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Abstract

Learning precise surrogate models of complex
computer simulations and physical machines of-
ten require long-lasting or expensive experi-
ments. Furthermore, the modeled physical de-
pendencies exhibit nonlinear and nonstationary
behavior. Machine learning methods that are
used to produce the surrogate model should
therefore address these problems by providing a
scheme to keep the number of queries small, e.g.
by using active learning and be able to capture
the nonlinear and nonstationary properties of the
system. One way of modeling the nonstationar-
ity is to induce input-partitioning, a principle that
has proven to be advantageous in active learning
for Gaussian processes. However, these meth-
ods either assume a known partitioning, need to
introduce complex sampling schemes or rely on
very simple geometries. In this work, we present
a simple, yet powerful kernel family that incor-
porates a partitioning that: i) is learnable via
gradient-based methods, ii) uses a geometry that
is more flexible than previous ones, while still
being applicable in the low data regime. Thus,
it provides a good prior for active learning pro-
cedures. We empirically demonstrate excellent
performance on various active learning tasks.

1 INTRODUCTION

Active learning is a principled way to learn a model in
a sequential data-efficient manner. It is especially useful
when the collection of data is expensive. For classification,
this is the case for the manual labeling procedure (Settles,
2009). Regression tasks in which active learning is used
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are, e.g. the learning of a surrogate model of complex phys-
ical processes like complex machines (Zimmer et al., 2018)
or surrogate modeling of long-running computer simula-
tions (Gramacy, 2020). Thereby, queries to the oracle are
either very expensive/energy intensive or take a very long
time, which makes it necessary to minimize the number
of queries. Recent studies on active learning for regres-
sion tasks utilized Gaussian processes (Garnett et al., 2014;
Schreiter et al., 2015; Marmin et al., 2018; Yue et al., 2021;
Li et al., 2022), which have the great advantage of provid-
ing a principled notion of uncertainty, making them ideal
candidates for active learning algorithms.

In practice, Gaussian process regression is often used with
stationary kernels, such as the Squared Exponential Kernel.
However, the stationarity of the kernel implicitly assumes
that the correlation of the function values of the learned
function is translation invariant. This assumption is of-
ten not met in practice and major performance gains were
shown for passive learning using nonstationary Gaussian
processes (Remes et al., 2017; Gramacy and Lee, 2007;
Wilson et al., 2016). Furthermore, when active learning
is employed, the stationarity assumption implies an almost
uniform input design [see Marmin et al. (2018)]. Nonsta-
tionary kernels on the other hand induce a non-uniform
sampling in the input space, which has been shown to be
beneficial when the data actually exhibits nonstationarities
(Gramacy et al., 2004; Marmin et al., 2018).

In particular, input-partitioning showed promising results
when combined with active learning (Lee et al., 2021; Gra-
macy et al., 2004; Krause and Guestrin, 2007). However,
existing methods either rely on a fixed, known partition
(Lee et al., 2021; Krause and Guestrin, 2007) or use re-
stricted geometries/ priors in function space combined with
complex sampling schemes (Gramacy et al., 2004). Our
goal is to provide a simple, yet powerful partitioning kernel
that can be used as plug-and-play in most Gaussian process
frameworks with the same (or even better) sampling behav-
ior in active learning procedures. Concretely, our partition-
ing is constructed via a hierarchy of hyperplanes, build with
sigmoidal gates to introduce differentiability of the kernel
and smoothness of the function prior. Furthermore, the ge-
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ometry of the partitioning is more flexible compared to the
input-aligned partitions of Gramacy et al. (2004), but still
simple enough for the usage in the low data regime. In the
next section, we give an overview over related work. In
Section 3 we introduce our method/kernel and give some
motivation for its usage in active learning settings. Finally,
in the experimental section, we compare against different
nonstationary Gaussian process based models on several
real-world active learning tasks and show excellent perfor-
mance.

2 BACKGROUND AND RELATED
WORK

Gaussian Processes. Gaussian processes provide expres-
sive priors over functions that can be used for surrogate
modeling and regression tasks. Formally, for X ⊂ Rd,
a Gaussian process (GP) is a probability distribution over
functions f : X → R for which each finite selection of
function values [f(xt)]

T
t=1 at input points x1, . . . , xT has a

multivariate normal distribution. The GP is fully character-
ized by its mean function µ : X → R and its covariance
function k : X ×X → R+ also called the kernel. The ker-
nel incorporates the major properties of the resulting sam-
ple functions and is often parameterized with some param-
eters Θ. For regression, a dataset D := {xT ,yT } with
inputs xT = [x1, . . . , xT ] and ouputs yT = [y1, . . . , yT ]
is considered, where the observations are perturbed with
Gaussian noise yt = f(xt) + εt with εt ∼ N (0, σ2). A
major advantage of the Gaussian process is that the pos-
terior f |D is again a Gaussian process with closed-form
expressions for the mean and kernel function

µT (x) = µ(x) + kT (x)ᵀ(KT + σ2I)−1(yT − µ(xT )),

kT (x, y) = k(x, y)− kT (x)ᵀ(KT + σ2I)−1kT (y),

where kT (x) = [k(x, x1), . . . , k(x, xT )]ᵀ and KT =
[k(xt, xl)]

T
t,l=1. Thus, the predictive distribution for a new

point x∗ ∈ X can also be written in closed form by

p(f∗|x∗,D,Θ) = N (µT (x∗), σ2
T (x∗)),

where f∗ := f(x∗) and σ2
T (x∗) := kT (x∗, x∗). We denote

the dependence on Θ if necessary. For more details on GP
regression, we refer the interested reader to Rasmussen and
Williams (2006).

