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Abstract

We compute precise asymptotic expressions for
the learning curves of least squares random fea-
ture (RF) models with either a separable strongly
convex regularization or the ℓ1 regularization.
We propose a novel multi-level application of
the convex Gaussian min max theorem (CGMT)
to overcome the traditional difficulty of find-
ing computable expressions for random features
models with correlated data. Our result takes the
form of a computable 4-dimensional scalar op-
timization. In contrast to previous results, our
approach does not require solving an often in-
tractable proximal operator, which scales with
the number of model parameters. Furthermore,
we extend the universality results for the train-
ing and generalization errors for RF models to ℓ1
regularization. In particular, we demonstrate that
under mild conditions, random feature models
with elastic net or ℓ1 regularization are asymptot-
ically equivalent to a surrogate Gaussian model
with the same first and second moments. We
numerically demonstrate the predictive capacity
of our results, and show experimentally that the
predicted test error is accurate even in the non-
asymptotic regime.

1 INTRODUCTION

It has been recently understood that classical statistical the-
ory requires revisiting to describe the behavior of over-
parameterized models (Zhang et al., 2021; Belkin et al.,
2019). Since then, studying the asymptotic regime of a
machine learning (ML) model, in which the number of data
points and model parameters grow infinite at a constant ra-
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tio, has become a popular method of analysis (Belkin et al.,
2020; Hastie et al., 2019; Bartlett et al., 2020a; Tsigler
and Bartlett, 2020). The asymptoptic analysis of regu-
larized Random Feature (RF) models (Rahimi and Recht,
2007) has been of particular interest as they can capture
a large range of other interesting models (Mei and Mon-
tanari, 2019; Goldt et al., 2020a; d’Ascoli et al., 2020;
Dhifallah and Lu, 2020). Despite remarkable progress in
the analysis of RF models, existing asymptotic results are
not directly computable for the majority of regularization
functions, and in this generic scenario, precise asymptotic
learning curves are still lacking. In this paper, we address
this limitation and provide a novel technique that provides
computable, exact asymptotic learning curves under a large
family of separable, strongly convex regularization, as well
as the ℓ1 regularization (also known as LASSO).

Similar to many recent papers, we make use of the con-
vex Gaussian Min Max theorem (CGMT) (Thrampoulidis
et al., 2014; Hastie et al., 2019; Montanari et al., 2019; Dhi-
fallah and Lu, 2020; Goldt et al., 2020b), where there are
generally two steps. The RFs are non-Gaussian due to non-
linear activation functions, but it is shown that they can be
equivalently replaced by a surrogate Gaussian model with
matching first two statistical moments (Panahi and Hassibi,
2017; Oymak and Tropp, 2018; Hu and Lu, 2020). Estab-
lishing this equivalence between the RF model and surro-
gate Gaussian model is generally referred to as universality
(Panahi and Hassibi, 2017; Oymak and Tropp, 2018; Hu
and Lu, 2020). Next, the CGMT is applied, which pro-
vides an alternative optimization problem whose analysis
is provably tied to the original problem. This alternative
optimization formulation has been a great tool for comput-
ing precise asymptotic learning curves in the case of uncor-
related features. However, for the general RF formulation,
the surrogate features are inevitably heavily correlated. As
a result, the alternative optimization has been generally as
difficult to analyze as the original RF model. More pre-
cisely, solution of this alternative optimization typically in-
volves solving a proximal operator of a non separable m-
dimensional vector that scales with the number of model
parameters (Loureiro et al., 2021), even if the regulariza-
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tion function is separable. Only in the case of ridge (ℓ22)
regularization, where a specific rotational symmetry holds
true, can this difficulty be overcome (Chang et al., 2020;
Montanari et al., 2019; d’Ascoli et al., 2020).

Contributions: The first main contribution of this pa-
per is a novel multilevel application of the CGMT to the
correlated surrogate model that overcomes the difficulties
with the analysis of the alternative optimization and sub-
stantially simplifies the final results. With this method,
we provide a computable technique for obtaining learning
curves of surrogate Gaussian model with arbitrary separa-
ble, strongly convex; or ℓ1 regularization. Our next con-
tribution is to establish universality, i.e. to show that our
analysis also applies to the original, non-Gaussian random
features. This result has been previously established for
regularization functions that are thrice differentiable and
strongly convex (Hu and Lu, 2020). We extend this result
in two steps. First we show that a wider variety of poten-
tially nondifferentiable, strongly convex functions satisfy
universality. In particular, we show that a combination of
ℓ1 and ℓ22, known as elastic net (Zou and Hastie, 2005),
is universal. Furthermore, under the assumptions that the
activation function is continuous and Lipschitz, and solu-
tion vector that is sufficiently sparse, we show that the ℓ22
part of the elastic net regularization can be removed and
the universality of pure ℓ1 (which is not strongly convex) is
established.

2 RELATED WORKS

The asymptotic analysis of RF models is recently culmi-
nated in the study of the so-called double descent phe-
nomenon, where increasing the model size beyond the in-
terpolation threshold, surprisingly improves the learning
performance, leading to a learning curve with two descent
regions. The double descent phenomenon has a long his-
tory (Loog et al., 2020), but was first discussed in its mod-
ern form by (Belkin et al., 2019) (see also (Geiger et al.,
2020)). Overparameterized systems have since been stud-
ied extensively, for an incomplete list see (Tsigler and
Bartlett, 2020; Hastie et al., 2019; Mei and Montanari,
2019; Bartlett et al., 2020b; Belkin et al., 2020; Muthuku-
mar et al., 2019; Kobak et al., 2020; Deng et al., 2019;
Taheri et al., 2021; Lolas, 2020; Mignacco et al., 2020; Kini
and Thrampoulidis, 2020; Liang and Sur, 2020; Montanari
et al., 2019; Taheri et al., 2020; Salehi et al., 2019)

Gaussian comparison theorems have played a central role
in obtaining exact learning curves, which go back to (Gor-
don, 1985, 1988). They show an asymptotic equivalence
between certain optimization problems over Gaussian ran-
dom variables. (Thrampoulidis et al., 2015; Thrampoulidis
et al., 2014) showed that in the presence of convexity, the
bounds provided by Gordon could be refined. The applica-
tions of comparison theorems to the study of the asymptotic

regime are numerous (Bosch et al., 2021; Loureiro et al.,
2021; Dhifallah and Lu, 2020; Thrampoulidis et al., 2016;
Chang et al., 2020). A principal difficulty with the CGMT
is in the case of correlated covariates, as in the RF model.
This results in the alternative optimization problem of the
CGMT to be no more tractable than the original problem.
In the case of ℓ22 regularization, rotational symmetry may
be applied to study correlated models. In the papers such
as (Chang et al., 2020; Mei and Montanari, 2019; Dhifal-
lah and Lu, 2020) this symmetry is exploited to derive an-
alytic expressions. We are not aware of any analytic ex-
pressions derived by means of the CGMT considering RFs
with more generic regularization. As a contribution of this
paper, we resolved the issue of correlated covariates with a
novel approach involving multiple applications of CGMT
and extend the analysis of regularized least squares into RF
features with a larger set of regularization functions.

The Gaussian Equivalence Principle (GEP) expresses that
there exists an asymptotic equivalence between RF mod-
els and Gaussian models with identical first and second
moments. This universality was shown for (regularized)
least squares by Panahi and Hassibi (2017), extended to
generic convex regularization by Hu and Lu (2020) and for
generative models by Goldt et al. (2022). More recent re-
sults by Montanari and Saeed (2022) extends universality
to empirical risk minimization with regularization. Ba et al.
(2022) has also extended universality results to RF models
after a single step of gradient descent with small step sizes.
The results of Hu and Lu (2020) and Montanari and Saeed
(2022) however do not hold in the case of ℓ1 regularization,
while those of Panahi and Hassibi (2017) do not apply to
the random features case. We extend the universality re-
sults of Hu and Lu (2020) to the case of of ℓ1 and elastic
net regularization. Liang and Sur (2020) also demonstrate
the universality of ℓ1 regularization but for a different setup
of max-margin classifiers. Their results cannot simply be
translated to that of ours. Firstly, they only consider univer-
sality of the objective value, while we additionally demon-
strate universality for strongly convex functions of the so-
lution vector. Secondarily they require that the activation
function is restricted to a compact set, which we do not
require here.

3 RANDOM FEATURES MODEL

We consider a dataset {(zi, yi) ∈ Rd × R}ni=1 and wish to
determine the relationship between the data vector zi and
the labels yi by means of a function of the following form:

f(zi;θ,φ) =
1√
m
θTφ(zi) θ ∈ Rm. (1)

Here φ : Rd → Rm is a fixed nonlinear feature map, whose
relation to the labels yi is characterized by a variable weight
vector θ. We determine θ by the following optimization
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problem:

θ̂ = argmin
θ

n∑
i=1

l(f(zi;θ,φ), yi) + r(θ), (2)

where l(x, y) = 1
2 (x − y)

2 is the square-loss function and
r(x) is a regularization function. We consider a wide-
range of regularization functions which are explained in
Section 4. We restrict ourselves to the feature map

φ(zi) = σ

(
1√
d
Wzi

)
, (3)

where σ : R → R is a non linear, odd activation function
applied element wise (eg. tanh(x)), and W ∈ Rm×d is
a random weight matrix whose elements are i.i.d standard
Gaussians, independent of zi. We note that this choice of
the random feature map can be interpreted as a Neural Net-
work (NN) with one hidden layer. We let the matrix X be
given such that Xij = φj(zi) = σ

(
1√
d
wT
j zi

)
, where wT

j

is the jth row of W. We consider two metrics of the perfor-
mance of the solution θ̂ of (2), the training error, expressed
in matrix notation as

Etrain(θ) =
1

2n
||y − 1√

m
Xθ||22 +

1

m
r(θ) (4)

and the generalization error

Egen(θ) = E
[
1

2
(ynew − f(znew;θ,φ))2

]
, (5)

where (znew, ynew) is a new sample pair independent of,
but identically distributed to the training data.

Analysis of this problem requires making assumptions on
the distribution of the the dataset. We assume that zi

i.i.d.∼
N (0, Id) and that the labels yi are generated according to

yi =
1√
m
θ∗Tφ(zi) + ϵi, (6)

where θ∗ is a fixed weight vector that may be deterministic
or random and ϵi is i.i.d. noise with E[ϵi] = 0, E[ϵ2i ] =
σ2
ϵ and E[ϵ4i ] < ∞, and φ is given in (3). We note that

this method of label generation is different that that of Hu
and Lu (2020), we note that their results still apply in this
context. For a discussion of this fact see remark 2 in the
appendix.

Under these assumptions, the main goal of this paper is to
predict the values of Egen(θ̂), Etrain(θ̂), where θ̂ is given
by (2). Further, we provide the asymptotic value of h(θ̂)
where h is an arbitrary test function from a wide range of
choices, as we elaborate.

4 MAIN RESULTS

4.1 Overview of Main Results

Before delving into details, we provide an overview of our
main results. A more detailed and rigorous treatment is
provided in the subsequent sections.

The key optimization problem in (2) can be written as

P1 = min
θ

1

2n
||y − 1√

m
Xθ||22 +

1

m
r(θ). (7)

Hence, the optimal solution of P1 is given by (2). However
we consider a slightly more general problem of the follow-
ing form:

P̃1(τ1, τ2) = min
θ

1

2n
||y − 1√

m
Xθ||22 +

1

m
r(θ)

+
τ1
m

(θ − θ∗)TR(θ − θ∗) +
τ2
m
h(θ), (8)

where τ1, τ2 are real numbers and h(e) is a test function
such that r + τ2h is convex. Moreover, R is the feature
covariance matrix Ez[φ(z)φ(z)

T ]. We refer to the solution
of (8) as θ̃1(τ1, τ2).

We note that setting τ1 = τ2 = 0, we obtain the origi-
nal problem (7), i.e. P1 = P̃1(0, 0) and θ̂1 = θ̃1(0, 0).
These additional “τ” are added to the problem definition to
prove the universality of generalization error and of generic
strongly convex functions. We note that the τ1 term corre-
sponds to a component of the generalization function and
τ2 is attached to the generic function h(θ). Taking the
derivative with respect to τ1, or τ2 allows these terms to
be recovered, this property is made use of in the proof of
the universality, see proof of theorem 4.

We analyze the problem in (8) by considering two alterna-
tive problem formulations, and demonstrating that they are
asymptotically equivalent to one another.

Consider the linear feature map

φ̃(z) =
ρ1√
d
Wz+ ρ∗g, (9)

where ρ1 = Ea[aσ(a)] and ρ2∗ = Ea[σ2(a)] − ρ21, with
a ∼ N (0, 1), and g ∼ N (0, Im). This feature map is
obtained by means of a truncated Hermite polynomial ex-
pansion of the original feature map (3), as discussed in Mei
and Montanari (2019), and unlike the original feature maps
in (3) these feature are Gaussian (for fixed weights W).
Let (X̃)ij = φ̃j(zi) = ρ1√

d
wT
j zi + ρ∗gij , where gij are

i.i.d Gaussian, and consider the problem

P̃2(τ1, τ2) = min
θ

1

2n
||y − 1√

m
X̃θ||22 +

1

m
r(θ)

+
τ1
m

(θ − θ∗)T R̃(θ − θ∗) +
τ2
m
h(θ), (10)
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where yi = θ∗T φ̃(zi) + ϵi and R̃ = Ez[φ̃(z)φ̃(z)
T ]. The

optimal solution of P̃2(τ1, τ2) is referred to as θ̃2(τ1, τ2).
In particular, we denote θ̂2 = θ̃2(0, 0).

Now, we define ψ(β, q, ξ, t, τ1, τ2) as follows

ψ(β, q, ξ, t, τ1, τ2) =

1

m
E
[
M 1

2c1
(r+τ2h)

(
θ∗ −

c2
√
γ

2c1
ϕ

)]
−c

2
2γ

4c1
+
ξt

2
+
βq

2
+
βσ2

ϵ

2q
+
ξβ2

2tη

− (β + 2τ1q)ξ
2

2q
− qβ2

2(β + 2qτ1)η
− β2

2
, (11)

where M 1
2c1

(r+τ2h) is the Moreau envelope of r + τ2h

with the step size 1
2c1

(see supplement definition 1), ϕ
is a standard Gaussian vector, c1 and c2 are functions of
β, q, ξ, t, τ1, τ2 given by

c1 =
(β + 2τ1q)

2ρ21ξ

2q2t
+

(β + 2qτ1)ρ
2
∗

2q
(12)

c2 =

√
(β + 2τ1q)2ρ21ξ

2η

q2
+ β2ρ2∗. (13)

The expectation is taken with respect to ϕ and hence the
function ψ is not random. Accordingly, we define the key
alternative optimization problem, i.e. a four-dimensional
scalar optimization problem, in our development:

P̃3(τ1, τ2) = max
β>0

min
q>0

max
ξ>0

min
t>0

ψ(β, q, ξ, t, τ1, τ2). (14)

Let β̃, q̃, ξ̃, t̃ be the optimal point of P̃3 and let c̃1 =
c1(β̃, q̃, ξ̃, t̃) and c̃2 = c2(β̃, q̃, ξ̃). Accordingly, we define
θ̃3(τ1, τ2) as follows

θ̃3(τ1, τ2) := prox 1
2c̃1

(r+τ2h)

(
θ∗ −

c̃2
√
γ

2c̃1
ϕ

)
, (15)

where prox 1
2c̃1

(r+τ2h) denotes the proximal operator of r+

τ2hwith the step size 1
2c̃ . Similar to the two previous cases,

we define θ̂3 = θ̃3(0, 0). The training and generalization
error corresponding to problem P̃3 are not given by (4) and
(5), instead we have that

Ẽtrain = P̃3(0, 0) Ẽgen = σ2
ϵ +

∂P̃3(τ1, 0)

∂τ1

∣∣∣∣∣
τ1=0

. (16)

Now, we provide a summary of our main results:

Theorem 1. Informal statement of the main results
There exist symmetric intervals τ1 ∈ [−τ∗1 , τ∗1 ] and τ2 ∈
[−τ∗2 , τ∗2 ] with sufficiently small universal constants τ∗1 , τ

∗
2 ,

a wide family of strongly convex, separable functions r
and potentially non-convex, separable test functions h, for
which in the asymptotic limit,

P̃1(τ1, τ2) ≈ P̃2(τ1, τ2), P̃2(τ1, τ2) ≈ P̃3(τ1, τ2) (17)

and hence
P̃1(τ1, τ2) ≈ P̃3(τ1, τ2). (18)

By the above result, we may conclude for such scenarios
that

Etrain(θ̂1) ≈ Etrain(θ̂2) ≈ Ẽtrain, (19)

Egen(θ̂1) ≈ Egen(θ̂2) ≈ Ẽgen, (20)

and

h(θ̂1) ≈ h(θ̂2) ≈ h(θ̂3). (21)

The above result also holds for ℓ1 regularization under
some considerations about the true model θ∗ and the ac-
tivation function.

Discussion of Main Result: By Theorem 1, the generaliza-
tion/training error and other properties of the original prob-
lem P1, represented by a test function h, can be found using
the solution of P3 = P̃3(τ1 = 0, τ2 = 0). See Theorem 5
for a precise statement. Note that P3 is scalar and since
r is separable, calculating E

[
M 1

2c1
r

(
θ∗ − c2

√
γ

2c1
ϕ
)]

is
straightforward (τ1, τ2 are set to zero). Hence, P3 is simple
to evaluate using standard computation techniques.

We note that Theorem 1 is, at first sight, similar to Theo-
rem 1 in Loureiro et al. (2021), which is also based on the
Moreau envelope and the proximal operator of the regular-
ization function. However, we note that the argument of
the Moreau envelope in their expression is more complex
and cannot be generally evaluated even if r is separable.
Hence, our result is novel and not the same as (Loureiro
et al., 2021, Thm. 1) and allows significantly easier calcu-
lation of the generalization error compared to other existing
methods in the literature for the correlated RF model.

