
Piecewise Stationary Bandits under Risk Criteria

Sujay Bhatt Guanhua Fang Ping Li
J.P. Morgan AI Research

New York City, USA
sujaybhatt.hr@gmail.com

School of Management
Fudan University, China
fanggh@fudan.edu.cn

LinkedIn Ads
Bellevue, WA 98004, USA

pinli@linkedin.com

Abstract

Piecewise stationary stochastic multi-armed ban-
dits have been extensively explored in the risk-
neutral and sub-Gaussian setting. In this work,
we consider a multi-armed bandit framework in
which the reward distributions are heavy-tailed
and non-stationary, and evaluate the performance
of algorithms using general risk criteria. Specifi-
cally, we make the following contributions: (i) We
first propose a non-parametric change detection
algorithm that can detect general distributional
changes in heavy-tailed distributions. (ii) We then
propose a truncation-based UCB-type bandit al-
gorithm integrating the above regime change de-
tection algorithm to minimize the regret of the
non-stationary learning problem. (iii) Finally, we
establish the regret bounds for the proposed bandit
algorithm by characterizing the statistical prop-
erties of the general change detection algorithm,
along with a novel regret analysis.

1 INTRODUCTION

Multi-armed Bandits (MAB) are an online sequential deci-
sion making framework that effect effort allocation between
knowledge exploration and exploitation to identify the opti-
mal choices under uncertainty; see Lattimore and Szepesvári
(2020). In the classical version of stochastic bandits, there
are multiple ‘arms’ representing the different unknown re-
ward distributions and an i.i.d reward sequence is associated
each of them. A pull of each arm results in observing the
associated reward and the learner seeks to find an arm se-
lection strategy that minimizes the regret, defined as the
difference between the total sum of rewards of an oracle
strategy always selecting the arm with largest mean and that
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of the learner’s strategy. The simplicity and generality of this
bandit framework has found wide applicability in diverse
fields such as internet advertising (Garivier and Moulines,
2011), revenue management (Ferreira et al., 2018), recom-
mender systems (Bouneffouf et al., 2012), clinical trials and
medicine (Villar et al., 2015).

There are other real-world applications like healthcare man-
agement, finance, etc; see Bouneffouf et al. (2020), where
the assumption that the arm distributions do not evolve
over time is often violated. This non-stationary model was
first studied in Kocsis and Szepesvári (2006), where the
mean as a function of time evolves in a piecewise stationary
manner, and the regret is measured w.r.t the current best
arm. Also, in many of the above applications, the data are
heavy-tailed (Resnick, 2007; Bhatt et al., 2023), and merely
maximizing the expected reward is not always the most de-
sirable objective; some even requiring a consideration of
risk (Sani et al., 2012).

Motivating Example: Consider the application in health-
care utilization (hospital length of stay or hospital cost –
both usually right skewed) by scheduling patient category
(heart, cancer etc). Frequent selection of a specific action
may reduce the expected cost for that action over time, or
exogenous factors (ex. covid) may increase it – leading to
non-stationarity. A bandit framework that accommodates a
risk-sensitive planner (hospital) seeking to minimize the re-
gret in this non-stationary and possibly heavy-tailed setting,
is the object of interest in this paper.

1.1 MAIN CONTRIBUTIONS

We propose a first active adaptation bandit algorithm that
has a change detection module which actively monitors
general distributional changes, while minimizing the overall
risk-sensitive regret. The main contributions are as follows:

1. We propose a first data-driven truncation based non-
parametric algorithm to detect general distributional
changes in heavy-tailed distributions. Unlike classical
sub-Gaussian settings, truncation factors appear in all
characteristic parameters of the detection algorithm,
namely, the threshold, false alarm probability and de-
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tection delay. This requires a novel statistical analysis
of the change detection algorithm.

2. The presence of non-stationarity in the risk-sensitive
objective introduces challenges to compare any devised
policy against an oracle policy. We propose new suffi-
cient conditions (with examples) that are required for
approximating the oracle optimal policy in the non-
stationary setting, adding to Cassel et al. (2018).

3. Next, we propose an index based algorithm that ac-
tively tracks the distributional changes to identify sta-
tionary regimes, and minimizes the regret in each of
them. The novelty lies in the introduction of a policy-
driven truncation method to aid the computation of
the index, and subsequent analysis. We character-
ize1 Õ(

√
MK/T ) gap-dependent (normalized 2) re-

gret bound and Õ((MK)
ε

1+ε (T )−
ε

1+ε ) worst case re-
gret bound for the proposed algorithm.

4. Experiments illustrate the effectiveness of the proposed
adaptive procedures. We report the performance sen-
sitivity w.r.t. various algorithm parameters, where we
observe that the proposed algorithm is robust to the
shape of the heavy-tailed distributions, percentage of
best arm pulls increases with the horizon length, and
the distributional changes are detected effectively for a
wide range of commonly considered risk measures.

1.2 LITERATURE

A few common objectives considered in risk-sensitive set-
ting include mean-variance (Vakili and Zhao, 2015) and tail-
risk measures like VaR (Vakili and Zhao, 2015), CVaR (A.
et al., 2020; Tamkin et al., 2019), and general risk mea-
sures (Cassel et al., 2018). Bandits with heavy-tailed re-
ward distributions have been the object of interest in var-
ious works including Bubeck et al. (2013); Agrawal et al.
(2021); Lee et al. (2020). There is an enormous body of
literature addressing the subtleties of non-stationary ban-
dit framework; see Cao et al. (2019); Zhou et al. (2021)
and the references therein. Notable works in risk-neutral
non-stationary bandits include passive adaptation Upper
Confidence Bound (UCB) algorithms as in Garivier and
Moulines (2011) with O(K

√
MT log T ) and Exp3 algo-

rithms as in Auer et al. (2002) with O(
√
KMT log(KT )),

and active adaptation algorithms as in Liu et al.
(2018) obtaining O(MK

√
T log T ) for Exp3 variants

and O(
√
MKT log T ) for the UCB variants. All the algo-

rithms mentioned above for piecewise-stationary light-tailed
setting, including the one proposed in this paper, require tun-
ing that depends on the number of change points to achieve
the state-of-the-art regret O(

√
MKT log T ).

1Here M,K, T denote the number of piecewise-stationary
regimes, number of arms, and length of the horizon respectively.
The notation Õ(·) hides the log-factor.

2the cumulative regret divided by T

2 PROBLEM FORMULATION

The risk-sensitive non-stationary bandit is described by a
4−tuple (K, T , U, {Fk,t}k∈K,t∈T ), K = {1, 2, · · · ,K} is
a set of K arms, T = {1, 2, · · · , T} is set of T time steps,
U is the risk function, and Fk,t is the reward distribution of
arm k at time t. The rewards Xk,t ∼ Fk,t are assumed to be
independent across arms and time steps. Below we describe
the bandit model considered and the objective of the learner.

2.1 BANDIT MODEL

The main features of the bandit model, namely, the
piecewise-stationary, heavy-tailed reward distributions, and
general risk measures are stated below.

2.1.1 PIECEWISE STATIONARY

Similar to Yu and Mannor (2009), define M to be the num-
ber of piecewise-stationary regimes in the reward process:

M = 1 +

T−1∑
t=1

1{Fk,t ̸= Fk,t+1 for some k ∈ K},

where 1 is the indicator function. Let δ1, · · · , δM−1 denote
the M − 1 change points with δ0 = 0 and δM = T for
simplicity. For ease of notation, let M := {1, · · · ,M}
denote the set of regimes. Note that M is allowed to grow
with T and the changes can be asynchronous across arms.
We also use the following notation to explicitly identify the
distributions: over the ith regime t ∈ [δi−1 + 1, δi], arm k
generates reward Xi

k ∼ F i
k.

2.1.2 HEAVY-TAIL REWARDS

We only know that E|Xi
k|1+ϵ := ν(< ∞) for k ∈ K

in regime i ∈ M, for some constant ϵ ∈ (0, 1]. The
assumption of heavy-tailed rewards necessitates trunca-
tion of the empirical distributions to obtain concentration
around the underlying mixture distribution. Let the em-
pirical distribution3 of the reward sequence for arm k and
the corresponding random mixture be denoted as Ek

t (·) ≜
Et({Xk,i}i≤t; ·) and Fk

t ≜ 1
t

∑t
s=1 Fk,s respectively. For

a sequence of truncation levels {bn(≥ 0)}, let the truncated4

population distribution, Fk,trunc
n ≜ 1

n

∑n
s=1 F

bs
k,s, and

the truncated empirical distribution Ek,trunc
n (X1:n; ·) =

1
n

∑n
s=1 I[Trunc(Xs,bs),∞](·), where F b represents the

C.D.F. of Trunc(X, b) with X ∼ F .

3The empirical distribution of a real number se-
quence x1, · · · , xt is the function Et : Rt → D such
that Et({xi}i≤t; ·) = 1

t

∑t
s=1 I[xs,∞](·), where I[a,b](·) denotes

the indicator function on the interval [a, b], i.e, I[a,b](y) = 1 only
if y ∈ [a, b]. Here D is the space of all distributions on R.

4The truncation function of any r.v Y at level b > 0 is defined
as Trunc(Y, b) = sign(Y )min{|Y |, b}.
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Assumption 1 (Stability). The following holds for
some ψ1, ψ2, ψ3:
(i) Uniform boundedness, i.e, for k ∈ K

∥Fk,trunc
n −Fk

n∥ ≤ ψ1(n), for n ∈ Z+.

(ii) Exponential concentration, i.e, for k ∈ K

P
(
∥Ek,trunc

n −Fk,trunc
n ∥ ≥ x

)
≤

exp
{
− nx2/2

ψ2(n) + ψ3(n)x/3

}
, for n ∈ Z+.