Nonstationary GP’s and Input-Partitioning. In GP re-
gression, the learned function f is assumed to be a sample
from a GP with kernel kΘ. Herein, the kernel provides the
main a priori assumption on the learned function f . The
most popular kernels such as the RBF and the Matérn ker-
nel are stationary, that means kΘ(x, y) = kΘ(x−y) for all
x, y ∈ X . The correlation between function values there-
fore is translation invariant, and the modeled function is

assumed to behave similarly over the complete input re-
gion. Different kinds of nonstationary kernels have been
proposed so far. For time-warped kernels (Marmin et al.,
2018; Wilson et al., 2016; Snoek et al., 2014) the input is
transformed with a nonlinear mapping and chained with
a stationary kernel. Further methods render parameters
of stationary kernels input-dependent like input-dependent
kernel variance and input-dependent lengthscale (Heinonen
et al., 2016; Remes et al., 2017; Herlands et al., 2016). For
many proposed kernels [as in Heinonen et al. (2016) or
Herlands et al. (2016)] the goal is to provide flexible pri-
ors and scalable inference, with priors not explicitly dedi-
cated to the low-data regime. A further principle to induce
nonstationarity is the partitioning of the input space, as for
example done in Gramacy and Lee (2007), who provide a
model named TreedGP or in Krause and Guestrin (2007)
and Lloyd et al. (2014) who provide input-partitioning on
one-dimensional datasets via change-points. We present a
model that can be viewed as a multi-dimensional general-
ization of change-points, where we replace change-points
with change-hyperplanes. The resulting inductive bias in
d dimensions of our model is most similar to the TreedGP
model. Technically, TreedGP is a Bayesian CART (Classi-
fication and Regression Tree) model with independent GP’s
in its leaves. However, rather than using a CART model, we
employ input-dependent weighting (Herlands et al., 2016;
Krause and Guestrin, 2007) to induce a non-axis aligned
partitioning which at the same time has the advantage that
the kernel is differentiable with respect to all its parame-
ters and that the associated GP induces continuous sample
paths.

Active Learning with Gaussian Processes. In active
learning, data is selected sequentially, often guided by the
current model state, which can drastically reduce the num-
ber of evaluations. We focus on active learning for regres-
sion tasks which has applications in industry, e.g. sur-
rogate modeling of combustion engines (Zimmer et al.,
2018), shape control (Yue et al., 2021) and in the approx-
imation of long-running computer simulations (Gramacy,
2020). Gaussian processes are a natural choice to pursue
active learning for regression due to their principled uncer-
tainty quantification [see Zimmer et al. (2018); Gramacy
(2020); Yue et al. (2021); Krause et al. (2008); Marmin
et al. (2018)]. In case the underlying ground-truth system
can be better described via a nonstationary Gaussian pro-
cess, using a nonstationary kernel also has profound impact
on the sample selection as the samples are not selected ho-
mogenous over the input space [see Krause and Guestrin
(2007); Marmin et al. (2018); Gramacy et al. (2004)]. In
our experimental section, we will compare against other
nonstationary GP priors that were proposed to be used in
active-learning settings, such as the TreedGP model (Gra-
macy et al., 2004) or an input-warped GP (Marmin et al.,
2018). Furthermore, Sauer et al. (2020) investigated the ap-
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Figure 1: Partitioning: a) Binary (symmetric) tree for par-
titioning with four leaves. b) Possible partition of the input
space induced by that tree.

plication of DeepGPs in active-learning settings. We will
stick to the natural way of doing active-learning via query-
ing the point with the highest information gain between the
observation and all uncertain variables in the model [see
MacKay (1992); Houlsby et al. (2011)] to investigate which
impact our prior has on the active-learning performance.
In Section 4, we show superior performance in terms of
RMSE curves compared to the main competitors on vari-
ous tasks.

3 METHOD

We induce input-partitioning by defining the final GP f on
X ⊂ Rd as an input-dependent sum of J independent latent
GPs f1, . . . , fJ , i.e.

f(x) =

J∑
j=1

λj(x)fj(x),

where λj : X → [0, 1] are weighting functions with∑J
j=1 λj(x) = 1 for all x ∈ X . The latent GPs are

equipped with stationary kernels kj(x, y). The function f
is therefore a GP itself with kernel

k(x, y) =

J∑
j=1

λj(x)λj(y)kj(x, y).

We present a new kernel of this form that partitions the
input hierarchically through λj . The weighting functions
λj , j = 1, . . . , J , specify the regions in which the modeled
function f is described by the corresponding latent func-
tions fj . If, for example, the weighting function λj(x) is
close to one for all x in some region A ⊂ X , then the GP
f is described in that region by the kernel kj(x, y). There-
fore, the GP behaves like a stationary GP in region A. The
proposed geometry of the partition via a hierarchy of hy-
perplanes is inspired by a mixture of linear experts model
(Bishop and Svenskn, 2002). In this work, we use the par-
titioning logic to define a nonstationary GP.

3.1 Input-Partitioning

The partitioning is done along a binary tree T with M :=
J − 1 nodes and J leaves. Each node Ni, i = 1, . . . ,M ,
is associated with a vector wi ∈ Rd+1 and an induced
hyperplane Hi = {x ∈ Rd|wᵀ

i x̃ = 0} where x̃ =
(1, x)ᵀ ∈ Rd+1. Each leaf represents one latent GP fj
[see Figure 1a) for an example]. Every node Ni splits
the input region with its hyperplane by placing an input-
dependent weight σ(wᵀ

i x̃) to its left subtree and all associ-
ated GPs and 1 − σ(wᵀ

i x̃) to its right subtree, where σ(·)
is the standard logistic sigmoid function. The final weights
λj(x), j = 1, . . . , J, are given by multiplying all weights
along their respective path in the tree:

λj(x) =

M∏
i=1

σ(wᵀ
i x̃)ξL(j,i)(1− σ(wᵀ

i x̃))ξR(j,i), (1)

where ξL, ξR : {1, . . . , J} × {1, . . . ,M} → {0, 1} encode
the tree structure with

ξL(j, i) =

{
1 if fj is in the left subtree of Ni,
0 else,

and

ξR(j, i) =

{
1 if fj is in the right subtree of Ni,
0 else.

This weighting function leads to a hierarchical partitioning
of the input space. This can be understood by observing
that the multiplication of the sigmoid functions acts as a
soft version of logicals AND’s, where the weight λj(x) is
large whenever the input x ∈ X lies at the correct side
of each hyperplane when traversing down the tree to fj .
Here, correct means either on one or the other side of the
hyperplane, depending if the path in the tree progresses on
the right or the left subtree. We call the resulting kernel
Hierarchical-Hyperplane Kernel (HHK).

An illustrative example of the partitioning is given in Fig-
ure 1 a) and b). The weighting functions recursively divide
the input space X =: A1 beginning with the hyperplane
H1 at node N1 into sets A2 := {x ∈ A1|wᵀ

1 x̃ > 0}
and A3 := {x ∈ A1|wᵀ

1 x̃ < 0}. In the next layer, at
node Ni, the associated set Ai is again divided into the sets
{x ∈ Ai|wᵀ

i x̃ > 0} and {x ∈ Ai|wᵀ
i x̃ < 0}. The ac-

tual weighting of the stationary kernels is soft due to the
application of the sigmoid functions. The partitioning can
be rendered finer by increasing the tree size.