Our proof has two building blocks: Using a novel multi-
level application of CGMT, we show in Theorem 2, the
convergence of P̃2 to the scalar optimization problem P̃3

in the left hand side of (17). The universality result, i.e.
the asymptotic convergence between P̃1 and P̃2 in the right
hand side of (17) is presented in Section 4.4. The other
claims i.e (19),(20) and (21) are subsequently obtained by
an individual argument.

For strongly convex and thrice differentiable regulariza-
tion functions, the universality relation in the right hand
side of (17) has already been demonstrated in Hu and Lu
(2020). Here, we extend these results to the case of a se-
quence of strongly convex, thrice differentiable functions
with bounded third derivatives that converge uniformly to
the regularization function (Theorem 4). Such functions
may not be even differentiable. Moreover, while Hu and
Lu (2020) also shows the universality of the generaliza-
tion/test errors, we extend this result and show that the en-
tire discussion holds true for an arbitrary test function h
obtained as the uniform limit of a sequence of thrice dif-
ferentiable functions with bounded third derivatives. Exact
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assumptions will be shortly presented. The above approach
also allows us to extend the universality results to elastic
net (Corollary 1) and ℓ1 regularization (Theorem 6), which
have not been provided in the literature before.

4.2 Assumptions

Below, we provide a list of all assumptions considered in
our study. The specific assumptions that are used for each
result is provided under the statement of the associated re-
sult.

A1 The regularization function satisfies one of the below:

– Case A: For positive constants µ,L > 0, there
exists a sequence of functions r(k) that are sepa-
rable, µ-strongly convex and thrice differentiable
with L−uniformly bounded third derivatives1.
The sequence r(k) converges uniformly in the
limit of k → ∞ to the regularization function
r.

– Case B: The regularization function is r(θ) =
λ||θ||1.

Note that it is sufficient that one of these assumptions,
either Case A or Case B, holds true.

A2 For positive constants l, L > 0, there exists
a sequence of thrice differentiable functions h(k)

with l−uniformly bounded second derivatives and
L−uniformly bounded third derivatives. The se-
quence h(k) converges uniformly in the limit of k →
∞ to the test function h.

A3 The noise vector ϵ has elements ϵi which are i.i.d with
E[ϵi] = 0, E[ϵ2i ] = σ2

ϵ <∞ and E[ϵ4i ] <∞.

A4 The dimensions n,m, d remain at constant ratio when
they are increased to infinity. These ratios are given
by γ = n

m , η = n
d and δ = γη = m

d

A5 The true model θ∗ is independent of X. We
assume that for some constants c, c′, C > 0,
P
(

1√
m
max(∥∇r(θ∗)∥2, ∥∇h(θ∗)∥2) > c

)
→ 0,

and P(maxi |(∇h(θ∗))i| ≥ c logm) ≤
Ce−c

′(logm)2 .

A6 The activation function σ(·) is odd, with bounded first,
second, and third derivatives.

Given the assumptions, we state the values of the bounds
on τ1 and τ2:

|τ1| ≤ τ∗1 =
µ/8

ρ21(1 + 2
√
δ)2 + ρ2∗

|τ2| ≤ τ∗2 =
µ

4l
, (22)

1Note that for a generic multi-variable function, the deriva-
tives are tensors and we refer to their operator norm for bounds.
However, as the functions are separable, i.e. a scalar function is
applied element-wise, the bounds are simply on the derivatives of
the scalar function.

where the values of µ and l are given in A1 and A2, respec-
tively. Both of these bounds are chosen to ensure that the
sum of the regularization function and the two “τ terms”
remains strongly convex with high probability.

4.3 Asymptotic Gaussian Results

In this section, we state our main result connecting P2 in
(10) and P3 in (14).

Theorem 2. Let Assumptions A3-A5 hold and r + τ2h is
µ
2−strongly convex for τ2 ∈ [−τ∗2 , τ∗2 ]. Then for all τ1 ∈
[−τ∗1 , τ∗1 ] and τ2 ∈ [−τ∗2 , τ∗2 ],∣∣∣P̃2(τ1, τ2)− P̃3(τ1, τ2)

∣∣∣ P−−−−−−→
n,m,d→∞

0 (23)

Moreover, ∣∣∣∣(Etrain(θ̂2), Etrain(θ̂2), 1mh(θ̂2)

)
−
(
Ẽtrain, Ẽgen,

1

m
h(θ̂3)

)∣∣∣∣ P−−−−−−→
n,m,d→∞

0 (24)

where θ̂2 is the solution to problem (10) and θ̂3 is the solu-
tion presented in (15) associated with P3 in (14).

This result makes the statement in the second equation of
(17) precise. Note that we do not need A6 and the assump-
tion for r, h is weaker than the combination of A1-Case A
and A2. A6, A1-Case A and A2 are required for the next
step concerning P1. The results for A1-Case B will be ob-
tained from the study of A1-Case A, in a suitable limit.
Note that for this result, ρ1 and ρ∗ in (9) can be arbitrary,
but we will set them to the values discussed in text follow-
ing (9) for the subsequent results.

4.3.1 Proof Sketch of Theorem 2

The proof of this statement makes use of the Convex Gaus-
sian Min Max Theorem (CGMT), which establishes an
asymptotic equivalence between a primary (P ) and an al-
ternative (A) optimization problem of the following form:

P (A) = min
x∈Sx

max
y∈Sy

xTAy + ψ(x,y) (25)

A(g,h) = min
x∈Sx

max
y∈Sy

||y||2xTg + ||x||2yTh

+ψ(x,y) (26)

Here, A ∈ Rm×n,g ∈ Rm,h ∈ Rn have i.i.d standard
Gaussian elements, ψ(x,y) is an arbitrary convex-concave
function, and Sx ⊂ Rm, Sy ⊂ Rn are compact and con-
vex sets. For more details, see supplement A. To prove
Theorem 2, we first fix W and θ∗ and translate the origi-
nal minimization problem into a min-max problem of the
form in (25) by suitable transformations and change of vari-
ables. Then, we invoke the CGMT which eliminates the



Random Feature Models with General Convex Regularization

randomness (in X ) due to the data set z 2 and re-express
the problem in terms of (26). The resulting expression is
given in (Dhifallah and Lu, 2020; Loureiro et al., 2021),
but it is well-known to be intractable as it depends on the
covariance matrix of the Gaussian feature map. Here, we
introduce a key novel step. We show that assuming random
weights W, under further suitable, non-trivial transforma-
tions, the resulting equivalent form in (26) itself can be
transformed into the form of (25) with a new random matrix
A representing the randomness of the weights. This allows
us to apply the CGMT again, resulting in the elimination of
the random matrix W. Finally, we simplify the expressions
obtained by the second CGMT application, which leads to
the results in Theorem 2. The full proof is given in the
Appendix B.

4.4 Universality

Next, we demonstrate universality. Here we show that the
solution vectors problems P1 given in (7) and problem P2

given in (10) result in asymptotically equivalent values, not
only in the training and generalization error, but also in a
wide family of other test functions h. We provide two novel
theorems, in this sections, that extend the existing results
for the universality of random feature models. For com-
pleteness we first state the existing results by Hu and Lu
(2020).

Theorem 3 ((Hu and Lu, 2020) Theorem 1, Proposition 1).
Let assumptions A3-A5 hold. Set τ2 = 0 and let r(θ) be
a regularization function that is strongly convex and thrice
differentiable with uniformly bounded third derivatives. Let
θ̂1, θ̂2 be the optimal solution to the problems given in (7)
and (10), respectively. Then for all τ1 ∈ [−τ∗1 , τ∗1 ],

P̃1(τ1, 0)→ P̃2(τ1, 0) (27)

As a result, ∣∣∣(Etrain(θ̂1), Egen(θ̂1))
−
(
Etrain(θ̂2), Egen(θ̂2)

)∣∣∣ P−−−−−−→
n,m,d→∞

0 (28)

Remark 1. The statement of the Theorem 3 is adapted to
the particular setup that we consider here. For complete-
ness the original theorem is given in appendix C as Theo-
rem 9.

We are now ready to present our contribution. Firstly, we
demonstrate the following theorem, relaxing the condition
on the regularizer in Theorem 3, to A1-Case A and extend-
ing the result to an arbitrary test function h:

Theorem 4. Let A2-A6 hold and the regularization func-
tion r satisfies A1-Case A. Then for all τ1 ∈ [−τ∗1 , τ∗1 ] and

2This means that the terms including the random matrix A in
P (A) will be removed and replaced by terms including random
vectors g,h in A(g,h).

τ2 ∈ [−τ∗2 , τ∗2 ],∣∣∣P̃1(τ1, τ2)− P̃2(τ1, τ2)
∣∣∣ P−−−−−−→
n,m,d→∞

0 (29)

As a result, ∣∣∣∣(Etrain(θ̂1), Egen(θ̂1), 1mh(θ̂1)

)
(
Etrain(θ̂2), Egen(θ̂2),

1

m
h(θ̂2)

)∣∣∣∣ P−−−−−−→
n,m,d→∞

0 (30)

The next result illustrates that universality can also be ap-
plied to elastic net regularization

Corollary 1. Let A2-A5 hold. Let r(θ) = λ||θ||1 +
µ
2 ||θ||

2
2. Then, the claims of Theorem 4 hold true.

4.4.1 Proof Sketch of Theorem 4

The original proof given by Hu and Lu (2020) is valid only
for regularization functions that are strongly convex and
thrice differentiable with uniformly bounded third deriva-
tives. We first extend these results to sequence of regular-
ization functions r(k) that converge uniformly to a function
r. Noting that this theorem holds for all r(k) with k < ∞
the proof consists of demonstrating that the relations hold
in the limit. Second, Hu and Lu (2020) does not consider
the term τ2h(θ). We adopt the original proof of Hu and Lu
(2020) and modify it to demonstrate that the results simi-
larly hold with a more generic test function h(θ). The proof
of these results are given in the Appendix C.3.

For the specific case of elastic net, we construct a valid
sequence r(k)(θ) that uniformly converges to the elastic net
regularization function, see Appendix C.4.

4.5 Random Features and Scalar Optimization
Problem

We now connect the original problem P1 to the scalar op-
timization problem P3 by combining the results in Sec-
tion 4.3 and Section 4.4. This leads to the following precise
statement of the main result in Theorem 1:

Theorem 5. Let Assumptions A2 - A6 and A1.Case A hold.
Then for all τ1 ∈ [−τ∗1 , τ∗1 ] and τ2 ∈ [−τ∗2 , τ∗2 ],∣∣∣P̃1(τ1, τ2)− P̃3(τ1, τ2)

∣∣∣ P−−−−−−→
n,m,d→∞

0 (31)

Moreover, ∣∣∣∣(Etrain(θ̂1), Etrain(θ̂1), 1mh(θ̂1)

)
(
Ẽtrain, Ẽgen,

1

m
h(θ̂3).

)∣∣∣∣ P−−−−−−→
n,m,d→∞

0 (32)
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4.6 Results for ℓ1 regularization

We further extend these results to the case of ℓ1 regulariza-
tion. For this case, additional assumptions are needed. In
particular, we may only consider scenarios, where problem
(2) is sufficiently sparse. This is defined by the following:

M0 =
1

m

m∑
i=1

Pr
(
θ̂i,3 ̸= 0

)
(33)

where θ̂i,3 denotes the ith element of θ̂3 for the regular-
ization function r(θ) = λ∥θ∥1. We prove the following
theorem:

Theorem 6. Let Assumptions A2 - A6 hold and r(θ) =
λ||θ||1. The exists a constant ρ only depending on the
activation function σ and the parameters of the problem
(λ, σ2

ϵ , γ, η) such that for M0 < ρ, the results of Theorem
5 holds for r(θ) = λ||θ||1.

4.6.1 Proof Sketch of Theorem 6

We adopt the proof in Panahi and Hassibi (2017), which
performs this procedure for i.i.d. sub-Gaussian features,
and modify it for the random feature model. Extending
the results for the ℓ1 regularization involves the results for
the elastic net optimization in corollary 1. In Panahi and
Hassibi (2017) (section 3.3 of supplement), it is shown
that for a small value of µ in the elastic net regulariza-
tion λ∥. ∥1 + µ

2 ∥. ∥
2
2, the ℓ2 term can be removed and the

change of the solution is negligible, if the matrix X satisfies
a proper restricted isometry property (RIP). In Panahi and
Hassibi (2017) (lemma 8 in supplement), the RIP is shown
for i.i.d. sub-Gaussian features. We extend this result and
show that a similar RIP condition holds for random fea-
tures model. The condition on M0 ensures that the optimal
solution is sufficiently stable, which otherwise is not guar-
anteed with the lack of strong convexity. The full proof is
presented in Appendix C.5.

5 Elastic Net Regularization

In this section, we apply our results to the case of elas-
tic net regularization, for which asymptotic learning curves
has not been previously proposed. We consider the regular-
ization function

r(θ) = λ||θ||1 +
α

2
||θ||22, (34)

where λ and α are two regularization parameters. We note
that in the case of λ = 0 we obtain ridge regularization and
in the case of α = 0 we obtain ℓ1 regularization (LASSO).
Due to the continuity of the asymptotic expressions, the
analysis of elastic net may be directly used for the study of
ridge or LASSO regression simply by setting either λ = 0
or α = 0. Our interest in studying elastic net stems from

the sparsity-promoting effect of the ℓ1 regularizer on the
solution vector. When viewing the RF model as a shallow
neural network, the effect of a sparse solution is to disable
a number of nodes in the hidden layer. As a result, elastic
net finds a subnetwork of the original NN with a minimal
degradation in performance, in effect a form of network
compression. For similar attempts, see for example (Tang
et al., 2022; Oyedotun et al., 2021; Yu et al., 2014).

The asymptotic equivalent solution to the elastic net regu-
larized problem is given by

(θ̂3)i =


2c̃1θ

∗
i

2c̃1+α
+

c̃2
√
γ

(2c̃1+α)
ϕi − λ

2c̃1+α
ϕi < −ζ1i

2c̃1θ
∗
i

2c̃1+α
+

c̃2
√
γ

(2c̃1+α)
ϕi +

λ
2c̃1+α

ϕi > ζ2i

0 − ζ1i ≤ ϕi ≤ ζ21

, (35)

in which ζ1i and ζ2i are given by

ζ1i =
(λ− 2c̃1θ

∗
i )√

γc̃2
ζ2i =

(λ+ 2c̃1θ
∗
i )√

γc̃2
(36)

and c̃1, c̃2 are the constants described in Theorem 2. The
solution may also be expressed more succinctly by means
of a soft thresholding operator. A full derivation of this
solution may be found in the supplement section D. We
note that in the limit of λ → 0, we obtain −ζ1i = ζ2i
and the solution collapses into a single case, that being the
result for ridge regression.

According to theorem 5 and 6, the characteristics of the so-
lution vector θ̂1, reflected by a suitable function h, asymp-
totically becomes close to that of θ̂3 (the ℓ1 case is un-
der sparsity condition). Here, we consider the sparsity of
the solution. For this reason, we take a separable function
hϵ(θ) =

∑
i

h̄ϵ(θi), where h̄ϵ(θ) is a positive C∞ bump

function such that h̄ϵ(0) = 1 and h̄ϵ(θ) = 0 for |θ| > ϵ.
Our results apply to this function and we note that

n0(θ) ≤ hϵ(θ) ≤ nϵ(θ), (37)

where nϵ(θ) is the number of the elements θi in θ with
|θi| ≤ ϵ. In particular, n0 is the number of zeros. We may
show that by theorem 5 and the law of large numbers, the
value of 1

mhϵ(θ) converges in probability to a constant sϵ
calculated by analyzing θ̂3. We refer to s := lim

ϵ→0
sϵ as the

”effective sparsity” of θ̂1. Roughly speaking, s counts not
only the zero entries of θ̂1, but also the vanishing entries as
the problem size grows.

By direct calculation, we shown in the supplement section
D that

s→ 2c̃1 + α
√
γc̃2

1

m

∑
i

E
[(

θ̂3

)
i
ϕi

]
, (38)

where ϕi and
(
θ̂3

)
i

are defined in (35). We note that for
pure ℓ1 regularization this formula may still be used by set-
ting α = 0, although we can theoretically support it for
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small values of sparsity. In this case, s = 1 −M0 where
M0 is given in (33). Experimental results for effective spar-
sity maybe be found in the supplement E.1

6 EXPERIMENTS

6.1 Experimental setup

Using the expressions derived in the previous section, we
examine the case of elastic net regularization experimen-
tally. We choose the tanh activation for the non linear-
ity of the feature map. We consider a deterministic vector
θ∗ that consists of half ones and half zeros, . We set the
noise power σ2

ϵ = 0.1 and let δ = 1. We consider multiple
cases, where for each case we solve the problem P3 (equa-
tion (14)) using an iterative refining grid search algorithm.
We compare the results to an experimental simulation in
which n+m = 1000, with the relative ratio varied for dif-
ferent values of γ = m/n. Each empirical data point was
averaged over 100 random realizations of the weights W,
and the data z. More details maybe found in appendix E.

6.2 Elastic net model

We compare the experimental and theoretically derived val-
ues for training and generalization error of the elastic net
model for two cases. Firstly we vary the ratio γ = m

n for
fixed values of the regularization parameters, and secondly
we vary the regularization parameter λ for all other param-
eters being fixed.

The case of varying γ is shown in figure 1. Here, we fix
λ = 10−3 and choose several values of α including 0, the
case of pure ℓ1 regularization. Our expressions accurately
predict the expected behavior of a network, the small devi-
ation explained by the fact that n,m are finite. However,
the discrepancy is only notable in a small range near the in-
terpolation peak, suggesting the validity of our expressions
in a wide range of networks of a non asymptotic size. We
observe that small values of α result in a spike in the gener-
alization error at the interpolation threshold, which in this
model, is slightly more than γ = 1. We note that as the
regularization parameter increases in strength, the interpo-
lation peak diminishes. This is consistent with other results
on the study of the double descent phenomenon (d’Ascoli
et al., 2020).

In figure 2, we choose α = 10−3 and vary the value of
the regularization parameter λ at constant γ. We note that
that the generalization error suggests that at each ratio of
γ = m

n there is an optimal value of λ that minimizes the
expected error.