Assumption 1 is mild: (i) gives the upper bound on the bias
term caused by truncation procedure. (ii) can be viewed
as the extended Bernstein inequality. In particular, follow-
ing Bubeck et al. (2013), we can choose truncation level
bn = n

1
1+ϵ . Correspondingly, we can let ψ1(n) = c1n

−ϵ
1+ϵ ,

ψ2(n) = c2n
1−ϵ
1+ϵ and ψ3(n) = c3n

1
1+ϵ for some universal

constants c1 − c3. See more details in the supplementary
material.

2.1.3 RISK FUNCTION AS PERFORMANCE
MEASURE

Classical multi-armed bandit setting considers an additive
function of the empirical mean as an optimization criterion.
We consider a more general risk function evaluated on the
empirical distribution in the optimization problem. This
general risk function is viewed as a mapping between semi-
normed spaces as our analysis relies on certain smoothness
properties as in Cassel et al. (2018). Let the space of all
distributions on R, denoted as D, be such that D ⊂ L∥·∥, a
seminormed space associated with the seminorm ∥ · ∥.
Definition 1. A risk function U : L∥·∥ → R represents the
performance measure over the distributions.

Let Λ denote the simplex

Λ ≜
{
(p11, · · · , pKM ) ∈ RK×M

∣∣∣∣∣
K∑

k=1

M∑
i=1

pki = 1,

pki ≥ 0, ∀ k ≤ K, i ≤M
}
.

Define the set of all convex combinations of the reward
distributions as

DΛ =
{
F ∈ D : F =

K∑
k=1

M∑
i=1

pijF
i
k

∣∣∣ p ∈ Λ
}
.

Assumption 2 (Regularity). (i) The risk function U :
L∥·∥ → R is quasi-convex i.e, U(αF1 + (1 − α)F2) ≤
max{U(F1), U(F2)} for α ∈ [0, 1].

(ii) There exist q1 > 0, q2 ≥ 1 such that the risk function U
admits Ψ(z) = q1(z+ z

q2) as a local modulus of continuity
for all F ∈ DΛ,∣∣∣U(F )− U(G)

∣∣∣ ≤ Ψ
(
∥F −G∥

)
, ∀F ∈ DΛ, G ∈ L∥·∥.

Quasi-convexity in Assumption 2 is used to define the no-
tion of the ‘best’ arm for the oracle. The local modulus of
continuity property is similar to Cassel et al. (2018), and
is required for the decomposition of the regret using the
Lipshitz property.

2.2 OBJECTIVE VIA REGRET

For any admissible policy π = {πt, πt ∈ K}, let Eπ
t (·) ≜

Et({Xπi,i}i≤t; ·) and Fπ
s ≜ 1

t

∑t
s=1 Fπs,s. For a given

horizon T , the learner aims to minimize the following
pseudo-regret

Rπ(T ) ≜ E
[∣∣∣U(Fπ∗

T )− U(Fπ
T )
∣∣∣], π ∈ Π. (1)

The oracle optimal policy π∗ = {π∗(i)}i∈M is defined
over the regimes i ∈ M such that

π∗(i) ∈ argmax
k∈K

U(F i
k). (2)

The definition of pseudo-regret boils down to the pseudo-
regret defined in the stationary setting (M = 1) in Cassel
et al. (2018). By the quasi-convexity assumption, we have
U(F i

k) ≤ U(F i
π∗(i)) for all k ∈ K. So absolute value is

vacuous in the stationary setting. However, it is not clear
whether the random mixture corresponding the oracle policy
so defined also satisfies U(Fπ∗

T ) ≥ U(Fπ
T ). We find that

it is not always the case, and under a stronger sufficient
condition of relational invariance the relation is indeed
satisfied.

Assumption 3. (Relational Invariance). For any distribu-
tions F1, F2 and F3 ∈ DΛ and α ∈ [0, 1], it holds

U(αF1 + (1− α)F2) ≤ U(αF1 + (1− α)F3) (3)

whenever U(F2) ≤ U(F3).

It is now easy to verify that the random mixture of the oracle
policy is such that U(Fπ∗

T ) ≥ U(Fπ
T ), and the absolute

value is not necessary. In particular, if the regime switching
can be modeled as a Markov chain, we require the chain
to have a unique stationary distribution. In each of the
different regimes M, probability γ∞(i) of regime i ∈ M
and probability o(k|i) of selecting arm k in regime i. We
can see that

max
p

U(
∑
k

∑
i

F i
ko(k|i)γ∞(i))

is attained at the desired policy. By quasi-convexity,

U(
∑
k

F i
ko(k|i)) ≤ U(

∑
k

F i
kI(k = argmax

l
U(F i

l ))).

With k∗(i) = argmaxl U(F i
l ) and relational invariance,

U(
∑
i,k

F i
ko(k|i)γ∞(i)) ≤ U(

∑
i,k

F i
kI{k = k∗(i)}γ∞(i)).
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2.3 EXAMPLES OF RISK FUNCTIONS

1. Linear risk measure. A general linear risk measure
U lin can be written in the following way. There exists a
continuous function g such that U lin(F ) =

∫
g(x)dF .

Specifically,

U lin(Et({xi}i≤t; ·)) =
1

t

t∑
s=1

g(xs)

and

U lin(Ft) =
1

t

t∑
s=1

Ex∼Fs
g(x),

where Ft =
1
t

∑t
s=1 Fs. Then the semi-norm ∥ · ∥ :

D → R is defined as ∥F∥ := |U lin(F )|. It is straight-
forward to check that U lin is stable and relational in-
variant.

2. Mean-variance measure. For a general composite
risk measure U comp, it is written as

U comp(F ) = h(U (1)(F ), . . . , U (L)(F )).

Here function h : RL → R is a twice-differentiable
function andU (1), . . . , U (L) areL linear risk measures.
The semi-norm under this case is defined as

∥F∥ := ∥(U (1)(F ), . . . , U (L)(F ))∥2

=
√

|U (1)(F )|2 + . . .+ |U (L)(F )|2.

For the mean-variance risk, we specifically take
h(x1, x2) = x1 + ρ(x21 − x2) with x1 =

∫
xdF and

x2 =
∫
x2dF . From Cassel et al. (2018), we know

that the mean-variance risk is stable. In addition, if
distributions in DΛ have the same mean, then we know
that

U(αF1 + (1− α)F2)− U(αF1 + (1− α)F3)

=

∫
x2dF2 −

∫
x2dF3

= U(F2)− U(F3).

This implies the relation invariance.

The other common risk measure, CVaR, also satisfies the
assumptions. See supplementary for details.

3 NON-PARAMETRIC CHANGE
DETECTION FOR HEAVY-TAILS

Typical non-parametric methods for detection of the regime
changes are no more sufficient, and new characterizations of
truncation dependent thresholds and detection probabilities
are needed when considering heavy-tailed rewards. In this
section, we propose a general non-parametric detection al-
gorithm whose inputs are truncated and truncation features
play an integral role in characterizing statistical properties.

Assumption 4 (Detectability). Risk functionU is detectable,
i.e, for any distributions F i

k and F i+1
k , if F i

k ̸= F i+1
k then∣∣∣U(F i

k)− U(F i+1
k )

∣∣∣ > χ for some χ > 0.

The detectability condition guarantees that the risk of arm k
changes by at least χ, when its distribution change at i-th
change point. To the best of our knowledge, the current
work is the first one to consider a general risk function of
heavy-tailed rewards. Therefore we assume Assumption 4
for the ease of analysis. This detectability assumption is a
standard assumption in piecewise-stationary bandits (Liu
et al., 2018; Cao et al., 2019), wherein the distributional
change specified by the risk function (usually the ‘mean’) is
assumed to be significant enough to warrant detection and
subsequent classification.

Algorithm 1 Risk-sensitive Heavy-tail Detection (RHD)
1: Given: 2w−window size, β−threshold
2: Rewards Yl ≜ {Yj}wj=1 and Yr ≜ {Yj}2wj=w+1.
3: Perform window-driven truncation (Section 3.1) on Yl

and Yr to get truncated data Ȳl and Ȳr.
4: procedure RHD(Yl ∪ Yr, β)
5: if |U(Ew(Ȳl; ·))− U(Ew(Ȳr; ·))| > β then
6: Return True Change detected
7: else
8: Return False No change detected
9: end if

3.1 WINDOW-DRIVEN TRUNCATION

Let 2w be the window size for change point detection. We
hope to use as small number of samples as possible while
balancing the delay & false alarm trade-off. For this step,
we consider the following truncation method. For each
observed reward Yi (i = 1, . . . , 2w), we transform it to
Trunc(Y ) = Y 1{|Y | ≤ bw}, where bw is a truncation level
only depending on window size w. For example, one possi-
ble truncation function we use is given as bw ≡ w1/(1+ϵ).

3.2 DISCUSSION & ANALYSIS

In Algorithm 1, if the empirical risk function before the
change point is different from the empirical risk function
after the change point, then a change is announced. For
example, if U = U lin, ϵ = 1, and there is no truncation,
then the algorithm is similar to the quickest detection algo-
rithm in Cao et al. (2019). In this case, there is an intuitive
trade-off between detection delay and false alarm as a func-
tion of β. However, when ϵ < 1, the detection probabilities
explicitly rely on the truncation and so does the threshold.
Without truncation, it is not possible to derive the concen-
tration without making semi-parametric assumptions.

Let U(F (·),trunc
w ) be the risk of the truncated random mix-

ture of one-half window. We first characterize the gap be-
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tween U(F l,trunc
w ) and U(Fr,trunc

w ). From Assumption 2,

|U(F)− U(F (·),trunc
w )|

≤ Ψ(∥F − F (·),trunc
w ∥)

= q1(∥F − F (·),trunc
w ∥+ ∥F − F (·),trunc

w ∥q2)
≤ q1(ψ1(w) + ψ1(w)

q2) := ψ̄1(w)

[It appears in Algorithm 2]

3.2.1 FALSE ALARM

Again abusing notation, let Ek,l
w ↔ Ek,l,trunc

w denote the
truncated empirical distribution of the left-half data for
arm k in RHD. When there is no change point, we can
compute

P(|U(Ek,l
w )− U(Ek,r

w )| ≥ x)

≤ 2 exp
{
− w2(x/4q1)

2/2

wψ2(w) + ψ3(w)w(x/4q1)/3

}
+2 exp

{
− w2(x/4q1)

2/q2/2

wψ2(w) + ψ3(w)w(x/4q1)1/q2/3

}
=: prob0(x), (4)

By union bound, the false alarm probability is no greater
than T · prob0(β). In order to ensure T · prob0(β) to be
vanishing as T → ∞, it suffices to have

w/max{q21ψ2(w), q1ψ3(w)} ≥ C log T

for a large enough constant C.