3.2 Kernel Parameters and Inference

We provide a fully-Bayesian GP model, marginalized over
its hyperparameters. This has the advantage of being
more robust against model misspecification in the low-
data regime [see. Snoek et al. (2012); Riis et al. (2022)].
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Figure 2: Prior Draws and Sampling Illustrations. a) Prior draws from a GP with HHK kernel with four latent GP’s ( three
hyperplanes). The sampled functions (left) and the sampled hyperplanes/partitions (right) are shown - here background
colors show function values. b) Conceptual illustration of the partitioning and the different kernel parameters in different
regions. c) Impact of the number of hyperplanes on the actively collected samples. Here, active learning was executed on
the Exponential 2D function (details in Section 4).

We assume the input to be a subset of the unit square
X ⊂ [0, 1]d and treat the kernel parameters in a Bayesian
way by placing priors on them. For the hyperplanes, we
introduce relevance parameters that scale the hyperplanes
with wi = αiw̃i, where αi ∈ R and w̃i ∈ Rd+1. Con-
cretely, we specify the following priors on αi and w̃i:

w̃i ∼ N (0, I), αi ∼ Gamma(α, β).

Thus, wi|αi ∼ N (0, α2
i I). This prior on wi makes only

very weak assumptions about the position of the hyper-
plane. However, via the prior of the relevance parameter,
the scaling of the hyperplane can be influenced, which af-
fects the slope of the sigmoid functions in (1) and, thus, the
overlap of the partitioning. The local kernels kj(x, y) come
with their own parameters θj . Our default setting utilizes
RBF kernels with lengthscales and variance as parameters
for which we set broad Gamma priors (see Appendix B.1
for details). The parameters of the final model are denoted
with Θ = {w̃i, αi, θj , σ|i = 1, . . . ,M, j = 1, . . . , J}.

For inference, we make use of the differentiability of the
kernel and employ Hamiltonian Monte Carlo (HMC) (Du-
ane et al., 1987). After receiving n posterior samples from
p(Θ|D) using HMC, we employ a sample-based estimate
of the marginal predictive distribution for prediction, i.e.

p(f∗|x∗,D) =

∫
p(f∗|x∗,Θ,D)p(Θ|D)dΘ

≈ 1

n

∑
Θi∼p(Θ|D)

p(f∗|x∗,Θi,D).

Thus, we perform a numerical sample-based approxima-
tion to the true marginalized predictive distribution.

3.3 Induced Prior in Function Space

In Figure 2 a) samples from our proposed prior are shown
for M = 3 hyperplanes. The specified prior includes
functions that can be described with GP’s with i) differ-
ent lengthscales in different regions, ii) with different vari-
ances in different regions. Furthermore, through the sig-
moidal gates the transitions between partitions is soft, lead-
ing to continuous sample functions. The partitions them-
selves rely on simple geometries via hyperplanes that cut
the space hierarchically.

3.4 Comparision to other Input-Partitioning Methods

Let us emphasize some characteristics of the partitioning
that distinguish our model from other input-partitioning
methods like the one dimensional change-point model or
the TreedGP model.

Compared to TreedGP (Gramacy and Lee, 2007), the par-
titioning is not restricted to be axis aligned. Secondly, the
partitioning is differentiable with respect to the hyperplane
parameters and the inputs due to the sigmoid functions.
This leads to continuous sample paths on one hand and the
possibility to use gradient-based inference schemes for the
hyperplanes on the other hand.

Furthermore, our partitioning can be viewed as a d dimen-
sional generalization of change-points (Lloyd et al., 2014;
Krause and Guestrin, 2007). We inherit the advantages of
change-points of providing a model that can be used with
gradient-based inference methods and that lead to continu-
ous prior draws, whereas our partitioning method is appli-
cable to d dimensions.

Concretely, our model can be formulated in a similar way
to change-points [see Lloyd et al. (2014)] via introducing
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the change-hyperplane operator for two kernels k1 and k2

in Rd

k(x, y) = CH(k1, k2)(x, y)

= σ(wᵀx̃)σ(wᵀỹ)k1(x, y)

+ σ̄(wᵀx̃)σ̄(wᵀỹ)k2(x, y)

with σ̄(wᵀx̃) = 1− σ(wᵀx̃). The proposed kernel can be
written via recursive application of the change-hyperplane
operator (see Appendix A.1). Importantly, we note that
generalizing change-points to d dimensions via hyper-
planes preserves a simple geometry that can be deduced
with few datapoints - a necessary property for the applica-
tion in active learning procedures. Additionally, the formu-
lation via the change-hyperplane operator has the benefit
that it could be utilized to dynamically search over a dis-
crete set of trees/kernel structures, similar to what is done
with the change-point operator [see (Lloyd et al., 2014; Du-
venaud et al., 2013; Bitzer et al., 2022)].

3.5 Sample Selection

Our goal is to provide a GP prior that is tangled to ac-
tive learning settings. Thus, for the sake of simplicity
we stick to the most natural way of doing active learn-
ing via querying points with highest information gain be-
tween the observation and the uncertain variables in the
model (MacKay, 1992). We start with an initial dataset
D0 and sequentially query the oracle f : X → R at point
xt and receive the noisy observation yt = f(xt) + εt with
εt ∼ N (0, σ2). The next datasets are build up sequentially
with Dt = Dt−1 ∪ {xt, yt}. For the acquisition function,
we use the maximum information gain between the obser-
vation y and the uncertain variables which are the function
f and the parameters Θ. Thus, the acquisition function is
given by

a(x|Dt−1) = I(y; f,Θ|Dt−1, x)

= H(y|Dt−1, x)

− Ep(Θ|Dt−1)Ep(f |Θ,Dt−1,x)[H(y|f,Dt−1,Θ, x)]

∝ H(y|Dt−1, x),

where the right-hand term of the difference is independent
of x as H(y|f,Dt−1,Θ, x) = log(σ

√
2πe). This acqui-

sition function accounts for the uncertainty in the kernel
parameters Θ, including the uncertainty over the hyper-
planes wi, i = 1, . . . ,M . In order to evaluate the acqui-
sition function, the entropy of the marginal predictive dis-
tribution needs to be approximated, e.g. by quadrature (see
Appendix B.6). The next query location is then obtained
by

xt = argmaxx∈Xa(x|Dt−1).

The optimization can be performed through grid-search,
random shooting or evolutionary optimizers.