7 CONCLUSION

We derived expressions to determine the exact asymptotic
learning curves for square loss random feature models, sub-
ject to strongly convex regularization, or ℓ1 regularization.
These expressions consist of a 4-dimensional scalar opti-
mization with two min-max pairs that is computable us-
ing standard techniques. We proved in two steps that these
expressions coincide with the asymptotic learning curves:
First, we demonstate that the scalar optimization is asymp-
totically equivalent to a surrogate Gaussian model whose
first two moments match that of the RF models. For this,
we proposed a novel multi-stage application of the CGMT.
Then, we extended the results of the universality of RF
models to a broader family, including elastic net and ℓ1
regularization, thereby demonstrating an asymptotic equiv-
alence between the Gaussian model and the non linear RF
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Figure 1: Theoretically predicted (solid line) and numeri-
cally determined (markers) values of the training error (a)
and generalization error (b) for the random features model
with ℓ1 + ℓ2 regularization as a function of γ = m

n , for
varying values of regularization strengths of α at constant
value of λ = 10−3.
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Figure 2: Theoretically predicted (solid line) and numeri-
cally determined (markers) values of the training error (a)
and generalization error (b) for the random features model
with ℓ1 + ℓ2 regularization as a function of the regulariza-
tion parameter λ, for varying values of the ratio γ = m

n
constant value of α = 10−3.

model. Our results for universality hold not only for the
cases of training and generalization error, but also for test
functions h from a wide family.

There are several potential directions to extend our study.
A particularly interesting direction is to use our methodol-
ogy to obtain refined expressions for a more generic loss
functions, extending the existing studies, e.g Loureiro et al.
(2021).
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Lenka Zdeborová. Modeling the influence of data struc-
ture on learning in neural networks: The hidden mani-
fold model. Physical Review X, 10(4):041044, 2020a.
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ble descent in feature selection: Revisiting lasso and
basis pursuit. In International Conference on Machine
Learning (ICML) 2021 Workshop on Overparameteriza-
tion: Pitfalls & Opportunities, 2021.

Christos Thrampoulidis, Ehsan Abbasi, and Babak Has-
sibi. Precise error analysis of regularized m-estimators

https://arxiv.org/abs/2009.07669
https://arxiv.org/abs/2009.07669
https://arxiv.org/abs/2102.08127
https://arxiv.org/abs/1903.09139
https://arxiv.org/abs/1903.09139
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart.
Concentration inequalities: A nonasymptotic theory of
independence. Oxford university press, 2013.

Heinz H Bauschke, Patrick L Combettes, et al. Con-
vex analysis and monotone operator theory in Hilbert
spaces, volume 408. Springer, 2011.

Jean Honorio and Tommi Jaakkola. Tight bounds for the
expected risk of linear classifiers and pac-bayes finite-
sample guarantees. In Artificial Intelligence and Statis-
tics, pages 384–392. PMLR, 2014.

Emmanuel J Candes, Justin K Romberg, and Terence Tao.
Stable signal recovery from incomplete and inaccurate
measurements. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 59(8):1207–1223, 2006.

https://arxiv.org/abs/1601.06233
https://arxiv.org/abs/1601.06233
https://arxiv.org/abs/2202.08832
https://arxiv.org/abs/2202.08832
https://arxiv.org/abs/2205.01445
https://arxiv.org/abs/2205.01445


Random Feature Models with General Convex Regularization

A Gaussian Min Max Theorems

We make use of the Gaussian Min max theorem as well as the Convex Gaussian min max theorem in the proof of theorem
1. The Gaussian min max theorem was originally proven by Gordon (Gordon, 1985, 1988). The CGMT was developed by
(Thrampoulidis et al., 2014), we state the theorem here for completeness.

The Gaussian Min Max theorem states the following:

Theorem 7. Let A ∈ Rm×n, g ∈ R,g ∈ Rm and h ∈ Rn be independent of each other and have entries distributed i.i.d
according to N (0, 1). Let S1 ⊂ Rn and S2 ⊂ Rm be nonempty compact sets. Let f(·, ·) we a continuous function on
S1 × S2. We define

P1(A) := min
x∈S1

max
y∈S2

yTAx+ g||x||2||y||2 + f(x,y), (39)

P2(g,h) := min
x∈S1

max
y∈S2

||x||2gTy + ||y||2hTx+ f(x,y). (40)

Then for any c ∈ R:

P(P1(A, g) ≤ c) ≤ P(P2(g,h) ≤ c) (41)

The Convex Gaussian Min Max theorem extends these results to the following:

Theorem 8. Let A ∈ Rm×n,g ∈ Rm and h ∈ Rn be independent of each other and have entries distributed i.i.d
according to N (0, 1). Let S1 ⊂ Rn and S2 ⊂ Rm be nonempty compact sets. Let f(·, ·) we a continuous function on
S1 × S2. We define

P1(A) := min
x∈S1

max
y∈S2

yTAx+ f(x,y), (42)

P2(g,h) := min
x∈S1

max
y∈S2

||x||2gTy + ||y||2hTx+ f(x,y). (43)

Then for any c1 ∈ R we have that

P(P1(A) < c1) ≤ 2P(P2(g,h) ≤ c1), (44)

Under the further assumptions that S1 and S2 are convex sets and f is concave-convex on S1 × S2 then for all c2 ∈ R

P(P1(A) > c2) ≤ 2P(P2(g,h) ≥ c2). (45)

We note that if in the limit of n,m→∞ the value of P2(g,h) concentrates on a value a then similarly P1(A) converges
to the same value.

B Proof of Theorem 2

To prove, theorem 2, we shall apply the CGMT (supplement theorem 8) to obtain an alternative problem formulation for
(10). Subsequently, we will simplify the alternative problem, and then express it once again in the form that is suitable for
a second CGMT application. Applying the CGMT for a second time, we obtain a second alternative problem. After sim-
plifying this second alternative problem, we will demonstrate the results in Theorem 2. To begin with the first application
of the CGMT, we fix W and change the variable θ in (10) to e = θ − θ∗ to obtain

P̃2(τ1, τ2) = min
e

1

2n
||ϵ− 1√

m
X̃e||22 +

1

m
r(e+ θ∗) +

τ1
m

eT R̃e+
τ2
m
h(e+ θ∗), (46)

note that the rows x̃i of X̃ are i.i.d, centered and Gaussian with the covariance matrix R̃ =
ρ21
d W

TW + ρ2∗I . Hence, we
may write X̃ = UR̃

1
2 where U has i.i.d. standard Gaussian entries. Next, using the Legendre transform of the square

function, we may write (10) as

P̃2(τ1, τ2) = min
e

max
λ

1

n
λT ϵ− 1

n
√
m
λTUR̃1/2e− 1

2n
||λ||22 +

1

m
r (e+ θ∗) +

1

m
τ1e

T R̃e+
1

m
τ2h(e+ θ∗) (47)
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In here τ1 ∈ R and τ2 ∈ R are constants and by the assumption, r(e + θ∗) + τ2h(e + θ∗) is µ
2−strongly convex. We

require that τ1 is chosen sufficiently small, to ensure that the entire optimization problem remains strongly convex in e. In
particular, we ensure that the term B(e) := r(e+ θ∗) + τ1e

TRe+ τ2h(e+ θ∗) is µ
4 -strongly convex. First, we show that

|τ1| ≤ τ∗1 =
µ/8

ρ21(1 + 2
√
δ)2 + ρ2∗

(48)

will satisfy this condition with high probability3. For this reason, we introduce the following lemma:

Lemma 1. Define CR̃ = ρ21

(
1 + 2

√
δ
)2

+ ρ2∗. For a random matrix W with i.i.d. standard Gaussian entries and

R̃ =
ρ21
d WWT + ρ2∗I , the following relation holds:

P
[
∥R̃∥2 > CR̃

]
< 2e−cm (49)

for a universal constant c > 0, where || · ||2 denotes the spectral norm.

Proof. We note that by the definition of R̃, we have that

∥R̃∥2 =

∥∥∥∥ρ21d WWT + ρ2∗I

∥∥∥∥
2

≤ ρ21
d
∥W∥22 + ρ2∗. (50)

The elements of W ∈ Rm×d are i.i.d normally distributed. From a standard result in matrix theory (Papaspiliopoulos,
2020)[Corollary 7.3.3] we obtain

P(
1√
d
||W||2 ≥ 1 +

√
m/d+ t) ≤ 2e−cdt

2

. (51)

Choosing t =
√
m/d yields

P(
1√
d
||W||2 ≥ 1 + 2

√
δ) ≤ 2e−cm, (52)

where we recall that δ = m
d . This provides the desired result.

According to lemma 1, the term eT R̃e is 2CR−smooth, and hence for τ1 ≤
µ
4

2CR
, the term B is µ

2 −
µ
4 = µ

4−convex. This
is the same as the condition in (48). Hence, in the rest of this proof we assume that B is strongly convex.

Next, we note that applying the CGMT requires that both λ and e are in compact feasibility sets. Here we employ a
similar strategy to (Thrampoulidis et al., 2016; Dhifallah and Lu, 2020; Loureiro et al., 2021) by showing that with high
probability, the solutions of both the original problem and the alternative problem can be bound in fixed compact sets,
hence restricting the optimizations to these sets will not affect the result. As a result, we may apply the CGMT.

Lemma 2. Consider the following two optimization problems that correspond to the primary optimization and to the first
alternative optimization in CGMT.

P̃2,1 = min
e

max
λ

1

n
λT ϵ− 1

n
√
m
λT X̃e− 1

2n
||λ||22 +

1

m
B(e) (53)

P̃2,2 = min
e

max
λ

1

n
λT ϵ− 1

n
√
m
||R̃1/2e||2λTg −

1

n
√
m
||λ||2hT R̃1/2e− 1

2n
||λ||22 +

1

m
B(e) (54)

In these equations g,h are standard normal vectors of size n,m, respectively. Denote by ẽ2,1, ẽ2,2 the optimal solutions
of P̃2,1 and P̄2,2, respectively. Furthermore, respectively denote by λ̃1(e), λ̃2(e) the solution of their inner optimization
(over λ) for a given vector e. Let B be strongly convex with constant µ4 and max {∥∇r(θ∗)∥, ∥∇h(θ∗)∥} = O(

√
m).

Then, there exist positive constants Ce, Cλ only depending on µ such that the following hold true:

3Throughout this paper, the term ”high probability” means a probability converging to 1 as the problem size grows.



Random Feature Models with General Convex Regularization

• The solutions ẽ2,i for i = 1, 2 satisfy

lim
m→∞

P
(
max {||ẽ2,1||2, ||ē2,2||2} ≤ Ce

√
m
)
. (55)

• It also holds that

lim
m→∞

P

(
sup

e|∥e∥≤Ce
√
m

max
{
∥λ̃1(e)∥, ∥λ̃2(e)∥

}
≤ Cλ

√
m

)
= 1 (56)

Proof. We note that B is µ
4 strongly convex. Solving for λ in both optimization, we may write the optimization over e as

min
e
Fi(e) i = 1, 2 (57)

Where Fi(e) is the optimal value over λ. We note that setting λ = 0 in both optimizations, we obtain that F (e) ≥ 1
mB(e).

Then we see that

B(e) ≥ B(0) + dTe+
µ

4
||e||22 (58)

where d = ∇B(0) = ∇r(θ∗) + τ2∇h(θ∗) and by the assumption ∥d∥ = O(
√
m).

For optimization P1, we note that

F (0) =
1

m
B(0) +

1

2n
∥ϵ∥22 . (59)

This implies that for the optimal solution ê we have

1

m
B(0) +

1

2n
∥ϵ∥22 = F (0) ≥ F (ẽ1) ≥

1

m
B(0) +

1

m
dT ẽ1 +

µ

4m
||ẽ1||22, (60)

which yields

µ

4m

∥∥∥∥ẽ1 + 1

µ
d

∥∥∥∥2 ≤ 1

2n
||ϵ||22 +

1

4µm
||d||22. (61)

Then, we obtain

||ẽ1||2 ≤
∥∥∥∥ 1µd

∥∥∥∥
2

+

√
2m

nµ
||ϵ||22 +

1

µ2
||d||22. (62)

From the standard matrix theory (Papaspiliopoulos, 2020)[Theorem 2.8.1] we know that ||ϵ||22 < cn for some c, with high
probability. We observe that there must exist some constant Ce1 such that

lim
m→∞

P(||ẽ1||2 ≥ Ce1

√
m) = 0. (63)

Now we consider (54). Our strategy is similar to the previous case. We note that if we let β = ||λ||2 we can solve the
optimization over λ to obtain:

F (e) = max
β≥0

β

n

∥∥∥∥ϵ− 1√
m
∥R̃1/2e∥2g

∥∥∥∥− β

n
√
m
hT R̃1/2e− β2

2n
+

1

m
B(e). (64)

The optimization is limited to β ≥ 0. Hence, its optimal value will be increased when the constant is lifted, leading to a
quadratic optimization and the following result

F (e) ≤ 1

m
B(e) +

1

2n

(∥∥∥∥ϵ− 1√
m
∥R̃1/2e∥2g

∥∥∥∥− β√
m
hT R̃1/2e

)2

, (65)

and in particular

F (0) ≤ 1

m
B(0) +

1

2n
||ϵ||22. (66)
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By applying the same inequality as in (60) we obtain that

||ẽ2||2 ≤
∥∥∥∥ 1µd

∥∥∥∥+√2m

nµ
∥ϵ∥22 +

1

µ2
∥d∥22. (67)

As such, we obtain

lim
m→∞

P(||ẽ2|| ≥ Ce2

√
m) = 0. (68)

Now, let Ce = max(Ce1
, Ce2

), and use this to define the set Ae = {e ∈ Rm| ||e||2 ≤ Ce
√
m}.

Next, we note from the optimality condition of the inner optimization in Eq. (53) that

λ̃1(e) = ϵ− 1√
m
UR̃1/2e. (69)

As such, for all e ∈ Ae we have

||λ̃1(e)||2 ≤ ||ϵ||2 +
∥∥∥∥ 1√

m
UR̃1/2

∥∥∥∥ ∥e∥2 ≤ ∥ϵ∥2 + ∥∥∥∥ 1√
m
U

∥∥∥∥
2

∥R̃1/2∥2∥e∥2 (70)

We note from lemma 1 that ∥R1/2∥2 is bounded, and we make use of standard random matrix theory to conclude
∥ 1√

m
U∥2 < C with high probability. Then, making use of the same arguments as before we can see that there must

exist a constant Cλ1
such that for all e ∈ Ae

lim
n→∞

P
(
sup
e∈Ae

||λ̃1(e)||2 ≥ Cλ1

√
n

)
= 0 (71)

Finally we note that the optimality condition over β of problem 54 gives that for all e ∈ Ae

β̂ = ∥λ̃1(e)∥2 =

∥∥∥∥ϵ− 1√
m
∥R̃1/2e∥2g

∥∥∥∥
2

− 1√
m
R̃1/2h

≤ ∥ϵ∥2 +
1√
m
∥g∥2∥R̃1/2∥2∥e∥2 +

1√
m
∥R̃1/2∥2∥h∥2 (72)

We note that with high probability ∥ϵ∥2 < C
√
n, ∥g∥2 < C

√
n and ||h||2 < C

√
m. From this we can see that there exists

a constant Cλ2 such that

lim
n→∞

P
(
sup
e∈Ae

||λ̃2(e)||2 ≥ Cλ2

√
n

)
= 0 (73)

Taking Cλ = max(Cλ1 , Cλ2) completes the proof.

We use the definition of the sets Ae = {e ∈ Rm| ||e||2 ≤ Ce
√
m} and Aλ = {λ ∈ Rn| ||λ||2 ≤ Cλ

√
n} in the rest of

this study. By the lemma above, we can with high probability, restrict ourselves to the following problem

P̃ ′
2,1(τ1, τ2) = min

e∈Ae

max
λ∈Aλ

1

n
λT ϵ− 1

n
√
m
λTUR̃1/2e− 1

2n
||λ||22 +

1

m
B(e), (74)

and be certain that the solution vector and the optimal value to the problem P̃2 will be equal to those of the problem P̃ ′
2,1.

We now make use of the CGMT, (Thm. 8). From which we obtain the following optimization problem

P̃ ′
2,2 = min

e∈Ae

max
λ∈Aλ

1

n
λT ϵ− 1

n
√
m
||R̃1/2e||2gTλ−

1

n
√
m
||λ||2hT R̃1/2e− 1

2n
||λ||22 +

1

m
B(e) (75)

In which g ∼ N (0, In) and h ∼ N (0, Im). Note that by lemma (2), P̃ ′
2,1 is also identical to P̃2,2. We now let β =

1√
n
||λ||2. We further note that 0 ≤ β ≤ βmax in which βmax can be arbitrarily larger than Cλ. We can solve the

optimization over λ to obtain

A2 = min
e∈Ae

max
0≤β≤βmax

β

∥∥∥∥ 1√
n
ϵ− 1√

nm
∥R̃1/2e∥2g

∥∥∥∥
2

− β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (76)

We now note that the first term of this problem concetrates. We prove this in the following lemma
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Lemma 3. Consider the term

F (e, β) = β

∥∥∥∥ 1√
n
ϵ− 1√

nm
∥R̃1/2e∥2g

∥∥∥∥
2

− β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (77)

and let F̄ be given by

F̄ (e, β) = β

√
σ2
ϵ −

1

m
∥R̃1/2e∥22 −

β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (78)

Then there exist positive constants C, c such that for any ϵ > 0.