3.2.2 DETECTION DELAY

When the change happens and we take w such that
q1(ψ1(w) + ψ1(w)

q2) ≤ χ/4, we know |U(Fk,l
w ) −

U(Fk,r
w )| ≥ χ/2. We then can compute

P(|U(Ek,l
w )− U(Ek,r

w )| ≥ x)

≥ 1− 2 exp
{
−

w2((χ2 − x)/4q1)
2/2

wψ2(w) + ψ3(w)w((
χ
2 − x)/4q1)/3

}
−2 exp

{
−

w2((χ2 − x)/4q1)
2/q2/2

wψ2(w) + ψ3(w)w((
χ
2 − x)/4q1)

1
q2 /3

}
:= 1− prob1(x). (5)

In other words, we can detect the change after ⌈wK/v⌉
rounds with probability at least 1 − prob1(β). To en-
sure that prob1(β) → 0 when T → ∞, we also require
w/max{q21ψ2(w), q1ψ3(w)} ≥ C log T .

In summary, the choice of w and β should obey

q1(ψ1(w) + ψ1(w)
q2) ≤ χ/4, (6)

w/max{q21ψ2(w), q1ψ3(w)} ≥ C log T, (7)
β ≤ χ/2. (8)

3.3 PROPERTIES OF RHD ALGORITHM

Let the true underlying change points occur at
times {δ1, δ2, · · · }, and V = {ν1, ν2, · · · } denote
change points detected by Algorithm 1.
Proposition 1 (Probability of False Alarm). Suppose As-
sumptions 1, 2, and 4 hold. Consider a stationary en-
vironment, i.e., the number of regime changes M = 0.
For a detection threshold β, the false alarm probabil-
ity P(ν1 ≤ T ) ≤ KTprob0(β). Here prob0(β) is defined
in Eq. (4).
Proposition 2 (Expected Detection Delay). Suppose As-
sumptions 1, 2, and 4 hold. For an exploration parame-
ter ζ ∈ (0, 1] and L = w⌈K

ζ ⌉, the expected detection delay

is E
[
ν1 − δ1

]
≤ L(1 − prob1(β)) + Tprob1(β). Here

prob1(β) is defined in Eq. (5).

4 ALGORITHM FOR REGRET
MINIMIZATION

In this section, we propose a confidence based algorithm
(Algorithm 2) that actively monitors the regime changes
in a non-parametric manner – specified by general distri-
butional changes – and then minimizes the regret in each
of the regimes. The algorithm makes use of a novel pol-
icy based truncation method to successfully navigate the
general setting.

4.1 POLICY-DRIVEN TRUNCATION

Unlike window-driven truncation in RHD where window
length 2w is set to be a determined number as the input,
we need to introduce a data-driven truncation procedure
in the index computation step (Line 10) in Algorithm 2
to get a good admissible policy. For this step, we con-
sider the following truncation method. At t-th round, we
pull arm πt and observe reward Y , we transform Y to
Trunc(Y ) = Y 1{|Y | ≤ Bπ,t} where truncation level de-
pends on the admissible policy and the current time index
t. For example, suppose at time t, td < t is the latest
change point time detected by policy π. Then we can
set data-dependent truncation level as Bπ,t = bnπt (t)

=

(
∑

s:t≥s>td
1{πs = πt})1/(1+ϵ).

Remark 1 (Note on Truncation). To handle heavy-tailed
data, there are many techniques including “median of
means” method (Bubeck et al., 2013), Catoni’s M -
estimation method (Catoni, 2012; Bhatt et al., 2022d,c),
and robust estimation methods (Lee et al., 2020; Bhatt et al.,
2022a). However, none of these methods are satisfactory in
the current risk-sensitive non-stationary framework. First
two methods are relatively hard to compute compared with
the truncation method. The first and third methods cannot
be easily transformed to a data-riven method. That is, they
are relatively less computational friendly in online fashion.
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Lastly, all of three methods suffer the issue that it is hard
to quantitatively evaluate the gap between the general risk
values of robustified data and the original one. In other
words, the best arm may be changed after implementing
those robust techniques. This motivates the truncation meth-
ods employed in our framework.

Algorithm 2 Risk-Sensitive Switching Confidence Bound
(RS-SCB)

1: 2w−window size, β−threshold, T−play horizon, It ∈
K−the arm chosen at t, ϵ ∈ (0, 1], ϱ = 0.

2: nk(t)−number of arm k pulls up to time t, ζ ∈ [0, 1]-
exploration factor, ϑ > 2− input parameter

3: Ht = {XIl,l}tl=1 andHk
t (⊂ Ht) ≜

{
Yk,m

}nk(t)

m=1
.

4: W k
t (⊂ Hk

t ) ≜
{
Yk,m

}nk(t)

m=nk(t)−2w+1
.

5: for t = 1:T do
6: I = (t− ϱ) mod ⌊K

ζ ⌋.
7: if I ≤ K then
8: Pick It = I .
9: else

10: Compute the index, Index(k, t) as (Section 4.1),

U
(
Ek,trunc
nk(t)

(Hk
t ; ·)

)
+ ϕ−1

nk(t)

(ϑ log t
nk(t)

)
+ ψ̄1(nk(t)).

11: Pick It = argmaxk∈K Index(k, t).
12: end if
13: Receive reward XIt,t.

14: Update historyHt =
{
Ht−1, XIt,t

}
.

15: Update the number of arm pulls nIt(t) = nIt(t) + 1.
16: for k ∈ K do
17: Flag = RHD(W k

t , β)
18: if

(
(nk(t) > 2w) & Flag = True

)
then

19: Redefine historyHk
t = {} for all k ∈ K.

20: Reset ϱ = t and nk(t) = 0 for all k ∈ K.
21: else
22: Return
23: end if
24: end for
25: end for

4.2 DISCUSSION & ANALYSIS

In Algorithm 2, the exploration factor ζ ∈ (0, 1] determines
uniform sampling rate, i.e, it ensures that over a length
of M time units, each arm is pulled at least M/⌈K

ζ ⌉ times,
whence the fraction of times Index is not computed is ap-
proximately ζ. This is to ensure that procedure does not
get stuck on an arm just because it has been played most
often so far. When the Index is updated instead, the best
arm is selected in the classical fashion. When the rewards
collected exceed 2w, the regime change detection module
checks for changes, and the process repeats. A feature of

the active adaptation algorithm is that the influence of the
weight of the history is reduced after each ‘reset’.

We first explain the function ϕnk(t) (ϕ−1
nk(t)

) which appears
in the line 10 of Algorithm 2. By stability assumption and
straightforward calculation, we have the following concen-
tration inequality

P(|U(Ek,trunc
n )− U(Fk,trunc

n )| ≥ x) ≤ 2 exp{−nϕn(x)},

where

ϕn(y) = min

{
(y/2q1)

2

ψ2(n) + ψ3(n)(y/2q1)/3
, (9)

(y/2q1)
2/q2

ψ2(n) + ψ3(n)(y/2q1)1/q2/3

}
, and

ϕ−1
n (x) = max

{
2q1(

ψ3(n)x

3
+
√
ψ2(n)x),

2q1

(
ψ3(n)x

3
+
√
ψ2(n)x}

)q2}
.

By the way, it is not hard to see that ϕn(ϕ−1
n (x)) ≥ x and

ϕn(ϕ
−1
n (x)) ≤ 2x for any positive x.

4.3 RS-SCB ALGORITHM: PROPERTIES & MAIN
RESULTS

In this section, we shall establish the main result, namely,
the upper bound on the pseudo regret for Algorithm 2. The
algorithm involves two key components: (i) Heavy-tail de-
tection module, and (ii) Arm selection using confidence
bounds. Naturally, the pseudo regret has contributions from
each of these modules.

Let ∆k := maxi∈M

{
U(F i

π∗(i))−U(F i
k)
}

denote the max-
imum sub-optimality gap of arm k ∈ K, the scaling fac-

tor ρ ≜ maxi∈M,k∈K
∥F i

π∗(i)−F i
k∥

∆k
denotes the gap-ratio,

G := q1(1 + Dq2−1) is a Lipschitz constant with the pa-
rameter D ≜ maxk,l∈K maxi,j∈M ∥F i

k−F
j
l ∥ denoting the

diameter of DΛ, and ηk(T ) ≜
∑M

i=1

∑
t∈[δi−1+1,δ] 1

{
πt =

k; k /∈ π∗(i)
}

denotes the number of sub-optimal plays of
arm k over T rounds.
Proposition 3 (Pseudo Regret Decomposition). The pseudo
regret for an arbitrary bandit policy π is given as

Rπ(T ) ≤
ρG

T

K∑
k=1

∆kE
[
ηk(T )

]
.

The pseudo regret is normalized owing to the definition
of the mixture distributions. Standard notion of regret is
inferred by scaling with T . Let ui,k denote the minimal
positive solution to the following inequality,

(U(F i
π∗(i))− U(F i

k))/2 ≥ ϕ−1
u (

α log T

u
) + ψ̄1(u). (10)
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Here ui,k can be seen as the length of the phase required to
identify the best arm in each regime i.