3.6 Induced Sampling Behavior

Partitioning models like the proposed model have the ben-
eficial properties that they are able to distinguish regions
with different levels of contained information. For exam-
ple, as illustrated in Figure 2 b), a function might be de-
scribed by local GP’s, where one region has large and one
has small lengthscale, e.g. a function that is flat or linear
in one part of the space and highly fluctuating in another.
The predictive intervals thus will be larger in the region of a
small lengthscale, leading to an active sampling in that re-
gion, as for example shown in Figure 2 c). Finding the right
partition with few datapoints is thus crucial, as it deter-
mines the sampling. The hierarchical partitioning provides
a good trade-off between flexibility (it is not constrained to
axis-aligned or orthogonal partitions) and the possibility to
identify partitions with few datapoints. This is further en-
abled through gradient-based inference methods that lead
to high quality partition samples, such as HMC.

In Appendix A.2 we also add a theorem which illustrates
the sampling behavior for a simplified setting, with fixed,
sharp partitions and extreme values for the lengthscales and
variances of the stationary kernels.

4 EXPERIMENTS

In the following section, we will evaluate the active learn-
ing performance of our prior on three tasks which exhibit
nonstationarities and compare it against the main competi-
tors. We consider small/medium-sized tasks in terms of
input-dimensionality, as this is the common application
field of Gaussian processes. In the last part of this sec-
tion, we also investigate the influence of the tree size and
the inference scheme on the active learning performance.
Furthermore, we provide code for our method.1

Model Setup. We equip our method with a symmetric
tree with eight latent GPs. As stationary latent GPs, we
employ RBF kernels with Gamma priors for the length-
scale and the variance. For the noise variance, we utilize
an exponential prior. We chose prior parameters that in-
duce broad priors such that many functions have sufficient
support. The prior parameters can be found in Appendix
B.1. For inference, we employ a burn-in phase of 500 it-
erations and continue with 5000 MCMC samples that are
thinned to final 100 samples.

Active Learning Setup. All tasks are available as
datasets with a large number of queries already executed.
The inputs are transformed to lie in the unit cube and the
outputs are normalized. The optimization of the acquisi-
tion function is done with random shooting by calculating

1HHK-Code https://github.com/boschresearch
/Hierarchical-Hyperplane-Kernels

https://github.com/boschresearch/Hierarchical-Hyperplane-Kernels
https://github.com/boschresearch/Hierarchical-Hyperplane-Kernels
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Figure 3: Exponential 2-D experiments. a) RMSE curves
for the different methods. Shown are median and quartiles
for each iteration over 30 runs with different initial datasets.
Crosses at the bottom mark significant Wilcoxon tests in
favor of our model. b) Final samples actively selected by
the RBF model (left) and by our method (right) - axis are
scaled to the unit cube. c) The exponential 2-D function.

the acquisition function on a subset of the possible queries.
In practice, for an oracle with continuous input domain,
one might employ Latin-Hypercube samples as grid points
for optimization of the acquisition function. For evaluation,
we consider the RMSE curve over the selected queries on
a held out test set.

Compared Methods. We compare our method against
the following methods:

a) Random: Here, instead of selecting the queries with
maximum information gain, the queries are selected
randomly.

b) RBF: In this case, an RBF kernel is used with the
same prior on the kernel parameters as for the station-
ary kernels in our method, also learned with HMC and
queries taken with maximum information gain.

c) Warped Multi-Index GP: This method is presented
in Marmin et al. (2018) and uses a time-warped GP
with type-2 maximum likelihood inference and maxi-
mum predictive variance as acquisition function.

d) TreedGP: The fully-Bayesian partitioning model pre-
sented in Gramacy and Lee (2007) and used for active
learning of computer simulations in Gramacy et al.
(2004). We use their tgp R-package and take queries
via maximum information gain (the ALM criteria).

e) DeepGP: This approach is presented in Sauer et al.
(2020) and uses DeepGPs to capture the nonstation-
arity. They utilize MCMC as inference and the ALC
criteria Cohn et al. (1996) as acquisition function (see
Appendix B.5 for further details).

Figure 4: Activation map of the partition weights (for the
MAP parameters) for the four most activated stationary
kernels after 10 queries (top) and 60 queries (bottom) on
the Exponential 2-D dataset.

4.1 Toy-function: Exponential 2-D

First, we investigate the performance of our method on the
two-dimensional function

f(x1, x2) = x1exp(−x2
1 − x2

2)

with (x1, x2) ∈ [−2, 5] × [−2, 5] [see Figure 3 c)]. This
test function was also investigated in Gramacy et al. (2004).
The function exhibits nonstationarities as it is almost flat in
a large portion of the input space. Only in the lower left
part of the input domain, fluctuations and larger values in
the function values occur. As initial datasets we draw five
data points uniformly. In comparison to the RBF model,
which takes queries in a nearly space-filling manner, our
method focuses the sampling on the complex region [see
Figure 3 b)]. The RMSE curves are shown in Figure 3 a) for
the different methods. Besides the RBF model, our method
also shows significantly better results compared to the three
nonstationary methods.

Impact of Partitions over the Iterations. We investigate
the impact of the partitioning on the query selection. We
show the activation maps of these weights for the four most
activated kernels after 10 and 60 queries in Figure 4. Here,
we examine the maximum a posteriori (MAP) hyperplanes
ŵi and the resulting partition weights for the corresponding
stationary kernels kj , i.e.

λMAP
j (x) =

M∏
i=1

σ(ŵᵀ
i x̃)ξL(j,i)(1− σ(ŵᵀ

i x̃))ξR(j,i).

The activation weights for all other latent GPs were nearly
zero. At the beginning (after 10 queries), most of the sta-
tionary kernels are turned off and the data is explained with
only two latent GPs separated by a hyperplane. After 60
queries, more kernels are active, leading to a finer partition-
ing. The region with large kernel variance is more focused
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Figure 5: LGBB experiments. a) RMSE curves for the dif-
ferent methods. The curves show medians and quartiles for
each iteration over 30 runs with different initial datasets.
Colored crosses at the bottom signal significant Wilcoxon
tests in favor of our model against the corresponding com-
petitor. b) Dataset after 60 queries, selected by our method.
c) LGBB response surface.

than before and almost all queries are selected in this re-
gion. We think that relying on only a few active partitions
at the beginning helps to steer the samples in interesting
directions.

