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Abstract

The rising growth of deep neural networks
(DNNs) and datasets in size motivates the need
for efficient solutions for simultaneous model se-
lection and training. Many methods for hyper-
parameter optimization (HPO) of iterative learn-
ers, including DNNs, attempt to solve this prob-
lem by querying and learning a response surface
while searching for the optimum of that surface.
However, many of these methods make myopic
queries, do not consider prior knowledge about
the response structure, and/or perform a biased
cost-aware search, all of which exacerbate identi-
fying the best-performing model when a total cost
budget is specified. This paper proposes a novel
approach referred to as Budget-Aware Planning
for Iterative Learners (BAPI) to solve HPO prob-
lems under a constrained cost budget. BAPI is an
efficient non-myopic Bayesian optimization solu-
tion that accounts for the budget and leverages the
prior knowledge about the objective function and
cost function to select better configurations and
to take more informed decisions during the eval-
uation (training). Experiments on diverse HPO
benchmarks for iterative learners show that BAPI
performs better than state-of-the-art baselines in
most cases.

1 INTRODUCTION

Hyperparameter optimization (HPO) for machine learning
models, and pipelines is the task of automatic tuning of
those parameters which affects model selection and train-
ing. A variety of HPO approaches have been developed for
classical ML models, e.g., SVMs, random forests, utilizing
Bayesian optimization (BO) (Snoek et al., 2012; Swersky

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

et al., 2013), meta-learning (Feurer et al., 2015; Fusi et al.,
2018), and ensembling (Thornton et al., 2013; Olson and
Moore, 2016; LeDell and Poirier, 2020; Erickson et al.,
2020) to name a few. For HPO, the inclusion of modern
deep neural networks (DNNs) as a pipeline, introduces a
temporal dimension to the problem of selecting pipeline
queries due to the iterative nature of DNNs. Fixing the num-
ber of training epochs per query is clearly inefficient since
poorly performing pipelines will waste resources, leading
to more promising candidates not being identified when the
resource budget is small. This paper considers the prob-
lem of HPO for such iterative learners (ILs) under a fixed
total budget. In this setting, the budget is defined as some
measure of resource cost for evaluating queries such as wall-
clock time or energy. The key challenge is to reason about
the available budget to intelligently select the candidate
queries for evaluation to uncover high-quality configura-
tions within the remaining budget. BO is known to be an
effective framework to solve such problems. However, most
BO algorithms ignore the fact that the cost of different con-
figurations/queries can vary significantly and are unknown
prior to their evaluation. We refer to this problem of utilizing
BO to select amongst iterative learners under a constrained
budget as budget-aware Bayesian optimization.

The key idea behind BO for HPO is to learn a response
surface (e.g., Gaussian process) which serves as a surrogate
for test set performance and use it to perform a sequence
of queries by trading off exploration and exploitation. The
response and cost modeling, and the planning of querying
a sequence of different configurations have individually
been addressed in the BO literature. To some extent, the
interaction of these two components was studied as well.
For ILs, modeling the side-information in the form of the
shape of learning curves (i.e., accuracy vs. training epochs)
will allow us to make fine-grained decisions such as early
stopping to save resources. In our problem setting, we
refer to the learning curve as the structured response. The
structure of responses have been considered and modeled
to varying degrees in methods that extrapolate performance
to determine good candidates (Klein et al., 2017b; Domhan
et al., 2015) as well as in BO over vector-valued responses
(Wu et al., 2020; Nguyen et al., 2020). However, none of
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these settings consider a fixed total budget.

To summarize the drawbacks of prior work for our prob-
lem setting: standard approaches for handling structured re-
sponses, heterogeneous cost-modeling (i.e., different queries
have varying costs), and query selection have inefficien-
cies or are even inaccurate in some cases, especially when
applied to the fixed budget setting. Standard cost-aware
modeling for BO utilizes a separate model for cost predic-
tions and then weights the selection of the next candidate
query by these predictions (Snoek et al., 2012). However,
cost-aware modeling via weighting suffers from a known
pathology where the method tends to select low-cost queries
with lower accuracy leading to an overall poor performance
(Lee et al., 2020b; Astudillo et al., 2021). Fundamentally,
the issue is one of mis-calibration between the response and
cost models.

For query selection, non-myopic BO methods provide ap-
proximations of varying quality to the optimal solution de-
fined by the Bellman recursion for BO (Osborne, 2010; Lam
et al., 2016; Jiang et al., 2020a). These non-myopic methods
(Lam et al., 2016; Wu and Frazier, 2019; Yue and Kontar,
2020; Jiang et al., 2020b; Lee et al., 2020a, 2021; Astudillo
et al., 2021) use a variety of techniques to solve the se-
quence of nested integrations and maximizations including
dynamic programming and rollouts. However, only the two
most recent methods of Lee et al. (2021) and Astudillo et al.
(2021) take the cost and a finite budget into account. Lee
et al. (2021) proposed to leverage the known pathology of
standard cost-aware modeling to promote early exploration
but the resulting policy does not adapt its horizon to the
remaining budget. Astudillo et al. (2021) also propose a non-
myopic policy, but the horizon adaptation of their method
is post-hoc, i.e. zero padding is used to fill the horizon after
the evaluation budget is exhausted.

Contributions Our proposed solution BAPI executes a
non-myopic query selection policy by wrapping standard
BO in a layer of budget-aware planning for iterative learn-
ers. The key innovations of BAPI include leveraging side-
information and expert knowledge such as the objective
function’s monotonicity, heteorgenity of query costs, and
linearity of cost w.r.t training epochs into the planning proce-
dure; overcoming known pathologies of standard cost-aware
BO; and principled approach for adapting the horizon to
the amount of remaining budget. Therefore, our techni-
cal contributions span both budgeted non-myopic BO and
hyper-parameter optimization sub-areas. The list of syn-
ergistic contributions made by this paper are as follows:

• Development of a new approach for budget-aware non-
myopic BO enabling an adaptive horizon to solve HPO
problems for iterative learners. To the best of our
knowledge, this is the first work that proposes a bud-
geted non-myopic approach specifically for HPO.

• Refining previous response modeling approaches by

leveraging the monotonicity of the objective function
through model derivatives to enable: (1) a new conser-
vative stopping estimation approach to decide when a
learner becomes ϵ-close to its asymptotic value, and
(2) a general modeling approach with minimal assump-
tions about the shape of the response resulting in accu-
rate extrapolation for improved decision-making.

• Design of a new efficient early termination method
aimed to early stop the training of poorly performing
HP configurations.

• A new alternative kernel for modeling the training cost
of iterative learners while capturing the linearity of
the cost w.r.t the number of epochs and its variability
across different HPs

• Empirical evaluation on several state-of-the art bench-
marks to demonstrate the performance of BAPI com-
pared to algorithms designed for HPO, generic BO,
and non-myopic BO and cost-aware non-myopic BO.

2 PROBLEM SETUP AND BACKGROUND

In this section, we state our problem and briefly review
Gaussian processes, Bayesian optimization, and myopic vs.
non-myopic query selection policies.