Theorem 1 (Pseudo Regret RS-SCB). Suppose Assump-
tions 1, 2, and 4 hold and choose w, β satisfying (6) - (8).
For an exploration parameter ζ ∈ (0, 1] in Algorithm 2, the
pseudo regret of the RS-SCB algorithm

RRS−SCB(T ) ≤M
(
C1+C2+C3

)
+
ρGζ

K

∑
k∈K

∆k, (11)

where the terms C1 ≜
∑

k∈K
ρG
T

(
uk∆k + ∆k

)
, C2 ≜

2wρGK
ζT maxk∈K ∆k, C3 ≜ ρG

T

∑
k∈K ∆k, and uk =

maxi ui,k where ui,k’s are defined in Eq. (10).

Term C1 is the price we pay during the exploration and
exploitation phase. C2 is the price we pay during detection
phase. C3 is the cost induced by false change point detection.
The last term in Eq. (11) is the price incurred by the uniform
exploration. It is easy to check that the terms in the bound
reduce to the terms in Cao et al. (2019) where they only
consider sub-Gaussian rewards. Additionally, if we allow
exploration factor ζ to depend on M,K,w and T , then we
have the following corollaries.

Corollary 1. Assume ∆k’s are fixed constants and take
ζ =

√
MwK/T , we then have

RRS−SCB(T )

≤ ρG

T

∑
k

min{Muk, Nk}∆k +O(ρG

√
MwK

T
)

When we take ψ1(n) = n−ϵ/(1+ϵ), ψ2(n) = n
1−ϵ
1+ϵ and

ψ3(n) = n
1

1+ϵ , we can easily find w = C(log T )
1+ϵ
ϵ to

satisfy Eq. (7). Thus by ignoring the log T factor, the bound

O(ρG
√

MwK
T ) is nearly optimal since O(ρG

√
MK
T ) is the

best instance-dependent lower bound we could do.

Corollary 2. When ∆k’s are not fixed, we then have the
worst case bound

RRS−SCB(T ) = O
(
ρG(log T )(

MK

T
)ϵ/(1+ϵ)

)
by taking ζ =

√
MwK/T .

According to the lower bounds established in the supple-
mentary, we know that the proposed RS-SCB algorithm also
achieves the optimal instance-independent regret bound if
we do not take into account the log T term. The algorithm
structure is similar to Cao et al. (2019). However, unlike
the analysis in Cao et al. (2019), we (also) consider weaker
assumptions on non-stationarity (see Sec.4.3.1) building on
recent results.

Theorem 1 gives the regret bound for a general set of param-
eters. This is the reason why we do not specify the choice

of w and β here. In Corollary 1 and Corollary 2, we pro-
vide more specific form. In the setting of Corollary 1, it is
assumed that sub-optimality gaps are fixed. Therefore, the
regret is dominated by the cost of detecting the change point

which is O(ρG
√

MwK
T ). That explains why the regret in

this scenario does not explicitly depends on ϵ. In the Corol-
lary 2, ∆k are no longer assumed to be fixed. Then regret is
affected by both exploration via heavy-tailed data and cost
of detecting the change point. That is why regret in this case
depends on ϵ. For the choice of β, we can simply take it to
be χ/2. For the choice of w, we let w = C(log T )(1+ϵ)/ϵ

as discussed before.

4.3.1 RELAXATION OF ASSUMPTION 4

In light of recent work in Gur et al. (2014); Besbes et al.
(2019); Manegueu et al. (2021), Assumption 4 may be a bit
restrictive. Here we generalize the setting and assumption,
where the focus is on the severe changes that influence the
regret.
Assumption 5. In addition to Assumption 4, we allow
the small fluctuations between change points. That is,
there exists a constant B∗ < χ/4 such that |U(F i

k(t)) −
U(F i

k(t
′))| ≤ B∗ for any t, t′ ∈ [δi, δi+1) and any i.

Assumption 5 is similar to that in Manegueu et al. (2021) and
it gives more flexibility and does not require that distribution
F i
k(t) remains unchanged between two change points δi and
δi+1. Under such relaxed setting, we want to design an
algorithm only aims to capture those big change points and
does not try to detect small changes. By this motivation, we
choose w and β satisfy

q1(ψ1(w) + ψ1(w)
q2) ≤ χ/8, (12)

w/max{q21ψ2(w), q1ψ3(w)} ≥ C log T, (13)
β ≤ χ/4, (14)

and define detection length equation

∆̄i,k/2 ≥ ϕ−1
u (

α log T

u
) + ψ̄1(u), (15)

where ∆̄i,k := max{2B∗,mint∈Ri
U(F i

π∗(i)(t)) −
maxt∈Ri U(F i

k(t))} and Ri denotes the i-th regime. We
further let ∆̄k = maxi ∆i,k and obtain the following result.
Theorem 2 (Pseudo Regret RS-SCB). Suppose Assump-
tions 1, 2, and 5 hold and choose w, β satisfying (12) - (14).
For an exploration parameter ζ ∈ (0, 1] in Algorithm 2, the
pseudo regret of the RS-SCB algorithm

RRS−SCB(T ) ≤M
(
C1 + C2 + C3

)
+
ρGζ

K

∑
k∈K

∆̄k

+ 3ρGB∗. (16)

Here the terms C1 ≜
∑

k∈K
ρG
T

(
uk∆̄k + ∆̄k

)
, C2 ≜

2wρGK
ζT maxk∈K ∆̄k C3 ≜ ρG

T

∑
k∈K ∆̄k, and uk =
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maxi ui,k,2 where ui,k,2 is the minimal positive number
satisfying Eq. (15).

The regret upper bound is looser as a result of this relaxation,
and the price for relaxation is approximately O(ρGB∗)
where B∗ captures the severity of the changes.

5 EXPERIMENTS
In this section, we provide simulation studies for the pro-
posed RS-SCB algorithm. We would like to emphasize that
the main focus of our paper is to integrate three challenging
aspects (heavy-tails, non-stationarity, risk) encountered in
practical applications (see Motivating Example), and pro-
vide a simple algorithm that has good theoretical guarantees.
To the best of our knowledge there are no algorithms that
provide a fair baseline for heavy tailed piecewise-stationary
distributions under risk measures, so we have chosen to
illustrate the performance sensitivity w.r.t. various algo-
rithm parameters. For special case of light tail and linear
risk measures, the algorithm has similar building blocks as
near-optimal non-stationary UCB algorithms like Cao et al.
(2019); and we observed that the performance is similar and
hence not reported.

Experimental Setting. In all below experiments, we choose
truncation level bt = ν

1
1+ϵ t

1
ϵ , where ν = E[|Z|1+ϵ], Z ∼

Fh. (Fh is student’s-t distribution with degree 2, stan-
dard log-normal distribution or Pareto distribution with
power index 2.) Consequently, we set ψ1(t) = t−ϵ/(1+ϵ),
ψ2(t) = t(1−ϵ)/(1+ϵ) and ψ3(t) = t1/(1+ϵ). For a general
risk function U , q1 plays an important role in determining
the empirical performance of RS-SCB. Note that small q1
will lead to many false detections and large q1 may lead
to loose UCB-index which hence slows down the speed
to identify the best arm. Hence q1 can be viewed as an
additional tuning parameter for general U in practice.

5.1 CHANGES DETECTABLE UNDER
ASSUMPTION 4

We consider the non-stationary bandits with function U
being linear risk or CVaR. For each arm k at round t, the
reward is specified as Xk,t = µk(t) + ϵt, where ϵt’s are
independent and follow the same heavy-tailed distribution
Fh. In particular, we take Fh to be student’s-t distribu-
tion, log-normal distribution and pareto distribution. We let
M̃(:= M − 1) change points be equally spaced between
[0, T ]. We choose µk(1) = k−K/2−1 for k ∈ [K] and set
χ = 2 (i.e. |µk(t+ 1)− µk(t)| = 2 for t ∈ {δ1, . . . , δM}).
Additionally, we fix K = 5 and set T ∈ {5, 10, 20, 40, 80}
(×103). To apply our method, we choose threshold β = 1,
w = q21(log(T ))

1+ϵ
ϵ , and ζ =

√
MKw/T . The results are

summarized in Figure 1 and Table 1.

From Figure 1, we can see that the percentage of pulling best
arm increases as T increases in both settings of linear risk
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Figure 1: Percentage of pulling best arms. Some hyper
parameters are given as: ϵ = 1; q1 = 0.5, q2 = 1 for linear
risk; α = 0.1, q1 = 2.5, q2 = 2 for CVaR.

t-dist T 5000 10000 20000 40000 80000

linear
M̃ = 2 100% 100% 100% 100% 100%
M̃ = 4 99 % 99% 99% 100 % 100%
M̃ = 8 70 % 98% 99% 100% 100%

cvar
M̃ = 2 5% 50% 95% 97% 100%
M̃ = 4 1 % 24% 48% 97% 99%
M̃ = 8 1 % 7% 22% 53% 95%

log-norm T 5000 10000 20000 40000 80000

linear
M̃ = 2 98% 100% 100% 100% 100%
M̃ = 4 96% 99% 100% 100 % 100%
M̃ = 8 69% 99% 100% 100% 100%

cvar
M̃ = 2 7% 50% 95% 95% 100%
M̃ = 4 0% 21% 49% 95% 96%
M̃ = 8 0% 3% 21% 48% 90%

pareto T 5000 10000 20000 40000 80000

linear
M̃ = 2 98% 100% 100% 100% 100%
M̃ = 4 98% 100% 100% 100% 100%
M̃ = 8 72% 98% 99% 99% 100%

cvar
M̃ = 2 12% 45% 95% 100% 100%
M̃ = 4 3% 25% 49% 93% 100%
M̃ = 8 1% 5% 20% 51% 90%

Table 1: Percentage of detection (i.e., the number of times
that a change point is detected by RS-SCB divided by the
total number of change points) under various cases. Number
of underlying change points, M̃ , takes values in {2, 4, 8}.

and CVaR. Our method is quite insensitive to the choice of
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Fh. That is, RS-SCB is robust for different shapes of heavy-
tailed distributions. As number of change points increases,
the percentage of pulling best arms decreases as we expect.
This is because the exploration factor ζ = O(

√
M) and

the algorithm spends more number of rounds in exploration
phase when M gets larger.