P

(
sup

e∈Ae,0≤β≤βmax

|F (e, β)− F̄ (e, β)| ≥ ϵ

)
≤ Ce−cnϵ (79)

Proof. We see that F can be expressed as

F = β

√
1

n
∥ϵ∥22 +

1

nm
∥R̃1/2e∥22∥g∥22 −

1

n
√
m
∥R̃1/2e∥2ϵTg

− β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e)

(80)

Or equivalently

F = β

√(
1

n
∥ϵ∥22 − σ2

ϵ

)
+ σ2

ϵ +
1

m
∥R̃1/2e∥22

(
1

n
∥g∥22 − 1

)
+

1

m
||R̃1/2e||22 −

2√
m
∥R̃1/2e∥2

ϵTg

n

− β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e)

≤ F̄ + β
√
δ ≤ F̄ + βmax

√
δ̄ (81)

in which

δ =

(
1

n
∥ϵ∥22 − σ2

ϵ

)
+

1

m
∥R̃1/2e∥22

(
1

n
∥g∥22 − 1

)
− 2√

m
∥R̃1/2e∥2

ϵTg

n

≤
(
1

n
∥ϵ∥22 − σ2

ϵ

)
+ C2

eCR̃

(
1

n
∥g∥22 − 1

)
+ 2
√
CR̃Ce

∣∣∣∣ϵTgn
∣∣∣∣ def= δ̄ (82)

We know that CR̃ and Ce are universal constants. It is also clear that the probability that P(|δ̄| ≥ ϵ) ≤ Ce−cnϵ for some
constants C, c > 0. From this we can see that

P

(
sup

e∈Ae,0≤β≤βmax

|F (e, β)− F̄ (e, β)| ≥ ϵ

)
≤ P

(
sup

e∈Ae,0≤β≤βmax

|δβ| ≥ ϵ

)
≤ P

(
|βmaxδ̄| ≥ ϵ

)
≤ Ce−cnϵ (83)

For some constants C, c > 0.

Because of this we can with high probability, examine instead the problem

P̄2 = min
e∈Ae

max
0≤β≤βmax

β

√
σ2
ϵ +

1

m
∥R̃1/2e∥22 −

β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (84)
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We now note that the optimization problem is convex in e and concave in β, and both optimizations are over convex sets,
as such we can interchange the order of min and max

P̄2 = max
0≤β≤βmax

min
e∈Ae

β

√
σ2
ϵ +

1

m
∥R̃1/2e∥22 −

β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (85)

We now note that for any scalar value a, we can express
√
a = minq>0

q
2 + a

2q . Making use of this ”square root trick” we
can obtain the problem

P̄2 = max
0≤β≤βmax

min
e∈Ae

min
qmin≤q≤qmax

βq

2
+
β

2q
σ2
ϵ +

β

2qm
∥R̃1/2e∥22 −

β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (86)

We note also that q can be bounded between qmin = σϵ, which is obtained when e = 0 and qmax =
√
σ2
ϵ + CR̃C

2
e . We

can also swap the order of the two mins obtaining

P̄2 = max
0≤β≤βmax

min
qmin≤q≤qmax

min
e∈Ae

βq

2
+
β

2q
σ2
ϵ +

β

2qm
∥R̃1/2e∥22 −

β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (87)

At this point we will consider only the inner optimization problem over e and consider β and q to be fixed. We shall return
to the outer optimization later, and instead only consider

D2 = D2(β, q) = min
e∈Ae

βq

2
+
β

2q
σ2
ϵ +

β

2qm
∥R̃1/2e∥22 −

β√
nm

hT R̃1/2e− β2

2
+

1

m
B(e) (88)

We now make use of the definition of R̃. We note specifically that

R̃1/2h = h̃ ∼ N (0, R̃ =
ρ21
d
WWT + ρ2∗I) (89)

Which by the additivity of Gaussians can be expressed as

h̃ =
ρ1√
d
Wϕ1 + ρ∗ϕ2 (90)

In which ϕ1 ∼ N (0, Id) and ϕ2 ∼ N (0, Im), we also pull the relevant factor of eT R̃e out of B(e). We make a new
definition B̃(e) = r(e+θ∗)+τ2h(e+θ∗), we remind that B̃(e) is by assumption µ

2 strongly convex. Making the relevant
substitutions we obtain

D2 = min
e∈Ae

βq

2
+
β

2q
σ2
ϵ +

βρ21
2qmd

||WTe||22 +
βρ2∗
2qm
||e||22 −

βρ1√
nmd

eTWϕ1 −
βρ∗√
nm

ϕT2 e−
β2

2
+
τ1ρ

2
1

md
||WTe||22 +

τ1ρ
2
∗

m
||e||22 +

1

m
B̃(e) (91)

We complete the square over the terms that contain WTe, obtaining:

D2 = min
e∈Ae

ρ21(β + 2qτ1)

2qmd

∥∥∥∥∥WTe− β
√
md

ρ1(β + 2qmτ1)
√
n
ϕ1

∥∥∥∥∥
2

2

− β2q

2n(β + 2qα1)
||ϕ1||22

+
βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (92)
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We now introduce another maximization over p as the convex conjugate of the ℓ22 norm. We obtain

D2 = min
e∈Ae

max
p

ρ21(β + 2qτ1)

qmd
pTWTe− βρ1√

nmd
pTϕ1 −

ρ21(β + 2qτ1)

2qmd
||p||22

− β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (93)

Our goal now is to apply the CGMT again to this problem. We note that the problem in convex in e and concave in p.
However we need to show that e and p can be bound to compact and convex sets, and that the optimal points of both
optimizations fall within these sets. We prove this in the following lemma

Lemma 4. Consider the following two optimization problems that correspond to the first alternative and second alternative
optimization by the CGMT

D2 = min
e∈Ae

max
p

ρ21(β + 2qτ1)

qmd
pTWTe− βρ1√

nmd
pTϕ1 −

ρ21(β + 2qτ1)

2qmd
||p||22

− β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+

β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (94)

D3 = min
e

max
p

ρ21(β + 2qτ1)

qmd
||p||2eTϕ3 +

ρ21(β + 2qτ1)

qmd
||e||2pTϕ4 −

βρ1√
nmd

pTϕ1 −
ρ21(β + 2qτ1)

2qmd
||p||22

− β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+

β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (95)

where ϕ3 and ϕ4 are standard normals of dimension m, d respectively. Denote ê2, ê3 as optimal points of D2 and
D3 respectively and p̂2(e), p̂3(e) as their inner optimization solution for a fixed e. Let B̃ be µ

2 strongly convex and
max {∥∇r(θ∗)∥, ∥∇h(θ∗)∥} = O(

√
m). Then there exist positive constants Ce, Cp only depending on µ such that

lim
m→∞

P
(
||êi||2 ≤ Ce

√
m
)
= 1 i = 2, 3 (96)

and

lim
m→∞

P

(
sup

e|∥e∥≤Ce

||p̂i(e)||2 ≤ Cp

√
md

)
= 1 i = 2, 3 (97)

Proof. We know that Ce2 exists from the fact that in D2 e is already in a bounded set. For both optimizations, we solve
the optimization over p, and write this optimization over e as

min
e
Fi(e) i = 2, 3, (98)

where Fi(e) is the optimal value over p. We note that setting p = 0 in both optimizations we obtain that

F (e) ≥ 1

m
T (e) := − β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+

β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (99)

On the other hand, by taking the second derivative, we observe that T (e) is ν = ρ∗β
2q + µ

2 strongly convex with respect to
e. As such, we find that

T (e) ≥ T (0) + dTe+
ν

2
||e||22, (100)

where d = ∇T (0). We note that by the assumption, d = O(
√
m). For the optimization D3, we let ξ = ||p||2 and solve

the optimization over p to obtain that

F3(e) = max
ξ>0

ρ21(β + 2qτ1)ξ

qmd
eTϕ3 + ξ

∥∥∥∥ρ21(β + 2qτ1)

qmd
||e||2ϕ4 −

βρ1√
nmd

ϕ1

∥∥∥∥
2

− ρ21(β + 2qτ1)ξ
2

2qmd
+

1

m
T (e) (101)

We note that dropping the constraint over ξ will not decrease the optimal value, as such

F3(e) ≤ max
ξ

ρ21(β + 2qτ1)ξ

qmd
eTϕ3 + ξ

∥∥∥∥ρ21(β + 2qτ1)

qmd
||e||2ϕ4 −

βρ1√
nmd

ϕ1

∥∥∥∥
2

− ρ21(β + 2qτ1)ξ
2

2qmd
+

1

m
T (e) (102)
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From which we see that

F3(0) ≤ max
ξ

ξβρ1√
nmd

||ϕ1||2 −
ρ21(β + 2qτ1)ξ

2

2qmd
+

1

m
T (0)

=
β
√
mdq||ϕ1||2

2
√
nρ1(β + 2qτ1)2

+
1

m
T (0) (103)

From this we obtain that

β
√
mdq||ϕ1||2

2
√
nρ1(β + 2qτ1)2

+
1

m
T (0) ≥ F (0) ≥ F3(ê) ≥

1

m
T (0) +

1

m
dTe+

ν

2m
||e||22, (104)

and hence

ν

2m

∥∥∥∥e+ 1

ν
d

∥∥∥∥2
2

≤ 1

νm
||d||22 +

β
√
mdq||ϕ1||2

2
√
nρ1(β + 2qτ1)2

(105)

or

||e||2 ≤
1

ν
||d||2 +

√
2

ν2
||d||22 +

mβ
√
mdq||ϕ1||2

ν
√
nρ1(β + 2qτ1)2

(106)

Noting that with high probability ||ϕ||2 ≤ C
√
d and recalling that n,m, d all grow at constant ratios, we can see that there

must exist a constant Ce3
such that

P(||ê3|| > Ce3

√
m)→ 0 (107)

We then letCe = max(Ce2
, Ce3

) and define the set Ãe = {e ∈ Rm| ||e||2 ≤ Ce
√
m}. Then from the optimality condition

over p for eq (94) we know that

p̂2(e) = WTe− β
√
md

ρ1(β + 2qmτ1)
√
n
ϕ1 (108)

and as such for all e ∈ Ae we must have that

||p̂2(e)||2 ≤ ||W||2||e||2 +
β
√
md

ρ1(β + 2qmτ1)
√
n
||ϕ1||2 (109)

We know as a standard result that ||W||2 ≤ C
√
d and that ||ϕ1||2 ≤ C

√
d with high probability. As such the constant Cp2

must exist.

Finally examining the optimality condition over ξ of problem (95) we find that for all e ∈ Ae we have that

ξ̂ = ||p̂3(e)||2 = eTϕ3 +

∥∥∥∥∥||e||2ϕ4 −
qβ
√
md

ρ1(β + 2qτ1)
√
n
||ϕ1

∥∥∥∥∥
2

≤ ||e||2||ϕ3||2 + ||e||2||ϕ4||2 +
qβ
√
md

ρ1(β + 2qτ1)
√
n
||ϕ1||2 (110)

We note that with high probability ||ϕ1||2 <
√
dC, ||ϕ4||2 <

√
dC and ||ϕ3||2 <

√
mC. Recalling that m, d grow at

constant ratio we see that the constant Cp3
exists.

We can therefore define the constants Ce := max(Cei
) from i = 1, 2, 3 and Cp = max(Cp2

, Cp3
), and by doing so define

the sets Ae = {e ∈ Rm| ||e||2 < Ce
√
m} and Ap = {p ∈ Rd| ||p||2 < Cp

√
md}. From this we can see that with high

probability the optimal value of the optimization P̄2 will be equal to that of
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D2 = min
e∈Ae

max
p∈Ap

ρ21(β + 2qτ1)

qmd
pTWTe− βρ1√

nmd
pTϕ1 −

ρ21(β + 2qτ1)

2qmd
||p||22

− β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (111)

We now apply the CGMT to the problem D2 for fixed values of β, q, we obtain the following problem

D3 = min
e∈Ae

max
p∈Ap

ρ21(β + 2qτ1)

qmd
||p||2eTϕ3 +

ρ21(β + 2qτ1)

qmd
||e||2pTϕ4 −

βρ1√
nmd

pTϕ1 −
ρ21(β + 2qτ1)

2qmd
||p||22

− β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+

β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (112)

Let ξ = ρ1√
md
||p||2 and solve the optimization over p. We note that ξ ≥ 0 and that ξ ≤ ξmax = ρ1√

dm
supp∈Ap

||p||2.
From this we obtain the problem,

D3 = min
e∈Ae

max
0≤ξ≤ξmax

ρ1(β + 2qτ1)

q
√
md

eTϕ3 + ξ

∥∥∥∥ρ1(β + 2qτ1)

q
√
md

||e||2ϕ4 −
β√
n
ϕ1

∥∥∥∥
2

− (β + 2qτ1)ξ
2

2q

− β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (113)

We now show that this term concentrates in the following lemma

Lemma 5. Let F (e, ξ) be given by

F (e, ξ) =
ρ1(β + 2qτ1)

q
√
md

eTϕ3 + ξ

∥∥∥∥ρ1(β + 2qτ1)

q
√
md

||e||2ϕ4 −
β√
n
ϕ1

∥∥∥∥
2

− (β + 2qτ1)ξ
2

2q

− β2q

2n(β + 2qτ1)
||ϕ1||22 +

βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (114)

and let F̄ (e, ξ)

F̄ (e, ξ) =
ρ1(β + 2qτ1)

q
√
md

eTϕ3 + ξ

√
ρ21(β + 2qτ1)2

q2m
||e||22 +

β2d

n
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (115)

Then

P

(
sup

e∈Ae,0≤ξ≤ξmax

|F (e, ξ)− F̄ (e, ξ)| > ϵ

)
P−−−−−→

m,d→∞
0 (116)

Proof. The lemma is proven in the same manner as lemma 3.

By this lemma we can with high probability consider the following problem instead:

D̄3 = min
e∈Ae

max
0≤ξ≤ξmax

ρ1(β + 2qτ1)

q
√
md

eTϕ3 + ξ

√
ρ21(β + 2qτ1)2

q2m
||e||22 +

β2d

n
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (117)

We now interchange the order of the min and max. As the problem is clearly convex in e and concave in ξ and the problem
is over convex sets this interchange is admissible.
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D̄3 = max
0≤ξ≤ξmax

min
e∈Ae

ρ1(β + 2qτ1)

q
√
md

eTϕ3 + ξ

√
ρ21(β + 2qτ1)2

q2m
||e||22 +

β2d

n
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
βq

2
+
β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (118)

We now make use of the square root trick one more time, introducing new parameter t, we note that t can be bounded by

tmin = β
√
d√
n

and tmax =
√

β2d
n +

ρ21(β+2τ1q)2

q2 C2
e .

D̄3 = max
0≤ξ≤ξmax

min
tmin≤t≤tmax

min
e∈Ae

ρ1(β + 2qτ1)

q
√
md

eTϕ3 +
ξρ21(β + 2qτ1)

2

2tq2m
||e||22 +

β2ξd

2tn
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
ξt

2
+
βq

2
+

β

2q
σ2
ϵ +

ρ2∗(β + 2qτ1)

2qm
||e||22 −

βρ∗√
nm

ϕT2 e−
β2

2
+

1

m
B̃(e) (119)

Where we have changed the order of the two min operations. We can now define the constants,

c1 =
ξρ21(β + 2qτ1)

2

2tq2
+
ρ2∗(β + 2qτ1)

2q
c2 =

√
ρ21(β + 2qτ1)2η

q2
+ ρ2∗β

2 (120)

and we note that by the additivity of Gaussians we have that

c2√
nm

ϕ =
ρ1(β + 2qτ1)

q
√
md

ϕ3 −
βρ∗√
nm

ϕ2 (121)

We obtain

D̄3 = max
0≤ξ≤ξmax

min
tmin≤t≤tmax

min
e∈Ae

c1
m
||e||22 +

c2√
nm

ϕTe+
β2ξd

2tn
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
ξt

2
+
βq

2
+

β

2q
σ2
ϵ −

β2

2
+

1

m
B̃(e) (122)

Completing the square over e we find

D̄3 = max
0≤ξ≤ξmax

min
tmin≤t≤tmax

min
e∈Ae

c1
m

∥∥∥∥e+ c2
√
m

2c1
√
n
ϕ

∥∥∥∥2
2

− c22
4c1n

||ϕ||22 +
β2ξd

2tn
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
ξt

2
+
βq

2
+
β

2q
σ2
ϵ −

β2

2
+

1

m
B̃(e) (123)

Finally noting that in the aysmptotic limit ||ϕ||22 concentrates to m with high probability, and then recognizing the Moreau
envelope over e (see definition 1 below) we obtain the problem

D̄3 = max
0≤ξ≤ξmax

min
tmin≤t≤tmax

1

m
M 1

2c1
B̃

(
− c

2
2

√
m

2c1
√
n
ϕ

)
− c2m

4c1n
+
β2ξd

2tn
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
ξt

2
+
βq

2
+

β

2q
σ2
ϵ −

β2

2
(124)

We can recall that B̃(e) = r(e+ θ∗) + τ2h(e+ θ∗), and letting θ = e+ θ∗, we obtain

D̄3 = max
0≤ξ≤ξmax

min
tmin≤t≤tmax

1

m
M 1

2c1
(r+τ2h)

(
θ∗ − c22

√
m

2c1
√
n
ϕ

)
− c2m

4c1n
+
β2ξd

2tn
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
ξt

2
+
βq

2
+

β

2q
σ2
ϵ −

β2

2
(125)
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Finally we show in Lemma 8 that the Moreau envelope will concentrate in the asymptotic limit on its expected value. As
such we finally obtain:

D̄3 = max
0≤ξ≤ξmax

min
tmin≤t≤tmax

1

m
EM 1

2c1
(r+τ2h)

(
θ∗ − c22

√
m

2c1
√
n
ϕ

)
− c2m

4c1n
+
β2ξd

2tn
− (β + 2qτ1)ξ

2

2q

− β2qd

2n(β + 2qτ1)
+
ξt

2
+
βq

2
+

β

2q
σ2
ϵ −

β2

2
(126)

We know by the properties of the CGMT that for any fixed choice of β, q that D3(β, q) converges pointwise to D2(β, q).
However to determine the properties that we are interested in we require uniform convergence. For this, we simply show
that D2(β, q), D̄3(β, q) are Lipschitz continuous for β ∈ [0, βmax] and q ∈ [qmin, qmax].

Lemma 6. The problem D2 as given in (88) and problem D̄3 as given in equations 117, (119) and (124) are C-Lipschitz
on the compact set K = [0, βmax]× [qmin, qmax] for some constant C <∞, with high probability.

Proof. We first consider problem D2 given in equation (88).

