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Abstract

A new portfolio selection strategy that adapts to
a continuous side-information sequence is pre-
sented, with a universal wealth guarantee against
a class of state-constant rebalanced portfolios
with respect to a state function that maps each
side-information symbol to a finite set of states.
In particular, given that a state function belongs
to a collection of functions of finite Natarajan
dimension, the proposed strategy is shown to
achieve, asymptotically to first order in the expo-
nent, the same wealth as the best state-constant
rebalanced portfolio with respect to the best state
function, chosen in hindsight from observed mar-
ket. This result can be viewed as an extension of
the seminal work of Cover and Ordentlich (1996)
that assumes a single-state function.

1 INTRODUCTION

We study the classical problem of portfolio selection, for-
mally defined as follows. Suppose that there exist m ≥ 2
stocks in a stock market and let xt = (xt1, . . . , xtm) ∈
R≥0 denote a market vector at time t, which encodes the
price relatives of stocks on that day. That is, for each stock
i ∈ [m] := {1, . . . ,m}, xti ≥ 0 is the ratio of the end price
to the start price on day t. Concretely, an investment strat-
egy a, at each day t, outputs a nonnegative weight vector
a(·|xt−1) ∈ ∆m−1 over the stocks [m], upon which the in-
vestor distributes her wealth accordingly; hereafter, we use
∆m−1 := {(θ1, . . . , θm) ∈ Rm

≥0 :
∑m

i=1 θi = 1} to denote
the standard m-simplex. That is, the multiplicative wealth
gain on day t (i.e., the ratio of wealth on day t to the wealth
on day t−1) is

∑
j∈[m] a(j|xt−1)xtj . Thus, her cumulative

wealth gain after n days becomes

Sn(a,x
n) :=

n∏
t=1

∑
j∈[m]

a(j |xt−1)xtj (1)
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=
∑

yn∈[m]n

( n∏
t=1

a(yt |xt−1)
)
x(yn), (2)

where x(yn) := x1y1
· · ·xnyn

denotes the wealth gain of
an extreme investment strategy that puts all money to the
stock yt on day t, and the second equality follows from the
distributive law.

An investor’s goal is to design an investment strategy
that maximizes her cumulative wealth Sn(a,x

n). For a
stock market where xn are i.i.d., it is known that the log-
optimal portfolio θ⋆ that maximizes E[log θTX] is asymp-
totically and competitively optimal. A similar result is
well-established for stationary ergodic markets, see, e.g.,
(Cover and Thomas, 2006, Chapter 16). The log-optimal
portfolio theory with stochastic market assumptions, how-
ever, is unrealistic, as modeling a stock market could be
harder than predicting the market.

As a more realistic alternative, Cover (1991) presented
universal portfolios that asymptotically achieve the best
wealth, to first order in the exponent, attained by a cer-
tain class of reference portfolios, with no statistical as-
sumptions on the stock market. For the reference class,
Cover considered a class of constant rebalanced portfolios
(CRPs), where a CRP parameterized by a weight vector
θ ∈ ∆m−1 is defined to redistribute its wealth according
to θ on every day. Note that CRPs are optimal in an i.i.d.
stock market when the distribution is known.

Later, Cover and Ordentlich (1996) extended the theory
to a setup where a discrete side information sequence is
causally available to an investor; in practice, the side in-
formation sequence can be thought to encode an external
information that may help predict the stock market. They
proposed a variation of Cover (1991)’s universal portfolios
that asymptotically achieves the best wealth attained by a
class of state-wise CRPs that may play different weight
vectors according to the side information.

Taking one step further, in this paper, we consider a more
challenging scenario in which a side information sequence
zn ∈ Zn is continuous-valued, which could even be the
(truncated) market history itself—as a simple motivating
example, note that whether or not the price relative of a
certain stock was high yesterday may give a hint as to the
price relative of that particular stock today. Thus, a ref-
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erence portfolio we aim to compete with is parameterized
by a state-wise CRP and a state function g : Z → [S] for
some S ≥ 2 and plays the state-wise CRP according to the
state sequence g(zn) := g(z1) . . . g(zn), where we assume
a class of state functions G from which g is drawn; note that
larger the G, the richer the reference class.

As the main result, we propose a new investment strategy
that asymptotically achieves the same wealth attained by
the best state-constant rebalanced portfolios with a state
function drawn from a class of functions of finite Natara-
jan dimension, under a mild regularity condition on the
stochasticity of the side information sequence Zn. The pro-
posed strategy is based on a generalization of a universal
probability assignment scheme recently proposed by Bhatt
and Kim (2021). Note that we assume no transaction costs
and that the investor’s actions do not affect the market.

The rest of the paper is organized as follows. In Section 2,
we review universal portfolios without and with discrete
side information, highlighting the connection between uni-
versal compression (or probability assignment) and univer-
sal portfolios. Section 3 described the proposed algorithm
and a crude approximation algorithm for its simulation, to-
gether with some concrete examples of side information
sequence. We present the proof of the main theorem in
Section 4. We conclude with discussing related work in
Section 5. All deferred proofs and technical discussions
can be found in Appendices.

2 A REVIEW OF UNIVERSAL
PORTFOLIO THEORY

2.1 Universal Portfolios

In his seminal work, Cover (1991) set an ambitious goal
that aims to design an investment strategy b to compete
with the best strategy in a class A of investment strategies
for any stock market xn, in the sense that it minimizes the
worst-case regret

Regportn (b,A) := sup
xn

sup
a∈A

log
Sn(a,x

n)

Sn(b,xn)
.

We note in passing that by writing the regret as

Regportn (b,A) = sup
xn

[
n∑

t=1

log
1

bT
t xt
− inf

a∈A

n∑
t=1

log
1

aTt xt

]
,

we can view portfolio selection as online learning with the
loss function ℓt(b) = − logbTx.

We call a portfolio b universal with respect to A if
Regportn (b,A) = o(n), i.e., in words, b achieves the same
exponential wealth growth rate attained by the best strat-
egy in A chosen in hindsight with observed market. Re-
markably, Cover constructed a universal portfolio with re-
spect to the class of CRPs and established its universality.

Cover’s theory is based on the key observation that compet-
ing against CRPs in portfolio optimization is equivalent to
competing against i.i.d. models in log-loss prediction prob-
lem. In what follows, we describe this relationship in a
general form beyond between i.i.d. probabilities and CRPs.

For any sequential probability assignment scheme
q(·|yt−1) ∈ ∆m−1 (where yi ∈ [m]) the probability
induced portfolio a = ϕ(p) is defined as

a(j |xt−1) :=

∑
yt−1∈[m]t−1 p(yt−1j)x(yt−1)∑
yt−1∈[m]t−1 p(yt−1)x(yt−1)

. (3)

Note that if p is an i.i.d. probability, i.e., p(·|yt−1) = θ ∈
∆m−1, it is easy to check from the expression (3) that the
corresponding portfolio ϕ(p) is the CRP parameterized by
θ; thus the class of CRPs ACRP is ϕ(P⊗), where we use
P⊗ to denote the class of i.i.d. probabilities.

A peculiar property of a probability induced portfolio a =
ϕ(p) is that the daily gain can be written as

∑
yt∈[m]

a(yt |xt−1)xt(yt) =

∑
yt p(yt)x(yt)∑

yt−1 p(yt−1)x(yt−1)
,

and thus by telescoping, the cumulative wealth gain (1) be-
comes

Sn(ϕ(p),x
n) =

∑
yn∈[m]n

p(yn)x(yn). (4)

In view of this expression, a probability induced portfo-
lio can be interpreted as a fund-of-funds, i.e., a mixture of
the extremal portfolios (x(yn) : yn ∈ [m]n) with weights
(p(yn) : yn ∈ [m]n).

As alluded to earlier, there is an intimate connection be-
tween the portfolio optimization with respect to a class of
probability induced portfolios and the corresponding log-
loss prediction problem. In the log-loss prediction problem,
given a class of probabilities P , we define the worst-case
regret of a probability q with respect to P as

Regprobn (q,P) = sup
yn

sup
p∈P

log
p(yn)

q(yn)
(5)

and call a probability q universal with respect to P if
Regprobn (q,P) = o(n).