From Table 1, we observe that our method performs very
well in detecting change points for the linear risk under
different choices of M̃ and T . With T increasing, RS-SCB
can also achieve good detection result for CVaR.

5.2 CHANGES DETECTABLE UNDER
ASSUMPTION 5

In this section, we provide additional simulation studies for
the proposed RS-SCB algorithm under relaxed assumption
on the detectable changes.

We still consider the non-stationary bandits with function
U being linear risk or CVaR. For each arm k at round t, the
reward is specified as Xk,t = µk(t) + ω(t) + ϵt, where ϵt’s
are independent and follow the same heavy-tailed distribu-
tion Fh. Since our method is quite robust to the choice
of Fh, we here only take Fh to be student’s-t distribu-
tion for illustrative purpose. We again let M̃(:= M − 1)
change points be equally spaced between [0, T ]. We choose
µk(1) = k − K/2 − 1 for k ∈ [K] and set χ = 2
(i.e. |µk(t + 1) − µk(t)| = 2 for t ∈ {δ1, . . . , δM}).
We further select ω(t) = B∗ sin(2πM̃t/T ). The pertur-
bation level B∗ takes value from {0.2, 0.5, 1.0}. As be-
fore, we still fix K = 5 and set T ∈ {5, 10, 20, 40, 80}
(×103). To apply our method, we choose threshold β = 1,
w = q21(log(T ))

1+ϵ
ϵ , and ζ =

√
MKw/T . Results are

summarized in Figure 2. (Remark: optimal tuning of w, ζ
requires the knowledge of T . When T is unknown, we can
split into geometrically spaced time intervals [2k, 2k+1 − 1]
(k ≥ 0) and use different w, ζ in each interval.)

From Figure 2, we can see that the percentage of pulling
best arm increases as T increases in both settings of linear
risk and CVaR. Our method is also quite insensitive to the
choice of B∗. The performance does not degrade too much
when perturbation level, B∗, increases from 0.2 to 1.0.

6 CONCLUSION & FUTURE WORK

We provided an index based algorithm that is truncation-
based and non-parametric, and also enjoys nearly-optimal
regret bound in both gap-dependent/independent sense. The
algorithm combines an actively adapting non-parametric
change point detection algorithm that is designed to identify
general distributional changes in heavy-tailed distributions
along with novel data-driven truncation to provide a tight
characterization. We also characterized the delay and false
alarm probabilities (as a function of truncation) for heavy-
tailed distributions that is of independent interest.
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Figure 2: Percentage of pulling best arms for generalized
settings. (“1” means 100%.) Hyper parameters are the
same as before: ϵ = 1; q1 = 0.5, q2 = 1 for linear risk;
α = 0.1, q1 = 2.5, q2 = 2 for CVaR.

Below we comment on the limitations of this work and these
naturally lead to future research directions. (i) We implic-
itly assume the knowledge of M , the number piecewise-
stationary regimes as in previous works. Recent works, for
example (Auer et al., 2019; Chen et al., 2019; Besson et al.,
2022), relax this assumption (in linear risk setting) while
still obtaining similar regret guarantees. Exploring this di-
rection for the general framework is a worthwhile endeavor.
(ii) An important trade-off is that while the active adaptation
algorithm provides a Õ(

√
K) regret, it requires strong as-

sumptions on the risk-measures. A simple sliding-window
type approach that leads to a slightly higher regret Õ(K),
but works under more general conditions might be suitable
in real-world applications. (iii) We are only able to establish
a Ω̃(

√
MK√
T

) lower bound under an additional assumption
on the risk function, namely, the U-structure. It leaves an
open question: is the gap-dependent lower bound order for
any type of risk (ex. CVaR)? (iv) We assume the knowledge
of the moment bound parameter ϵ and the horizon T in the
algorithm parameters tuning and implementation. Robustifi-
cation w.r.t these parameters and using anytime confidence
bounds as in Bhatt et al. (2022b) might be worth consider-
ing for future work. (v) Adopting techniques in the current
paper into other bandit settings (e.g. adversarial bandit
(Bubeck and Slivkins, 2012), contextual bandit (Li et al.,
2010), fairness bandit (Fang et al., 2022), etc.) might also
be an interesting research problem.
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM J. Comput., 32(1):48–77, 2002.

Peter Auer, Yifang Chen, Pratik Gajane, Chung-Wei Lee,
Haipeng Luo, Ronald Ortner, and Chen-Yu Wei. Achiev-
ing optimal dynamic regret for non-stationary bandits
without prior information. In Proceedings of the Con-
ference on Learning Theory (COLT), pages 159–163,
Phoenix, AZ, 2019.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Optimal
exploration–exploitation in a multi-armed bandit problem
with non-stationary rewards. Stochastic Systems, 9(4):
319–337, 2019.

Lilian Besson, Emilie Kaufmann, Odalric-Ambrym Mail-
lard, and Julien Seznec. Efficient change-point detection
for tackling piecewise-stationary bandits. J. Mach. Learn.
Res., 23(77):1–40, 2022.

Sujay Bhatt, Guanhua Fang, and Ping Li. Offline change
detection under contamination. In Proceedings of the
Thirty-Eighth Conference on Uncertainty in Artificial In-
telligence (UAI), pages 191–201, Eindhoven, The Nether-
lands, 2022a.

Sujay Bhatt, Guanhua Fang, Ping Li, and Gennady Samorod-
nitsky. Catoni-style confidence sequences under infinite
variance. arXiv preprint arXiv:2208.03185, 2022b.

Sujay Bhatt, Guanhua Fang, Ping Li, and Gennady Samorod-
nitsky. Minimax m-estimation under adversarial contami-
nation. In Proceedings of the International Conference on
Machine Learning (ICML), pages 1906–1924, Baltimore,
MD, 2022c.

Sujay Bhatt, Guanhua Fang, Ping Li, and Gennady Samorod-
nitsky. Nearly optimal catoni’s m-estimator for infinite
variance. In Proceedings of the International Confer-
ence on Machine Learning (ICML), pages 1925–1944,
Baltimore, MD, 2022d.

Sujay Bhatt, Ping Li, and Gennady Samorodnitsky. Extreme
bandits using robust statistics. IEEE Trans. Inf. Theory,
69(3):1761–1776, 2023.

Djallel Bouneffouf, Amel Bouzeghoub, and Alda Lopes
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Supplementary Materials

Notation

For reader convenience, we collect all important notion in this appendix. At time t, the learner/ bandit algorithm chooses
action πt and receives reward Xπt,t. An admissible bandit policy π = {πt} is a random process recursively defined as

πt ≜ πt

(
π1, π2, · · · , πt−1, Xπ1,1, Xπ2,2, · · · , Xπt−1,t−1

)
,

where the policy πt : Ht → K is a function of the past history of actions and observations. Formally, the bandit policy is
measurable w.r.t to the sigma-algebra

Ht ≜ Σ
(
π1, π2, · · · , πt−1, Xπ1,1, Xπ2,2, · · · , Xπt−1,t−1

)
.

Let D be the space of all distributions on R. The empirical distribution of a real number sequence x1, · · · , xt is the
function Et : Rt → D such that

Et({xi}i≤t; ·) =
1

t

t∑
s=1

I[xs,∞](·),

where I[a,b](·) denotes the indicator function on the interval [a, b]. The empirical distribution of the reward sequence under
policy π, and arm k are defined as

Eπ
t (·) ≜ Et({Xπi,i}i≤t; ·) and Ek

t (·) ≜ Et({Xk,i}i≤t; ·)

respectively. Let the corresponding random mixture distributions for policy π and k ∈ K be given as

Fπ
s ≜

1

t

t∑
s=1

Fπs,s and Fk
t ≜

1

t

t∑
s=1

Fk,s

respectively. Define the truncation function at level b > 0 as

Trunc(Y, b) = sign(Y )min{|Y |, b}.

Let F b represent the C.D.F. of Trunc(Y, b) with Y ∼ F , and (bn;n = 1, . . .) denote a sequence of truncation levels. For
arm k, we define the truncated population distribution,

Fk,trunc
n ≜

1

n

n∑
s=1

F bs
k,s,

and, for any n ∈ Z+, the truncated empirical distribution

Ek,trunc
n (X1:n; ·) =

1

n

n∑
s=1

I[Trunc(Xs,bs),∞](·).

Let Π denote the set of all admissible policies. Given any policy π ∈ Π, we can also define the policy-dependent truncated
population distribution as

Fπ,trunc
n ≜

1

n

n∑
s=1

FBπ,s
πs,s

and the policy-dependent truncated empirical distribution as

Eπ,trunc
n =

1

n

n∑
s=1

I[Trunc(Xs,Bπ,s),∞](·).
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Here Bπ,s takes value in (bn;n = 1, . . .). It depends on time index s and policy π and thus is history-dependent.

Let the space of all distributions on R denoted as D be such that D ⊂ L∥·∥, a seminormed space associated with the
seminorm ∥ · ∥. Let Λ denote the simplex in RK×M :

Λ ≜
{
(p11, · · · , pKM ) ∈ RK×M

∣∣∣ K∑
k=1

M∑
i=1

pki = 1, pki ≥ 0, ∀ k ≤ K, i ≤M
}
.

Define the set of all convex combinations of the reward distributions as

DΛ =
{
F ∈ D : F =

K∑
k=1

M∑
i=1

pijF
i
k

∣∣∣ p ∈ Λ
}
.

The following parameters associated with regret. Let

∆k := max
i∈M

{
U(F i

π∗(i))− U(F i
k)
}

denote the maximum sub-optimality gap of arm k ∈ K, and

ρ ≜ max
i∈M,k∈K

∥F i
π∗(i) − F i

k∥
∆k

denote the gap-ratio, D ≜ maxk,l∈K maxi,j∈M ∥F i
k − F j

l ∥ denote the diameter of DΛ,

G := q1(1 +Dq2−1)

is a Lipschitz constant and

ηk(T ) ≜
M∑
i=1

∑
t∈[δi−1+1,δ]

1
{
πt = k; k /∈ π∗(i)

}

denote number of sub-optimal plays of arm k over T rounds.