D2 = min
Ae

βq

2
+
βσ2

ϵ

2q
+

β

2qm
||R̃1/2e||22 −

β√
nm

hT R̃e− β2

2
+
τ1
m

eR̃e+
1

m
B̃(e) (127)

We note that the objectiveD(β, q, e) is strongly convex, the solution is hence unique, andD2 is continuously differentiable
on the compact set K. We simply bound its gradient, which is given by

∂D2

∂β
=
∂D

∂β
|e=ê=

q

2
+
σ2
ϵ

2q
+

1

2qm
||R̃1/2ê||22 −

1√
nm

hT R̃ê− β (128)

∂D2

∂q
=
∂D

∂q
|e=ê=

β

2
− βσ2

ϵ

2q2
− β

2q2m
||R̃1/2ê||22 (129)

where ê is the optimal solution. Noting that ê ∈ Ae and β, q are bounded, we obtain the result for D2.

For problem D̄3 we make use of the same strategy by calculating the gradient. Defining ê, ξ̂ as the optimal solution of
(117) , we observe that

ξ̂ =

√
ρ21
4m
||ê||22 +

β2q2d

4(β + 2qτ1)2n
(130)

Further, we define

t̂ =

√
ρ21(β + 2qτ1)2

q2m
||ê||22 +

β2d

n
(131)

Finally we examine the partial derivatives of problem D3 with respect to β and q,

∂D̄3

∂β
=

ρ1

q
√
md

eTϕ3 +
ξρ21(β + 2qτ1)

tq2m
||e||22 +

βξd

tn
− ξ2

2q
− βqd

n(β + 2qτ1)
+

β2qd

2n(β + 2qτ1)2

+
q

2
+
σ2
ϵ

2q
+

ρ2∗
2qm
||e||2 −

βρ∗√
nm

ϕT2 e− β (132)

∂D̄3

∂q
= −ρ1(β + 2qτ1)

q2
√
md

eTϕ3 −
ξρ21(β + 2qτ1)

2

tq3m
||e||22 +

ξρ21τ1(β + 2qτ1)

2tq2m
||e||22 +

(β + 2qτ1)ξ
2

2q2
− 2τ1ξ

2

2q

− β2d

2n(β + 2qτ1)
+

β2qdτ1
n(β + 2qτ1)2

+
β

2
− β

2q2
σ2
ϵ −

ρ2∗(β + 2qτ1)

2q2m
||e||22 +

ρ2∗τ1
qm
||e||22 (133)

Noting the boundedness of the involved terms, we conclude the result.
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We have established that both D2 and D̄3 are Lipschitz, we now create a rectangular ϵ net N on the set [0, βmax] ×
[qmin, qmax] consisting of k = βmax(qmax−qmin)

ϵ2 points. We can then see that

|D2(β, q)−D3(β, q)| ≤ |D2(β, q)−D2(βk, qk)|+ |D2(βk, qk)−D3(βk, qk)|+ |D3(βk, qk)−D3(β, q)|
≤ Cϵ

√
2 + |D2(βk, qk)−D3(βk, qk)|+ Cϵ

√
2, (134)

βk, qk is the closes element of the ϵ-net to β, q. The second inequality is due to the fact that bothD2 andD3 areC-Lipschitz
with respect to both β and q and the distance of between β, q and βk, qk cannot be more than ϵ

√
2. From this we can see

that
sup

0≤β≤βmax,qmin≤q≤qmax

|D2(β, q)−D3(β, q)| ≤ 2Cϵ
√
2 + sup

β,q∈N
|D2(β, q)−D3(β, q)| (135)

As a result,

P

(
sup

0≤β≤βmax,qmin≤q≤qmax

|D2(β, q)−D3(β, q)| ≥ 4Cϵ
√
2

)
≤ P

(
sup
β,q∈N

|D2(β, q)−D3(β, q)| ≥ 2Cϵ
√
2

)
(136)

For a fixed and k, the right hand side goes to zero by the union bound and the second CGMT. Therefore the convergence is
uniform in the sense that

P

(
sup

0≤β≤βmax,qmin≤q≤qmax

|D2(β, q)−D3(β, q)| ≥ δ

)
→ 0 (137)

for any δ > 0. Finally we can obtain the following optimization problem:

P̃3 = max
0≤β≤βmax

min
qmin≤q≤qmax

max
0≤ξ≤ξmax

min
tmin≤t≤tmax

E
1

m
M 1

2c1
(r+τ2h)

(
θ∗ − c22

√
m

2c1
√
n
ϕ

)
− c2m
4c1n

+
β2ξd

2tn
− (β + 2qτ1)ξ

2

2q
− β2qd

2n(β + 2qτ1)
+
ξt

2
+
βq

2
+

β

2q
σ2
ϵ −

β2

2
(138)

We have now demonstrated that P̃3 converges in probability to P̃2, which subsequently converges to P̃1. This establishes
the first part of Theorem 2, about the optimal values. We show the asymptotic equivalence of the generalization error and
test functions by following lemma

Lemma 7. Let θ̂2(τ1, τ2) be the solution of P2 (10) and let θ̂3(τ1, τ2) be the solution of P̃3 as given in (138), then

Egen(θ̂2(0, 0))
P−−−−→

n→∞
Ẽgen (139)

1

m
h(θ̂2(0, 0))

P−−−−→
n→∞

1

m
h(θ̂3(0, 0)) (140)

Proof. We note that for any optimization P (τ) = min
e
F (e) + τG(e) with optimal solution eτ it holds that

P (τ) ≤ F (e0) + τG(e0) (141)

Applying this observation to our problem with τ1 = τ and τ2 = 0, we obtain

P2(τ, 0) ≤ P2(0, 0) + τ
(θ̂ − θ∗)T R̃(θ̂ − θ∗)

m
(142)

From which we obtain that

P2(τ, 0)− P2(0, 0)

τ
≤ (θ̂ − θ∗)T R̃(θ̂ − θ∗)

m
τ > 0

(θ̂ − θ∗)T R̃(θ̂ − θ∗)

m
≤ P2(0, 0)− P2(τ, 0)

τ
τ < 0 (143)
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Take an arbitrary δ > 0. For sufficiently small values of τ and from the convergence of the optimal value we have that

P

(
(θ̂ − θ∗)T R̃(θ̂ − θ∗)

m
<
P̃3(τ, 0)− P̃3(0, 0)

τ
+
δ

2

)
→ 0, τ > 0 (144)

P

(
(θ̂ − θ∗)T R̃(θ̂ − θ∗)

m
>
P̃3(0, 0)− P̃3(τ, 0)

τ
− δ

2

)
τ < 0→ 0 (145)

Where this relationship follows form the fact that P̃2(τ1, τ2) converges to P̃3(τ1, τ2) for all τ1 ∈ [−τ∗1 , τ∗1 ] and τ2 ∈
[−τ∗2 , τ∗2 ]. We also know that for sufficiently small values of |τ | we have that∣∣∣∣∣ P̃3(τ, 0)− P̃3(0, 0)

τ
− ∂P̃3(τ1, 0)

∂τ1

∣∣∣∣∣
τ1=0

∣∣∣∣∣ ≤ δ

2
(146)

The uniqueness of the solutions t̂, ξ̂, q̂, β̂ guarantees that the derivatives exist. We then obtain that

P

(∣∣∣∣∣ (θ̂ − θ∗)T R̃(θ̂ − θ∗)

m
− P̃3(τ1, 0)

∂τ1

∣∣∣∣∣
τ1=0

∣∣∣∣∣ > δ

)
→ 0 (147)

from which we finally obtain that

(θ̂ − θ∗)T R̃(θ̂ − θ∗)

m

P−−−−→
n→∞

P̃3(τ1, 0)

∂τ1

∣∣∣∣∣
τ1=0

(148)

This provides the first result, but we can also compute that

P̃3(τ1, 0)

∂τ1

∣∣∣∣∣
τ1=0

=
1

m
E

[∥∥∥∥θ∗ − c22
√
m

2c1
√
n
ϕ− prox 1

2c1

(
θ∗ − c22

√
m

2c1
√
n
ϕ

)∥∥∥∥2
2

∂c1
∂τ1

+

(
θ∗ − c22

√
m

2c1
√
n
ϕ− prox 1

2c1

(
θ∗ − c22

√
m

2c1
√
n
ϕ

))T (
c22
√
m

c1
√
n

∂c1
∂τ1
− c2

√
m√
n

∂c2
∂τ1

)
ϕ

∣∣∣∣∣
τ1=0

]

−ξ̂2 − q̂2d

n
(149)

where c1 and c2 are evaluated at β̂, q̂, ξ̂, t̂ and τ1 = 0, τ2 = 0. In this computation we have made use of the following rules
for the derivatives of Moreau envelopes

∇xMτf (x) =
1

τ
(x− proxτf (x)) (150)

∂

∂τ
Mτf (x) = −

1

2τ2
∥∥x− proxτf (x)

∥∥2
2

(151)

Using the same symmetric logic for the case of τ2 we find that

h(θ̂(0, 0)2)

m

P−−−−→
n→∞

∂P̃3(0, τ2)

∂τ2

∣∣∣∣∣
τ2=0

(152)

where we find that

∂P̃3(0, τ2)

∂τ2

∣∣∣∣∣
τ2=0

= h(θ̂3(β̂, q̂, ξ̂, t̂)) (153)

From this we see that

E
1

m
h(θ̂2(0, 0))

P−−−−→
n→∞

E
1

m
h(θ̂3(0, 0)) (154)
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Finally to demonstrate the generalization error we note that

Egen(θ̂2) = E
(
ynew −

1√
m
φ̃(znew)

T θ̂2

)2

= E
(
ϵnew −

1√
m
φ̃(znew)

T (θ̂2 − θ∗)

)2

(155)

in which we have made use of the definition of ynew = 1√
m
φ̃(znew)θ

∗ + ϵnew. We recall that E[φ̃(znew)φ̃(znew)] = R̃.
As such we obtain that

Egen(θ̂2) = σ2
ϵ +

(θ̂ − θ∗)T R̃(θ̂ − θ∗)

m
(156)

By the calculation above we see that

Egen(θ̂2)→ σ2
ϵ +

∂P̃3(τ1, 0)

∂τ1

∣∣∣∣∣
τ1=0

= Ẽgen (157)

B.1 Non Deterministic True Vector

In the previous analysis we have assumed that the true vector θ∗ has been deterministic. In the case of θ∗ being random,
we can freeze its value by conditioning on θ∗. The proof holds for a random θ∗ with high probability, according to the
assumptions. This shows that the results hold for a suitable random θ∗.

B.2 Moreau Envelopes

We remind the reader of the definition of the Moreau Envelope and the proximal operator.
Definition 1. Let f : X → (−∞,∞] be a proper, lower semi-continuous function on a Hilbert space X . Then the Moreau
envelope with step size τ of the function is given by

Mτf (y) = min
x∈X

f(x) +
1

2τ
∥x− y∥ (158)

The proximal operator of the function f with step size τ is given by

proxτf (y) = argmin
x∈X

f(x) +
1

2τ
∥x− y∥ (159)

Here we give a lemma concerning the concentration of Moreau envelopes.
Lemma 8 (Gaussian Concentration of Moreau Envelopes, extension of (Loureiro et al. (2021), lemma 5)). Consider a
proper convex function f : Rn → R. Furthermore, let g ∈ Rn be a standard Gaussian random vector and a ∈ Rn a
constant vector with finitely bounded norm. Then for any parameter τ > 0 and for any ϵ > 0, there exists a constant c
such that

P
(∣∣∣∣ 1nMτf (a+ g)− E

[
1

n
Mτf (a+ g)

]∣∣∣∣ ≥ ϵ) ≤ c

nτ2ϵ2
(160)

The original lemma as given by (Loureiro et al., 2021) does not have the constant vector a and instead only considers a
Moreau envelope over a Gaussian. We give a proof here for this case but note that the original proof may be applied by
instead considering the shifted function f̄(·) = f(· − a). We give the proof here for completeness.

Proof. First, we show that the Moreau envelope of a convex proper function f is integrable with respect to the Gaussian
measure. By making use of the convexity of the optimization problem that defines the Moreau envelope, and because f is
proper, there exists a z0 ∈ Rn and finite constant κ such that

1

n
Mτf (g + a) ≤ 1

n
f(z0) +

1

2nτ
∥z0 − g − a∥2

≤ κ+
1

2nτ
∥z0 − g − a∥2 (161)
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The second line is integrable with respect to a Gaussian measure. By means of the Gaussian Poincare inequality (see for
example, (Boucheron et al., 2013)).

Var

[
1

n
Mτf (a+ g)

]
≤ c

n2
Eg

[
||∇gMτf (a+ g)||22

]
=

c

n2
Eg

∥∥∥∥1τ (g + a− proxτf (g + a)
)∥∥∥∥2

2

(162)

From (Bauschke et al., 2011)[Proposition 12.28 and Proposition 4.4], the function f(g+a) = z−proxτf (g+a) is firmly
non-expansive and

||g + a− proxτf (g + a)||22 ≤ ⟨g + a|g − proxτf (g + a)⟩ (163)

which implies that

||g + a− proxτf (g + a)||22 ≤ ||g + a|22 (164)

by means of the Cauchy Swarchz inequality.

This implies that

var

[
1

n
Mτf (a+ g)

]
≤ c

n2τ2
E
∥∥||g + a||22

∥∥ =
c(n+ ||a||22)

n2τ2
≤ C

nτ2
(165)

in which we have used the fact that the norm of a is bounded. By making use of Chebyshev’s inequality we obtain that

P
(∣∣∣∣ 1nMτf (a+ g)− E

[
1

n
Mτf (a+ g)

]∣∣∣∣ ≥ ϵ) ≤ c

nτ2ϵ2
(166)

C Analysis of Universality

We recall the definition of the perturbed optimization problem as a function of the feature map

P (τ1, τ2) = min
e

1

2n

∥∥∥∥ϵ− 1√
m
Xe

∥∥∥∥2
2

+
1

m
r(e+ θ∗) +

1

m
τ1eRe+

1

m
τ2h(e+ θ∗) (167)

and

P̃ (τ1, τ2) = min
e

1

2n

∥∥∥∥ϵ− 1√
m
X̃e

∥∥∥∥2
2

+
1

m
r(e+ θ∗) +

1

m
τ1eRe+

1

m
τ2h(e+ θ∗), (168)

where X, X̃ are respectively generated by the following two alternative feature maps

φ(z) = σ

(
1√
d
Wz

)
(169)

φ̃(z) =
ρ1√
d
Wz+ ρ∗g, (170)

which lead to the following two covariance matrices

R = Ez[φ(z)φ
T (z)] = Ez

[
σ

(
1√
d
Wz

)
σT
(

1√
d
Wz

)]
(171)

R̃ = Ez[φ̃(z)φ̃
T (z)] =

ρ21
d
WWT + ρ2∗I (172)

Now recall the function B(e) = r(e+ θ∗) + τ1eRe+ τ2h(e+ θ∗). We recall that r is assumed to be µ-strongly convex.
The values τ1 ∈ [−τ∗1 , τ∗1 ] and τ2 ∈ [−τ∗2 , τ∗2 ], with the bounds τ∗1 and τ∗2 chosen to be sufficiently small such that B
remains µ

4 -strongly convex

We can now state a theorem concerning Universality that is an extension of Theorem 1 in Hu and Lu (2020)
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Theorem 9 (Extension of Hu and Lu (2020)). Assume that assumptions A3-A6 hold. Fix τ1 ∈ [−τ∗1 , τ∗1 ] and τ2 ∈
[−τ∗2 , τ∗2 ]. Finally assume that the regularization function r(θ) is strongly convex, thrice differentiable with bounded third
derivative.
Then for every ϵ ∈ (0, 1) and every finite constant c, we have that

P(|P (τ1, τ2)− c| ≥ 2ϵ) ≤ P(|P̃ (τ1, τ2)− c| ≥ ϵ) +
polylogm

ϵ
√
m

(173)

and

P(|P̃ (τ1, τ2)− c| ≥ 2ϵ) ≤ P(|P (τ1, τ2)− c| ≥ ϵ) +
polylogm

ϵ
√
m

(174)

for m ≥ 1
ϵ2 , in which polylogm is a function that grows no faster than a polynomial of logm. Consequently,

P (τ1, τ2)
P−−−−−−→

n,m,d→∞
c iff P̃ (τ1, τ2)

P−−−−−−→
n,m,d→∞

c (175)

This theorem is different than the one presented by (Hu and Lu, 2020) in two ways. Firstly we have restricted ourselves
to the square loss function which simplifies this analysis, we discuss this difference in remark 2. Secondarily, the term
associated with τ2 is different. We consider generic test functions h(θ) satisfying assumptions A2, (Hu and Lu, 2020) only
consider one particular case of h(θ) = ρ1

√
m√
d

ξTWθ in which ξ is their teacher vector. The changes required to their proof
to apply to generic test functions are minimal, and we give an outline in proof sketch below.
Remark 2. We note that the conditions considered by Hu and Lu (2020) are slightly different than the case considered
here. However the proof is sufficiently generic that it applies to the case considered here. Specifically, (Hu and Lu, 2020)
consider a generic strongly convex and thrice differentiable loss function l( 1√

m
φ(zi)θ, yi) for a particular data element

i. For the labels yi, (Hu and Lu, 2020) consider a function ψteach(zTi ξ) in which ξ is a teacher vector and ψteach is a
differentiable function (except at a finite number of points) and is bounded by

∀x ∈ R ψteach(x) ≤ C(1 + |x|K) (176)

for some constantsC > 0 and positive integerK. They then prove their results for the joint distribution ( 1√
m
φ(z)Tθ; zT ξ),

which is jointly Gaussian through the variable z. In the case considered in this paper, we consider yi = 1√
m
φ(zi)θ

∗ + ϵi
for some known vector θ∗ and noise ϵi, and specifically choose the square loss. This allows for the definition of the error
vector e = θ − θ∗, and allows us to instead consider the distribution ( 1√

m
φ(z)e; ϵi) which simplifies the analysis in this

case.