4.2 Nasa - Langley-Glide-Back Booster

The second example consists of a computer simulation
(computational fluid dynamics), employed by NASA, of
a rocket reentering the atmosphere, called Langley-Glide-
Back Booster (LGBB). The simulation was heavily inves-
tigated for the TreedGP model in Gramacy et al. (2004)
and Gramacy and Lee (2007) as it exhibits nonstationarities
and has long-lasting query times. The simulation receives
as inputs the angle and speed of the rocket when entering
the atmosphere, and outputs the lift that the rocket exhibits.
Each query to the simulation lasts several hours. Further-
more, the simulation naturally falls into two regimes, one
for a speed lower than mach one and one for higher en-
tering velocities. Figure 5 c) shows the response surface
of the simulation. The most complex region of the input
space is at the upper left, where the lift value changes dras-
tically at velocity mach one. The right part of the response
surface on the other hand can be described almost by a lin-
ear function. We use the precomputed queries provided
in Gramacy (2020) for our experiments. We employ five
uniformly drawn initial data points and make 120 active
queries afterwards. Furthermore, we add an artificial noise
term onto the deterministic response surface. The noise is
still learned for all considered models. Firstly, as can be
seen in Figure 5 b), our method has the desired property
that it focuses the samples to the complex region and only
allocates very few samples to the simpler regions. This is
also reflected in the predictive performance. The RMSE

Figure 6: Combustion engine noise experiments. a) RMSE
curve for the combustion engine noise dataset for the dif-
ferent models and querying schemes. b) Samples of x1, y
pairs to show the nonstationarity along the x1 dimension.
c) Dataset after 100 iterations actively selected by our
method shown over the delay and pilot-injection dimen-
sion.

curves are shown in Figure 5 a). Our method leads to sig-
nificantly lower RMSE values (tested with the Wilcoxon
test) compared to the other methods from iteration 30 on-
wards.

4.3 Combustion Engine Noise

In the development process of combustion engines, a sig-
nificant amount of time and cost comes from the calibra-
tion of the engine control unit (ECU) [see Tietze (2015)].
To fasten the calibration process, one possibility is to use
a complete simulation of the engine for a large part of the
calibration procedure. Therefore, the several engine func-
tionalities need to be simulated, which can be done in an
empirical way by learning surrogate models or by physics-
based models Tietze (2015). One part of the engine calibra-
tion process is to adjust the engine noise. For that purpose,
a surrogate model can be produced for the relationship be-
tween engine parameters and engine noise. The learning
process bears two challenges. First, work bench time is
costly and shared between several parties, and therefore the
number of queries to the workbench should be kept small.
Secondly, it is known that the engine noise admits major
nonstationarities, in particular when varying the delay of
injections parameter [see Tietze (2015)]. The input param-
eters are delay of injections (x1), volume of pilot injec-
tion (x2), rail pressure (x3), air mass (x4), boost pressure
(x5) and controlstart (in ms) (x6) [see Tietze (2015)]. The
output is the engine noise in dB. We start with an initial
randomly drawn dataset of size five. The resulting RMSE
curves can be seen in Figure 6 a). As with the other two ex-
periments, our method provides more precise predictions
with fewer selected data points. Also, as expected, the
model queries more data points for lower values of x1 as
can be seen in Figure 6 c).
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Figure 7: a) RMSE curves for different tree sizes (1 (stat.
RBF), 2 and 8 latent GPs) over the three datasets. b) RMSE
curves for HMC vs MAP inference for a HHK with 8 latent
GPs.

4.4 Influence of the Tree Size

We examine the impact of the tree size on the performance
of the active learning procedure. Figure 7 a) shows the
RMSE curves for the trivial tree (stationary RBF kernel), a
HHK model with two and with eight latent GPs on all con-
sidered datasets. We see that for the Exponential 2-D data
and the combustion engine noise dataset, the active learn-
ing procedure benefits from larger trees. For the LGBB
dataset, we can see that even adding one hyperplane seems
to give a large performance gain. This is plausible since the
CFD simulation has two regimes that can be distinguished
with a hyperplane. For the combustion engine noise data,
previous expert experience [see Tietze (2015)] has shown
that nonstationarity occurs mainly within one dimension.
However, we find that we gain performance by using finer
partitioning with more hyperplanes [see Figure 7].

4.5 Influence of the Inference Scheme

In Figure 7 b), we investigate the influence of the kernel pa-
rameter inference on the active learning performance. To
this end, we compare HMC inference with optimization
of the GP hyperparameters using maximum-a-posteriori
(MAP). We observe that using a Bayesian approach via
HMC leads to a faster convergence compared to MAP on
the higher-dimensional ClosePI task. On the other two
tasks we observe a slight advantage of HMC. This also sup-
ports the recent finding of Riis et al. (2022) that marginaliz-
ing over kernel parameters is beneficial for active learning.
However, we note that on LGBB and Exponential 2-D the
difference between HMC and MAP ist not very large, and
MAP might be a reasonable choice in cases where, for ex-
ample, inference time is important (see Appendix B.6 for
details on inference time).

5 CONCLUSION

In this work, we presented a new input-partitioning kernel
for GP regression and investigated its active learning per-
formance on a variety of tasks. Our method induces par-
titioning via a hierarchy of hyperplanes, having the advan-
tage of preserving useful properties such as differentiabil-
ity of the kernel and smooth sample functions, while keep-
ing a simple geometry. We show that the induced active
sampling focuses on the complicated region of the input
space, and that our method significantly outperforms pre-
vious methods, including previous partitioning models, on
real-world active learning tasks.
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A METHODOLOGICAL CONSIDERATIONS

A.1 Formulation via Change-Hyperplanes

In Lloyd et al. (2014) the change-point operator is introduced for two kernels k1(x, y) and k2(x, y) and a point s ∈ R

CPs(k1, k2)(x, y) = σ(x− s)σ(y − s)k1(x, y) + σ̄(x− s)σ̄(y − s)k2(x, y)

with σ̄(x−s) = 1−σ(x−s) and x, y ∈ R. Multiple change-points can be applied via iterative application of this operator.
For example, for three change-points s1, s2, s3 ∈ R the final kernel can be defined as

k(x, y) = CPs1(CPs2(k1, k2), CPs3(k3, k4)),

In case k1, . . . , k4 are stationary, the final kernel would induce functions that behave stationary in-between the change-
points, but are less correlated/behave differently between two separate intervals.