In this work, we always view gap-ratio ρ and diameter G as two absolute constants. For example, in linear risk case with
bounded reward between [0, 1], then ρ ≡ 1, G ≡ 2.

7 Comments on Assumption 1

Here we explain the reasons why Assumption 1 is not restrictive. For (i) uniform boundedness, in the linear risk settings, we
have

∥Fk,trunc
n −Fk

n∥ =
1

n
|

n∑
t=1

E[Trunc(Xt, bt)−Xt]|

≤ 1

n

n∑
t=1

E[|Xt|1|Xt|≥bt ]

≤ 1

n

n∑
t=1

ν

bϵt
≤ 2νn−

ϵ
1+ϵ , (17)
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where we choose bt = t1/(1+ϵ) for t = 1, . . . , n. Therefore, we can take ψ1(n) = 2νn−
ϵ

1+ϵ . Similarly, in the conditional
value at risk (CVaR) setting, we have

∥Fk,trunc
n −Fk

n∥

= max{∥ 1
n

n∑
t=1

(F bt
t − Ft)∥∞, |

1

n

∑
t

E[Xt+ − Trunc(Xt, bt)+]|, |
1

n

∑
t

E[Xt− − Trunc(Xt, bt)−]|}

≤ max{ 1
n

n∑
t=1

∥F bt
t − Ft∥∞, 2νn−ϵ/(1+ϵ)}

≤ max{ 1
n

n∑
t=1

min{1, ν

|t− ν|
}, 2νn−ϵ/(1+ϵ)}

≤ max{ν(log n+ 2)

n
, 2νn−ϵ/(1+ϵ)} (since

n∑
i=1

1

i
≤ log n+ 1), (18)

where we still choose bt = t1/(1+ϵ). Thus we can take ψ1(n) = max{ν(logn+2)
n , 2νn−ϵ/(1+ϵ)}.

For (ii) exponential concentration in Assumption 1, we can apply Bernstein inequality to the following
bounded independent random variables, Trunc(Xt, bt) − E[Trunc(Xt, bt)]’s (t = 1, . . . , n) (or Trunc(Xt, bt)+ −
E[Trunc(Xt, bt)+], Trunc(Xt, bt)− − E[Trunc(Xt, bt)−]), and apply Dvoretzky–Kiefer–Wolfowitz (DKW) inequality
to 1

n

∑n
t=1(I[Trunc(Xt, bt),∞](·)− F bt

t (·)). Hence

P(∥Ek,trunc
n −Fk,trunc

n ∥ ≥ x)

≤ 2 exp{− n2x2/2

ν
∑

t b
1−ϵ
t + nmaxt btx/3

}+ 2 exp{−2nx2} (19)

≤ 4 exp{− nx2/2

νn
1−ϵ
1+ϵ + n

1
1+ϵx/3

}, (20)

where Eq. (19) uses the fact that E[|Trunc(Xt, bt)|2] ≤ E[|Trunc(Xt, bt)|1−ϵ|Trunc(Xt, bt)|1+ϵ] ≤ b1−ϵ
t ν, Eq. (20) chooses

bt = t1/(1+ϵ). Hence, we can choose ψ2(n) = c2n
1−ϵ
1+ϵ and ψ3(n) = c3n

1
1+ϵ . This explains why Assumption 1 is mild.

8 Other examples satisfying required assumptions

1. Conditional Value at Risk (CVaR). CVaRα is the average reward below percentile level α and its formula is given by

UCVaRα(F ) = max
z∈R

z − 1

α

∫ α

−∞
F (x)dx. (21)

Then the semi-norm is defined as

∥F∥ = max{∥F∥∞, |
∫ 0

−∞
xdF (x)|, |

∫ ∞

0

xdF (x)|}. (22)

The stability of CVaR holds by applying DKW or Bretagnolle inequality for ∥Ek
t −Fk

t ∥∞ and Bernstein’s inequality
for |

∫ 0

−∞ xd(Ek
t −Fk

t )|, |
∫∞
0
xd(Ek

t −Fk
t )|.

When M = 2 with U(F i1) < U(F i2), we know that any distribution F ∈ DΛ can be written as αFF
i1 +(1−αF )F

i2

with 0 ≤ αF ≤ 1. Thus U(αF1+(1−α)F2) ≤ U(αF1+(1−α)F3) is equivalent to α(1−αF1
)+(1−α)(1−αF2

) <
α(1− αF1) + (1− α)(1− αF3). It is further equivalent to (1− αF2) < (1− αF3), i.e., U(F2) < U(F3). This leads
to the relational invariance.

At the end of this section, we show that CVaR satisfies the regularity assumption for completeness. First by Lemma 9
in Cassel et al. (2018), we have that

|UV aRα(F )− UV aRα(G)| ≤ 2∥F∥+ ∥F −G∥
min{α, 1− α}

, (23)
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and

0 ≤ UCV aRα(F )− UCV aRα(G) +
1

α

∫ UV aRα (F )

−∞
(G(x)− F (x))dx

≤ 1

α
∥F −G∥|UV aRα(F )− UV aRα(G)|. (24)

Also note that

| 1
α

∫ UV aRα (F )

−∞
(G(x)− F (x))dx| ≤ | 1

α

∫ 0

−∞
(G(x)− F (x))dx|+ | 1

α

∫ UV aR
α (F )

0

(G(x)− F (x))dx|

≤ 1

α
(∥F −G∥+ |UV aRα(F )|∥F −G∥)

=
∥F −G∥

α
(1 + |UV aRα(F )|). (25)

Combined with Eq. (24), we have

|UCV aRα(F )− UCV aRα(G)| ≤ ∥F −G∥
α

(1 + |UV aRα(F )|+ |UV aRα(F )− UV aRα(G)|). (26)

Further by Eq. (23), we get that

|UCV aRα(F )− UCV aRα(G)| ≤ ∥F −G∥
α

(1 + |UV aRα(F )|+ 2∥F∥+ ∥F −G∥
min{α, 1− α}

)

≤ 1

α
(1 + |UV aRα(F )|+ max 1, 2∥F∥

min{α, 1− α}
)(∥F −G∥+ ∥F −G∥2)

≤ (4 +Q)/(αmin{α, 1− α})(∥F −G∥+ ∥F −G∥2). (27)

Thus, we can take q1 = (4 + Q)/(αmin{α, 1 − α}) and q2 = 2 when we consider the family of distribution with
α-quantile bounded by Q.

9 Missing Details in the Main Context

Example 1. For linear risk function, we obtain that ψ1(w) = νw−ϵ/(1+ϵ) by the following fact, as E[|X|1+ϵ] ≤ ν,

∥F − F trunc
w ∥ = |E[X − ψ(X)]| = |E[X1{|X| > w1/(1+ϵ)}]| ≤ νw−ϵ/(1+ϵ), (28)

Example 2. For CVaR risk function, we obtain that ψ1(w) = max{ ν
|w−ν| , νw

−ϵ/(1+ϵ)} by the following,

∥F − F trunc
w ∥ = max{∥F − F trunc

w ∥∞, |E[X+ − ψ(X+)]|, |E[X+ − ψ(X+)]|}

≤ max{|1− 1

1− P(|X| ≥ w1/(1+ϵ))
|, νw−ϵ/(1+ϵ)} ≤ max{|1− 1

1− ν/w
|, νw−ϵ/(1+ϵ)},

where X+ and X− are positive and negative parts of X , respectively. Therefore, we arrive at

|U(Fw,trunc
l )− U(Fw,trunc

r )| ≥ |U(F l
w)− U(Fr

w)| − 2ψ̄1(w). (29)

In other words, |U(F l,trunc
w )− U(Fr,trunc

w )| has gap at least χ− 2ψ̄1(w) when |U(F l
w)− U(Fr

w)| = χ. When w is large
enough, we have |U(F l,trunc

w )− U(Fr,trunc
w )| ≥ 1

2 |U(F l
w)− U(Fr

w)| = 1
2χ.

The false alarm probability Eq. 8 is calculated by

P(|U(Ek,l
w )− U(Ek,r

w )| ≥ x) ≤ P(|U(Ek,l
w )− U(Fk,l

w )| ≥ x/2) + P(|U(Ek,r
w )− U(Fk,r

w )| ≥ x/2)

≤ 2P(∥Ek,l
w −Fk,l

w ∥ ≥ x

4q1
) + 2P(∥Ek,r

w −Fk,r
w ∥ ≥ (

x

4q1
)1/q2)

≤ 2 exp
{
− w2(x/4q1)

2/2

wψ2(w) + ψ3(w)w(x/4q1)/3

}
+2 exp

{
− w2(x/4q1)

2/q2/2

wψ2(w) + ψ3(w)w(x/4q1)1/q2/3

}
:= prob0(x). (30)
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The detection power Eq. 9 is given by the following calculation,

P(|U(Ek,l
w )− U(Ek,r

w )| ≥ x)

≥ 1− P(|U(Ek,l
w )− U(Fk,l

w )| ≥ (χ/2− x)/2)− P(|U(Ek,r
w )− U(Fk,r

w )| ≥ (χ/2− x)/2)

≥ 1− 2

{
P(∥Ek,l

w −Fk,l
w ∥ ≥ (χ/2− x)

4q1
) + P(∥Ek,l

w −Fk,l
w ∥ ≥ (

(χ/2− x)

4q1
)1/q2)

}
≥ 1− 2 exp

{
−

w2((χ2 − x)/4q1)
2/2

wψ2(w) + ψ3(w)w((
χ
2 − x)/4q1)/3

}
2 exp

{
−

w2((χ2 − x)/4q1)
2/q2/2

wψ2(w) + ψ3(w)w((
χ
2 − x)/4q1)

1
q2 /3

}
:= 1− prob1(x). (31)

Derivation of ϕn(x) is given by

P(|U(Ek,trunc
n )− U(Fk,trunc

n )| ≥ x)

≤ P(∥Ek,trunc
n −Fk,trunc

n ∥ ≥ x

2q1
) + P(∥Ek,trunc

n −Fk,trunc
n ∥ ≥ (

x

2q1
)1/q2)

≤ exp{− n2(x/2q1)
2

nψ2(n) + ψ3(n)n(x/2q1)/3
}+ exp{− n2(x/2q1)

2/q2

nψ2(n) + ψ3(n)n(x/2q1)1/q2/3
}

≤ 2 exp{−nϕn(x)}, (32)

where we define

ϕn(y) = min

{
(y/2q1)

2

ψ2(n) + ψ3(n)(y/2q1)/3
,

(y/2q1)
2/q2

ψ2(n) + ψ3(n)(y/2q1)1/q2/3

}
. (33)
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10 Proof of Main Results

To start with, we first prove Proposition 2.