Rather surprisingly, the portfolio selection is equivalent to
the log-loss prediction problem for the class of probability
induced portfolios.

Proposition 1. For any probability q and any class of prob-
ability assignments P , we have

Regportn (ϕ(q), ϕ(P)) = Regprobn (q,P).

Proof. Recall (4) that the cumulative wealth of the proba-
bility induced portfolio ϕ(p) is written as Sn(ϕ(p),x

n) =
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∑
yn p(yn)x(yn). First, note that

Regportn (ϕ(q), ϕ(P)) = sup
xn

sup
p∈P

log
Sn(ϕ(p),x

n)

Sn(ϕ(q),xn)

≥ max
yn∈[m]n

sup
p∈P

log
Sn(ϕ(p), ey1

. . . eyn
)

Sn(ϕ(q), ey1 . . . eyn)

(a)
= max

yn∈[m]n
sup
p∈P

log
p(yn)

q(yn)

= Regprobn (q,P),

where the equality (a) follows since
Sn(ϕ(p), ey1

. . . eyn
) = p(yn). Here, ei denotes the

i-th standard unit vector in Rm. To see the converse, note
that for any probability q, we can write

Regportn (ϕ(q), ϕ(P)) = sup
xn

sup
p∈P

log
Sn(ϕ(p),x

n)

Sn(ϕ(q),xn)

= sup
xn

sup
p∈P

log

∑
yn p(yn)x(yn)∑
yn q(yn)x(yn)

(b)

≤ sup
p∈P

max
yn

log
p(yn)

q(yn)

= Regprobn (q,P),

where (b) follows by Lemma 2 below.

Lemma 2 (Cover and Thomas, 2006, Lemma 16.7.1). Let
a1, . . . , an, b1, . . . , bn be nonnegative real numbers. Then,
defining 0/0 = 0, we have

∑n
i=1 ai∑n
i=1 bi

≤ maxj∈[n]
aj

bj
.

A direct implication of this statement is that if a probability
assignment q is universal with respect to P for the log-loss
prediction problem, then the induced portfolio ϕ(q) is uni-
versal with respect to ϕ(P). If we consider the class of
all i.i.d. probabilities P⊗, it is well known that the Laplace
probability assignment qL(yn) :=

∫
∆m−1 µ(θ)pθ(y

n) dθ
is universal for P⊗, where µ(θ) is the uniform density over
∆m−1 and pθ(y

n) is the i.i.d. probability with parameter
θ = (θ1, . . . , θm) ∈ ∆m−1, i.e., pθ(yn) :=

∏n
i=1 θyn

=∏m
j=1 θ

kj

j with ki = |{t : yt = i}|. We remark that while
the Krichevsky–Trofimov (KT) probability assignment qKT
is universal with an optimal constant in the regret, we con-
sider qL for simplicity throughout this paper.

Indeed, we have:
Lemma 3 (Cesa-Bianchi and Lugosi, 2006, Chapter 9).

sup
θ∈∆m−1

sup
yn∈[m]n

log
pθ(y

n)

qL(yn)
≤ m log n.

Hence, ϕ(qL) is a universal portfolio forACRP = ϕ(P⊗)—
this is Cover (1991)’s universal portfolio. The universal
portfolio ϕ(qL) can be expressed as

ϕ(qL)(·|xt−1) =

∫
∆m−1 θSt−1(θ,x

t−1)µ(θ) dθ∫
∆m−1 St−1(θ,xt−1)µ(θ) dθ

,

and is thus also known as the µ-weighted portfolio.

2.2 Universal Portfolios with Discrete Side
Information

Let us now consider a scenario at each time t, the in-
vestor is additionally given a discrete side information
wt ∈ [S] for some S ≥ 1 and chooses a portfolio
a(·|xt−1;wt) ∈ ∆m−1, as considered by Cover and Or-
dentlich (1996). Since the investor’s multiplicative wealth
gain is

∑
y∈[m] a(y|xt−1;wt)xt(y), similar to the no-side-

information setting, the cumulative wealth factor is

Sn(a,x
n;wn) :=

n∏
t=1

∑
j∈[m]

a(j |xt−1;wt)xtj (6)

and we define the worst-case regret as

Regportn (b,A;wn) := sup
xn

Regportn (b,A;xn, wn)

:= sup
xn

sup
a∈A

log
Sn(a,x

n;wn)

Sn(b,xn;wn)

for a classA of portfolios that also adapt to wn. Concretely,
as a natural extension of CRPs, we consider a class of
state-constant rebalanced portfolios (state-CRPs), denoted
as ACRP

S , where a state-CRP parameterized by a S-tuple
(θ1, . . . ,θS) ∈ (∆m−1)S plays a portfolio θwt

at each
time t.

Paralleling the connection between probability and portfo-
lio in the no-side-information case, we can also define a
probability induced portfolio in this setting. In the log-
loss prediction with a causal side information sequence, a
learner is asked to assign a probability p(·|yt−1;wt) over
[m] based on the causal information, i.e., past sequence
yt−1 and the side information sequence wt. Here, we
use p(yn∥wn) :=

∏n
t=1 p(yt|yt−1;wt) to denote the joint

probability over yn given wn. The probability induced
portfolio a = ϕ(p) is then defined as

a(j |xt−1;wt) :=

∑
yt−1 p(yt−1j∥wt)x(yt−1)∑
yt−1 p(yt−1∥wt−1)x(yt−1)

, (7)

and as in the no-side information setting, we can write

Sn(ϕ(p),x
n;wn) =

∑
yn

p(yn∥wn)x(yn). (8)

For example, the class of S-state-CRPs ACRP
S is induced

by the class of all S-state i.i.d. probabilities P⊗
S , i.e.,

ACRP
S = ϕ(P⊗

S ). To see this, note that every S-state-
CRP parameterized by θ1:S = (θ1, . . . ,θS) is the portfo-
lio induced by the state-wise i.i.d. probability assignment
pθ1:S

(yn∥wn) :=
∏n

t=1 pθwt
(yt).

Similar to Proposition 1, portfolio optimization with side
information with respect to a class of probability induced
portfolios is equivalent to the corresponding log-loss pre-
diction problem.
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Proposition 4. For any probability assignment q and any
class of probability assignment schemes P with side infor-
mation sequence wn, we have

Regportn (ϕ(q), ϕ(P);wn) = Regprobn (q,P;wn),

where we define

Regprobn (q,P;wn) := sup
p∈P

max
yn

log
p(yn∥wn)

q(yn∥wn)
.

The proof can be found in Appendix B.1. Note that for the
class of S-state-wise i.i.d. distributions P⊗

S , the state-wise
extension of the Laplace probability assignment qL;S that
assigns

qL;S(y
n∥wn) :=

S∏
s=1

qL(y
n(s;wn)), (9)

where yn(s;wn) = (yi : wi = s, i ∈ [n]), is universal, and
so ϕ(qL;S) is universal for ACRP

S = ϕ(P⊗
S )—this is Cover

and Ordentlich (1996)’s universal portfolio.

3 MAIN RESULTS

3.1 Universal Portfolios with Continuous Side
Information

We now consider our main setting where a side information
sequence zn ∈ Zn is continuous-valued. In this setup, for
example, one may take zt as a suffix of the market history
xt−1
t−k for some k ≥ 1. As described earlier in the introduc-

tion, we aim to design a universal portfolio that competes
against a class of state-CRPs that adapts to the sequence
g(z1) . . . g(zn), where g is a state function g : Z → [S],
assumed to belong to a class of functions G. Note that a
singleton G = {g} recovers the setting of Cover and Or-
dentlich (1996). Our goal is to design a portfolio that is
universal for a largest possible G with a minimal assump-
tion on the side information sequence. In this paper, we
will assume that the Natarajan dimension (Shalev-Shwartz
and Ben-David, 2014) of G, denoted as Ndim(G), is finite.
The Natarajan dimension can be seen as a generalization
of the classic VC dimension, when the function class under
consideration is not binary—a formal definition is provided
in Appendix A for completeness.