The change-point operator is defined on one-dimensional inputs, e.g. s, x, y ∈ R. Our kernel can be viewed as a d
dimensional generalization of change-points. We illustrate this for the example in Figure 1 (in the main paper) with a
symmetric tree with three hyperplanes. We denote x̃ = (1, x)ᵀ ∈ Rd+1 and define the change-hyperplane operator as

CHw(k1, k2)(x, y) = σ(wᵀx̃)σ(wᵀỹ)k1(x, y) + σ̄(wᵀx̃)σ̄(wᵀỹ)k2(x, y), x, y ∈ Rd,

where σ̄(wᵀx̃) = 1− σ(wᵀx̃). For the HHK with three hyperplanes [Figure 1 a)], the HHK weights λj(x) result to:

λ1(x) =

3∏
i=1

σ(wᵀ
i x̃)ξL(1,i)(1− σ(wᵀ

i x̃))ξR(1,i) = σ(wᵀ
1 x̃)σ(wᵀ

2 x̃),

λ2(x) =

3∏
i=1

σ(wᵀ
i x̃)ξL(2,i)(1− σ(wᵀ

i x̃))ξR(2,i) = σ(wᵀ
1 x̃)(1− σ(wᵀ

2 x̃)) = σ(wᵀ
1 x̃)σ̄(wᵀ

2 x̃),

λ3(x) =

3∏
i=1

σ(wᵀ
i x̃)ξL(3,i)(1− σ(wᵀ

i x̃))ξR(3,i) = (1− σ(wᵀ
1 x̃))σ(wᵀ

3 x̃) = σ̄(wᵀ
1 x̃)σ(wᵀ

3 x̃),

λ4(x) =

3∏
i=1

σ(wᵀ
i x̃)ξL(4,i)(1− σ(wᵀ

i x̃))ξR(4,i) = (1− σ(wᵀ
1 x̃))(1− σ(wᵀ

3 x̃)) = σ̄(wᵀ
1 x̃)σ̄(wᵀ

3 x̃),

Thus, the kernel can be written via the change-hyperplane operator as

k(x, y) =

4∑
j=1

λj(x)λj(y)kj(x, y)

= σ(wᵀ
1 x̃)σ(wᵀ

2 x̃)σ(wᵀ
1 ỹ)σ(wᵀ

2 ỹ)k1(x, y) + σ(wᵀ
1 x̃)σ̄(wᵀ

2 x̃)σ(wᵀ
1 ỹ)σ̄(wᵀ

2 ỹ)k2(x, y)

+ σ̄(wᵀ
1 x̃)σ(wᵀ

3 x̃)σ̄(wᵀ
1 ỹ)σ(wᵀ

3 ỹ)k3(x, y) + σ̄(wᵀ
1 x̃)σ̄(wᵀ

3 x̃)σ̄(wᵀ
1 ỹ)σ̄(wᵀ

3 ỹ)k4(x, y)

= σ(wᵀ
1 x̃)σ(wᵀ

1 ỹ)

(
σ(wᵀ

2 x̃)σ(wᵀ
2 ỹ)k1(x, y) + σ̄(wᵀ

2 x̃)σ̄(wᵀ
2 ỹ)k2(x, y)

)
+ σ̄(wᵀ

1 x̃)σ̄(wᵀ
1 ỹ)

(
σ(wᵀ

3 x̃)σ(wᵀ
3 ỹ)k3(x, y) + σ̄(wᵀ

3 x̃)σ̄(wᵀ
3 ỹ)k4(x, y)

)
= σ(wᵀ

1 x̃)σ(wᵀ
1 ỹ)CHw2(k1, k2)(x, y) + σ̄(wᵀ

1 x̃)σ̄(wᵀ
1 ỹ)CHw3(k3, k4)(x, y)

= CHw1(CHw2(k1, k2), CHw3(k3, k4))(x, y)

Thus, one might interpret the HHK as iterative application of the change-hyperplane operator along the nodes of its tree.

A.2 Theory: Sampling Behavior of Partitioning Models

In the following subsection, f is drawn from a Gaussian process with kernel k, A = {x1, . . . , xT } ⊂ D is a set of
input locations with D ⊂ X compact, fA = [f(x)]x∈A, and yA = fA + εA is the resulting observation with noise
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εA ∼ N (0, σ2I). The Shannon information I(·) between observations and latent function can be calculated in closed form
with I(yA, f |k) = I(yA, fA|k) = 1

2 log|I + σ−2KA|, where KA = [k(x, y)]x,y∈A is the Gram matrix at locations A.

We want to gain theoretical insights into the sampling behavior that is induced by partitioning kernels. For that, we
take a detailed look at the sampling behavior in some extreme cases of the kernel parameters. We consider the general

partitioning kernel k(x, y) =
∑J
j=1 1{x,y∈Dj}k

lj ,σ
2
j

j (x, y) for some partition Dj , j = 1, . . . , J , of the input space. Here,

k
lj ,σ

2
j

j , j = 1, . . . , J are stationary kernels with lengthscales lj and variances σ2
j , for example k

lj ,σ
2
j

j = σ2
j exp

(
− ‖x−y‖

2
2

l2j

)
.

We consider a simplified setting in the sense that the partitions are sharp (defined via indicator functions) and furthermore
the kernel parameters, including the partitions, are considered fixed. Our kernel becomes this form in the limit of the
smoothness parameter in the sigmoid function (see Lemma 1). Furthermore, the MAP estimate of the TreedGP model
would be a special case of this kernel family (that has axis-aligned partitions Dj). We note that in case of fixed kernel
parameters the maximum information gain acquisition function simplifies to

a(x|Dt−1) = I(y; f |Dt−1, x,Θ) ∝ σ2
t−1(x|Θ) (2)

where σ2
t−1(x|Θ) is the predictive variance of the posterior GP f |Dt−1 with parameters Θ. The acquisition function (2) is

the greedy step to maximize the complete information I(yA, fA|k) [see Srinivas et al. (2010)]. We will therefore analyze
the samples A that maximize I(yA, fA|k) with |A| = T and T ∈ N. In Theorem 1 we take a detailed look at the optimally
selected samples, when the kernel exhibits the extreme cases, where either the variance of one local kernel is zero or its
lengthscale goes to infinity.

The theorem states that, when the partition is sharp, the sampling will ignore the region, where the kernel variance is zero
and will only need a tiny fraction of the region, where the kernel lengthscale is very large. A look into the proof reveals
that, in the regions that exhibit large lengthscales, the function can be considered almost as constant, such that datapoints
from a tiny portion of this area are sufficient to deduce the function values in the remaining part. In the regions exhibiting
zero variance, there is no information left, such that no datapoints need to be gathered here. Instead, the samples can be
allocated to regions where more information is present. In practice, the variance will not be zero and the lengthscale might
have very large, but finite values. In the experimental section of the main paper we see examples for input regions that
exhibit very small variance or large lengthscales, and we observe the indicated sampling behavior.

It is important to note that, in practice, the correct identification of the different partitions is crucial for the sampling
behavior to behave as described. This is where the properties of our kernel play an important role, as the hierarchical
hyperplanes allow for flexible partitions that can be learned efficiently due to the differentiability of the kernel.