Proof of Proposition 2. We first define event H1 = {δ1 < ν1 < δ1 + L} with L = w⌈K
v ⌉. We then have

E
[
ν1 − δ1

]
= E

[
(ν1 − δ1)IH1

]
+ E

[
(ν1 − δ1)IHc

1

]
= E

[
(ν1 − δ1)|H1

]
P(H1) + E

[
(ν1 − δ1)IHc

1

]
≤ E

[
(ν1 − δ1)|H1

]
P(ν1 ≤ δ1 + L) + TP(ν1 > δ1 + L)

≤ L(1− prob1(β)) + Tprob1(β). (34)

This completes the proof of Proposition 2.

10.1 Pseudo Regret Decomposition

We next prove the pseudo regret decomposition.

Proof of Proposition 3. By the stability property of the risk function, we have for any F1, F2 ∈ DΛ,

|U(F1)− U(F2)| ≤ q1

(
∥F1 − F2∥+ ∥F1 − F2∥q2

)
= q1

(
1 + ∥F1 − F2∥q2−1

)
∥F1 − F2∥

≤ q1

(
1 + Dq2−1

)
∥F1 − F2∥

= G∥F1 − F2∥.

Using above result, we have

Rπ(T ) = E
[∣∣∣U(Fπ∗

T )− U(Fπ
T )
∣∣∣]

≤ GE
[
∥Fπ∗

T −Fπ
T ∥
]

≤ G

T
E
[∑
k∈K

∑
i∈M

δi∑
t=δi−1+1

∥F i
π∗
t (i)

− F i
πt
∥1
{
πt = k; k /∈ π∗

t (i)
}]

≤ G

T
E
[∑
k∈K

∆kρ
∑
i∈M

δi∑
t=δi−1+1

1
{
πt = k; k /∈ π∗

t (i)
}]

=
ρG

T

∑
k∈K

∆kE[ηk(T )]

10.2 Performance of RS-SCB

Let ui,k denote the minimal positive solution to the following equation,

(U(F i
π∗(i))− U(F i

k))/2 = ϕ−1
u (

α log T

u
) + ψ̄1(u). (35)

Here ui,k can be interpreted as the length of phase required to figure out the best arm in each regime i.
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To prove Theorem 1, we first prove the situation when there is no change point.

Proposition 4. The pseudo regret of Algorithm 2 when there are no change points M = 1, is upper bounded as

Rπ(T ) ≤ ρG

T

(∑
k∈K

umin,k∆k +∆k

)
+
ρGζ

K

∑
k∈K

∆k,

where umin,k is defined in Eq. (36).

Proof. We have the following

Rπ(T ) = E
[
Rπ(T )1

{
ν ≤ T

}]
+ E

[
Rπ(T )1

{
ν > T

}]
From propositions, choosing β = χ/3 satisfying equation (21), we have that the probability of false alarm P (ν ≤ T ) ≤ 1

T .
Using a trivial bound Rπ(T ) ≤ ρG

∑
k∈K ∆k, we have

Rπ(T ) ≤
ρG

T

∑
k∈K

∆k + E
[
Rπ(T )1

{
ν > T

}]
.

Note that E
[
Rπ(T )1

{
ν > T

}]
is the expected pseudo regret when there is no false alarm. Using the result in truncation

exploration and exploitation (see Eq. (40)), we have

E
[
Rπ(T )1

{
ν > T

}]
≤ ρG

T

(
umin,k∆k

)
+
ρGζ

K

∑
k∈K

∆k.

The result follows.

Proof of Theorem 1: Let Hi = {δi < νi ≤ δi + L}, where i = {1, 2, · · ·M} and L = w⌈K
ζ ⌉. We have the following

decomposition for the pseudo regret by viewing the restart after every detection as a renewal process,

Rπ(T ) = E
[
Rπ(T )1

{
ν1 ≤ δ1

}]
+ E

[
Rπ(T )1

{
ν1 > δ1

}]
≤ ρG

T

∑
k∈K

∆k + E
[
Rπ(T )−Rπ(δ1)

]
+ E

[
Rπ(δ1)1

{
ν1 > δ1

}]
≤ ρG

T

(
umin,k∆k +∆k

)
︸ ︷︷ ︸

V

+
ρGζδ1
TK

∑
k∈K

∆k + E
[
Rπ(T )−Rπ(δ1)

]
.

Consider the decomposition of E
[
Rπ(T )−Rπ(δ1)

]
. We have

E
[
Rπ(T )−Rπ(δ1)

]
≤ E

[
Rπ(T )−Rπ(δ1)

∣∣∣H1

]
+ ρG

∑
k∈K

∆k · (1− P (H1)).
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We have for the restarting RS-UCB algorithm

E
[
Rπ(T )−Rπ(δ1)

]
≤ E

[
Rπ(T )−Rπ(δ1)

∣∣∣H1

]
+
ρG

T

∑
k∈K

∆k

≤ ρG

T

∑
k∈K

∆k + E
[
Rπ(T )−Rπ(ν1)

∣∣∣H1

]
+ E

[
Rπ(ν1)−Rπ(δ1)

∣∣∣H1

]
≤ ρG

T

∑
k∈K

∆k + E
[
Rπ(T − δ1)

]
+
ρG

T
E
[
ν1 − δ1

∣∣∣H1

]∑
k∈K

∆k.

Using the bound of detection delay, we have

E
[
Rπ(T )−Rπ(δ1)

]
≤ ρG

T

∑
k∈K

∆k +
ρG

T
max
k∈K

∆k · L

+ E
[
Rπ(T − δ1)

]
,

where we use the trivial fact that E
[
ν1 − δ1

∣∣∣H1

]
≤ L.

Now, we can perform the same decomposition for E
[
Rπ(T − δ1)

]
, and this can be done at most M times. Therefore, we

obtain

Rπ(T ) ≤
ρGζ

K

∑
k∈K

∆k + VM +
ρGM

T

∑
k∈K

∆k +M
2wρGK

ζT
max
k∈K

∆k.

Now we define the events that

V n
k =

{
U(Ek,trunc

nk(t)
) > U(Fk

nk(t)
) + ϕ−1

nk(t)
(
α log t

nk(t)
) + ψ̄1(nk(t))

}
,

V t
k∗ =

{
U(Ek∗,trunc

n∗
k(t)

) < U(Fk∗

nk∗ (t))− ϕ−1
nk(t)

(
α log t

n∗k(t)
)− ψ̄1(n

∗
k(t))

}
,

where we recall ψ̄1(n) = q1(ψ1(n) + ψ1(n)
q2).

It is not hard to see that
V t
k ⊂

{
U(Ek,trunc

nk(t)
) > U(Fk,trunc

nk(t)
) + ϕ−1

nk(t)
(
α log t

nk(t)
)
}

and
V t
k∗ ⊂

{
U(Ek∗,trunc

nk∗ (t) ) < U(Fk∗,trunc
nk∗ (t) )− ϕ−1

nk(t)
(
α log t

n∗k(t)
)
}
.

Then, we could compute that

P(V t
k )

≤ P(
{
U(Ek,trunc

nk(t)
) > U(F k,trunc

nk(t)
) + ϕ−1

nk(t)
(
α log t

nk(t)
)
}
)

≤ P(
⋃

1≤s≤t

{
U(Ek,trunc

s ) > U(Fk,trunc
s ) + ϕ−1

s (
α log t

s
)
}
)

≤
t∑

s=1

2 exp{−sϕs(ϕ−1
s (

α log t

s
))}

≤
t∑

s=1

2

tα
≤ 2

tα−1
.

Choose an integer u large enough such that

∆k/2 ≥ ϕ−1
u (

α log T

u
) + ψ̄1(u). (36)
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We denote the such umin,k be the minimal positive solution to the inequality Eq. (36). (umin,k becomes ui,k when ∆k is
replaced by U(F i

π∗(i))− U(F i
k).)

For example, when we take ψ1(t) = (t/α log 1
δ )

−ϵ/(1+ϵ), ψ2(t) = (t/α log 1
δ )

(1−ϵ)/(1+ϵ) and ψ3(t) = (t/α log 1
δ )

1/(1+ϵ),
it leads to

umin,k ≤ max{ α log T

(∆k/12q1)1+ϵ/ϵ
,

α log T

(∆k/12q1)1+ϵ/q2ϵ
,

(
6q1
∆k

)
1+ϵ
ϵ , (

6q1
∆k

)
1+ϵ
q2ϵ }. (37)

By such choice of umin,k, we can see that

{πt = k} ∩ {nk(t) ≥ umin,k} ⊂ V t
k ∪ V t

k∗ .

If not, {πt = k} ∩ {nk(t) ≥ umin,k} ∩ (V t
k ∪ V t

k∗)c ̸= ∅, we then know

U(Ek∗,trunc
nk∗ (t) ) + ϕ−1

nk(t)
(
α log t

nk∗(t)
) + ψ̄1(nk∗(t))

> U(Fk∗

nk∗ (t))

= U(Fk
nk(t)

) + ∆k

≥ U(Fk
nk(t)

) + 2(ϕ−1
nk(t)

(
α log t

nk(t)
) + ψ̄1(nk(t))

≥ U(Ek,trunc
nk(t)

) + ϕ−1
nk(t)

(
α log t

nk(t)
) + ψ̄1(nk(t). (38)

This leads to the contradiction that πt ̸= k.