Consider the problem of sequentially optimizing a black-
box objective function f over the input space X where the
evaluation of each candidate input x ∈ X is expensive and
where the cost c of each input is unknown before the evalua-
tion. In the context of HPO for iterative machine learning
models, each input candidate z := [x, t], where x represents
model/pipeline hyperparameters and t ∈ T =[1 . . . tmax] is
the number of training epochs. We let the objective func-
tion f(x, t) be defined as the accuracy 1 and the unknown
cost c(x, t) be defined as the training time. The objective
is to identify the maximum of f in a number of queries
whose cumulative cost is bounded by a total budget BT . Let
Z := X × T , our problem can be stated as

max
Z∈P (Z)

max
z∈Z

f(z), s.t.
∑
z∈Z

c(z) ≤ BT (1)

where P (Z) denotes the power set of Z and Z =
{z1 . . . zh} is the sequence of inputs evaluated until the
budget BT is exhausted. In other words, the optimal HP
z∗ is defined as z∗ ← argmaxZ f(z) with z∗ ∈ Z and∑

z∈Z c(z) ≤ BT . The problem in Equation (1) is solved
using a non-myopic policy, where at each iteration, the al-
gorithm accounts for the sequence of inputs that can be
evaluated within the remaining budget, i.e., the horizon h
is adaptive. We define the non-myopic setting later in this
section, which is similar to the setting considered in Lee
et al. (2021) and Astudillo et al. (2021).

1 Any bounded metric can be used (e.g, loss, some cases of reward
for RL models etc.)
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We focus on problem settings where the objective function
is monotonic in the number of epochs t. Specifically, for
a fixed hyperparameter x, f(x, t) ≤ f(x, t′) when t ≤ t′.
This is a reasonable assumption for iterative learners. Even
if monotonicity does not hold over all training epochs, keep-
ing track of the best model over training epochs is a standard
practice (Dai et al., 2019).

Gaussian Processes GPs are characterized by a mean
function m and a covariance or kernel function K. If a
function f is sampled from GP(m, K), then f(x, t) is dis-
tributed normally N (m(x, t),K([x, t], [x, t])) for a finite
set of inputs from [x, t] ∈ X × T . The predictive mean and
uncertainty for a GP for a new input z∗ ∈ Z is defined as:

µ(z∗) = Kz∗,Z [KZ,Z + σ2I]−1(Y −m(Z)) +m(z∗)

σ2(z∗) = Kz∗,z∗ −Kz∗,Z [KZ,Z + σ2I]−1KZ,z∗

where Kz∗,z∗ = K(z∗, z∗), KZ,Z = K(Z,Z), Kz∗,Z =
[K(z∗, zi)]∀i, Z is the set of evaluated inputs and Y is their
corresponding function values.

A typical choice to model blackbox functions with a tempo-
ral component is using a product kernel K([x, t], [x′, t′]) =
Kx(x,x

′)×Kt(t, t
′). Kx, defined over the input space x ∈

X , is often selected to be an RBF or a Matern kernel. For the
temporal component Kt, previous work for GPs over itera-
tive learners (Swersky et al., 2014) proposed an exponential
decay (ED) kernel, defined as Kt(t, t

′) = βα/(t+ t′+β)α,
to model decreasing covariance with increasing time. How-
ever, this kernel does not guarantee that the predictive mean
of GP or sampled functions would necessarily follow a de-
sired monotonic shape. Nguyen et al. (2020) argued that
the use of ED is not appropriate for reinforcement learning
models where the reward might follow a logistic shape and
proposed the use of an RBF kernel for Kt.

Bayesian Optimization And Non-Myopic Query Policies
BO is a sequential, model-based approach for optimizing
blackbox functions (Shahriari et al., 2015; Belakaria et al.,
2019; Deshwal et al., 2021). BO is often performed with
the specification of a GP prior over the function, and an
acquisition function. The GP posterior acts as a surrogate
for the true unknown response. The potential or utility of
points in the input space to be the optimizer is scored by the
acquisition function. Two examples of acquisition functions
are expected improvement (EI) and upper confidence bound
(UCB) and both are considered myopic since they only
aim to maximize the function for the next query without
accounting for the future queries.

We review some standard facts for optimal sequential
decision-making (Osborne, 2010; Jiang et al., 2020a). Con-
sider having collected a set of i responses Di and let u
denote the utility of Di for maximizing f(z) = y, i.e.,
u(Di) = max(z,y)∈Di

y. The marginal gain in utility of the
query z w.r.t. Di is expressed as:

u(y|z, Di) = u(Di ∪ (z, y))− u(Di) (2)

The one-step expected marginal gain is equivalent to the
expected improvement (EI) strategy (Močkus, 1975):

U1(z|Di) = Ey[u(Di ∪ (z, y))− u(Di)|z, Di] (3)

Now, consider the case where r steps are remaining. The
r-steps expected marginal gain can be expressed through
the Bellman recursion as (Jiang et al., 2020a):

Ur(z|Di) = Ey[u(y|z, Di)]+Ey[max
z′
Ur−1(z

′|Di∪(z, y))]
(4)

Maximizing (4) w.r.t. z results in the optimal r-steps “looka-
head” . Being a sequence of r nested integrals of maximiza-
tions, optimizing (4) is intractable for even small r.

Lower Bound To Optimal Policy The previous discus-
sion focused on the optimality of selecting single queries.
We review recent work by (Jiang et al., 2020a) which makes
a connection between single selection and batch selection
of size r, Z = {z1 . . . zr}. Assuming parallel evaluation,
the optimal set of selected points Z∗ maximizes the ex-
pected marginal utility of the new associated evaluations
Y = {y1 . . . yr}:

Z∗ = argmax
Z∈Z

U(Z|Di)

with U(Z|Di) = EY [u(Y |Z,Di)] (5)

Jiang et al. (2020a) showed that choosing a query z∗ ∈ Z∗

is equivalent to solving argmaxz V (z|D) where

V (z|Di) = Ey[u(y|z, Di)]

+ max
Z′:|Z′|=r−1

Ey[U(Z ′|Di ∪ (z, y))] (6)

and that the second term of (6) is a lower bound to the
second term in (4):

max
Z′:|Z′|=r−1

Ey[U(Z ′|Di ∪ (z, y))]

≤ Ey[max
z′
Ur−1(z

′|Di ∪ (z, y))] (7)

Given this observation, Jiang et al. (2020a) proposed ap-
proximating the optimal policy (4) by optimizing its lower
bound (6) which is equivalent to optimizing the batch EI
known as q-EI. Jiang et al. (2020a) proposed using joint q-EI
which is budget-unaware and scales poorly with increased
dimensions (Wilson et al., 2018).