Leveraging the established connection between probabil-
ity and portfolio, we continue to view the class of state-
wise CRPs ACRP

S = ϕ(P⊗
S ) as the class of portfolios in-

duced by P⊗
S and describe the problem in an abstract set-

ting. Since the equivalence between probability assignment
and portfolio selection in Proposition 4 holds for any side
information, we can describe our goal with continuous side
information using the same language from Section 2.2 as
follows. Given a state function class G and a reference

class P of probability assignment schemes with discrete
side information, we define a class of probability assign-
ment schemes with continuous side information PG as a
collection of all probability assignment schemes induced
by P and G, where each probability assignment is parame-
terized by p ∈ P and g ∈ G and defined to be

pg(y
n∥zn) := p(yn∥g(zn)).

That is, continuous side information zn is quantized by a
function g and then a probability assignment scheme p with
discrete side information is deployed.

Precisely, we aim to design a strategy b that achieves a sub-
linear expected worst-case regret the expected worst-case
regret

Reg
port

n (b, ϕ(PG)) := E
[
Regportn (b, ϕ(PG);X

n, Zn)
]
,

for a general state function class G of bounded Natara-
jan dimension and P = P⊗

S , the class of S-state i.i.d.
probabilities. Here, we assume that the side information
sequence Zn is stochastic with distribution PZn which
may be arbitrarily correlated with the stock market Xn.
This stochastic assumption on Zn is necessitated to an-
alyze our empirical-covering-based algorithm under the
bounded Natarajan dimension condition in Theorem 5. In
the individual-sequence assumption on zn, it can be shown
that there exists a class of functions with bounded Natara-
jan dimension, where the equivalent log-loss prediction
problem with the function class suffers a linear regret lower
bound, which in turn implies that there exists no universal
portfolio under the conditions. We discuss the individual-
sequence setting in Appendix D in more detail.

From Proposition 4, since the expected regret is always up-
per bounded by the worst-case regret, a universal portfolio
can be readily derived as a plug-in strategy of a universal
probability with respect to a continuous side information
sequence with an unknown state function. In this paper,
we deploy an extended version of the universal probability
assignment q∗G proposed by Bhatt and Kim (2021), which
was designed for m = 2 and S = 2 with regret guaran-
tee established when yn is random and the side informa-
tion sequence Zn is i.i.d.. We will extend their scheme for
arbitrary m and S with a guarantee for individual yn and
non-i.i.d. Zn.

The Proposed Strategy. Firstly, for any ñ ∈ N and any
z̃ñ ∈ Z ñ, let {g̃1, . . . , g̃ℓ} ⊂ G be a minimal empirical cov-
ering of G with respect to z̃ñ, i.e., a set of functions such
that {g̃i(z̃ñ) : i ∈ [ℓ]} = {g(z̃ñ) : g ∈ G} with the mini-
mum possible size ℓ = ℓ(z̃ñ). Then, we define a mixture
probability assignment

qG;z̃ñ(yi∥zi) := 1

ℓ

ℓ∑
j=1

qL;S(y
i∥g̃j(zi)) (10)
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with respect to the empirical covering, and define the in-
duced sequential probability assignment

qG;z̃ñ(yi |yi−1; zi) :=
qG;z̃ñ(yi∥zi)

qG;z̃ñ(yi−1∥zi−1)
.

The proposed probability assignment q∗G is then defined
as follows. First, we split the n time steps into ⌈log2 n⌉
epochs: starting from j = 1, define the j-th epoch to con-
sist of the time steps 2j−1+1 ≤ i ≤ 2j . So, the first epoch
consists of z2, the second epoch consists of z43 , the third
epoch consists of z85 and so on. Then,

• For i = 1, q∗G(·|z1) := 1/m;

• For i ≥ 2, if 2j−1 + 1 ≤ i ≤ 2j , i.e., if the time step i
falls within the j-th epoch, then (qG;z2j−1 (∅∥∅) := 1)

q∗G(yi |yi−1; zi) :=
qG;z2j−1 (yi2j−1+1∥z

i
2j−1+1)

qG;z2j−1 (yi−1
2j−1+1∥z

i−1
2j−1+1)

.

Concretely, the probability assigned over yn given zn for
some n ∈ (2J−1, 2J ] is

q∗G(y
n∥zn) =

n∏
i=1

q∗G(yi |yi−1; zi)

= qG;∅(y1∥z1)qG;z1(y2∥z2)qG;z2(y43∥z43)
· · · qG;z2J−1 (yn2J−1+1∥z

n
2J−1+1). (11)

Finally, a sequential portfolio a = ϕ(q∗G) follows from (7).

3.2 Universality and Examples

To provide a performance guarantee of the proposed algo-
rithm for a class of S-state functions G, we impose a struc-
tural condition on the sequence Zn ∼ PZn as a stochastic
process. For any class of binary functions H ⊂ {Z →
{0, 1}}, define

ρH(Zn) := sup
h∈H

∣∣∣ n∑
i=1

(
h(Zi)− E[h(Zi)]

)∣∣∣, (12)

which is a well-studied quantity in the empirical process
theory. Specifically, we are interested in the binary function
class 1{G×G} := {hg,g′ : Z → {0, 1} : g, g′ ∈ G}, where
hg,g′(z) := 1{g(z)̸=g′(z)}. With a slight abuse of notation,
we use ρG×G(Z

n) to denote ρ1{G×G}(Z
n). We now state

our main result.
Theorem 5 (Asymptotic universality). For any collection
of functions G of finite Natarajan dimension and any sta-
tionary stochastic process Zn such that

E[ρG×G(Z
n)] = o

( n

log2 n

)
, (13)

the induced portfolio ϕ(q∗G) satisfies

lim
n→∞

1

n
Reg

port
(ϕ(q∗G), ϕ((P⊗

S )G)) = 0.

In Theorem 5, the condition E[ρG×G(Z
n)] ≪ n

log2 n
on

the marginal distribution PZn is crucial in ensuring con-
sistency of the portfolio ϕ(q∗G). We now provide a few
example cases of side information sequences Zn where
this requirement (13) is satisfied. In fact, by controlling
E[ρG×G(Z

n)] we can also bound the nonasymptotic regret
for these particularly interesting cases.

Example 6 (i.i.d. processes). When the joint distribution
PXn,Zn is such that Zn is i.i.d., it is well known that
E[ρH(Zn)] ≤ C

√
VCdim(H)n (for absolute constant C)

for any binary function class H and any distribution PZn ;
see Vershynin (2018, Theorem 8.3.23). Following the same
proof, it can be shown that E[ρG×G(Z

n)] ≤ C
√
(d logS)n

and consequently Reg
port

= Õ(
√
n); the only change to be

made in the proof is in the growth function—rather than(
en
d

)d
, the growth function in this case is upper bounded

by (S2n)2d by Natarajan’s Lemma; see Section 4.1.

Example 7 (β-mixing processes). The quantity E[ρH(Zn)]
has also been studied for classes beyond i.i.d. sequences—
in particular, Yu (1994) studied the case when Zn is a β-
mixing process, which we now define. For the sigma-fields
σl := σ(Z1, . . . , Zℓ) and σ′

l+k := σ(Zℓ+k, Zℓ+k+1, . . . , ),
we define βk := 1

2 sup{E |P (B|σl) − P (B)| : B ∈
σ′
ℓ+k, ℓ ≥ 1}. If βk = O(k−rβ ) as k → ∞, we call rβ

the β-mixing exponent and call the process Zn a β-mixing
process with mixing exponent rβ . Note that a larger rβ
guarantees faster mixing. We can restate the main result
of Yu (1994) for the case whenH has a finite VC dimension.
In what follows,

p−→ denotes convergence in probability.

