−1.5, 1.5]. We train all models with the same constant learning
rate for 6000 epochs. We normalize δ so that 1T

k δ = k, since we empirically observe that for a fixed ratio ∆ the
convergence speed depends on the magnitude of δ.

Deep-net experiments. We train (i) ResNet18 on CIFAR10, and, (ii) a 6-layered fully connected MLP with
batch-norm and ReLU activations on MNIST, both under a R = 10 imbalance ratio. The MLP model consists of
6 fully-connected layers of width 2048, each followed by batch-norm and ReLU activations. We train the models
for 350 epochs with an initial learning rate of 0.1 reduced at epochs 116 and 232 by a factor of 10, with a batch
size of 128. Following the same setting as in Papyan et al. (2020); Thrampoulidis et al. (2022), we set momentum
and weight decay to 0.9 and 10−5 respectively. We also normalize δ to sum to k, similar to UFM. We perform
the experiments in Fig. 3 without any data augmentation, remaining consistent with previous works on neural
collapse (e.g., Papyan et al., 2020)).

We conducted additional experiments with imbalance ratio R = 2, 5, 20. We have not included those results due to
their similarity to R = 10; however, we will discuss the impacts of higher imbalance ratio R and hyperparameter γ
in the following section.

E.2 Speed of Convergence

We empirically observe that the UFM parameters converge more slowly to the global optimizers in Thm. 1 as the
imbalance ratio R and hyperparameter ∣γ∣ increase. A similar observation for large values of R is also reported
in Thrampoulidis et al. (2022). To illustrate the speed of convergence, we measure the distance of the SGD
steps to the predicted implicit geometry during training. In particular, at each step (Wt, Mt), we compute
∥

WT
t Wt

∥WT
t Wt∥ −

W∗T W∗

∥W∗T W∗∥∥F for the classifiers and ∥ MT
t Mt

∥MT
t Mt∥ −

M∗T M∗

∥M∗T M∗∥∥F for the centered mean-embeddings, where
(W∗, M∗) are as described by Thm. 1. Fig. 4 illustrates the convergence behaviour of the parameters for UFM
and ResNet18. While as training progresses, the classifiers/embeddings get closer to the predicted geometry,
imbalance ratio and hyperparameter values can significantly slow down the convergence. This behaviour appear
for both UFM and deep-net experiments.

In addition to the worse convergence, it becomes more challenging to achieve zero training error as ∣γ∣ increases.
We illustrate this in Fig. 5, where we report the training accuracy of ResNet model trained on imbalanced
CIFAR10 at different epochs. We empirically observe that it is in general easier to enter the zero-error regime by
LDT loss. On the other hand, we do not achieve 100% training accuracy for large values of γ on CDT loss. This
is consistent with similar observation on CDT training in Kini et al. (2021).
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Figure 4: Convergence of classifiers and mean-embeddings to the implicit geometry in Thm. 1: (first row)
UFM, (second row) ResNet18 trained on CIFAR10. The models are trained by SGD on CDT loss. Larger
R and γ lead to slower convergence to the expected structure.
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Figure 5: Training accuracy across epochs of ResNet18 model trained on (R = 10, ρ=1/2)-STEP imbalanced
CIFAR10 dataset with CDT/LDT loss and different values of γ. It becomes harder to enter zero training
error regime for larger ∣γ∣ with the impact being more noticable on CDT.
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