3 PROPOSED APPROACH

In this section, we start by providing a high-level overview
of the proposed BAPI algorithm and briefly explain its key
components. Next, we provide complete details of each
component. First, we describe how to perform an efficient
budget-aware non-myopic search. Second, we explain our
approach to model structured response for iterative learning
which can be used to estimate conservative stopping for
increased resource-efficiency. Finally, after describing an al-
ternative kernel for the cost model, we provide the full BAPI
approach with all its component coherently put together.
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Figure 1: Overview of BAPI algorithm illustrating its three key components explained in section 3.1

3.1 Overview Of BAPI Algorithm

Let GPf and GPc be the surrogate probabilistic models
learned given a set of observed data points Di of the objec-
tive function f and the cost function c respectively. Let µc

and σ2
c be the predictive mean and variance of GPc and µ

and σ2 be the predictive mean and variance of GPf .
As shown in Figure 1, BAPI is a sequential algorithm with
three key components listed below:

1. Learning Surrogate Models We build two surrogate
models GPf for the objective function and GPc for the cost
function by fitting independent GPs using queries evaluated
in the past. We enforce shape constraint on the posterior of
GPf with respect to t (epoch number) to incorporate prior
knowledge about the monotonicity of the function. We use
a special kernel for GPc to leverage our knowldge about the
variability of the cost across different HPs and its linearity
with respect to t.

2. Budget Aware Non-Myopic Optimization With Adap-
tive Horizon We perform non-myopic optimization to
approximate the optimal lookahead horizon Z∗ defined as
the potential sequence of inputs that can be evaluated until
their conservative stopping toptx without violating the re-
maining budget Br: Z∗ = {(x1, t

opt
x1

) . . . (xr, t
opt
xr

)} such
that

∑
z∈Z∗ c(z) ≈

∑r
i=1 µc(xi, t

opt
xi

) ≤ Br. While con-
structing the horizon Z∗, each input xi is selected based
on its expected improvement. The associated conservative
stopping toptxi

and cost µc(xi, t
opt
xi

), are estimated upon the
input selection.

3. Evaluation With Early Termination From Z∗ ob-
tained from the second step, we select the input with highest
expected improvement per unit cost at its estimated conser-
vative stopping for evaluation. After training the model for a
fraction of the maximum number of epochs, we re-estimate
the performance of the input at its conservative stopping
epoch. We early terminate the training if the expected per-
formance is poor with high certainty.

3.2 Budget Aware BO With Adaptive Horizon

Approximating the non-myopic optimization with the batch
expected improvement q-EI, where the batch size q is equal
to the horizon of the lookahead optimization r, is an efficient
approach (Jiang et al., 2020a). However, the joint q-EI via
reparametrization trick and Monte Carlo sampling proposed
in Wang et al. (2016a) and used in Jiang et al. (2020a)
requires the size of the batch to be fixed and solves a joint
one-shot optimization problem of (d× q) dimensions.

Challenges 1) In the context of budgeted non-myopic op-
timization, the horizon of remaining queries r is unknown: it
depends on remaining budget Br and expected costs of hori-
zon queries zi, i ∈ {1 . . . r}. An efficient method should
allow the horizon to be adaptive to the budget. Therefore,
the joint q-EI is not a suitable solution. 2) Given an opti-
mization problem with reasonable medium-size dimension
and a medium length horizon, the dimensionality of the
joint optimization problem can significantly increase. Wil-
son et al. (2018) showed that the performance of the joint
q-EI deteriorates for large optimization dimension.

Proposed Alternative To overcome the above two chal-
lenges, we propose to employ the sequential greedy q-EI via
reparametrization trick and Monte Carlo sampling proposed
in Wilson et al. (2018). Wilson et al. (2018) showed that
q-EI is a submodular acquisition function, which guarantees
a near-optimal maximization via a sequential greedy ap-
proach. This incremental version of the acquisition function
has several distinct advantages over the joint one: 1) It is
amenable to an adaptive horizon, where we can stop adding
points to the batch based on the remaining budget. 2) It is
more efficient and produces better performance when the
value of d× q is high (Wilson et al., 2018). After the batch
approximation returns a sequence (horizon) of inputs, we
select one input to query its expensive function evaluation.
We discuss an input selection strategy, that is relevant to
iterative machine learning models optimization, in section
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3.4. Note that our approximation can clearly extend to the
use of any other batch acquisition function that satisfies
the submodularity condition and have a sequential greedy
approach, namely the q-UCB and q-PI (Wilson et al., 2018).

It is important to highlight that in practice, our approach can
naturally extend to parallel BO evaluation (batch setting).
The user can choose more than one point from the approxi-
mated horizon and evaluate them in parallel as long as the
horizon length is fairly larger than the number of selected
points for evaluation. Even though in this paper we focus
on the sequential setting, we enable this option in our imple-
mentation. We provide a summary of the budget-aware BO
approach in Algorithm 1.

Algorithm 1 Budget Aware Non-myopic BO
Input: Z , f(z), c(z), models GPf , GPc, utility function
u(y|z, D), a total budget BT

Output: D, z∗, f(z∗)

1: Initialize the remaining budget Br ← BT

2: while Br ≥ 0: do
3: Approximate the optimal horizon via adaptive optimal batch

computation Z∗ of size r such that
∑r

i=0 µc(zi) ≤ Br

4: Select a candidate input z∗ ∈ Z∗ and observe its evaluation
f(z∗) = y∗ and cost c(z∗) = y∗

c

5: Update the remaining budget Br ← Br − c(z∗)
6: Update data D = D ∪ {(x∗, y∗, y∗

c )}

3.3 Structured Responses

In this section, we describe our proposed approaches to
leverage prior knowledge about the structure of the re-
sponses, namely, the monotonicity and shape of the function
f and the linearity of the cost c.

We propose to use a GP with monotonicity constraint over
the t variable to model the function f . Recent work (Agrell,
2019) proposed an efficient approach to introduce linear
operator inequality constraints to GPs. Let f be the function
modeled by a GP and L be a linear operator. The proposed
approach enables the posterior prediction to account for
inequality constraints defined as a(z) ≤ Lf(z) ≤ b(z).
The derivative operator is a linear operator. Hence, to ap-
ply monotonicity, this condition can be seen as the partial
derivative of the model of f with respect to t is positive. For
this condition to hold, Agrell (2019) proposed to define a
set of virtual observation locations Zv = {z1v, . . . , zsv}
where the condition is guaranteed to be satisfied.

The posterior predictive distribution of the monotonic GP is
f∗|Y,C, which is the distribution of f∗ = f(z∗) for some
new inputs z∗ = [x∗, t∗], conditioned on the observed data
Y and the constraint C defined as a(Zv) ≤ Lf(Zv) ≤
b(Zv). The final derivation of the predictive distribution,
provided by Agrell (2019), is defined as follows:

f∗|Y,C ∼ N (µ∗ +A(C− Lµv) +B(Y − µ),Σ)

C = C̃|Y,C ∼ T N (Lµv +A1(Y − µ), B1, a(Z
v), b(Zv))

where T N (·, ·, a, b) is the truncated Gaussian N (·, ·) con-
ditioned on the hyper-rectangle [a1, b1] × · · · × [ak, bk],
µv = m(Zv), µ∗ = m(z∗), µ = m(Z). The definition of
the matrices A,B,A1, B1 and Σ can be found in Appendix
A. The computation of the posterior of the monotonic GP
requires the definition of derivatives of the kernel function.
In this work we consider monotonicity with respect to one
dimension t. Therefore, we need the first order derivatives.