Theorem 8 (Yu, 1994, Corollary 3.2 and Remark (i)). As-
sume that a class of binary functions H is of finite VC di-
mension. Let Zn be a stationary β-mixing process with
mixing exponent rβ ∈ (0, 1]. Then, for any given s ∈
(0, rβ), we have

ns/(1+s) ρH(Zn)

n

p−→ 0 as n→∞. (14)

This theorem immediately implies that 1
nReg

port p−→ 0,
i.e., ϕ(q∗G) is universal in probability. We can also estab-
lish its universality in expectation via Theorem 5, by show-
ing (13) under the same assumption. The proof requires
an additional technical argument and thus deferred to Ap-
pendix B.2.

Example 9 (Market history zt = xt−1
t−k). A canonical ex-

ample of side information is the market history zt = xt−1

or its truncated version with k memory, i.e., zt = xt−1
t−k.

In this case, if the stock market (xt) itself is k-th order
Markov, then under an additional mild regularity condi-
tion, we can show a faster rate Reg

port ≤ Õ(
√
n) than

implied by the previous example; see Appendix C.
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3.3 Implementing Universal Portfolios

Note that computing a portfolio is equivalent to computing
the wealth achieved by the portfolio. Recall from (4) that
the cumulative wealth achieved by Cover’s universal port-
folio ϕ(qL) can be written as

Sn(ϕ(qL),x
n) =

∑
yn∈[m]n

qL(y
n)x(yn)

=

∫
∆m−1

Sn(θ,x
n)µ(θ) dθ,

since the Laplace probability assignment qL(y
n) =∫

∆m−1 µ(θ)pθ(y
n) dθ is a mixture with respect to a uni-

form density µ(θ) over the simplex ∆m−1.

It is not hard to see that the exact computation of Cover’s
universal portfolio requires, on the t-th day of investment
over m stocks, O(tm−1) time complexity; see (Cover and
Ordentlich, 1996) for a detailed argument. A naive Monte
Carlo approximation can be used to approximately estimate
the wealth of universal portfolios: if we draw N CRPs
θ1, . . . ,θN from µ and buy-and-hold uniformly over the
CRPs, we will attain approximately similar wealth to µ-
universal portfolio, where a larger N leads to better ap-
proximation. Note, however, that this naive approximation
requires N = Ω( 1

ϵm ) to achieve an approximation error ϵ.
Both exact and approximate computation quickly become
infeasible, especially for a large stock market with m ≫ 1
and/or for a long investment period.

3.3.1 Implementing Universal Portfolios with
Discrete Side Information

The universal portfolio ϕ(qL;S) with discrete side informa-
tion wn achieves the wealth can be written as

Sn(ϕ(qL;S),x
n;wn) =

∑
yn∈[m]n

qL;S(y
n∥wn)x(yn)

=

S∏
s=1

S|xn(s;wn)|(ϕ(qL),x
n(s;wn)),

where xn(s;wn) = (xi : wi = s, i ∈ [n]), since
qL;S(y

n∥wn) =
∏S

s=1 qL(y
n(s;wn)). That is, we run

Cover’s UP for each state separately.

3.3.2 Implementing Universal Portfolios with
Continuous Side Information

We now describe how to implement the proposed strategy
ϕ(q∗G). By the epoch-wise construction of q∗G as explicitly
shown in (11), the cumulative wealth can be factorized as

Sn(ϕ(q
∗
G),x

n; zn)

=

J∏
j=1

∑
y2j

2j−1+1

qG;z2j−1 (y2
j

2j−1+1∥z
2j

2j−1+1)x
2j

2j−1+1(y
2j

2j−1+1)

=

J∏
j=1

S2j−1(ϕ(qG;z2j−1 ),x2j

2j−1+1; z
2j

2j−1+1).

where we assume n = 2J for simplicity. Here, for each
j ∈ [J ], if {g̃1, . . . , g̃ℓj} is a minimal empirical covering of
G with respect to z2

j−1

, we can write

S2j−1(qG;z2j−1 ,x2j

2j−1+1; z
2j

2j−1+1)

=
1

ℓj

ℓj∑
k=1

S2j−1(ϕ(qL;S),x
2j

2j−1+1; g̃k(z
2j

2j−1+1)).

For each state function g̃k, the summand is the cumulative
wealth of the UP with the side information g̃k(z

2j

2j−1+1).
We can summarize the algorithm as follows:

For each epoch j = 1, 2, . . .:

1. Find an empirical covering {g̃1, . . . , g̃ℓj} ⊆ G with
respect to z2

j−1

.

2. For each k ∈ [ℓj ], run UP with the discrete side
information g̃k(z

2j

2j−1+1).

3. During the j-th investment epoch, i.e., t ∈
(2j−1, 2j ], run the buy-and-hold strategy uniformly
over all UPs with side information g̃k(z

2j

2j−1+1) for
each k ∈ [ℓj ].

4. At the end of the epoch, sell all stocks.

3.3.3 An Example with Real Data

In the following, we study a simple example for concrete-
ness, which admits an easy construction of minimal empir-
ical coverings. Note that, for a richer class of state func-
tions, finding a minimal empirical covering may be another
computational bottleneck.

Example 10. As a simple case of the canonical side infor-
mation considered in Example 9, we choose the price rela-
tive of the stock 1 on the previous day as the continuous side
information, i.e., zt = xt−1,1, and a class of 1D thresh-
old functions G = {x 7→ ga(x) = 1{x ≥ a} : a > 0}
of Ndim(G) = 1. Note that we consider a binary state
space (S = 2). In this case, it is easy to show that
{gx0,1

, . . . , gxt−1,1
} is a minimal empirical covering given

zt = xt−1,1. More generally, we can consider zt = xt−1

with a class of product of 1D threshold functions G =
{x 7→ ga(x) = (1{x1 ≥ a1}, . . . , 1{xm ≥ am}) : a =
(a1, . . . , am) ∈ Rm

++} of Ndim(G) ≤ m logm (Shalev-
Shwartz and Ben-David, 2014, Lemma 29.6) and S = 2m.
Given zt = xt−1, {gx0

, . . . , gxt−1
} is a minimal empirical

covering.

We briefly demonstrate how the proposed portfolio per-
forms on two real stocks. We collected the 6-year period
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from Jan-01-2012 to Dec-31-2017 (total 1508 trading days)
of two stocks Ford (F) and Macy’s (M). Over the period,
Ford went up by a factor of 1.11, while Macy’s went down
by a factor of 0.77. The best CRP in hindsight, which turns
out to be the buy-and-hold of Ford, achieves a growth fac-
tor of 1.11. The uniform CRP achieves a growth factor of
0.99. While the universal portfolio without side informa-
tion achieves a growth factor of only 0.98, the proposed al-
gorithm with the yesterday’s prices and the class of thresh-
olding functions achieves a growth factor of 1.15.

4 PROOFS

In this section, we prove Theorem 5. Before that, we review
the main methodological and technical challenges associ-
ated with the problem. Methodologically, the main chal-
lenge with having continuous side information is that one
does not know the state from just observing the side in-
formation and hence cannot construct the Laplace proba-
bility assignment directly. As an example, let’s say there
were two states (namely 1 and 2) that were visible to the
investor as zt: if the state is 1 on day t, the investor can
look at the past days when the side information was 1, con-
struct the corresponding Laplace probability assignment,
and subsequently the portfolio strategy. If there are an infi-
nite number of possible mappings of side information into
states (represented by the function class G), however, it is
not clear how to construct a portfolio strategy. In terms of
theoretical challenges, it is clear that some notion of dis-
cretization of the infinite class of functions G is required in
order to use a mixture probability assignment: if the distri-
bution of the side information of zt were known, the prob-
lem would be considerably simplified; the main challenge
is creating such a cover in a data-dependent way (i.e., using
z1, . . . , zt−1 to construct a cover).