Theorem 1 Let D ⊂ Rd be compact and Dj ⊂ D, j = 1, . . . , J , with non-empty interior and such that Di ∩ Dj = ∅
and

⋃J
j=1Dj = D. Let k(x, y) =

∑J
j=1 1{x,y∈Dj}k

lj ,σ
2
j

j (x, y), where k
lj ,σ

2
j

j , j = 1, . . . , J are stationary kernels with

lengthscales lj and variances σ2
j , e.g. k

lj ,σ
2
j

j = σ2
j exp

(
− ‖x−y‖

2
2

l2j

)
. Consider the two cases that for some i ∈ {1, . . . , J}

either 1) the variance is σ2
i = 0 or 2) the lengthscale li → ∞. Denote in both cases the resulting kernel on the full input

space with k∗(x, y) (which is the p.w. limit for case 2). Then it holds:

For case 1):

∃X∗ = {x1, . . . , xT } ⊂ D \Di :

X∗ ∈ argmax
A⊂D,|A|=T

I(yA, fA|k∗).

For case 2): Let ξ be an arbitrary interior point in Di. Then for some a > 0 and any 0 < ε < a:

∃X∗ = {x1, . . . , xT } ⊂ (D \Di) ∪Bε(ξ) :

X∗ ∈ argmax
A⊂D,|A|=T

I(yA, fA|k∗),

where Bε(ξ) is the open ball around ξ with radius ε.

Proof. Let A ⊂ D with |A| = T . Now, let Aj := A ∩ Dj . Then
⋃J
j=1Aj = A and Aj ∩ Aj′ = ∅ for all j 6= j

′
. As
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k(x, y) = 0 for x ∈ Dj and y ∈ Dj′ with j 6= j
′
, it holds that yAj , j = 1, . . . , J are independent from each other, hence,

H(yA) =

J∑
j=1

H(yAj ).

Additionally, yAj |fAj , j = 1, . . . , J are independent (as the noise term is i.i.d.) and, thus,

H(yA|fA) =

J∑
j=1

H(yAj |fAj ).

We denote Kj
A := [kj(x, y)]x,y∈A and note that KAj = Kj

Aj
for all j = 1, . . . , J as Aj ⊂ Dj . Therefore, it holds,

I(yA, fA|k) = H(yA)−H(yA|fA) =

J∑
j=1

H(yAj )−
J∑
j=1

H(yAj |fAj )

=

J∑
j=1

I(yAj , fAj |k) =

J∑
j=1

1

2
log|I + σ−2KAj | =

J∑
j=1

1

2
log|I + σ−2Kj

Aj
|

=

J∑
j=1

I(yAj , fAj |kj).

Case 1): For this case, where σ2
i = 0 for some i ∈ {1, . . . , J}, it additionally holds,

I(yA, fA|k∗) =

J∑
j=1

I(yAj , fAj |kj) =
∑
j 6=i

I(yAj , fAj |kj),

because ki(x, y) = 0 is the trivial kernel, since σ2
i = 0, and it holds

I(yAi , fAi |ki) =
1

2
log|I + σ−2Ki

Ai | =
1

2
log|I| = 1

2
log|1| = 0.

This yields

max
A⊂D,|A|=T

I(yA, fA|k∗) = max
A⊂D,|A|=T

J∑
j=1

I(yA∩Dj , fA∩Dj |kj) = max
A⊂D,|A|=T

∑
j 6=i

I(yA∩Dj , fA∩Dj |kj)

= max
A⊂D\Di,|A|=T

∑
j 6=i

I(yA∩Dj , fA∩Dj |kj) = max
A⊂D\Di,|A|=T

I(yA, fA|k∗).

Case 2): For the second case, where li → ∞ for some i ∈ {1, . . . , J}, we denote the pointwise (p.w.) limit of ki(x, y)
with k∗i (x, y) and it holds that k∗i (x, y) = c with some constant c > 0 (actually it holds that c = σ2

i ). We denote
K∗,iA := [k∗i (x, y)]x,y∈A. Let ξ be an interior point in Di and a > 0 such that Ba(ξ) ⊂ Di. Then, for any Ãi ⊂ Bε(ξ)

with |Ãi| = |Ai| and 0 < ε < a it holds that K∗,iAi = Kc = K∗,i
Ãi

with Kc := [c]x,y∈Ai and thus

I(yAi , fAi |k∗i ) =
1

2
log|I + σ−2Kc| = I(yÃi , fÃi |k

∗
i ).

Thus, we obtain

max
A⊂D,|A|=T

I(yA, fA|k∗) = max
A⊂D,|A|=T

(
I(yA∩Di , fA∩Di |k∗i ) +

∑
j 6=i

I(yA∩Dj , fA∩Dj |kj)
)

= max
A⊂(D\Di)∪Bε(ξ),|A|=T

(
I(yA∩Bε(ξ), fA∩Bε(ξ)|k

∗
i ) +

∑
j 6=i

I(yA∩Dj , fA∩Dj |kj)
)

= max
A⊂(D\Di)∪Bε(ξ),|A|=T

I(yA, fA|k∗). �
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The following lemma shows that the Hierarchical-Hyperplane Kernel reaches the considered form k(x, y) =∑J
j=1 1{x,y∈Dj}k

lj ,σ
2
j

j (x, y) for some partition Dj , j = 1, . . . , J in the limit of the smoothness parameter. Furthermore,
the proof reveals the exact form of the sharp partitions Dj .

Lemma 1 Let k(x, y|[wi]) =
∑J
j=1 λj(x, [wi])λj(y, [wi])kj(x, y) be the Hierarchical Hyperplane Kernel (HHK), thus

λj(x, [wi]) =
∏M
i=1 σ(wᵀ

i x̃)ξL(j,i)(1 − σ(wᵀ
i x̃))ξR(j,i) with x̃ = (1, x)ᵀ and kj be kernels on Rd. Then there exists

sequences (w
(n)
i )n≥0 with ‖w(n)

i ‖ → ∞, for all i = 1, . . . ,M , and Dj ⊂ Rd, j = 1, . . . , J such that

k(x, y|[w(n)
i ])→

J∑
j=1

1{x,y∈Dj}kj(x, y)

pointwise.

Proof. Let αn = n2, βn = 1
n and

w
(n)
i := αn

(
w̃i + βn


1
0
...
0


)

for some fixed w̃i, i = 1, . . . ,M . Then, for all i = 1, . . . ,M , it holds

σ(w
(n)ᵀ
i x̃) =

1

1 + exp(−αn(w̃ᵀ
i x̃+ βn))

→

{
1 for w̃ᵀ

i x̃ ≥ 0,

0 for w̃ᵀ
i x̃ < 0.