C.1 Proof sketch

Here we discuss how to extend the results of Hu and Lu (2020) to the case of generic test function h(θ), instead of their
particular choice of ρ1

√
m√
d

ξWθ. The structure and details of the entire proof remain almost unchanged, except for the
following set of minor changes, where the equation numbers refers to Hu and Lu (2020):

• In equation 172 step (a) and in the proof of (Hu and Lu, 2020) lemma 19, the property that H\k ⪰ µ
2 I, where

H\k =
1

m

k−1∑
i=0

l′′(
1√
m
φ̃(zi), ē)φ̃(zi)φ̃

T (zi)+
1

m

n∑
i=k+1

l′′(
1√
m
φ(zi)ē)φ(zi)φ

T (zi)

+diag{r′′(ē+ θ∗)}+∇2(τ1ē
TRē+ τ2h(ē+ θ∗)), (177)

where ē is the optimal solution to the problem given in Hu and Lu (2020) (equation 32), l is the loss function and l′′

its second derivative, in our case the square loss. For the case of for our choice of τ2 ∈ [−τ∗2 , τ∗2 ] and assumptions
A2, and recalling that r is µ strongly convex, this property holds.

• Similarly they require that R\k given in equation 187, defined as

R\k(θ) =
∑
i̸=k

l(
1√
m
φ(zi)

Tθ) +

m∑
j=1

r(θ) + τ1θ
TRθ + τ2h(θ) (178)

to be µ
2 -strongly convex. Which obviously holds with our restrictions on h.



Random Feature Models with General Convex Regularization

• In equation 210 they require that that G(e) = r(e+ θ∗) + τ1e
TRe+ τ2h(e+ θ∗) is µ

2 strongly convex and that

||∇G(0)|| ≤ C
√
m (179)

Which is clearly satisfied by assumption A2 and assumption A5 (see errata for updated assumption A5).

• Finally in equation 252 they require that c, c′, C > 0

P
(
max
i
|(∇h(θ∗))i| > c logm

)
≤ Ce−c

′(logm)2 (180)

This boundedness is satisfied by assumption A5.

As these are the only changes necessary to prove (Hu and Lu, 2020) results for more generic test functions we do not
reproduce the proof here in full.

C.2 Universality of Generalization Error and Test functions h

In this section we demonstrate that the universality of generalization error holds for strongly convex and thrice differentiable
regularization functions, making use of the perturbation that we defined above in problem 167. We prove the following
result based on results from Hu and Lu (2020). For this theorem we require the following definition

Definition 2. In Theorem 2, we showed that P̃ (τ1, τ2)
P−→ P̃3(τ1, τ2). Let the partial derivatives of P̃ (τ1, τ2) at τ1 = τ2 =

0 be denoted by ∂
∂τ1

P̃3(0, 0) = κ̂ and ∂
∂τ2

P̃3(0, 0) = π̂.

Note that derivatives may be readily computed as done in lemma 7. We now state the following result

Theorem 10 (Universality of Generalization Error). Assume the same assumptions hold as in theorem 9 and let κ̂ and π̂
be given in definition 2. Take the Generalization error for a given feature map as

Egen(θ,φ) = E
(
ynew −

1√
m
φ(znew)

Tθ

)2

, (181)

where znew ∼ N (0, Id) and ynew = 1√
m
φ(znew)

Tθ∗ + ϵnew, where ϵnew is noise. Then

Egen(θ̂1,φ)→ E∗gen and Egen(θ̂2, φ̃)→ E∗gen (182)

in which
E∗gen = σ2

ϵ + κ̂ (183)

Proof. We let τ2 = 0 and let Let znew ∼ N (0, In) be a new Gaussian vector that is independent of all other training
samples, and let ynew = 1√

m
θ∗Tφ(z) + ϵnew. We can then express the generalization errors as

Egen(θ̂1,φ) = Eϵnew,znew

[
ϵnew −

1√
m
φ(znew)ê1

]2
= σ2

ϵ +
1

m
ê1Rê1 (184)

Egen(θ̂2, φ̃) = Eϵnew,znew

[
ϵnew −

1√
m
φ̃(znew)ê2

]2
= σ2

ϵ +
1

m
ê2R̃ê2 (185)

Let κ2 = 1
m êT2 R̃ê2, from which we see that Egen(φ̃) = σ2

ϵ + κ2. We start by noting that by lemma 7 that Egen(θ̂2,φ2) =
σ2
ϵ + κ2 → σ2

ϵ + κ̂, which proves the second claim. Now, we consider the value of κ1 = 1
m êT1 Rê1. By the definition of

the optimization problem we have

P (τ1, τ2 = 0) ≤ P (0, 0) + τ1ê2R1ê2 (186)

For any τ1. From this it follows that for any τ > 0 we have

P (τ, 0)− P (0, 0)
τ

≤ κ1 ≤
P (−τ, 0)− P (0, 0)

−τ
(187)



Bosch, Panahi, Özcelikkale, Dubhashi

We choose an ϵ > 0. By definition 2 the limit function P̃3(τ1, τ2) is differentiable at the origin and we know from theorem
9 and 2 that P (τ1, τ2)

P−→ P̃3(τ1, τ2).On the other hand there exists some δ > 0 such that

∣∣∣∣∣ P̃3(δ, 0)− P̃3(0, 0)

δ
− κ̂

∣∣∣∣∣ ≤ ϵ

3
. (188)

Substituting this into the first inequality of equation 187 above and letting τ = δ we obtain

P(κ1 − κ̂ < −ϵ) ≤ P
(
P (δ, 0)− P (0, 0)

δ
− κ̂ < −ϵ

)
≤ P(|P (δ, 0)− P̃3(δ, 0)| ≥ δϵ/3) + P(|P (0, 0)− P̃3(0, 0))| ≥ δϵ/3) (189)

Now by assumption we have that P (δ, 0) P−→ P̃3(δ, 0) and P (0, 0)
P−→ P̃3(0, 0). It then follows from Eq 189 that

limn→∞ P(κ1 − κ̂ < −ϵ) = 0. The exact same reasoning may be applied to second inequality 187 to obtain that
limn→∞ P(κ1 − κ̂ > ϵ) = 0 as such κ1

P−→ κ̂.

We now prove the universality of the test functions h(θ).

Theorem 11 (Universality of Test Functions). Assume that the same assumptions hold as in theorem 9 and let π̂ be given
in definition 2. Then

1

m
h(θ̂2)→ π̂ and

1

m
h(θ̂1)→ π̂ (190)

Proof. Our proof takes a similar form to the proof of theorem 10. We let τ1 = 0. Then we note that by the definition of the
optimization problems

P (τ1 = 0, τ2) ≤ P (0, 0) + τ2h(θ̂1) (191)

for any τ2. It follows that for any τ > 0 we have that

P (0, τ)− P (0, 0)
τ

≤ h(θ̂1) ≤
P (0, 0)− P (0,−τ)

−τ
(192)

We choose ϵ > 0. By definition 2 the limit function P̃3(τ1, τ2) is differentiable at the origin. Therefore there exists some δ
such that ∣∣∣∣∣ P̃3(0, δ)− P̃3(0, 0)

δ
− π̂

∣∣∣∣∣ ≤ ϵ

3
(193)

we substitute this into the first inequality of equation (192) above and let τ = δ. We obtain

P(
1

m
h(θ̂1)− π̂ < −ϵ) ≤ P

(
P (0, δ)− P (0, 0)

δ
− π̂ < −ϵ

)
≤ P(|P (0, δ)− P̃3(0, δ)| > δϵ/3) + P(|P (0, 0)− P̃3(0, 0)| > δϵ/3) (194)

Because of the universality laws given in theorem (9) and Theorem 2, we know that P (τ1, τ2)
P−→ P̃3(τ1, τ2). It then

follows that limn→∞ P( 1
mh(θ̂1) − π̂ < −ϵ) = 0. The exact same reasoning may be applied to the second inequality of

(192) to obtain that limn→∞ P( 1
mh(θ̂1)− π̂ > ϵ) = 0. As such we conclude that 1

mh(θ̂1)→ π̂. Similar argument proves
the result for θ̂2.
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C.3 Proof of Theorem 4

We now consider our theorem 4. We first show that the thrice differentiability condition of r(θ) can be lifted in the case
that there exist a sequence of function that are differentiable and converge to r.

Lemma 9. Let r(k)(θ) be a sequence of functions that are each thrice differentiable and strongly convex. Assume further
that r(k)(θ) converge uniformly to the regularization function r(θ) in the limit of k → ∞. Then, the results of theorem 9
hold for this regularization function r(θ).

Proof. We define P (k)(τ1, τ2), P̃
(k)(τ1, τ2) to be the optimal cost for the regularization function r(k) respectively with

feature map φ, φ̃. We choose k to be sufficently large such that |r(k)(θ) − r(θ)| < mϵ for every θ. This implies that
|P (k)(τ1, τ2)− P (τ1, τ2)| < ϵ and |P̃ (k)(τ1, τ2)− P̃ (τ1, τ2)| < ϵ. Furthermore, by theorem 9, we have

P(|P (k)(τ1, τ2)− c| > 4ϵ) ≤ P(|P̃ (τ1, τ2)− c| > 2ϵ) +
polylog(m)√

m
(195)

and hence

P(|P (τ1, τ2)− c| > 5ϵ) ≤ P(|P̃ (τ1, τ2)− c| > ϵ) +
polylog(m)√

m
(196)

The other case is similarly proven.

We note that this proof hold analogously for r(θ)+τ2h(θ) for a test function h(θ) that satisfies the conditions of assumption
A2. This completes the proof of theorem 4.

C.4 Proof of Corollary 1

We now consider elastic net regularization
r(θ) = λ||θ||1 +

ϵ

2
||θ||22 (197)

The following lemma demonstrates that can construct a sequence of regularization function that uniformly converges to
Eq. 197. This result together with Theorem 4 shows that for all ϵ > 0 universality is established.

Lemma 10. There exists a sequence of function r(k)(θ) that are separable, strongly convex and thrice differentiable that
converge uniformly to the elastic net regularization function given in Eq. 197.

Proof. Define h(k)(x) as

h(k)(x) = x erf

(√
kx√
2

)
+

√
2
π e

− kx2

2

√
k

(198)

in which erf is the error function. It is simple to verify that h(k)(x) is thrice differentiable and has bounded third derivative.

The maximum difference between |x| and h(k)(x) is at x = 0 and is
√

2
kπ . A such in the limit of k → ∞, h(k)(x)

converges uniformly to the absolute value function. We choose

r(k)(θ) =
ϵ

2
||θ||22 +

m∑
i

h(k)(θi) (199)

This regularization function statisfies the conditions of the lemma.

C.5 Proof of Theorem 6

First consider the universality with elastic net which is proven in Section C.4. To demonstrate universality with respect to
the ℓ1 norm, we take the case of elastic net in (197) with a sufficiently small ϵ drop the quadratic part of r(θ). We note that
for any ϵ > 0, Theorem 4 holds. Our goal will be to show that for very small values of ϵ removing ϵ does not substantially
change the value of the training and testing error. We first make the following definitions

Definition 3. Consider an m× n matrix A.
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1. For any k ∈ N such that k < n, the RIP constant δk(A) is the smallest number δ, such that for any index subset
I ⊂ 1, 2, . . . , n with |I| ≤ k

1− δ ≤ σ2
min(AI) ≤ σ2

max(AI) ≤ 1 + δ (200)

in which σmin and σmax are the minimum and maximum singular values.

2. Let θk(A) for any k < n/2 be the smallest number θ such that for any disjoint subsets I, I ′ ⊂ {1, 2, . . . n} with
|I|, |I ′| ≤ k it holds that

σmax(A
T
I′AI) ≤ θ (201)

In which σmax(X) is the maximum singular value of a matrix X. It is known that θk ≤ δ2k.

3. We define the admissible sparsity Madm(A) as

Madm(A) = sup
k

k[1− δk(A)]+
2n

(202)

in which [·]+ represents the positive part.

This admissible sparsityMadm is the constant ρ given in Theorem 6. Provided thatM0, the effective sparsity given in (33),
is strictly less than Madm the theorem holds.

For our proof we require the following lemma. The original lemma is given in Panahi and Hassibi (2017) but we have
extended it here to a slightly more general setup.

Lemma 11 (Extension of Panahi and Hassibi (2017) lemma 8). Suppose that σ is 1−Lipschitz. For the feature matrix
X =

(
σ
(

1√
d
wT
j zi

))
ij

and A = 1√
n(ρ2∗+ρ

2
1)
X there exist constants α, β > 0 and 1 > ϵ > 0 such that

lim
n→∞

P(δαn(A) + θαn(A) > 1− ϵ) = 0 (203)

lim
n→∞

P(σmax(A) > β) = 0 (204)

Proof. Consider an arbitrary subset I ⊂ [m] with |I| = k. Let u ∈ Sk−1, where Sk−1 is the surface of the unit sphere in
Rk. We note given W that y = AIu is an i.i.d, centered vector and defining

f(x) =
1√

(ρ2∗ + ρ21)

k∑
i=1

σ

(
wT
j x√
d

)
uj , (205)

we have yi = 1√
n
f(xi). We observe that

∇f(x) = 1√
d(ρ2∗ + ρ21)

Wv (206)

where v =

(
σ′
(

wT
j x
√
d

)
uj

)
j

. Note that by Lipschitz continuity ∥v∥2 ≤ 1 and hence

∥∇f∥ ≤ 1√
d(ρ2∗ + ρ21)

∥W∥2 (207)

Hence, by the standard random matrix results, f is µ′ = µ
√
1 + m

d −Lipschitz, where µ := 1√
(ρ2∗+ρ

2
1)

, with high probabil-

ity. Hence, yi is µ′
√
n
−sub-Gaussian. The rest of the argument is conditioned on the event that ∥W∥2 is bounded and hence

leads to µ′−Sub-Gaussian variables. Define

σ2 := nVar(yi) = µ2
k∑
j,j′

ujuj′Rjj′ , (208)

where R = (Rjj′) is the exact covariance matrix of the features. It has been shown in the previous works e.g. Hu and Lu
(2020),that exists a constant c such that

P (|σ − 1| > ϵ) ≤ 1

c
e−ncϵ

2

(209)
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Now, since yi are µ−sub-Gaussian, it is standard to show that (Honorio and Jaakkola (2014))

∀λ : |λ| < n

4µ2
, E

[
eλ(y

2
i− 1

nσ
2) |W

]
≤ e

16µ′4λ2

n2 (210)

and hence, conditioned on W (which satisfies µ′−sub-Gaussianity) we have

P(||y||22 ≥ σ2 + ϵ) = P

(
n∑
i

(y2i −
1

n
σ2) ≥ ϵ

)
≤ min

0<λ< n
4µ2

(
E

[
e
λ

n∑
i=1

(y2i− 1
nσ

2)

]
e−λϵ

)
≤ min

0<λ< n
4µ2

e
16µ′4λ2

n −λϵ (211)

Hence, for sufficiently small ϵ, we may choose λ = nϵ
32µ′4 and obtain

P(||y||22 ≥ σ2 + ϵ) ≤ e−cnϵ
2

(212)

where c is a suitable constant that may grow in each appearance. We conclude that for a random W we have

P(||y||22 ≥ 1 + 2ϵ) ≤ P(||y||22 ≥ σ2 + ϵ) + P(σ2 ≥ 1 + ϵ) ≤ 1

c
e−cnϵ

2

(213)

We may repeat the above Chernoff bound on the event ∥y∥2 ≤ σ2 − ϵ, to conclude that

P
(∣∣||y||22 − 1

∣∣ ≥ 2ϵ
)
≤ 1

c
e−cnϵ

2

(214)

The rest of the proof is similar to Panahi and Hassibi (2017). We note that for every ∆ > 0 there exists a set Gk ⊂ Sk−1

of maximally
(

3
∆

)k
points such that for any u ∈ Sk−1 there exists a point u1 ∈ Gk such that ||u− u1||2 ≤ ∆. We denote

B = maxu∈Gk
||AIu||2 and A = σmax(AI) = maxx∈Sk−1 ||Au||2 with its maximum being at u0. From this we see that

A = ||AIu0||2 ≤ ||AIu1||2 + ||AI(u1 − u0)||2 ≤ B +∆A (215)

in which u1 is the point in Gn closest to u0. If ∆ < 1 we obtain

σmax(AI) ≤
max
x∈Gn

||AIu||2

1−∆
(216)

This argument may be repeated for the minimum singular value to obtain

σmin(AI) ≥ min
u∈Gn

||AIu||2 − σmax(AI)∆ (217)

From equation 216 we see that ϵ0 = δ −∆−∆δ > 0, we have

P(σmax(AI) > 1 + δ) ≤ P
(
min
u∈Gn

||Au||2 > (1−∆)(1 + δ)

)
≤ 1

c
e−cnϵ

2
0

(
3

∆

)k
(218)

and

P(σmin(AI) < 1− δ) ≤ P (minu∈Gn
||Au||2 < 1− δ + (1 + δ)∆) + P (σmax(AI) > 1 + δ) ≤

2
c e

−cnϵ20
(

3
∆

)k
(219)

Choose k = n, ∆ = 1
2 , ϵ20 >

log 6
c and δ = 1+2ϵ0. We observe that P(σmax(AI) > 1+ δ)→ 0, which proves the second

part. For the first part, note that by the union bound

P (δk(A) > δ) ≤ 3

c
e−cnϵ

2
0

(
3

∆

)k (
n

k

)
(220)

Take for example ∆ = 1
5 , δ = 1

3 , hence ϵ0 = 1
5 . Furthermore, for k = 2αn, we have

(
n
k

)
∼ enH(2α) where H(p) =

−p log p− (1− p) log(1− p) is the entropy function. Choosing α small enough such that H(2α) + 2α log 15 < cϵ20 will
lead to P (δk(A) > δ)→ 0. We conclude the first result by noting that δαn + θαn ≤ 2δ2αn.
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We note that the feature matrix X satisfies this lemma for most practical choices of the activation function. tanh and the
error function are both odd activation functions that satisfy the assumptions A6 and produce a suitable matrix X.

By the above lemma, we conclude Theorem 6 as the rest of the proof in Panahi and Hassibi (2017) will hold true. For the
sake of completeness we repeat these proofs in full.