We now proceed to the proof. We proceed by noting that
the probability assignment q∗G used to derive the proposed
portfolio guarantees the following regret bound.
Theorem 11. For the probability assignment q∗G , if the
Natarajan dimension Ndim(G) = d of G is finite and
Zn ∼ PZn is stationary, we have

E
[
sup
g∈G

sup
p∈P⊗

S

sup
yn∈[m]n

log
p(yn∥g(Zn))

q∗G(y
n∥Zn)

]
(15)

≤ S(d+m)(log2 n) + 2.5Sm

logn−1∑
j=0

j E[ρG×G(Z
2j )].

Here, log n is assumed to be an integer for simplicity, which
can be easily rectified at the cost of an absolute constant
factor in the regret; see Section 4.1.

We will first prove Theorem 11; Theorem 5 then follows as
a corollary of Theorem 11 via the established connection
between a probability and the induced portfolio in Proposi-
tion 4.

4.1 Proof of Theorem 11

Note that the key building block of the proposed probability
assignment scheme q∗G is qz̃n(yi∥zi) defined in (10), the
uniform mixture based on a minimal empirical covering of
G with respect to z̃n. The proof consists of three steps. In
Step 1, we first consider the simplest case where the whole
side information sequence zn is provided noncausally by
an oracle, where we can use zn as z̃n to build the empirical
covering. We then analyze the performance of qz̃n(yi∥zi)
for an arbitrary auxiliary sequence z̃n in Step 2. Finally, in
Step 3, we analyze q∗G based on the analysis of qz̃n(yi∥zi).

Step 1. Side Information Given Noncausally

Suppose that zn is available noncausally so that it can
be used to construct a minimal empirical covering in
qzn(yi∥zi) for i ∈ [n]. First, note that since |{(g(zn) : g ∈
G}| ≤ Sn, we can construct an empirical covering
{g1, . . . , gℓ} of G with respect to zn with ℓ ≤ Sn. As-
suming Ndim(G) = d < ∞, however, we can even do so
with ℓ ≤ (S2n)d by Natarajan’s Lemma (Shalev-Shwartz
and Ben-David, 2014, Lemma 29.4). Hence, for the mix-
ture probability assignment qz̃n(yi∥zi) defined in (10) with
z̃n ← zn, i.e., qzn(yi∥zi) = 1

ℓ

∑ℓ
j=1 qL;S(y

i∥gj(zi)), it
readily follows that for any g ∈ G,

sup
p∈P⊗

S

sup
yn∈[m]n

log
p(yn∥g(zn))
qzn(yn∥zn)

≤ d log(S2n) + Sm log n

(16)

by invoking that ℓ ≤ (S2n)d and applying the regret bound
for the m-ary Laplace probability assignment in Lemma 3
for each state.

Step 2. Auxiliary Side Information Given Noncausally

We now analyze the mixture probability qz̃n(yn∥zn) for
an arbitrary auxiliary sequence z̃n, possibly being differ-
ent from zn. Intuitively, the sequence z̃n will also re-
duce the class G to at most (S2n)d functions, and if zn

and z̃n are “not too far apart”, the two reductions each
obtained by zn and z̃n may be also close. The following
lemma provides the performance of the mixture probabil-
ity qz̃n(yn∥zn) with respect to the auxiliary sequence z̃n,
capturing the expected gap from the intuition by the Ham-
ming distance (denoted by dH) between g(zn) and g̃(zn).
Lemma 12. For any z̃n, zn, and g ∈ G with Ndim(G) =
d <∞, we have

sup
p∈P⊗

S

sup
yn∈[m]

log
p(yn∥g(zn))
qz̃n(yn∥zn)

≤ d log(S2n) + Sm(log n)(1 + 2.5dH(g(zn), g̃(zn)))

≤ S(log n)(d+m+ 2.5m dH(g(z
n), g̃(zn))). (17)

Note that setting dH(g(z
n), g̃(zn)) = 0 recovers (16) as

expected.
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Proof. Let pθ1:S
be a state-wise i.i.d. probability assign-

ment characterized by θ1:S = (θ1, . . . ,θS) ∈ (∆m−1)S ,
where θi = (θi1, θi2, . . . , θim) ∈ ∆m−1 for each i ∈ [S].
For any state function g ∈ G, by definition of the empirical
covering, there exists a function g̃ ∈ {g̃1, . . . , g̃ℓ} such that
g̃(z̃n) = g(z̃n). Hence, we first have

log
pθ1:S

(yn∥g(zn))
qz̃n(yn∥zn)

≤ d log(S2n) + log
pθ1:S

(yn∥g(zn))
qL;S(yn∥g̃(zn))

. (18)

It only remains to analyze qL;S(y
n∥g̃(zn)). For each i ∈

[S] and j ∈ [m], we define ni := |t : g(Zt) = i| and
kij := |t : g(Zt) = i, yt = j|. Moreover let ñi, k̃ij be
defined in a similar way as ñi := |t : g̃(Zt) = i| and
k̃ij := |t : g̃(Zt) = i, yt = j|). We can then write
pθ1:S

(yn∥g(zn)) =
∏S

s=1 θ
ks1
s1 · · · θksm

sm .

Further, we can explicitly write the expression for
the Laplace probability assignment as qL(y

n) =
(
(
n+m−1
m−1

)(
n

k1,...,km

)
)−1, where ki = |{t : yt = i}|, and

thus its state-wise extension as

qL;S(y
n∥g̃(zn))

=
( S∏
s=1

(
ñs +m− 1

m− 1

)(
ñs

k̃s1, . . . , k̃s,m−1

))−1

.

Now, consider

log
pθ1:S

(yn∥g(zn))
qL;S(yn∥g̃(z̃n))

=

S∑
i=1

log

(
ñi +m− 1

m− 1

)(
ñi

k̃i1, . . . , k̃i,m−1

)
θki1
i1 · · · θ

kim
im

≤ Sm log n+

S∑
i=1

log

( ñi

k̃i1,...,k̃i,m−1

)(
ni

ki1,...,ki,m−1

) (19)

= Sm log n+

S∑
i=1

log
ñi!

ni!
+

S∑
i=1

m∑
j=1

log
kij !

k̃ij
, (20)

where (19) follows since
(

ni

ki1,...,ki,m−1

)
θki1
i1 · · · θ

kim
im ≤ 1.

Now, since for all i ∈ [S] and j ∈ [m], we have |ni− ñi| ≤
dH(g(z

n), g̃(zn)) and |kij − k̃ij | ≤ dH(g(z
n), g̃(zn)), we

have that ñi ≤ ni + dH(g(z
n), g̃(zn)) and consequently

ñi!
ni!
≤ (ni+dH(g(zn),g̃(zn)))!

ni!
. Thus, we can invoke the exact

same calculations as in (Bhatt and Kim, 2021, Propositions
5 and 6) to bound the second and third terms in (20) as

log
pθ1:S

(yn∥g(zn))
qL;S(yn∥g̃(z̃n))

≤ Sm log n+ S(m+ 3) dH(g(z
n), g̃(zn)) log n

≤ Sm(log n)(1 + 2.5dH(g(zn), g̃(zn))), (21)

since m ≥ 2. Plugging this into (18) establishes the
first bound. The second bound follows by observing
log(S2n) ≤ S log n.

When Zn is stationary as a stochastic process and if Z̃n is a
statistical copy of Zn, the following lemma shows that the
Hamming distance can be bounded by ρG×G(Z

n), which
can be controlled in expectation as o(n/ log2 n) under mild
regularity conditions on PZn and G. The proof is deferred
to Appendix B.3.

Lemma 13. If Zn is stationary, Z̃n (d)
= Zn, and g̃(Z̃n) =

g̃(Z̃n), then

dH(g(Z
n), g̃(Zn)) ≤ ρG×G(Z

n) + ρG×G(Z̃
n).