In cases where the function is known to be exponentially
decaying (e.g., neural network training), the kernel over
dimension t should be defined as an ED kernel. However,
in cases where the shape of learning curve is monotonic
but not necessarily exponentially decaying (e.g., cumulative
and average reward for RL models), an RBF kernel with
monotonicity over dimension t should be used. Leverag-
ing monotonicity in the modeling allows flexibility and the
generalization of our approach for several types of ILs. We
provide the derivatives for both kernels and the details about
the specification of the location of virtual observations with
each kernel in Appendix A and in our implementation. We
additionally provide insights about the efficient posterior
computation of the monotonic GP. For more details, we
refer the reader to Agrell (2019).

Conservative Stopping Estimation Previously proposed
BO approaches for HPO consider a maximum number of
epoch tmax at which the objective function will reach its
best value. However, in practice, different HPs do not need
to necessarily run to the maximum number of epochs to
reach their optimal value as the objective stops improving
(reaches a plateau) Kaplan et al. (2020). Therefore, running
them for longer epochs can be a waste of limited resource
budget with diminishing returns. Existing work proposed
early stopping of HPs based on their performance compared
to previously evaluated data points (Li et al., 2017; Dai
et al., 2019; Swersky et al., 2014) or based on the expected
improvement per unit cost (Nguyen et al., 2020) which leads
to the selection of very low number of epoch due to the high
cost of tmax. We propose to define a conservative stopping
toptx for each HP x as the smallest number of epoch needed
to reach the best function value at x. Our approach enables
the estimation of when a learner becomes ϵ-close to its
asymptotic value. To the best of our knowledge, no previous
work used the estimation of the function values at another
location to reason about the HP selection and optimal early
termination before reaching that epoch. The problem of
estimating toptx for a HP x based on the GP posterior is
defined as below and efficiently solved using binary search.

toptx ← argmint∈[tmin,tmax] t (8)
s.t µ(x, tmax)− µ(x, t) ≤ ϵ

Cost Modeling The cost prediction is an important com-
ponent in our algorithm. Therefore, it is important to have
an accurate and informative model for the cost. We pro-
pose to model the cost by an independent Gaussian pro-
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cess GPc that captures two important characteristics: 1)
The cost of the training of different HPs for the same
number of iterations t can vary significantly. 2) The cost
of training of a fixed HP x increases linearly with the
number epochs t. We propose to use the product kernel
Kc([x, t], [x

′, t′]) = Kcx(x,x
′) × Kct(t, t

′) , where Kcx

is an RBF kernel over x and Kct is a linear kernel over
t. Note that previous work assumes the cost is same for
different HP x and linear with respect to t. This might lead
to an inaccurate estimation of the cost especially if some of
the dimensions of x represent architectural variables (e.g
number of layers, number of hidden nodes etc.)

3.4 Budget-Aware Planning For Iterative Learners
(BAPI)

In this section, we describe the overall budget-aware non-
myopic BO algorithm for HPO of iterative learners. The
main idea is to use the reparametrized iterative greedy q-EI
proposed in Wilson et al. (2018) to approximate the optimal
sequence of selections with respect to the available budget.
q-EI will have an adaptive batch size with budget exhaustion
as a stopping criteria. We propose to adaptively add inputs
to the horizon based on their expected improvement at their
conservative stopping iteration without normalizing the util-
ity function by the cost during the optimization. The details
of execution can be found in the Non-Myopic Optimization
(NMO) function described in Algorithm 4. This function
returns a set of inputs representing the optimal horizon Z∗.

Input Selection From Horizon Given the set of inputs
Z∗, how to select the next input to evaluate? We propose
to select the input with the highest immediate expected
reward per unit cost at its conservative stopping iteration.
We note here that this is different from optimizing the utility
function per unit cost and the issue of selecting low non-
informative number of iterations would not arise. In this
case, the number of iterations is already fixed to an optimal
high value for each input x∗.

Early Termination After selecting the next candidate
HP to evaluate, the function evaluation will return a yt
value after each epoch. Based on the function values of the
initial p epochs, we can re-estimate the final performance
of x and its new conservative stopping toptnx . The algorithm
makes a decision to continue model training with the current
HP or early-stop it. If both 1. µ(x, toptnx ) ≤ ybest, and
2. σ(x, toptnx ) ≤ τσ(x, t), then model training will be
early stopped in epoch t, otherwise, the conditions will be
verified again after running another set of p epochs or when
it reaches the estimated toptnx , whichever happens earlier.
The first condition will recommend stopping the training
if the predicted function value at toptnx will not be higher
than the current best value achieved across all evaluated HP.
The second condition recommends the early stopping only
if the uncertainty of the model about the predicted function
value at the estimated conservative stopping is no more than

a factor τ ≥ 1 of the uncertainty of the model about the last
evaluated epoch. In another word, condition 2 will prevent
the early stopping if the model is not certain enough about
its prediction of the function value at toptnx . Algorithm 5
summarizes evaluation with early termination.

Algorithm 2 BAPI
Input: X ; f(x, t);c(x, t); tmax; BT

Output:x∗, toptx∗ , f(x∗, toptx∗ )

1: Initialize with N0 initial points
2: Fit the models: GPf , GPc

3: Br ← BT −
∑N0

i=0 c(xi, txi)
4: while Br > 0 do
5: # Find the budget constrained horizon and their correspond-

ing conservative stopping
Z∗ :{(x1, t

opt
x1

) · · · (xr, t
opt
xr

)} ← NMO(GPf , GPc, Br)
6: # Select one point for evaluation

x, toptx ← argmaxZ∗
EI(xi,t

opt
xi

)

µc(xi,t
opt
xi

)

7: y,yc ← Evaluate(f(x, toptx ))
8: Aggregate data: D ← D ∪ {(x,y,yc)}
9: Update Models: GPf , GPc

10: Br ← Br − c(x, tx)

Algorithm 3 Conservative Stopping Estimation
ConservativeStopping(GPf ,x)

1: toptx ← argmint∈[tmin,tmax] t
2: s.t µ(x, tmax)− µ(x, t) < ϵ
3: Return toptx

Algorithm 4 Adaptive Horizon q-EI AFO
NMO(GPf , GPc, Br)

1: Z∗ = {}
2: while Br > 0 do
3: # Add x based on the highest number of epochs

x← argmaxx∈X q-EI(x, tmax)
4: # Estimate the conservative stopping for x

toptx ← ConservativeStopping(GPf ,x)
5: Deduct estimate cost at toptx from budget

Br ← Br − µc(x, t
opt
x )

6: Z∗ = Z∗ ∪ {(x, toptx }
7: Return Z∗

Algorithm 5 Evaluate Function

Evaluate(f(x, toptx ))

1: t← p
2: while t ≤ tmax and Continue do
3: y = f(x, t) ; yc = c(x, t)
4: toptnx = ConservativeStopping(GPf ,x)
5: if µ(x, toptnx ) ≤ ybest and σ(x, toptnx ) ≤ τσ(x, t):

Continue← False
6: else:

Continue← True
t← min(toptnx , t+ p)

7: Return y,yc

Data Points Selection From Learning Curve Iterative
machine learning models evaluated with an input configu-
ration x∗ and a number of epochs t∗ return a vector of t∗

function values and a vector of t∗ cost values associated
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with each iteration t ≤ t∗. Most of existing work, do not
utilize these data points and use only the function value at
the last epoch. However, leveraging part of this data can
help the learning of the monotonic shape of the objective
function and result in a more accurate extrapolation. We
select, from each curve, the points with the highest model
uncertainty(variance) following the approach proposed in
Nguyen et al. (2020).