Theorem 12. Let assumptions A2-A6 hold and let r(θ) = λ||θ||1. Denote

Pλ = min
e

1

2n
||ϵ+Xe||22 +

λ

m
||e+ θ∗||1 (221)

Furthermore assume that there exist constants α, β, ϵ, such that

lim
n→∞

P(δαn(X) + θαn(X) > 1− ϵ) = 0 (222)

lim
n→∞

P(σmax(X) > β) = 0 (223)

Then
Pλ

P−−−−−−→
n,m,d→∞

P̃3,λ(β, q, ξ, r) (224)

In which P̃3,λ is P̃3 as given in Eq. (138) for the case that r(θ) = λ||θ||1

Proof. Let ê(0) be the minimal point of the optimization

Pλ,µ = min
e

1

2n
||ϵ+Xe||22 +

λ

m
||e+ θ∗||1 +

µ

2m
||e||22 (225)

We know that from Lemma 2 and 4 that there exists a number Ce such that for every µ < 1, ||ê(0)||22 ≤ C2
em with high

probability. We define

p(e) =
1

2
||ϵ−Xe||22 +

λ

γ
||e+ θ∗||1 (226)

From the KKT conditions we know that
− µê(0) ∈ ∂p(θ̂(0)) (227)

where ∂ represents the subdifferential. We define ζ(0) = −µê(0). We let k = αn and select k entries of ê(0) with the
largest absolute values and collect their indices in I0. We set a0 = 0 ∈ Rk and let t = 0. We now perform the subsequent
iterative algorithm.

1. Define At = XIt and let ht = ϵ+XIct
ê
(t)
Ic and solve

min
w

1

2
||ht +Atw||22 + λ||θ∗

It +w||1 − aTt w (228)

define its cost function and optimal point by pt(w) and wt respectively

2. Find k elements in Ict with largest absolute values in XT
Ict
XIt(wt − e

(t)
It
). We denote the indices by It+1. We set

at+1 = ζ
(t)
It+1

3. We construct e(t+1) and ζ(t+1) such that e(t+1)
It

= wt, e
(t+1)
Ict

= e
(t)
Ict
, ζ

(t+1)
It

= at and ζ(t+1)
Ict

= ζ
(t)
Ict

+XT
Ict
XI(wt −

e
(t)
I )

4. we let t← t+ 1 and return to step 1.

In Lemma 12 below we show that this iterative process results in a point e(∞) with subgradient ζ(∞) ∈ ∂p(e(∞)), such
that

1√
m
||e(∞) − e(0)||2 ≤

µCe

1− δk − θk
def
= µC2 (229)

||ζ(∞)||∞ ≤ µCe

(√
m

k
+

θk
1− δk − θk

)
def
= µC1 (230)
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We note that e(∞) is the optimal point of the optimization

ρµ,λ = min
e

1

2
||ϵ−Xe||22 + λ||θ∗ + e||1 + eT ζ(∞) (231)

We shall let the subscripts λ, µ denote that a particular value of ζ(∞) or e(∞) are computed for particular values of λ, µ.
We now note that eT ζ(∞) ≤ ||e||1||ζ(∞)||∞ ≤ µC1||e||1, and as such

ρµ,λ ≤ Pλ+C1µ (232)

Or equivalently we can express this as
Pλ ≥ ρµ,λ−C1µ (233)

We also note that

mρµ,λ =
1

2
||ϵ+Xe(∞)||22 + λ||e(∞) − θ∗||1 + e(∞)T ζ(∞)

≥ mPλ,µ + fTX(e(∞) − e(0))− λ||e(∞) − e(0)||1 + e(∞)T ζ(∞)

≥ mPλ,µ − (||fTX||2 + λ
√
m)||e(∞) − e(0)||2 − ||e(∞)||2||ζ(∞)||2

≥ mPλ,µ − (σmax(X)||f ||2 + λ
√
m)µC2

√
m−

√
mµC1||e(∞)||2

≥ mPλ,µ − (σmax(X)κ+ λ)µC2m−mµC1(Ce + C2µ) (234)

in which f = ϵ−Xe(0), κ is a proper bound that is independent of all other parameters, such that ||ϵ||2 ≤
√
mκ with high

probability. This holds by the law of large numbers, and we note that ||f ||2 ≤ ||ϵ||2. From this we find htat

ρµ,λ ≥ Pλ,µ − (σmax(X)r + λ)µC2 − µC1(Ce + C2µ) (235)

Noting that by Theorem 4 that Pλ,µ → P̃3λ,µ(β, q, ξ, r). We note that by the continuity of P̃3λ,µ at µ = 0, and for any
ϵ > 0, we can select a value of µ small enough such that

P(|Pλ − P̃3λ,µ=0| > ϵ)
P−−−−−−→

n,m,d→∞
0 (236)

We also note that for any sufficiently small value of δ we see that

Pλ − Pλ−δ
δ

≤ ||θ̂||1
m
≤ Pλ+δ − Pλ

δ
(237)

From this we see that
||θ̂||1
m

P−−−−−−→
n,m,d→∞

∂Pλ
∂λ

(238)

Lemma 12. The iterative process defined in Theorem 12 produces a point e(∞) with subgradient ζ(∞) that are bounded
as

1√
m
||e(∞) − e(0)||2 ≤

µCe

1− δk − θk
def
= µC2 (239)

||ζ(∞)||∞ ≤ µCe

(√
m

k
+

θk
1− δk − θk

)
def
= µC1 (240)

Proof. Firstly we show that ζt ∈ ∂p(e(t)). We prove this by means of induction. We note that by definition ζ0 ∈ ∂p(e(0)).
For the iteration step we assume that ζt ∈ ∂p(e(t)). We note that by the KKT conditions of the problem 228 we see that

(ζt+1)It = at ∈ XT
It(ϵ+Xe(t+1)) + ∂||θ∗

It + e(t+1)It ||1 (241)

Furthermore we have that
(ζt)Ict ∈ XT

Ict
(ϵ+Xe(t)) + ∂||θ∗

Ict
+ e

(t)
Ict
||1 (242)
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From which we can see that
(ζt+1)Ict ∈ −X

T
Ict
(ϵ+Xe(t+1)) + ∂||θ∗

Ict
+ e

(t+1)
Ict
||1 (243)

This shows that ζt+1 ∈ ∂p(e(t+1)). This completes the induction.

Next we will show by induction that

1√
m
||e(t+1) − e(t)||2 ≤

µCe

1− δk

(
θk

1− δk

)t
(244)

ζ
(t+1)
It

= ζ
(t−1)
It

(245)

||ζ(t+1)
(It∪It+1)c

− ζ
(t)
(It∪It+1)c

||∞ ≤ µCe

(
θk

1− δk

)t+1√
m

k
(246)

To prove this we first note that Eq 245 holds, as by definition ζ
(t−1)
It

= ζ
(t+1)
It

= at. We then note that

1√
m
||ζ(0)

Ic0
||∞ = min |ζ(0)

I0
| ≤ µCe

√
m

k
(247)

We further note that ζ(0)
I0
∈ ∂p(w = e

(0)
I0

). Therefore by lemma 15 we see that

1√
m
||w0 − v

(0)
I0
||2 ≤

||ζ(0)
I0
||2

σ2
max(XI0)

≤ µCe

1− δk
(248)

We now note that at t = 0, by construction{
ζ
(0)
I0

= 0

ζ
(1)
I0

= ζ
(0)
I0

+XT
Ic0
AI0(w0 − e

(0)
I0

)
(249)

and that p1 = ζ
(0)
I1

. From this we see that

1√
m

∥∥∥XT
Ic0
XI0(w0 − e

(0)
I0

)
∥∥∥
2
≤ θk√

m

∥∥∥w0 − e
(0)
I0

∥∥∥
2
≤ θkµCe

1− δk
(250)

From which we obtain∥∥∥XT
(I0∪I1)cXXI0(w0 − e

(0)
I0

)
∥∥∥
∞
≤ min

∣∣∣XT
I1XI0(w0 − e

(0)
I0

)
∣∣∣ ≤ θkµCe

1− δk

√
m

k
(251)

Finally noting that for t = 0 we have that ||e(1) − e(0)||2 = ||w0 − e
(0)
I0
||2. From this we see that the base case of the

induction is satisfied.

We now assume that equations 244 - 246 hold for all t′ ≤ t we now prove that they will hold for t + 1. We consider the
optimization 228 at step t, we also showed above that ζ(t) ∈ ∂p(e(t)). From this we see that

ζ
(t)
It
− at ∈ ∂pt(e(t)It ) (252)

From this we see that
XT
ItXIt−1

(wt−1 − e
(t−1)
It−1

) ∈ ∂pt(e(t)It ) (253)

By Lemma 15 below we see that

1√
m
||wt − e

(t)
It
||2 ≤

1

(1− δk)
√
m
||XT

ItXIt−1
(wt−1 − e

(t−1)
It−1

)||2

≤ θk
(1− δk)

√
m
||wt−1 − e

(t−1)
It−1

||2

=
θk

(1− δk)
√
m
||e(t) − e(t−1)||2

≤ θk
1− δk

µCe

1− δk

(
θk

1− δk

)t−1

=
µCe

1 = δk

(
θk

1− δk

)t
(254)
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This proves Eq 245. We also see that

1√
m
||XT

It+1
XIt(wt − e

(t)
It
)||2 ≤ θk||wt − e

(t)
It
||2 ≤

θkµCe

1− δk

(
θk

1− δk

)t
(255)

Therefore

||ζ(t+1)
(It∪It+1)c

− ζ
(t)
(It∪It+1)c

||∞ = ||XT
(It∪It+1)c

XIt(wt − e
(t)
It
)||∞

≤ min |XT
It+1

XIt(wt − e
(t)
It
)| ≤

√
1

k
||XT

It+1
XIt(wt − e

(t)
It
)||2

≤
√
m

k
µCe

(
θk

1− δk

)t+1

(256)

This proves Eq 246.

We now see in eq 244 that if θk + δk < 1, then the sequence of e(t) is absolutely convergent. Furthermore, from 245 and
246, in addition to the relation

1√
m
||ζ(t+1)

It+1
− ζtIt+1

||2 = ||XT
It+1

XIt(wt − e
(t)
It
)||2 ≤ µCe

(
θk

1− δk

)t+1

(257)

From this we obtain

1√
m
||ζ(t+1) − ζ(t)||2 =

√
||ζ(t+1)

It
− ζ

(t)
It
||2 + ||ζ(t+1)

It+1
− ζ

(t)
It+1
||22 + ||ζ

(t+1)
(It∪It+1)c

− ζ
(t)
(It∪It+1)c

||22

=
√
||ζ(t−1)

It
− ζ

(t)
It
||2 + ||ζ(t+1)

It+1
− ζ

(t)
It+1
||22 + ||ζ

(t+1)
(It∪It+1)c

− ζ
(t)
(It∪It+1)c

||22

≤
√
m

√
µ2C2

e

(
θk

1− δk

)2t

+ µ2C2
e

(
θk

1− δk

)2t+2

+ µ2C2
e(
m

k
− 1)

(
θk

1− δk

)2t+2

(258)

As such we see that the sequence ζ(t) is absolutely convergent. We denote the limits of ζ(t) and v(t) as ζ(∞) and e(∞)

respectively.

We have that

1√
m
||e(0) − e(∞)||2 ≤

∞∑
t=0

||e(t+1) − e(t)||2 ≤
∞∑
t=0

µCe

1− δk

(
θk

1− δk

)t
− µCe

1− δk − θk
(259)

Finally we show that ||ζ(∞)||∞ is bounded as well. We consider an index i and denote by t1 < t2 < . . . as the iterations
of t for which i ∈ It. In the case that i /∈ I0 by equation 245 we see that

ζ
(∞)
i − ζ(0)i =

∞∑
t=0

ζ
(t+1)
i − ζ(t)i =

∑
t|i∈(It∪It+1)c

ζ
(t+1)
i − ζ(t)i (260)

As such we obtain

|ζ(∞)
i | ≤ ζ(0)i +

∑
t|i∈(It∪It+1)c

|ζ(t+1)
i − ζ(t)i | ≤ µCe

√
m

k
+µCe

∞∑
t

(
θk

1− δk

)t
leqµCe

(√
m

k
+

θk
1− δk − θk

)
(261)

For any i ∈ I0 we have hta
ζ
(∞)
i − ζ(1)i =

∑
t≥1|i∈(It∪It+1)c

ζ
(t+1)
i − ζ(t)i (262)

By recalling that ζ(1)I0
= 0 we obtain

|ζ(∞)
i | ≤ µCe

∞∑
t

(
θk

1− δk

)t
=

µCeθ
2
k

(1− δk − θk)(1− δk)
(263)
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Combining the results in total we obtain

||ζ(∞)||∞ ≤ µCe

(√
m

k
+

θk
1− δk − θk

)
(264)

Finally we note that because for each t, ζ(t) ∈ ∂p(e(t)) we see that ζ(∞) ∈ ∂p(e(∞))

C.6 Universality of Generalization Error and Test Functions for ℓ1 regularization

We first demonstrate the universality of the Generalization error. We demonstrate that the 2-norm of the solution vector
of the ℓ1 regularized case is asymptotically equivalent to the case of the elastic net regularized case for small values of ℓ22
regularization. We have already demonstrated that the generalization error for the elastic net case is universal, by showing
that the ℓ1 is asymptotically equivalent we prove universality for that case as well.

Lemma 13. Denote by θ̂λ,ϵ as the optimal point of

Pλ,ϵ = min
θ

1

2n
||y −Xθ||22 + λ||θ||1 +

ϵ

2
||θ||22 (265)

Under the conditions assumed in theorem 6, for each η > 0, there exists ϵ, ρ such that for 0 < ϵ < η and |ρ| < η, such that

P

(
||θ̂λ+ρ,ϵ − θ̂λ,0||22

n
> η

)
→ 0 (266)

Proof. We first note that with a high degree of probability we have that

M0 + θ <
l(1− δl(X))

2n
(267)

in which M0 is the effective sparsity given in equation 33, θ > 0 is a fixed number and l < n is natural number such that
δl < 1. From this we see that (1 − δl) > 2(M0 + θ) and l/n > 2(M0 + θ). We let 0 < α < min(4M0, 2θ), and let
K =M0 + θ − α/2 and k = l

nK − 1. We note that K > M0 and

k =
l

n(M0 + θ − α/2)
− 1 >

l

n(M0 + θ)
− 1 > 1 (268)

Furthermore,

K =M0 + θ − α

2
≤ l(1− δl(X))

2n
≤ l

n

[
1− α− δl(X)

2− α
+
α

2

]
− α

2
≤ l

n

[
1− α− δl(X)

2− α

]
(269)

from which we can see that

α ≤ k − 1− (k + 1)δl(X)

k
(270)

We define a function Mr,ψ in which r is the regularization function and ψ are both functions given by:

Mr,ψ(β, q, ξ, r) = E
(
ψ
(
θ̂r(β, q, ξ, r)

))
(271)

In which θ̂r(β, q, ξ, t) is the optimal value of P̃3 given in (138) with regularization function r. We now define

Mλ,ϵ =Mλ|x|+ ϵ
2x

2,x2 Nλ,ϵ =Mλ|x|+ ϵ
2 ,|x| (272)

Now let δ > 0. We cansee that there exist value ρ, ϵ such that 0 < ϵ < δ, |ρ| < δ such that 0 < Nλ+ρ,ϵ −Nλ,0 < δ. Then
let µ > 0 be defined such that

2µ < Nλ+ρ,ϵ −Nλ,0 (273)

We define h = θ̂λ,0 − θ̂λ+ρ,ϵ. We denote the objective function in Eq 265 as Pλ,ϵ(θ). We have that
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Pλ+ρ,ϵ(θ̂
λ,0) = Pλ,0(θ̂

λ,0) +
1

n

( ϵ
2
||θ̂λ,0||22 − ρ||θ̂λ,0||1

)
≤ Pλ,0(θ̂λ+ρ,ϵ) +

1

n

( ϵ
2
||θ̂λ,0||22 − ρ||θ̂λ,0||1

)
= Pλ+ρ,ϵ(θ̂

λ+ρ,ϵ) +
1

n

( ϵ
2
||θ̂λ,0||22 − ρ||θ̂λ,0||1 −

ϵ

2
||θ̂λ+ρ,ϵ||22 − ρ1||θ̂λ+ρ,ϵ||22

)
≤ Pλ+ρ,ϵ(θ̂λ+ρ,ϵ) +

ϵ

2

||h||22
n

+ ϵ
||h||2√
n

+
ρ

n

(
||θ̂λ,0||1 − ||θ̂λ+ρ,ϵ||1

)
(274)

From theorem 4 and part one of Theorem 6 we know that

||θ̂λ+ρ,ϵ||22
n

p−→Mλ+ρ,ϵ ||θ̂λ+ρ,ϵ||1
n

p−→ Nλ+ρ,ϵ ||θ̂λ,0||1
n

p−→Mλ,0 (275)

Choosing a value of M >
√
Mλ+ρ,ϵ, we obtain

Pλ+ρ,ϵ(θ̂
λ,0) ≤ Pλ+ρ,ϵ(θ̂λ+ρ,ϵ) +

ϵ

2

||h||22
n

+Mϵ
||h||2√
n

+ ρδ (276)

We now define the following index sets

S = {k| |θ̂λ+ρ,ϵk | ≥ µ} L = {k| 0 < |θ̂λ+ρ,ϵk | < µ|} (277)

We also define
Kλ,ϵ
µ =Mλ|x|+ϵx2/2,χR\(−µ,µ)

(278)

In which χA is the indicator function on the set A. By theorem 4 we have that

|S|
n

P−→ Kλ+ρ,ϵ
µ (279)

we also see that
lim

(µ,ρ,ϵ)→0
Kλ+ρ,ϵ
µ =M0 (280)

Therefore, for small values of δ we know that Kλ+ρ,ϵ
µ < K and as such with high probability

|S|
n

< K (281)

We also know from equation 275 that with high probability

||θ̂λ+ρ,ϵ||1
n

− ||θ̂
λ,0||1
n

> 2µ (282)

This can equivalently be expressed as

||θ̂λ+ρ,ϵS ||1
n

+
||θ̂λ+ρ,ϵL ||1

n
>
||θ̂λ+ρ,ϵS + hS ||1

n
+
||θ̂λ+ρ,ϵL + hL||1

n
+
||hcS∪L||1

n
+ 2µ

≥ ||θ̂
λ+ρ,ϵ
s ||1 − ||hS ||1

n
+
||hL|| − ||θ̂λ+ρ,ϵL ||1

n
+
||θ̂λ+ρ,ϵL + hL||1

n
+
||hcS∪L||1

n
+ 2µ (283)