Step 3. Side Information Given Causally

In view of Lemma 13, provided that Zn is stationary, we
can bootstrap the history sequence to construct such an
auxiliary sequence, which motivates the epoch-based con-
struction of q∗G . That is, we split the n time steps into
log n epochs. For simplicity, we assume that log n is an
integer; if not, we may “extend” the horizon of the game
from n to 2⌈logn⌉ < 2n, and follow the same analy-
sis incurring at most a constant factor extra in the regret
bound. Defining the j-the epoch to consist of the time steps
2j−1 + 1 ≤ i ≤ 2j starting from j = 1, while we define
q∗G(·|Z1) = 1/m for the 0-th epoch. For i ≥ 2, if the time
step i falls within the j-th epoch, i.e., 2j−1 + 1 ≤ i ≤ 2j ,
then

q∗G(yi |yi−1;Zi) =
qZ2j−1 (yi2j−1+1∥Z

i
2j−1+1)

qZ2j−1 (yi−1
2j−1+1∥Z

i−1
2j−1+1)

(22)

where we can recall the definition of qZ2j−1 from (10). For
any p ∈ P⊗

S , we then have
n∑

i=1

log
p(yi|g(Zi))

q∗G(yi|yi−1;Zi)

≤
n∑

i=2

log
p(yi|g(Zi))

q∗G(yi|yi−1;Zi)
+ logm

=

logn∑
j=1

2j∑
i=2j−1+1

log
p(yi|g(Zi))

q∗G(yi|yi−1;Zi)

=

logn∑
j=1

log
p(y2

j

2j−1+1∥g(Z
2j

2j−1+1))

qZ2j−1 (y2
j

2j−1+1∥Z
2j

2j−1+1)
(23)

≤ S(d+m)(log2 n)

+ 2.5Sm

logn−1∑
j=0

jdH(g(Z2j

1 ), g(Z2j+1

2j+1)), (24)

where (23) follows by (22) and (24) follows from
Lemma 12. Finally, taking supremum over yn, p and g
and expectation over Zn leads to the desired inequality by
Lemma 13.
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4.2 Proof of Theorem 5

By Proposition 4 and Theorem 11, we have

Reg
port

(ϕ(q∗G),ACRP
S ,G)

= E[Regportn (ϕ(q∗G),ACRP
S ,G;Xn, Zn)]

≤ E[Regprobn (q;P,G;Zn)]

= E
[
sup
g∈G

sup
p∈P

max
yn

log
p(yn∥g(Zn))

q(yn∥Zn)

]
≤ S(d+m)(log2 n) + 2.5Sm

logn−1∑
j=0

j E[ρ(Z2j )],

where we omit the subscript in ρG×G(·) for brevity.
Since the first term in the bound is sublinear in n
when d and S are fixed, it then suffices to show that∑logn−1

j=0 j E[ρ(Z2j )] = o(n). Using the change of vari-
ables n′ = log n, observe

logn−1∑
j=0

j E[ρ(Z2j )] =
1

n′

n′−1∑
j=0

j E[ρ(Z2j )]
n′

2n′

≤ 1

n′

n′−1∑
j=0

j2

2j
E[ρ(Z2j )],

where the inequality follows since n′

2n′ ≤ j
2j for

all j ≤ n′. Now, since (logn)2

n E[ρ(Zn)] =
n′2

2n′ E[ρ(Z2n
′

)] → 0 as n → ∞ is assumed, we also have
1
n′

∑n′−1
j=0

j2

2j E[ρ(Z
2j )] → 0 as n′ → ∞, by the Cesàro

mean Theorem. A final change of variables concludes.

5 RELATED WORK AND DISCUSSION

Portfolio selection has been extensively studied in infor-
mation theory since the seminal work of Cover (1991)
and Cover and Ordentlich (1996), both of which estab-
lished close connections between portfolio selection and
the classically studied information theoretic problem of
universal compression (Rissanen, 1996; Ziv and Lempel,
1978; Merhav and Feder, 1998; Xie and Barron, 2000).
A number of variations have been considered since Helm-
bold et al. (1998). For example, incorporating transaction
costs (Blum and Kalai, 1999; Uziel and El-Yaniv, 2020) us-
ing other probability assignments than i.i.d. (Kozat et al.,
2008; Tavory and Feder, 2010), and considering space
complexity issues (Tavory and Feder, 2008). Cross and
Barron (2003) and Györfi et al. (2006) proposed portfo-
lio selection techniques incorporating continuous side in-
formation; however, the competitor classes considered in
both are disparate from ours.

As demonstrated, portfolio selection with side information
is closely related to sequential prediction with side infor-
mation and log-loss. This problem has attracted recent in-
terest (Rakhlin and Sridharan, 2015; Bilodeau et al., 2020;

Fogel and Feder, 2017; Bhatt and Kim, 2021), with the first
two focused on obtaining fundamental limits via the se-
quential complexities approach of Rakhlin et al. (2015a).
More recently, the preprint of Bilodeau et al. (2021) pro-
posed a mixture-based conditional density estimator, which
specifically achieves E[Regprob] = O(log2 n) for the binary
probability assignment problem with i.i.d. side information
with a VC class, which tightens the regret Õ(

√
n) estab-

lished in (Bhatt and Kim, 2021). Therefore, it is natural to
consider applying the probability assignment of Bilodeau
et al. (2021) in hoping to relax the technical condition (13)
and establish Theorem 5 for all stationary ergodic Zn—it
is known that E[ρG×G(Z

n)] = o(n) for any stationary er-
godic process; see e.g., (Adams and Nobel, 2010). We note,
however, that analyzing their method in our setting of non-
i.i.d. side information sequences seems to involve a signifi-
cant amount of additional work. More precisely, their anal-
ysis needs to be extended to (1) individual-sequence yn

and (2) stationary ergodic side information with a depen-
dence of the regret on ρH(Zn) similar to that of the method
of Bhatt and Kim (2021). In their words, we would need
to relax the assumption of the data being well-specified. At
a high level, they use a similar covering approach (with re-
spect to the Hellinger metric over distributions) as well as
a smoothing of probabilities in order to avoid unbounded
likelihood ratios (we, in contrast, have used the Laplace/KT
probability assignment). Using a similar epoch-based anal-
ysis they establish regret bounds in (Bilodeau et al., 2021,
Appendix D) by first upper bounding the KL divergence in
terms of the Hellinger divergence and then leveraging local
Rademacher complexities in conjunction with an inequal-
ity of Bousquet (2002). In order to extend their method
to individual-sequence yn and stationary ergodic Zn, one
would need to either extend the aforementioned inequality
to these cases, or to bypass the step of upper-bounding the
KL divergence in terms of the Hellinger divergence alto-
gether. We leave these directions for future work.

The stochasticity assumption on Zn cannot be completely
removed for a state function class with bounded Natara-
jan dimension. We show in Appendix D that there exists
no universal portfolio for a class of 1-dimensional (1D)
threshold functions. This is a consequence of the fact
that the 1D threshold has infinite Littlestone dimension
(Ldim), which is a combinatorial dimension that charac-
terizes whether classification is possible in (sequential and
adversarial) online learning. Therefore, it seems that we
either have to consider function classes with finite Ldim in
order to achieve vanishing regret with fully adversarial side
information; or consider stationary side information along
with function classes with finite VC dimension (VCdim).
Since Ldim ≥ VCdim in general with several examples
where the gap is infinite, both settings are complementary
with neither one subsuming the other. We thus leave an in-
depth study of the setting with adversarial side information
to future work.
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A DEFINITION OF NATARAJAN DIMENSION

We use the definitions from Shalev-Shwartz and Ben-David (2014, Definitions 29.1, 29.2).

Definition 14 (Shattering). Let G ⊂ {Z → [S]}. Then, a set C ⊂ Z is said to be shattered by the function class G if there
exist two functions g0, g1 ∈ G such that

• For each z ∈ C, g0(z) ̸= g1(z), and

• For each B ⊂ C there exists a function g ∈ G such that

∀z ∈ B, g(x) = g0(x) and ∀z ∈ C \B, g(x) = g1(x).

We can now define the Natarajan dimension.

Definition 15 (Natarajan dimension). For any function class G ⊂ {Z → [S]} the Natarajan dimension of G is the maximal
size of a shattered set C ⊂ Z .