Practical Considerations Considering a perfect model
of the function, querying a complete lookahead horizon in
each iteration would be optimal. However, as pointed out
by previous work on non-myopic BO (Jiang et al., 2020a;
Lee et al., 2021, 2020a; Yue and Kontar, 2020), the model is
usually uncertain about long term predictions. Consequently
querying a long horizon can hurt the optimization by evalu-
ating misleading points and causing a higher computational
cost. Therefore, we follow previous work (Astudillo et al.,
2021) and set a maximum horizon length as an additional
stopping condition to the size of the horizon. Given this mit-
igation, we expect that the horizon adaptation to the budget
to occurs depending on the remaining budget. Additionally,
selected points would always be within the limits of the
remaining budget.

Cost of a Restarted Hyperparameter In iterative learn-
ing, the optimization algorithm might select a configuration
that was previously evaluated for a lower number of epochs.
However, the cost will always be estimated with respect
to the evaluation iteration. For an accurate optimization,
our algorithm handles this special case by assigning a cost
that only reflect the additional epochs to be run. This is ac-
counted for in the non-myopic optimization function, input
selection, and budget deduction after function evaluation.

4 RELATED WORK

Our problem setting and the proposed BAPI solution have
many intersections with previous work in hyperparameter
optimization, Bayesian optimization, non-myopic optimiza-
tion, and sequential decision making which we attempt to
summarize here.

HPO/BO For Iterative Learning Domhan et al. (2015)
proposed learning curve prediction in order to allow early
termination of non-promising candidates. This approach
utilizes approximate Bayesian inference w.r.t. a pre-defined
finite set of learning curve models to perform extrapola-
tion to a fixed horizon. Klein et al. (2017b) built on this
method by showing Bayesian neural networks could be
used for learning curve prediction. Swersky et al. (2014)
proposed a hierarchical GP model for HP tuning that in-
cludes learning curve prediction upon which decisions for
exploration (freeze current and test new candidate) and ex-
ploitation (thaw current and continue learning) are based.
More recently, Dai et al. (2019) proposed an optimal stop-
ping procedure for increasing the sample efficiency of BO

and showed competitive performance with Domhan et al.
(2015) for iterative learners. While this procedure obtains
theoretical guarantees, it must generate a sample of large
size from the GP in order to make a reliable decision. More-
over, solving for the stopping rule requires an approximate
backward induction technique after each epoch. Our pro-
posal for early termination is conceptually simpler and far
less computationally demanding.

The method of Lu et al. (2019) considers a finite set of
learners modeled with freeze/thaw (Swersky et al., 2014)
selecting between exploration and exploitation with a heuris-
tic ϵ-greedy rule. Wu et al. (2020) extend the knowledge
gradient acquisition function (Frazier et al., 2008) to trace-
valued observations that occur in multi-fidelity applications.
BOIL (Nguyen et al., 2020) also considers trace-valued ob-
servations, but compresses the trace via learned weighted
sum as well as adding carefully-chosen intermediate trace
values as observations. The setting for BOIL includes rein-
forcement learning problems with reward functions taking
non-exponentially decaying shapes. Our BAPI approach
uses a product kernel to jointly model correlations between
HPs and epochs within the iterative training procedure.

Kandasamy et al. (2017) developed BOCA, an extension of
UCB to general multi-fidelity BO setting.

We note that there exist orthogonal approaches that focus on
the ability to extrapolate responses based on smaller datasets
where the cost is varied based on the size or fraction of the
dataset used for training. These methods propose algorithms
based on multi-task BO (Swersky et al., 2013; Klein et al.,
2017a) and importance sampling (Ariafar et al., 2021).

Non-Myopic Policies While there were early attempts at
non-myopic selection for length-two horizons (e.g., Os-
borne, 2010), most work on proposing practical methods for
longer horizons is very recent. Wu and Frazier (2019) devel-
oped gradient estimates for two-step EI admitting gradient-
based search for the optimal two-step selection. Lam et al.
(2016) utilized a Markov decision process (MDP) formalism
and performed rollouts with a predefined base policy to esti-
mate the value function. GLASSES (González et al., 2016b)
approximates the solution for the optimal non-myopic se-
lection by a combination of approximate integration given
future selections and approximating the future selections
by a diversity-promoting batch selection procedure from
González et al. (2016a)).

Closely-related to our work is BINOCULARS Jiang et al.
(2020a) which was discussed in Section 2. The major differ-
ences to our proposed BAPI approach are that (a) BINOCU-
LARS uses joint batch expected improvement q-EI Wang
et al. (2016a) while we use the sequential greedy selection
Wilson et al. (2018), (b) BINOCULARS uses a fixed hori-
zon that is budget agnostic while we use a budget-adaptive
horizon, and (c) BINOCULARS does not take cost into ac-
count when returning its non-myopic selected query while
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our method does factor cost in. Lee et al. (2021) consider
the general cost-aware setting and frame the problem as a
constrained MDP. Their method approximately solves the
intractable problem by performing rollouts of a base policy
that does not adapt the horizon to the budget. Moreover, it’s
base policy is normalized by cost leading to a bias towards
low-cost queries. Building upon the efficient one-shot multi-
step tree approach of Jiang et al. (2020b), Astudillo et al.
(2021) introduce cost-modeling and develop a budget-aware
method. However, this method’s adaptation to the horizon
is post-hoc in the sense that the horizon has to be fixed in
advance and cannot be adaptive to the remaining budget due
to utility function formulation and optimization. This leads
to an unnecessary higher dimensional optimization and a
manual zero padding technique to handle cases where the
selected horizon violates the remaining budget.

Bandit Algorithms Given that the objective in (1) is equiv-
alent to optimizing for simple regret, there is a large amount
of relevant work within the multi-armed bandits literature.
Audibert et al. (2010) developed the upper confidence bound
exploration (UCB-E) policy, for the best arm identification
(BAI) in the budgeted setting by providing conditions under
which simple regret decays exponentially with increasing
budget. Hoffman et al. (2014) considered linear bandits and
proposed the BayesGap algorithm which is an exploration
policy within budget constraints. Later, Jamieson and Tal-
walkar (2016) analyzed successive halving as an instance of
non-stochastic multi-armed bandits in the setting where the
budget is greater than the number of learners. HyperBand
(Li et al., 2017) is an implementation of successive halving
running this algorithm in multiple successive rounds and is
a very general algorithm for HPO including non-iterative
learners. Most recently, BOHB (Falkner et al., 2018) modi-
fied HyperBand by utilizing BO within the successive halv-
ing procedure which guides the selection process for the
learners that will be trained for longer budgets.