Therefore, we obtain

λj(x, [w
(n)
i ]) =

M∏
i=1

σ(w
(n)ᵀ
i x̃)ξL(j,i)(1− σ(w

(n)ᵀ
i x̃))ξR(j,i)

→

{
1 if for all i with ξL(j, i) = 1 : w̃ᵀ

i x̃ ≥ 0 and all i with ξR(j, i) = 1 : w̃ᵀ
i x̃ < 0,

0 else.

We set
Dj := {x ∈ Rd : λj(x, [w

(n)
i ])→ 1}

so that
λj(x, [w

(n)
i ])λj(y, [w

(n)
i ])→ 1{x, y ∈ Dj}

pointwise. �

A.3 Reasoning that HHK is Nonstationary

In order for active learning to focus on different parts of the input space, the kernel needs to be nonstationary. The HHK is
in general not stationary (thus, nonstationary). This can easily be seen in case of a completely sharp partition as introduced
in Section A.2. We recall that for a kernel on Rd to be stationary, it must hold that k(x, y) = k(x + a, y + a) for all
x, y ∈ Rd and all a ∈ R. In case of the HHK with sharp partitions, denoted with k, we consider x, y ∈ Dj and a ∈ R
such that x + a, y + a ∈ Dj′ , with j 6= j′. If we place different stationary kernels kj and kj′ into the regions with
kj(x

′, y′) 6= kj′(x
′, y′) for all x′, y′ ∈ Rd the characterizing equality for stationarity does not hold as

k(x, y) = kj(x, y) 6= kj′(x, y) = kj′(x+ a, y + a) = k(x+ a, y + a).

Thus, k is not stationary. The property kj(x′, y′) 6= kj′(x
′, y′) for all x′, y′ ∈ Rd holds, for example, when the kernel

variances of two SE kernels differ.
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B EXPERIMENTAL DETAILS

B.1 Prior Parameters for HHK

Throughout the experiments, we use the following prior parameters for the Hierarchical Hyperplane Kernel, where the
local kernels kj(x, y) are Squared-Exponential Kernels on Rd with lengthscales li,j , i = 1, . . . , d and variance σ2

j :

Table 1: Parameters of the Prior
Variable Prior Parameters
li,j Gamma(α, β) α = 2, β = 2
σ2
j Gamma(α, β) α = 2, β = 3

αj Gamma(α, β) α = 6, β = 2
w̃i N (0, I)
σ2 Exp(λ) λ = 10

All prior parameters were chosen such that many functions f : [0, 1]d → R have sufficient support in the resulting prior in
function space.

B.2 Dataset Preparation

All three datasets/tasks contained already executed queries. The input variables were transformed to the unit interval and
the output was normalized. This was mainly done for the reason that the GP priors with the described prior parameters
have support over the dataset, for the HHK model, but also for the TreedGP and RBF model (all models with priors on the
kernel parameters). We don’t see that as a restrictive assumption for real-world settings as often upper and lower bounds
for input and output values are given and one might either rescale input and output variables or rescale the prior parameters.

B.3 Inference Time Comparision

In Figure 8, we show the inference times for the different kernels (HHK + RBF) and for the different inference schemes
(HMC and MAP) on the LGBB dataset for different number of datapoints. For MAP inference, we do an optimization with
ten restarts to avoid local maxima. We note that in practice this could be parallelized in order to decrease inference times.
As the number of parameters in the model increases with the number of hyperplanes, it is clear that also the inference time
increases with more hyperplanes. This holds for MAP as well as for HMC as can be seen in Figure 8. However, we note
that the impact of the inference time on the active learning cycle is only relevant if it makes up a significant amount of the
oracle time. To illustrate that we show in the right plot of Figure 8 a comparision of the inference times to an artificial
oracle time of 1h. In this example the inference time would not have a big impact on the active learning performance.

Figure 8: We show the computation time for model inference for the different HHK configurations and the RBF kernel on
the LGBB dataset for different number of datapoints. In the left plot, MAP inference is shown, where the maximization is
repeated ten times for inference. In the middle, the inference time for HMC is shown and in the right plot the same bars
are shown with an additional bar that indicates an artificial oracle time of 1h in the active learning cycle.
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B.4 Parameterization of Warped Multi-Index Kernel

We use the parameterization of the Warped Multi Index Gaussian process (WaMI) model described in the PhD thesis
of Sébastien Marmin (Marmin (2017), p.45-47). The parameterization given in Marmin et al. (2018) can only be used
for two-dimensional problems. Inside the described model in Marmin (2017) they use the Beta distribution as warping
function. For computational reasons we used the almost identical Kumaraswamy distribution as a replacement, which has
a simpler parameterization that can be easily differentiated with automatic differentiation software (this is a commonly
used alternative to the Beta distribution also used for example in the Spearmint package for Bayesian Optimization).

B.5 Details on DeepGP experiments

We used the R-package deepgp associated with the method in Sauer et al. (2020) which implements DeepGPs with Slice-
Sampling inference and the calculation of the ALC acquisition function. We chose a two-layer DeepGP for the experiments
as it showed stable and good results in Sauer et al. (2020). The ALC criteria needs a reference input-set Xref . All
three datasets/tasks contained already executed queries (see B.2) with input locations that were either uniform random
(Exponential2D, ClosePI) or a grid of input locations (LGBB). We used the complete set of input locations as reference
input-set Xref .

B.6 Approximation of the Predictive Entropy

The estimate of the predictive distribution p(y|x) given by HMC is a mixture of Gaussians:

p(y|x) =
1

n

n∑
i=1

N (y;µi(x), σ2
i (x))

As there is no analytical formulation for the Entropy H(y|x) =
∫
p(y|x)log(p(y|x))dy of a mixture of Gaussians we need

to approximate this quantity/integral. First, the Gaussian mixture is a density in 1D which already simplifies computations.
Still, we evaluated different approximations: sampling-based approximations, first- and second Taylor approximations
and quadrature. We found quadrature to have the best cost-to-precision ratio and used the SciPy implementation for 1D
integrals with integration bounds mini=1,...,n{µi − 2σi} and maxi=1,...,N{µi + 2σi} (the two-sigma quantiles of the left
and right-most MCMC samples) in order to concentrate the quadrature to the regions with higher density. We also think
a reason for the quadrature to work accurately in this case is that the predictive distribution has an almost Gaussian-like
shape, at least if a sufficient number of MCMC samples is used. Lastly, we note that doing quadrature still can have a
computational overhead if it is done in sequence over a set of evaluation points. Thus, in case of shorter oracle times, it is
recommended to parallelize this computation over several CPU cores.
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