B DEFERRED PROOFS

B.1 Proof of Proposition 4

In this proof, we assume that the side information sequence zn may take values from an arbitrary alphabet Z . Recall that
for a probability assignment q(yi|yi−1; zi), we can write the wealth of the portfolio induced by q as

Sn(ϕ(q),x
n; zn) =

∑
yn∈[m]n

q(yn∥zn)x(yn). (8)

To see this, recall that the probability induced portfolio a = ϕ(q) is defined as

a(j |xt−1; zt) :=

∑
yt−1 q(yt−1j∥zt)x(yt−1)∑
yt−1 q(yt−1∥zt−1)x(yt−1)

,

where recall for t ∈ [n], q(yt∥zt) =
∏t

i=1 q(yi|yi−1; zi). We then have

∑
yt∈[m]

a(yt |xt−1; zt)xt(yt) =

∑
yt−1 q(yt∥zt)x(yt)∑

yt−1 q(yt−1∥zt−1)x(yt−1)
,

and (8) consequently follows from telescoping.

Now, we note that

Regportn (ϕ(q);ϕ(P); zn) = sup
p∈P

sup
xn

log
Sn(ϕ(p),x

n; zn)

Sn(ϕ(q),xn; zn)

≥ sup
p∈P

sup
yn∈[m]n

log
Sn(ϕ(p), ey1

. . . eyn
; zn)

Sn(ϕ(q), ey1 . . . eyn ; z
n)

= sup
p∈P

sup
yn∈[m]n

log
p(yn∥zn)
q(yn∥zn)

= Regprobn (q;P; zn). (25)
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Conversely, we can also see that

Regportn (ϕ(q);ϕ(P);xn, zn) = sup
p∈P

log
Sn(ϕ(p),x

n; zn)

Sn(ϕ(q),xn; zn)

= sup
p∈P

log

∑
yn∈[m]n p(yn∥zn)x(yn)∑
yn∈[m]n q(yn∥zn)x(yn)

≤ sup
p∈P

max
yn∈[m]n

log
p(yn∥zn)
q(yn∥zn)

(26)

= Regprobn (q;P; zn),

where (26) follows from Lemma 2. The desired inequality follows since this inequality holds for any xn.

B.2 Proof of Universality in Expectation in Example 7

Recall that by Theorem 5, it suffices to show that

E[ρG×G(Z
n)] = o

( n

log2 n

)
(13)

to establish that the induced portfolio ϕ(q∗G) is universal in expectation. Indeed, for a β-mixing process Zn with β-mixing
coefficient βk and β-mixing exponent r > 0, i.e., βk = O(k−r) as k →∞, we can prove a stronger statement:

E[ρG×G(Z
n)] = O(n(3+r)/(3+2r))). (27)

The argument below to show (27) is based on the techniques of Karandikar and Vidyasagar (2002) and Hanneke and Yang
(2019).

Pick k ≥ 1 which divides n for simplicity; the divisibility can be easily lifted by elongating the game from n steps to
the next number divisible by k. We will choose k as a function of n at the end of proof. We define the nonoverlapping k
subsequences Z(1), . . . , Z(k) of length n/k as

Z(1)n/k

1 = Z1, Zk+1, Z2k+1 . . . , Z(n/k−1)+1,

Z(2)n/k

1 = Z2, Zk+2, Z2k+2 . . . , Z(n/k−1)k+2,

...

Z(k)n/k

1 = Zk, Z2k, Z3k . . . , Z(n/k)k.

We will invoke the classical result on β-mixing processes that states that

dTV

(
P
Z(j)n/k

1
,

n/k∏
i=1

P
Z

(j)
i

)
≤

(n
k
− 1

)
βk (28)

for each j ∈ [k], where dTV(·, ·) denotes the total variation distance; see, for example, (Hanneke and Yang, 2019, Lemma
1) and the references therein.

Now, we consider

E[ρH(Zn)] = E
[
sup
h∈H

∣∣∣ n∑
i=1

(h(Zi)− E[h(Zi)])
∣∣∣]

≤ E

[ k∑
j=1

sup
h∈H

∣∣∣n/k∑
i=1

(h(Z
(j)
i )− E[h(Z

(j)
i )])

∣∣∣]

=
k∑

j=1

E

[
sup
h∈H

∣∣∣n/k∑
i=1

(h(Z
(j)
i )− E[h(Z

(j)
i )])

∣∣∣]. (29)
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Let Z ′
1, . . . , Z

′
n/k be an i.i.d. process with the same marginal distribution of the stationary process Zn, i.e., PZ′

1
= PZ1 .

Continuing from the summand in (29), we then have

E

[
sup
h∈H

∣∣∣n/k∑
i=1

(h(Z
(1)
i )− E[h(Z

(1)
i )])

∣∣∣] = E

[
sup
h∈H

∣∣∣n/k∑
i=1

(h(Z
(1)
i )− h(Z ′

i) + h(Z ′
i)− E[h(Z

(1)
i )])

∣∣∣]

= E

[
sup
h∈H

∣∣∣n/k∑
i=1

(h(Z
(1)
i )− h(Z ′

i) + h(Z ′
i)− E[h(Z ′

i)])
∣∣∣] (30)

≤ E

[
sup
h∈H

∣∣∣n/k∑
i=1

(h(Z
(1)
i )− h(Z ′

i))
∣∣∣]+ E

[
sup
h∈H

∣∣∣n/k∑
i=1

(h(Z ′
i)− E[h(Z ′

i)])
∣∣∣] (31)

≤ E

[
sup
h∈H

∣∣∣n/k∑
i=1

(h(Z
(1)
i )− h(Z ′

i))
∣∣∣]+ C

√
dn

k
(32)

≤ n

k
sup
h∈H

E

∣∣∣∣∣kn
n/k∑
i=1

h(Z
(1)
i )− k

n

n/k∑
i=1

h(Z ′
i)

∣∣∣∣∣+ C

√
dn

k

≤ n

k
dTV

(
P
Z(j)n/k

1
,

n/k∏
i=1

P
Z

(j)
i

)
+ C

√
dn

k
(33)

≤ n2βk

k2
+ C

√
dn

k
. (34)

Here, (30) follows since the marginal distribution Z ′
i

(d)
= Z

(1)
i , (32) follows since the distribution Z ′n is i.i.d. and from (Ver-

shynin, 2018, Theorem 8.3.23), (33) follows from the following variational form of the total variation distance dTV(P, P ′)
between two measures P and P ′ defined over the same measure space, i.e.,

dTV(P, P
′) = sup

f :|f |≤1

| EX∼P [f(X)]− EX∼P ′ [f(X)]|,

and lastly (34) follows from (28). Substituting (34) into (29) yields that

E[ρH(Zn)] ≤ n2βk

k
+ C
√
dnk ≤ C ′n2k−r

k
+ C
√
dnk

for k sufficiently large with some C ′ > 0, where we use the definition of the β-mixing exponent r in the second inequality.
Finally, choosing k = O(n

3
3+2r ) yields the claimed rate E[ρH(Zn)] = O(n

3+r
3+2r ).

B.3 Proof of Lemma 13

Note that for any Zn and Z̃n, we can write

dH(g(Z
n), g̃(Zn)) = dH(g(Z

n), g̃(Zn))− dH(g(Z̃
n), g̃(Z̃n)) (35)

≤ sup
g1,g2

∣∣∣dH(g1(Zn), g2(Z
n))− dH(g1(Z̃

n), g2(Z̃
n))

∣∣∣
≤ sup

g1,g2

|dH(g1(Zn), g2(Z
n))− nP(g1(Z1) ̸= g2(Z2))|

+ sup
g1,g2

∣∣∣dH(g1(Z̃n), g2(Z̃
n))− nP(g1(Z̃1) ̸= g2(Z̃1))

∣∣∣
= ρG×G(z

n) + ρG×G(z̃
n) (36)

where (35) follows since dH(g(Z̃
n), g̃(Z̃n)) = 0 by design and (36) follows since by stationarity of Zn (d)

= Z̃n, we have
nP(g1(Z1) ̸= g2(Z1)) = nP(g1(Z̃1) ̸= g2(Z̃1)) =

∑n
i=1 P(g1(Z̃i) ̸= g2(Z̃i)) =

∑n
i=1 E[1{g1(Z̃i )̸=g2(Z̃i)}]. Finally,

substituting (36) into (21) yields the lemma.
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C A DETAILED DISCUSSION ON EXAMPLE 9

For the side information zt = xt−1
t−k in Example 9, if the market (Xt) itself is k-th order Markov, then we can establish the

following guarantee.