Finally, we have that

E[nk(T )] = E[
T∑

t=1

1{πt = k}]

≤ umin,k + E[
T∑

u+1

1{πt = k ∩ nk(t) ≥ umin,k}]

≤ umin,k +

T∑
t=K+1

2

tα−1

≤ umin,k +
2

(α− 1)Kα−2

≤ umin,k + 2. (39)

When there is no change point, the pseudo regret is upper bounded by

E[Rπ(T )1
{
ν > T

}
] ≤ ρG

T

∑
k∈K

umin,k∆k +
ρGv

K

∑
k∈K

∆k. (40)

This completes the proof.

Proof of Corollary 2. For the simplicity of proof, we can assume that ∆i,k := U(F i
π∗(i))− U(F i

k) has the same order for
i ∈ {1, . . . ,M}. Based on Eq. 16, it is straightforward to find that

uk ≤ c(
log T

∆k
)

1+ϵ
ϵ ,
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when we choose ψ1(n) = n−ϵ/(1+ϵ), ψ2(n) = n
1−ϵ
1+ϵ and ψ3(n) = n

1
1+ϵ . Here c is a universal constant.

Let Nk be the pulling number of arm k. Then together with Eq. 17, we know that

RRS−SCB(T ) ≤ min{M
(
C1 + C2 + C3

)
+
ρGζ

K

∑
k∈K

∆k,
ρG

T

∑
k

Nk∆k}. (41)

By expanding C1 - C3 and plugging in ζ =
√
MwK/T , we have

RRS−SCB(T ) ≤ ρG

T

∑
k

min{Muk, Nk}∆k +O(ρG

√
MwK

T
). (42)

The right hand side of Eq. (42) can be optimized with respect to ∆k and it gives

RRS−SCB(T ) ≤ c′
ρG

T

∑
k

{(log T )M
ϵ

1+ϵN
1

1+ϵ

k }+O(ρG

√
MwK

T
)

≤ c′
ρG

T
(log T )(MK)

ϵ
1+ϵT

1
1+ϵ +O(ρG

√
MwK

T
), (43)

where the last inequality in Eq. (43) uses the fact that x1/(1+ϵ) is concave and Jenson’s inequality. Hence we conclude that

RRS−SCB(T ) = O(ρG(log T )(
MK

T
)ϵ/(1+ϵ)).

Proof of Theorem 2 is quite similar as that of Theorem 1. Hence we omit here.
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11 Comments on Lower Bound

In this section, we provide a discussion on the lower bound. We assume the following structural assumptions on risk
function.

Assumption 6 (U-structure). Suppose the risk function U is a composite function of several linear measures, i.e, sat-
isfies U := H(U1, . . . , UL) =

∑L0

l=1 gl(Ul) −
∑L

l=L0+1 hl(Ul), where gl’s are convex functions and hl’s are concave
functions.

Theorem 3 (Instance-dependent Lower Bound on Pseudo Regret). Suppose Assumptions 1-3 and 6 hold. For any admissible
policy π, we can always find a K-armed problem with sub-optimality gap ∆ and at most M − 1 change points such that

E[U(Fπ∗

T )− U(Fπ
T )] ≥ Ω(∆

√
MK√
T

). (44)

The above theorem says that, for any admissible policy π, its worst instance-dependent bound, under suitable structural
assumption on the risk, is at least

√
MK/T if we treat sub-optimality gap is fixed and free of T .

Proof of Theorem 3. First, for the simplicity, we assume the best arm does not change over the whole time horizon. Let k∗

be the arm maximizing U(Fk) and Nk be the number of times that arm k has been pulled. We then know the oracle policy
maximizing U(Fπ

T ) is the one always choosing arm k∗.

For any π, we can have the following inequality.

U(Fπ∗

T )− U(Fπ
T )

= H(U1(Fπ∗

T ), . . . , UL(Fπ∗

T ))−H(U1(Fπ
T ), . . . , UL(Fπ

T ))

= H(U1(Fk∗), . . . , UL(Fk∗))−H(U1(Fπ
T ), . . . , UL(Fπ

T ))

=

L0∑
l=1

gl(Ul(Fk∗))−
L∑

l=L0+1

hl(Ul(Fk∗))−
( L0∑

l=1

gl(Ul(Fπ
T ))−

L∑
l=L0+1

hl(Ul(Fπ
T ))
)

=

L0∑
l=1

gl(Ul(Fk∗))−
L∑

l=L0+1

hl(Ul(Fk∗))

−
( L0∑

l=1

gl(Ul(

K∑
i=1

Nk

T
Fk))−

L∑
l=L0+1

hl(Ul(

K∑
k=1

Nk

T
Fk)))

)

≥
L0∑
l=1

gl(Ul(Fk∗))−
L∑

l=L0+1

hl(Ul(Fk∗))

−
( L0∑

l=1

K∑
i=1

Nk

T
gl(Ul(Fk))−

L∑
l=L0+1

K∑
k=1

Nk

T
hl(Ul(Fk)))

)
(45)

=

L0∑
l=1

K∑
k=1

Nk

T
[gl(Ul(Fk∗))− gl(Ul(Fk))]−

L∑
l=L0+1

K∑
k=1

Nk

T
[hl(Ul(Fk∗))− hl(Ul(Fk))]

=

K∑
k=1

Nk

T

( L0∑
l=1

gl(Ul(Fk∗))− gl(Ul(Fk))− [

L∑
l=L0+1

hl(Ul(Fk∗))− hl(Ul(Fk))]
)

=

K∑
k=1

Nk

T
∆k. (46)

Here, Eq. (45) holds due to the convexity of gl’s, concavity of hl’s and linearity of Ul’s. ∆k is defined as U(Fk∗)− U(Fk).
By using the treatment below on the lower bound of E[Nk] for k ̸= k∗,

E[U(E[Eπ∗

T ])− U(E[Eπ
T ])] ≥

K∑
k=1

E[Nk]

T
∆k.
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Dealing with E[Nk]:

We consider a K-armed bandit setting with M stationary regimes (i.e. at most M − 1 change points). We split the entire

time interval [0, T ] into ⌊
√

T
KM ⌋ non-overlapping intervals Il’s. Each interval Il has length

√
KTM . Furthermore, we split

each Il into M sub intervals with each sub intervals having length
√

KT
M . We let Nl,m(k) be the number of times that arm

k is played during m-th sub-interval of Il. Hence Nk =
∑

l,mNl,m(k).

If there is an arm k ∈ [K] such that there exists a set Ak containing at least 1
2M pairs of (l,m) such that Eπ,1[Nl,m(k) =

o(1)], where π is an arbitrary policy and subscript ”1” indicates the setting that arm 1 is the optimal arm over the entire time
horizon. Then we can construct another setting ”2” such that arm k is the optimal arm during those 1

2M sub-intervals in Ak.
and arm 1 is the optimal arm in the remaining intervals. It is easy to check that this setting contains M − 1 change points. In
addition, we assume that the reward distribution of arm k changes from Fk to F ′

k such that U(F ′
k)− U(F1) =: ∆ > 0 and

α := KL(F2∥F ′
2) > 0.

By Lemma A.1 in Auer et.al. (2002b), we have that

Eπ,2[Nl,m(k)] ≤ Eπ,1[Nl,m(k)] +
τ0
2

√
αEπ,1[Nl,m(k)], (47)

where τ0 =
√

KT
M . In other words, Eπ,2 = o(τ0). Therefore, the regret of setting 2 is at least

∑
(l,m)∈Ak

E[τ0 −Nl,m(k)] ≥ 1

2

M

2
τ0 =

1

4

√
MKT.

On the other hand, if for all k ∈ [K], there exist at most 1
2M pairs of (l,m) such that Eπ,1[Nl,m(k)] = o(1). We let

Bk be the set containing all sub-intervals with Eπ,1[Nl,m(k)] ≥ c. (c is some small positive constant). Thus |Bk| ≥√
T

KMM − 1
2M ≥

√
T

KMM/2. Then we can compute the lower bound of setting 1 as follows.

∑
(l,m)∈Bk

∑
k∈[K]

Eπ,1[Nl,m(k)] ≥ K
M

2

√
T/KMc =

c

2

√
MKT.

In a summary, the unnormalized instance-dependent bound is at least Ω(
√
MKT∆). This completes the proof.

Theorem 4 (Minimax Lower Bound on Pseudo Regret). Suppose Assumptions 1, 2, 4 and 6 hold. For any admissible policy
π, we can always find a K-armed problem with at most M − 1 change points such that

E[U(Fπ∗

T )− U(Fπ
T )] ≥ Ω((MK/T )

ϵ
1+ϵ ). (48)

Proof of Theorem 4. In this proof, we consider to construct a set of non-stationary Bernoulli bandits. Define ν1 =
(1− γ1+ϵ)δ0 + γ1+ϵδ1/γ , ν2 = (1 + ∆γ − γ1+ϵ)δ0 + (γ1+ϵ −∆γ)δ1/γ . Set M0 = {{F1, . . . , FK} : there is one Fk =
ν1, rest are equal to ν2} over T/M rounds. (Here we assume T/M is an integer without loss of generality.) We then set
Mnon−stationary = M0 ⊕ . . .⊕M0︸ ︷︷ ︸

m times

, which is a concatenation of M bandits with T
M rounds and each one belongs to M0.

By choosing ∆ = (KM/T )ϵ/(1+ϵ) and γ = (2∆)1/ϵ, we have that the regret over each bandit in M0 is at
least 0.01K

ϵ
1+ϵ (T/M)

1
1+ϵ by Theorem 2 in Bubeck et al. (2013). Finally, the total un-normalized regret is at least

0.01K
ϵ

1+ϵ (T/M)
1

1+ϵM = Ω((KM)
ϵ

1+ϵ (T )
1

1+ϵ ). This completes the proof.
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