5 EXPERIMENTS AND RESULTS

In this section, we first provide details about our experi-
mental setup. Next, we evaluate the performance of BAPI
approach and compare it to several state-of-the-art baselines.
Baselines. We evaluate state-of-the-art baselines, described

in the related work: from cost-aware non-myopic BO liter-
ature BMS-EI2 (Astudillo et al., 2021), from non-myopic
BO BINOCULARS (BINOC) (Jiang et al., 2020a)3and
MS-EI (Jiang et al., 2020b)3, from general BO literature
EI (Jones et al., 1998), from HPO for iterative learners lit-
erature BOHB (Falkner et al., 2018)4 and HyperBand (HB)
(Li et al., 2017)4, from multi-fidelity BO for HPO litera-
ture BOIL Nguyen et al. (2020)5.Each baseline implemen-
tation uses settings recommended by the original authors
2 github.com/RaulAstudillo06/BudgetedBO
3 github.com/shalijiang/bo/tree/main/enbo
4 github.com/automl/HpBandSter 5 github.com/ntienvu/BOIL

and publicly available code. We also evaluated GLASSES
(González et al., 2016b)3 and random search. However,
both of them performed always poorly when compared to
all other baselines. Therefore, for clarity of the figures, we
do no report them. We note that previous work on non-
myopic BO do not include HB and BOHB as baselines but
given their competitive performance in iterative learning set-
tings, we recommend they become standard in future work
in this problem setting.

Experimental Setup All experiments were averaged over
10 runs with different random seeds. The code of our BAPI
implementation is publicly available6. We considered sev-
eral state-of-the-art HPO benchmarks: 1) Logistic regres-
sion with MNIST dataset; 2) Multi-layer perceptron with
Olivetti dataset; 3) Multi-layer perceptron with Covtype
dataset ; 4) Fully connected network with MNIST dataset
with two different tmax setups 5) CNN on image dataset CI-
FAR10 with two different tmax setups; 6) CNN on SVHN
dataset with two different tmax setups; 7) Resnet on CI-
FAR100 dataset; 8) A Dueling DQN (DDQN) agent in
the CartPole-v0 environment; 9) An Advantage Actor Critic
(A2C) agent in the Reacher-v2 environment; and 10) An Ad-
vantage Actor Critic (A2C) agent in the InvertedPendulum-
v2 environment. Full experimental details are listed in Ap-
pendix B. We report the validation error as the evaluation
metric for consistency across datasets. We evaluate two
different variants of our algorithm: BAPI-4 and BAPI-8,
where the maximum horizon is set to 4 and 8 respectively.
BAPI-8 was evaluated on two benchmarks (LR with MNIST
and MLP with Olivetti) to demonstrate the effect of varying
the maximum horizon on the performance. The uncertainty
threshold τ is set to 2 for all experiments. The parameter
p is set to 20% of the maximum number of epochs for all
experiments except for CNN-SVHN, where it is set to 10%
due to the high cost of each epoch. We select at most three
data points from each learning curve.
Setting ϵ For experiments 1 to 7, ϵ is set to 0.01 (inter-
preted as at most 1% degradation in accuracy) except for
CNN-SVHN, where it is set to 0.005 due the small varia-
tion in the validation error. In the case of a loss/reward
function where ϵ cannot be easily set (e.g experiments
8 to 10), it is automatically set as the smallest degrada-
tion in the function value at tmax in the evaluated data:
ϵ = min{f(x, tmax)− f(x, t) ∀(x, t) ∈ D}. In general, ϵ
is not required to be fixed. A strategy for updating it, that
balances exploration and exploitation (e.g., a wider value
and therefore earlier stopping in the beginning), can be set
by the practitioner and interfaced with our code easily. We
provide additional results and discussion in Appendix B.

Results and Discussion Figure 2 shows the results (best
validation error as a function of wall-clock time) of all meth-
ods on four HPO tasks. We make the following observations.
1) BAPI identifies better candidates with less total cost than

6 github.com/belakaria/BAPI
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Figure 2: Results of validation error ± standard error for different baselines and our proposed approach on multiple iterative
learners against training budget.

Table 1: Average ranking of BAPI and baseline methods across all experiments.

Algorithm BAPI HB BOHB EI MS-EI BINOC BOIL BMS-EI

Average ranking 2.9 ±0.51 6.1±0.51 3.6±0.67 4.9±0.53 3.4±0.50 4.3±0.38 6.3±0.63 4.2±0.73

the baselines due to its ability to plan selections while ac-
counting for budget and early terminating non-promising
candidates. 2) A longer horizon for BAPI was tested on
the relatively cheaper experiments LR MNIST and MLP
Olivetti datasets and shows some performance degradation
(LR MNIST) and some improvement (MLP Olivetti) sug-
gesting that optimal horizon length is problem-dependent
but clearly helpful in some cases. 3) BMS-EI had an unsta-
ble performance and was not able to uncover good candidate
in several experiments. We speculate that it is due to the
approach being conservative about which points would sat-
isfy the remaining horizon constraint. 4) HB and BOHB
can identify good candidates faster than most algorithms in
the beginning, mainly because their strategy forces initial
evaluations to be low-epoch trained runs. In the mid-range,
their performance slows down, perhaps a consequence of
their exploitation behavior and reliability on successive halv-
ing which might limit their extrapolation ability and stop
promising candidates very early. Similar analysis has been
reported in previous work (Dai et al., 2019). With longer
search times, BOHB can catch up. However, both BOHB
and HB performance degrades significantly in RL settings
since successive halving cannot extrapolate accurately when
the function might take a sigmoid or logit shape. 5) BINOC-
ULARS and MS-EI, are slower to uncover promising candi-
dates due to spending more budget in evaluating all selected
candidates to the maximum number of epochs. However,
they both arrive at a competitive performance towards the
end that can be attributed to their planning capabilities. 6)
BOIL is worse than most baselines across all benchmarks.
As discussed in Section 1, BOIL selects the next candidates
by weighting EI by the cost and might suffer from the cost
miscalibration pathology. Similar observations were made
in Astudillo et al. (2021).

Additional results included in Appendix B show that BAPI
becomes less competitive when the total budget is signifi-
cantly increased, but also provides results suggesting that
performance loss can be brought back by adjusting the prun-
ing behavior, a topic of on-going work.

We compared our approach to a wide range of baselines on
13 different experiments. All the baselines had inconsistent
performance across the different experiments while our al-
gorithm performed fairly well across all of them. The gain
was significant in the case of limited budget, which is the
desired behavior since a planning approach is more needed
when the budget is limited. The gain was less significant in
experiments with higher budgets but our approach was still
competitive. Therefore, in Table 1, we provide the average
ranking of each algorithm over all experiments based on
their final performance.