Lemma 16. Let Xn be a stationary k-th order Markov process and let Zt = Xt−1
t−k ∈ (Rm

+ )k. Suppose that (1) the density
of Z0 = X−1

−k exists and is bounded and supported over a bounded, convex set E ⊂ (Rm
+ )k with nonempty interior and (2)

there exist b > 0 and ϵ > 0 such that the time-invariant conditional density satisfies

pXt
t−k+1|X

t−1
t−k

(z′ |z) ≥ b1B(z,ϵ)(z
′)

for any z ∈ (Rm
+ )k, where B(z, ϵ) denotes the open ball of radius ϵ centered at z ∈ (Rm

+ )k with respect to Euclidean
distance. Then, we have E[ρH(Zn)] = Õ(

√
n).

Proof. This is a direct consequence of (Bertail and Portier, 2019, Proposition 11), which establishes an upper bound on
E[ρH(Z ′n)] for a Metropolis–Hastings (MH) walk Z ′n. First, note that Zn forms a Markov chain due to the k-th order
Markovity of Xn. To apply the proposition over the Markov chain Zn, we set the proposal distribution q in the MH
algorithm to be the actual transition kernel of the Markov chain Zn, so that the MH walk becomes the process Zn of
our interest. Then, under the assumptions above, we can apply the result of Bertail and Portier (2019) and conclude that
E[ρH(Zn)] = Õ(

√
n) for a VC-classH.

D UNIVERSAL PORTFOLIO DOES NOT ALWAYS EXIST FOR ADVERSARIAL
CONTINUOUS SIDE INFORMATION

In this paper, we studied a universal portfolio optimization with continuous side information, under a certain stochas-
tic assumption on the market sequence Xn and the side information sequence Zn. A natural question is whether such
stochasticity assumptions on the continuous side information sequence Zn can be further relaxed or completely removed,
as was assumed by Cover and Ordentlich (1996) for the discrete side information case. In this section, we provide a simple
counterexample with a binary function class having bounded VC dimension, where no universal portfolio exists for an
adversarial side information sequence zn.

Under the adversarial continuous side information assumption, we can equivalently consider the corresponding log-loss
prediction problem as shown in Proposition 4. We will consider the simple binary-state and binary-alphabet case, i.e.,
S = 2 and m = 2. As a reference class P of probability assignment schemes with side information, we consider state-wise
i.i.d. probabilities, where each element pθ can be parameterized by a pair θ = (θ0, θ1) ∈ [0, 1]2 and

pθ(1|w) := θw

for w ∈ {0, 1}. Assume that side information zt takes a value from Z = [0, 1]. As a state function class G, we consider
the 1-dimensional (1D) threshold function class

G = {ga 7→ 1(a,∞)(z) : a ∈ [0, 1]}.

Hence, in this setting, we wish to compete with any reference probability assignment with continuous side information that
has the form

pθ,a(1|w) = θga(w),

for some a ∈ [0, 1] and θ ∈ [0, 1]2.

Now, in the corresponding sequential prediction with side information, the adversary first picks θ = (θ0, θ1) and a ∈ [0, 1].
At each time step, the adversary chooses zt ∈ [0, 1] and present to the player as side information. The player then must
assign probability assignment q(·|zt, yt−1) based on all the observations so far, i.e., zt and yt−1. Afterwards, the adversary
reveals yt ∈ {0, 1} and suffers a loss of − log p(yt|g(zt)), while the player suffers a loss of − log q(yt|zt, yt−1). The
worst-case regret of the strategy q employed by the player is thus written as

Regprob(q,PG) := sup
yn∈[m]n

sup
zn

sup
a∈[0,1]

sup
θ∈[0,1]2

{ n∑
t=1

log
1

q(yt|zt, yt−1)
−

n∑
t=1

log
1

pθ,a(yt|zt)

}
.
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Figure 1: A tree representing the adversary’s strategy. At time step t, the adversary presents yt = 0 if q(1|zt, yt−1) > 1/2
and yt = 1 otherwise, and then presents zt+1 following the path in the tree. The values of a at each branch of the tree show
the values satisfying ga(zi) = yi for i ∈ {1, . . . , t}.

We now construct a sequence zn and yn as well as choices of a and θ that ensure the player to suffer a cumulative regret of
n regardless of the player’s strategy q, by mimicking the adversarial construction used to show that the 1D threshold class
is not learnable under the 0-1 loss; see (Shalev-Shwartz and Ben-David, 2014, Chapter 21). First, set z1 = 1/2. Since the
adversary knows the player’s strategy, the adversary picks y1 = 0 if if q(1|z1) > 1/2 and y1 = 1 otherwise. With this
choice, the player will suffer loss of at least log(1/(1/2)) = log 2 = 1 at time step 1. In the next round (t = 2), if y1 = 0,
choose z2 = 1/4 and z2 = 3/4 otherwise. Similar to the previous time step, the adversary sets y2 = 0 if q(1|z21 , y1) > 1/2
and y2 = 1 otherwise. This again ensures the player to incur loss at least 1 at t = 2. We can visualize the strategy employed
by the adversary as a binary tree as shown in Figure D. Once we proceed in the following manner and reach the final time
step, the loss of the player has added up to n.

We now only need to specify θ and a. Note that for the sequence {(zt, yt)}nt=1 constructed above, there exists a threshold
a∗ ∈ [0, 1] such that ga∗(zt) = yt for all t. By setting θ∗ = (0, 1), the player assigns pθ∗,a∗(yt|zt) = 1 at each time step,
and thus incurs zero cumulative loss. Therefore, the cumulative regret of the player, Regprob(q,PG) ≥ n, regardless of q
for the above outlined strategy of the adversary.

The problem of studying fundamental limits on the regret in sequential prediction with the log-loss and side information,
with the state function classes possibly being even more general than the VC class we have considered in this work, has
previously been studying using the notion of sequential complexity measures proposed by Rakhlin et al. (2015b). The cur-
rent state of the art result in this direction is due to Bilodeau et al. (2020), who establish a regret bound of Õ(R

2/3
n (G)n1/3)

where Rn(G) is the sequential Rademacher complexity of the function class G. However, for a class G with finite VC
dimension, it is not necessarily true that Rn(G) = o(n). For example, for the 1D threshold class discussed in the previous
example, we can show that the sequential fat-shattering dimension fatα(G) = ∞; see (Rakhlin et al., 2015b, Defini-
tion 7). This is because for 0 < α ≤ 1 fatα(G) coincides with the Littlestone dimension of G, which is well known
to be infinite (Shalev-Shwartz and Ben-David, 2014, Chapter 21). Using (Rakhlin et al., 2015b, Lemma 7), we see that
Rn(G) ≥ Ω(n) thereby implying that the regret bound of Bilodeau et al. (2020) is vacuous in this particular case as one
may expect; see also (Rakhlin and Sridharan, 2014, Chapter 8) for a more detailed discussion on learning thresholds.

The above discussion establishes that there are two settings one can consider for this problem: that of completely adversarial
side information and a function class with bounded Littlestone dimension; or that of stochastic side information and a
function class with bounded VC dimension. Both settings are complementary and neither subsumes the other, since the
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Littlestone dimension of a function class is always greater than the VC dimension, with the gap possibly being infinite as
in the 1D threshold class. In this paper we pursue the latter direction, in the spirit of recent investigations Haghtalab et al.
(2022b,a) into the beyond worst case analysis in online learning.
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