6 SUMMARY

This paper considered the problem of hyperparameter opti-
mization (HPO) for iterative learners under a constrained
cost budget. The proposed BAPI approach addressed gaps in
prior work including modeling of structured responses and
mis-calibration between response and cost models leading to
biased search. More importantly, our planning-based BAPI
approach allows for non-myopic candidate selection over
horizons adaptive to the budget. Combined with subset se-
lection and early termination procedures, our experimental
evaluation on a variety of HPO benchmarks shows BAPI’s
efficacy over previous methods in finding high-performing
candidates with less cost budget.
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Supplementary Materials

A Details of the monotonic Gaussian process

The posterior predictive distribution of the monotonic GP is f∗|Y,C which is the distribution of f∗ = f(z∗) for some new
inputs z∗ = [x∗, t∗], conditioned on the observed data Y and the constraint C defined as a(Zv) ≤ Lf(Zv) ≤ b(Zv). The
final derivation of the predictive distribution is defined as follow:

f∗|Y,C ∼ N (µ∗ +A(C− Lµv) +B(Y − µ),Σ) (9)

C = C̃|Y,C ∼ T N (Lµv +A1(Y − µ), B1, a(Z
v), b(Zv)) (10)

where T N (·, ·, a, b) is the truncated Gaussian N (·, ·) conditioned on the hyper-rectangle [a1, b1] × · · · × [ak, bk], µv =
m(Zv), µ∗ = m(z∗), µ = m(Z). The matricies A,B,A1, B1 and Σ are defined as follow:

A1 = (LKZv,X)(KZ,Z + σ2I)−1 (11)

A2 = Kz∗,Z(KZ,Z + σ2I)−1 (12)

B1 = LKZv,ZvLT + σ2
vI −A1KZ,ZvLT (13)

B2 = Kz∗,z∗ −A2KZ,z∗ (14)

B3 = Kz∗,ZvLT −A2KZ,ZvLT (15)

A = B3B
−1
1 (16)

B = A2 −AA1 (17)

Σ = B2 −ABT
3 (18)

Additionally, the probability that the unconstrained version of C falls within the constraint region, p(C|Y ), is defined as
follow:

p(C|Y ) = p (a(Zv) ≤ N (Lµv +A1(Y − µ), B1) ≤ b(Zv)) (19)

and the unconstrained predictive distribution is

f∗|Y ∼ N (µ∗ +A2(Y − µ), B2).

Sampling from the posterior distribution with constraints has been a challenging task in previous work Riihimäki and
Vehtari (2010). However, Agrell (2019) proposed to use a new method based on simulation via minimax tilting proposed by
Botev (2017). This sampling approach was proposed for high-dimensional exact sampling and was shown to efficient and
fast compared to previous approaches like rejection sampling and Gibb sampling Kotecha and Djuric (1999).

The specification of the location of virtual observations Zv can have an important effect on the efficiency and scalability
of the monotonic Gaussian process. Agrell (2019) proposed to have a suboptimization problem to find the optimal location.
The idea is to iteratively place virtual observation locations where the probability that the constraint holds is low. However,
this optimization becomes suboptimal when the dimension of the problem grows. Given that our function is monotonic with
respect to only one dimension, we chose to define linearly spaced locations with respect to dimension t. The number of
points is defined based on the kernel:
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• ED kernel: The virtual observations locations will mainly enforce the direction of the monotonicity, therefore adding
only two locations is sufficient.

• RBF Kernel: The number and location of virtual observations depends on the smoothness (lengthscale) of the kernel.
The distance between every two virtual observations should be smaller than the lengthscale in order to maintain the
monotonicity and avoid any fluctuations.

For more details about the the efficient posterior computation of the monotonic GP we refer the reader to Agrell (2019).

kernels derivatives

The computation of the posterior of the monotonic Gaussian process requires the definition of derivatives of the kernel
function. In this work we consider monotonicity with respect to one dimension t. Therefore, kernel derivatives would be
defined as follow

∂

∂t
K([x, t], [x′, t′]) = Kx(x, x

′)× ∂

∂t
Kt(t, t

′) (20)

∂

∂t∂t′
K([x, t], [x′, t′]) = Kx(x, x

′)× ∂

∂t∂t′
Kt(t, t

′) (21)

In this work t is a single dimensional variables. However, for sake of generality , we provide the kernel derivatives for
the general case where t can be multi-dimensional. We define dt as the t. In our experiments, we focus mainly on cases
where the kernel over dimension t is an ED kernel. However, Our proposed method is not restrictive. In cases where the
learning curve is not exponentially decaying, an RBF kernel with monotonicity over dimension t can be used. We provide
the derivatives for both kernels
Exponential Decay Kernel

Kt(t, t
′) = w + (

t

β
+

t′

β
+ 1)−α (22)

∂

∂t′j
Kt(t, t

′) = − α

βj
(
t

β
+

t′

β
+ 1)−α−1 (23)

∂

∂tj∂t′j
Kt(t, t

′) =
α(α+ 1)

β2
j

(
t

β
+

t′

β
+ 1)−α−2 (24)

∂

∂ti∂t′j
Kt(t, t

′) =
α(α+ 1)

βiβj
(
t

β
+

t′

β
+ 1)−α−2 (25)

Radial basis function Kernel

Kt(t, t
′) = exp(

−1
2

dt∑
i=1

(ti − t′i)
2

li
) (26)

∂

∂t′j
Kt(t, t

′) =
tj − t′j

l2j
Kt(t, t

′) (27)

∂

∂tj∂t′j
Kt(t, t

′) =
1

l2j
(1−

tj − t′j
l2j

)Kt(t, t
′) (28)

∂

∂ti∂t′j
Kt(t, t

′) = −
tj − t′j

l2j

ti − t′i
l2i

Kt(t, t
′) (29)

B Experimental Setup and Additional Results

B.1 Experimental Setup Details

Logistic Regression with MNIST:
We train the logistic regression classifier on the MNIST image dataset LeCun et al. (1998). The dataset consists of 70,000
images categorized into 10 classes. We use 80% for training and 10% for validation. We optimize the model over three
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hyperparameter: the learning rate ∈ [10−6, 1], the L2 regularization ∈ [0, 1] and the batch size ∈ [20, 2000]. We apply a log
transformation to the learning rate and batch size. We set the maximum number of epochs to 100.

MLP with Olivetti and Covtype:
We train a multi-layer perceptron with two fully connected layers on the Olivetti dataset Samaria and Harter (1994) and
Covtype dataset. We use 10% of the data for the validation set. We optimize four hyperparameters learning rate ∈ [10−6, 1],
batch size ∈ [8, 128] for Olivetti and ∈ [32, 1024] for Covtype , the L2 regularization ∈ [10−7, 10−3] and the momentum
∈ [0.1, 0.9]. We apply a log transformation to the learning rate, the batch size and the L2 regularization. We set the
maximum number of epochs to 100. The experiment with Covtype dataset was run on Tesla V100 GPU machine and the
experiment on Olivetti was run on a CPU machine with Intel(R) Core(TM) i9-7960X CPU 2.80GHz.

FCNET MNIST:
We train a fully connected network with on the MNIST dataset. We use 50,000 images for the training set and 10,000
images for the validation set. We optimize six hyperparameters learning rate ∈ [10−6, 0.1], batch size ∈ [32, 1024], , the
L2 regularization ∈ [10−7, 10−3], the momentum ∈ [0.1, 0.9], the number of hidden layers ∈ [1, 4] and the size of hidden
layers ∈ [100, 1000] We apply a log transformation to the learning rate and the batch size. We set evaluate all algorithms on
two different setups where in figure 3 we report the results with the maximum number of epochs set to tmax = 25 and in
figure 4 we report the results with the maximum number of epochs set to tmax = 50. The total wallclock time budget is
extended accordingly. These experiments were run on Tesla V100 GPU machine.

CNN with CIFAR10 and SVHN:
We train a CNN model on two image datasets CIFAR10 (Krizhevsky et al., 2009) and the Street View House Numbers
(SVHN) (Netzer et al., 2011). For CIFAR10 we use 40,000 image for the training set and 10,000 for the validations set.
For SVHN 63,257 image for the training set and 10,000 for the validations set. We optimize six hyperparameters: the
batch size∈ [32, 1024], the learning rate∈ [10−6, 0.1], the momentum∈ [0.1, 0.9], the L2 regularization∈ [10−7, 10−3], the
number of convolutional filters∈ [32, 256], and the number of dense units ∈ [64, 512]. We apply a log transformation to the
learning rate, the batch size. We set evaluate all algorithms on two different setups where in figure 2 we report the results
with the maximum number of epochs set to tmax = 25 and in figure 4 we report the results with the maximum number of
epochs set to tmax = 50. The total wallclock time budget is extended accordingly. These experiments were run on Tesla
P100 GPU machine.

Resnet with CIFAR100:
We train a ResNet model on a the image dataset CIFAR100 (Krizhevsky et al., 2009). We employ 40,000 images for the
training set and 10,000 for the validations set. We optimize six hyperparameters: the batch size ∈ [32, 512], the learning
rate ∈ [1e− 6, 1e− 1], the momentum ∈ [0.1, 0.9], the L2 regularization∈ [1e− 7, 1e− 3], the number of convolutional
filters∈ [32, 256], and the number of layers ∈ [10, 18]. We report the results with the maximum number of epochs set to
tmax = 100 in Figure 3. The total wall-clock time budget is extended accordingly. These experiments were run on a Tesla
V100 GPU machine.

DQN CartPole:
We train a Dueling DQN (DDQN) (Wang et al., 2016b) agent in the CartPole-v0 environment. We employ the same setting
proposed by Nguyen et al. (2020). We optimize two hyperparameters: the discount factor ∈ [0.8, 1] and the learning rate for
the model ∈ [1e− 6, 0.01]. We vary the number of episodes from 200 to 500. We map the episodes into epochs with each
three episodes equivalent to one epoch, resulting in a maximum number of epochs tmax = 100. We report the results in
Figure 4. The total wall-clock time budget is extended accordingly. These experiments were run on a 1 core of a Xeon CPU
machine.

A2C Reacher:
We train a Advantage Actor Critic (A2C) (Mnih et al., 2016) agent in the Reacher-v2 environment. We employ the same
setting proposed by Nguyen et al. (2020). We optimize three hyperparameters: the discount factor ∈ [0.8, 1], the learning
rate for the actor ∈ [1e− 6, 0.01], and the learning rate for the critic ∈ [1e− 6, 0.01]. We vary the number of episodes from
200 to 500. We map the episodes into epochs with each three episodes equivalent to one epoch, resulting in a maximum
number of epochs tmax = 100. We report the results in Figure 4. The total wall-clock time budget is extended accordingly.
These experiments were run on a 1 core of a Xeon CPU machine.

A2C Inverted Pendulum:
We train a Advantage Actor Critic (A2C) (Mnih et al., 2016) agent in the InvertedPendulum-v2 environment. We employ
the same setting proposed by Nguyen et al. (2020). We optimize three hyperparameters: the discount factor ∈ [0.8, 1], the
learning rate for the actor ∈ [1e − 6, 0.01], and the learning rate for the critic ∈ [1e − 6, 0.01]. We vary the number of
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episodes from 700 to 1500. We map the episodes into epochs with each eight episodes equivalent to one epoch, resulting in
a maximum number of epochs tmax = 100. We report the results in Figure 4. The total wall-clock time budget is extended
accordingly. These experiments were run on a 1 core of a Xeon CPU machine.

B.2 Additional Results and Discussion

We report additional results of our BAPI approach and existing baselines. We report an additional variant of our algorithm
that we name BAPI-4-L. We test the case where we do not add additional points from each curve but rather use only the last
epoch. We notice that this variant performs competitively and sometimes better than adding additional points to the curve.
This opens a discussion about the utility of leveraging additional data points from each curve especially while using the
monotonic GP. It is important to note that previous methods built for HPO frequently suggest using additional points. This
includes approaches proposed in the papers by Nguyen et al. (2020); Dai et al. (2019), and Wu et al. (2020). We plan to
work on investigating this problem further to develop a sound theoretical understanding of this phenomenon.

In Figure 4, we test all algorithms on settings with extended budget and a higher number of maximum epochs tmax = 50.
We observe that given a sufficiently large budget, most of the baselines converge to statistically comparable results. We
notice that HB, in most of the experiments, is able to reduce the validation error in the beginning but does not always
converge to good results. However, BOHB performance was remarkably stronger with a higher number of maximum epochs.
Increasing the maximum number of epoch enables BOHB to evaluate a larger number of configurations at a low budget and
therefore we can see a significant drop in the validation error earlier than all baselines. The results in Figure 3 and Figure
4 show that BAPI-4 becomes less competitive when the total budget is significantly increased and the maximum number
of epochs is higher, but also provides results suggesting that performance loss can be brought back by adjusting pruning
behavior in BAPI-4-L.

We report additional results for reinforcement learning experiments optimized with RBF kernel over the number of epochs.
Figure 4 shows the increasing discounted cumulative reward with discount factor 0.9 as suggested by Dai et al. (2019). The
results show that BAPI-4 performs better or similar to the baselines. We observe that HB and BOHB performance degrades
significantly with RL experiments most likely because they do not account for the possibility that the learning curve can be
flat in the middle. We additionally notice that BAPI-4-L performance is competitive but worse than BAPI-4. One candidate
reason for this behavior is due to the use of the RBF kernel, where adding intermediate points from the curve can be more
crucial to avoid fluctuations.

B.3 Ablation: GP without enforced monotonicity

We provide an ablation study where we run our algorithm using a GP without enforced monotonicity to show the benefit of
using a monotonic GP. The first figure illustrates differences in learning curve extrapolation between a GP with enforced
monotonicity and vanilla RBF GP. The RBF GP fluctuates further from evaluated points rendering extrapolation highly
uncertain (as well as inaccurate). Basing an estimation of optimal stopping time on this vanilla model directly affects
budgeted HP optimization performance as shown in the ablation study displayed in the second and third figures. These
show the performance of BAPI with a Non-Monotonic GP (BAPI-4-NM) is inferior to BAPI with monotonic GP. However,
BAPI-4-NM shows competitive performance that might be associated with its budget-aware planning strategy.
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Figure 3: Results of validation error ± standard error for different baselines and our proposed approach on ResNet with
tmax = 100, FCNET with tmax = 25 and MLP-Covtype with tmax = 100
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Figure 4: Results of validation error ± standard error for different baselines and our proposed approach on FCNET-MNIST,
CNN-CIFAR10 and CNN-SVHN with tmax = 50
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Figure 5: Results of Cumulative discounted reward ± standard error for different baselines and our proposed approach on
A2C Reacher, DQN Cartpole, and A2C Inverted Pendulum
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