By definition ||θ̂λ+ρ,ϵL ||1 ≤ µ. As such with high probability we obtain

||hS ||1 ≥ ||hSc ||1 (284)

We now define z = y −Xθ̂λ+rho,ϵ. We wish to decompose the vector hSc into block T1, T2, . . .. We let hT1 be the k|S|
elements of hSc with largest absolute value, hT2

are the next k|S| largest absolute values and so on. Let U = S ∪T1. With
that we have

nPλ+ρ,ϵ(θ̂
λ,0) =

1

2
||z−Xh||22 +

(λ+ ρ)

γ
||θ̂λ+ρ,ϵ + h||1 +

ϵ

2γ
||θ̂λ+ρ,ϵ + h||22 (285)
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We note that θ̂λ,0 = θ̂λ+ρ,ϵ + h which is the minimal point of the function Pλ,0(θ). As such we have

XT (z−Xh) = XT (y −Xθ̂λ,0) ∈ λ∂||θ̂λ,0||1 (286)

Therefore
||XT

Uc(z−Xh)||∞ ≤ λ⇒ −hTUcXT
Uc(z−Xh) ≥ −λ||hUc ||1 (287)

From which we obtain
− hTUcXT

Uc(z−XUhU ) ≥ −λ||hUc ||1 − ||XUchUc ||22 (288)

and as such

1

2
||z−Xh||22 =

1

2
||z−XUhU ||22 −hTUcXT

Uc +
1

2
||AUchUc ||22 ≥

1

2
||z−XUhU ||22 − λ||hUc ||1 +

1

2
||XUchUc ||22 (289)

From which we obtain

mPλ+ρ,ϵ(θ̂
λ,0) ≥ 1

2
||z−XUhU ||22 − λ||hUc ||1 +

1

2
||XUchUc ||22 + (λ+ ρ)||θ̂λ+ρ,ϵU + hU ||1 +

(λ+ ρ)||θ̂λ+ρ,ϵUc + hUc ||1 +
ϵ

2
||θ̂λ+ρ,ϵU + hU ||22 +

ϵ

2
||θ̂λ+ρ,ϵUc + hUc ||22 (290)

We note that w = 0 is the minimum point of the function

1

2
||z−XUw||22 + (λ+ ρ)||θ̂λ+ρ,ϵ +w||1 +

ϵ

2
||θ̂λ+ρ,ϵU +w||22 (291)

Therefore from lemma 16 we get that

1

2
||z−XUhU ||22 + (λ+ ρ)||θ̂λ+ρ,ϵ + hU ||1 +

ϵ

2
||θ̂λ+ρ,ϵU + hU ||22

≥ σ2
max(XU )

2
||hU ||22 +

1

2
||z||22 + (λ+ ρ)||θ̂λ+ρ,ϵ||1 +

ϵ

2
||θ̂λ+ρ,ϵ||22 (292)

Substituing this in above we get that

nPλ+ρ,ϵ(θ̂
λ,0)− nPλ+ρ,ϵ(θ̂λ+ρ,ϵ)

≥ σ2
max(XU )

2
||hU ||22 − λ||hUc ||1 −

1

2
||AUchUc ||22 + (λ+ ρ)||θ̂λ+ρ,ϵUc + hUc ||1 − (λ+ ρ)||θ̂λ+ρ,ϵUc ||1

− ϵ
2
||θ̂λ+ρ,ϵUc ||22 +

ϵ

2
||θ̂λ+ρ,ϵUc + hUc ||22

≥ σ2
max(XU )

2
||hU ||22 + ρ||hUc ||1 −

1

2
||XUchUc ||22 − 2(λ+ ρ)||θ̂λ+ρ,ϵUc ||1 − 2||θ̂λ+ρ,ϵUc ||2||hUc ||2

≥ σ2
max(XU )

2
||hU ||22 + δ

√
n||hU ||2 −

1

2
||XUchUc ||22 − 2(λ+ ρ)nµ− 2

√
nµ||hUc ||2 (293)

Where we have made use of the fact that

ρ||hUc ||1 ≥ −δ||hUc ||1 ≥ −δ||hU ||1 ≥ −δ
√
n||hU ||2 (294)

and in (Candes et al., 2006)(equation 11) it is proven that

||hUc ||1 ≤
|S|
|L|
||hU ||22 =

1

k
||hU ||22 (295)

Also in (Candes et al., 2006) (equation 12) it is shown that

||XUchUc ||2 ≤
√
1 + δk|S|(X)

√
|S|
|T |
||hU ||2 =

√
1 + δk|S|(X)

k
||hU ||2 (296)
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As such

nPλ+ρ,ϵ(θ̂
λ,0)− nPλ+ρ,ϵ(θ̂λ+ρ,ϵ)

≥
1− δ(1+k)|S|(X)− 1−δk|S|(X)

k

2
||hU ||22 − (1− 1√

k
)δ
√
n||hU ||2 − (λ+ ρ)nδ (297)

Noting that |S| < Kn. By equation 270,

α1 = 1− δ(1+k)|S|(X)−
1 + δk|S|(X)

k
≥ 1− δn(1+k)K(X)− 1 + δnkK(X)

k
≥ 1− δl(X)− 1 + δl(X)

k
≥ α (298)

from which we obtain

nPλ+ρ,ϵ(θ̂
λ,0)− nPλ+ρ,ϵ(θ̂λ+ρ,ϵ) ≥

α

2
||hU ||22 − (1− 1√

k
)δ
√
n||hU ||2 − (λ+ δ)nδ (299)

combining this with equation X above

α

2
||hU ||22 − (1− 1√

k
)δ
√
n||hU ||2 − (λ+ ρ)nδ ≤ δ

2
||hU ||22 +Mδ

√
n||h||2 + nδ2 (300)

We see that

||h||22 ≤
(
1 +

1

k

)
||hU ||22 (301)

From this we see that

α

2(1 + 1
k )
||h||22 −

1 + 1√
k√

1 + 1
k

δ
√
n||h||2 − (λ+ δ)nδ ≤ δ

2
||h||2 +Mδ

√
n||h||2 + nδ2 (302)

Since we know that k > 1, we can see that for any choice of η > 0 the value of δ can be made sufficently small to ensure
that equation 302 implies that the lemma holds.

We can now show the universality of the generalization error, we note that for the two cases, the term:

(θλ,0 − θ∗)TR(θλ,0 − θ∗) = (θλ,0 − θλ+ρ,ϵ + θλ+ρ,ϵ − θ∗)TR(θλ,0 − θλ+ρ,ϵ + θλ+ρ,ϵ − θ∗)

= (θλ,0 − θλ+ρ,ϵ)TR(θλ,0 − θλ+ρ,ϵ) + 2(θλ,0 − θλ+ρ,ϵ)R(θλ+ρ,ϵ − θ∗)

+(θλ+ρ,ϵ − θ∗)TR(θλ+ρ,ϵ − θ∗)

≤ ||θλ,0 − θλ+ρ,ϵ||22||R||2 + 2∥(θλ,0 − θλ+ρ,ϵ)T ∥2∥R∥2∥θλ+ρ,ϵ − θ∗∥2
+(θλ+ρ,ϵ − θ∗)TR(θλ+ρ,ϵ − θ∗)

= (θλ+ρ,ϵ − θ∗)TR(θλ+ρ,ϵ − θ∗) (303)

Where the final step is by the lemma above showing the asymptotic equivalence of the two norm. By symmetry the
argument may be repeated to show that

(θλ+ρ,ϵ − θ∗)TR(θλ+ρ,ϵ − θ∗) ≤ (θλ,0 − θ∗)TR(θλ,0 − θ∗) (304)

In the asymptotic limit. This fact, in conjunction with Theorem 10 proves the universality of the generalization error.
Finally we show that the universality of the test functions h(θ).

Lemma 14. For a function h have that with high probability that

lim
n→∞

∣∣∣∣∣h(θ̂λ,0)n
−Mλ|x|,h

∣∣∣∣∣ = 0 (305)

in which M is the function given in (271).
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Proof. We denote θ̂λ,ϵ as the minimal solution of

P1λ,ϵ =
1

2n
||y −Xθ||22 + λ||θ||1 +

ϵ

2
||θ||22 (306)

Because of the results of the lemma C.6 above we know that

h( ˆθλ,0)

n
−Mλ|x|,h =

∑n
i h(θ̂i

λ,0
)

n
−Mλ|x|,h =

(∑n
i h(θ̂

λ,0)

n
−
∑n
i h(θ̂

λ+ρ,ϵ)

n

)

+

(∑n
i h(θ̂

λ+ρ,ϵ)

n
−M(λ+ρ)|x|+ϵx2/2,h

)
+ (M(λ+ρ)|x|+ϵx2/2,g −Mλ|x|,h) (307)

Letting θ̂λ,0 − p = θ̂λ+ρ,ϵ. Then a taylor expansion gives us∑n
i h(θ̂

λ,0)

n
−
∑n
i h(θ̂

λ+ρ,ϵ)

n
=

∑n
i h

′(θ̂λ+ρ,ϵ)pi + h′′(ηi)p
2
i /2

n
(308)

for some η. Using the Cauchy-Schwartz inequality and using the fact that h′′ < L for some value of L we get that∣∣∣∣∣
∑n
i h(θ̂

λ,0)

n
−
∑n
i h(θ̂

λ+ρ,ϵ)

n

∣∣∣∣∣ ≤
√∑n

i (h
′)2(θ̂λ+ρ,ϵi )

n

√∑n
i p

2
i

n
+
L

2

∑n
i p

2
i

n
(309)

As h′′ < L we note that |h′(x)| < L|x|+ C for some constant C2. As such∑n
i (h

′)2(θ̂λ+ρ,ϵi )

n
≤ 2C2

∑n
i (θ̂

λ+ρ,ϵ)2

n
+ 2C2

2 (310)

Where C2 is another positive constant. From theorem 4 the term
∑n

i (θ̂
λ+ρ,ϵ)2

n converges in probability to some value. As
such there exists a constant R > 0 such that

P

(∑n
i (h

′)2(θ̂λ+ρ,ϵi )

n
≥ R2

)
→ 0 (311)

For an arbitrary choice of δ > 0. We choose η1 > 0 such that R
√
η1 + c1η1/2 < δ/3. Furthermore we can verify that we

can choose an η2 such that for every 0 < ϵ < η2, |ρ| < η2 that

|M(λ+ρ)|x|+ϵx2/2,h −Mλ|x|,h| ≤
δ

3
(312)

letting η = min(η1, η2). Assume that Lemma 16 holds with a proper choice of ϵ and ρ for this η. This leads to the
following holding true with high probability ∑n

i p
2
i

n
< η ≤ η1 (313)

From which we find ∣∣∣∣∣
∑n
i h(θ̂

λ,0)

n
−
∑n
i h(θ̂

λ+ρ,ϵ)

n

∣∣∣∣∣ ≤ R√η1 + c1η1/2 <
δ

3
(314)

Finally we note from theorem 4 that

P

(∣∣∣∣∣
∑n
i h(θ̂

λ+ρ,ϵ)

n
−M(λ+ρ)|x|+ϵx2/2,h

∣∣∣∣∣ > δ

3

)
→ 0 (315)

Combining all of the bounds we get with high probability that∣∣∣∣∣h(θ̂λ,0)n
−Mλ|x|,h

∣∣∣∣∣ ≤ δ (316)

Since we can choose delta to be arbitrarily small this leads to the desired results.
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C.7 Auxiliary lemmas for proving Theorem 6

Lemma 15 (Panahi and Hassibi (2017) lemma 9). Consider the function ρ(e) = 1
2 ||h+Ae||22 + λ||e+ θ∗||1 + aTe and

suppose that it is minimized at e∗. At an arbitary point e and q ∈ ∂ρ(e), then

||e− e∗||2 ≤
1

σ2
min(A)

||q||2 (317)

Lemma 16 (Panahi and Hassibi (2017) lemma 10). Consider the function ρ(e) = 1
2 ||h+Pe||22 + λ||θ∗ + e||1 + ϵ

2 ||e||
2
2

and suppose that it is minimized at e∗. Let e be an arbitrary point, then

ρ(e)− ρ(e∗) ≥ σmin(P)

2
||e− e∗||22 (318)

Proof. Let w = e−e∗

||e−e∗||2 and f(ν) = ρ(e∗ + νw). Notice that ρ(e) = f(||e − e∗||2) and f is minimized at 0. A direct
calculation shows that f can be written as f = 1

2αν
2 + g(ν), where g is convex and α = ||Pw||22 + ϵ/2 ≥ σmin(P)2.

Then by lemma 17 this reuslts in

ρ(e)− ρ(e∗) = f(||e− be∗||2)− f(0) ≥
α

2
||e− e∗||22 ≥

σmin(P)

2
||e− e∗||22 (319)

Lemma 17 (Panahi and Hassibi (2017) lemma 11). Suppose g(ν) is a convex function on R and ν∗ is a minimum point of
the function f(ν) = α

2 ν
2 + g(ν). Then for any ν ∈ R,

f(ν)− f(ν∗) ≥ α

2
(ν − ν∗)2 (320)

Proof. From the optimality of ν∗, we have that −αν∗ ∈ ∂g(ν∗). Therefore,

g(ν) ≥ g(ν∗)− αν∗(ν − ν∗) (321)

Hence,
f(ν)− f(ν∗) = αν∗(ν − ν∗) + α

2
(ν − ν∗)2 + g(ν)− g(ν∗) ≥ α

2
(ν − ν∗)2

D Example Case : Elastic Net Regularization

We consider the case of Elastic Net Regularization, the case that

r(θ) = λ∥θ∥1 +
α

2
∥θ∥22 (322)

A simple computation gives us that

θ̂i = (prox 1
2c1

r(θ
∗ −

c2
√
γ

2c1
ϕ))i =


2c1θ

∗
i

2c1+α
− c2

√
γ

2c1+α
ϕi − λ

2c1+α
2c1θ

∗
i

2c1+α
+

c2
√
γ

2c1+α
ϕi >

λ
2c1+α

2c1θ
∗
i

2c1+α
− c2

√
γ

2c1+α
ϕi +

λ
2c1+α

2c1θ
∗
i

2c1+α
+

c2
√
γ

2c1+α
ϕi < − λ

2c1+α

0 || 2c1θ
∗
i

2c1+α
+

c2
√
γ

2c1+α
ϕi|| ≤ λ

2c1+α

(323)

We note that this can equivalently be expressed in the form of a soft thresholding operator

(θ̂3)i = T λ
2c1+α

(
2c1θ

∗
i

2c1 + α
−

c2
√
γ

2c1 + α
ϕi

)
(324)

Substituting the value of the proximal operator in to the Moreau envelope we find that
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1

m

m∑
i

M 1
2c1

r(θ
∗ −

c2
√
γ

2c1
ϕ) =

1

2c1 + α

(
αc1(θ

∗
i )

2 + 2c1λθ
∗
i −

1

2
λ2 +

c22γ

4c1
ϕ2i + αc2

√
γϕθ∗i + λc2

√
γϕ

)
1{ϕi<−ζ1i}

1

2c1 + α

(
αc1(θ

∗
i )

2 − 2c1λθ
∗
i −

1

2
λ2 +

αc22γ

4c1
ϕ2i − αc2

√
γϕθ∗i + λc2

√
γϕ

)
1{ϕi>ζ2i}(

c1(θ
∗
i )

2 +
c22γ

4c1
ϕ2i − c2

√
γθ∗

i ϕi

)
1{ζ1i≤ϕi≤ζ2i} (325)

in which 1A is the characteristic function on the set A, and

ζ1i =
(λ− 2ĉ1θ

∗
i )√

γĉ2
ζ2i =

(λ+ 2ĉ1θ
∗
i )√

γĉ2
(326)

Taking the expectation of the envelope with respect to ϕ and making use of Steins lemma one can obtain

1

m
E

m∑
i

M 1
2c1

r(θ
∗ −

c2
√
γ

2c1
ϕ) =

1

2c1 + α

(
αc1(θ

∗
i )

2 +
αc22γ

4c1
+ 2c1λθ

∗
i −

1

2
λ2
)
Q(ζ1i) +

1√
2π(2c1 + α)

(
c22γζ1i
4c1

+ αc2
√
γθ∗i + λc2

√
γ

)
e−ζ

2
1i/2

1

2c1 + α

(
αc1(θ

∗
i )

2 +
αc22γ

4c1
− 2c1λθ

∗
i −

1

2
λ2
)
Q(ζ2i) +

1√
2π(2c1 + α)

(
αc22γζ2i
4c1

− αc2
√
γθ∗i + λc2

√
γ

)
e−ζ

2
2i/2(

c1(θ
∗
i )

2 +
c22γ

4c1

)
(1−Q(ζ1i)−Q(ζ2i))−

c2
√
γθ∗i√
2π

(
e−ζ

2
1i/2 − e−ζ

2
2i/2
)
+

c22γ

4c1
√
2π

(
−ζ1ie−ζ

2
1i/2 − ζ2ie−ζ

2
2i/2
)
(327)

In which Q(·) is the Q-function. Defined to be

Q(x) =
1√
2π

∫ ∞

x

e−
u2

2 du (328)

This expression may be implemented in code and simply evaluated for any choice of the parameters.

D.1 Sparsity

The effect of the ℓ1 regularization term is to promote sparsity in the solution vector. Let s denote the number of elements
of θ̂ that are non-zero. We see that

s = E
m∑
i

1θ̂i ̸=0 =

m∑
i

1− P(θ̂i = 0) =

m∑
i

1− P(−ζ1i ≤ ϕi ≤ ζ2i) =
m∑
i

Q(ζ1i) +Q(ζ2i) (329)

We further consider the term 1
m êTϕ and consider what this concentrates on

1

m
E[êTϕ] =

1

m

m∑
i

E[êiϕi] =
1

m

m∑
i

E[θ̂iϕi] = −
c2
√
γ

2c1 + α

1

m
E
[(
T ′

λ
2c1+α

((
2c1θ

∗
i

2c1 + α
+

c2
√
γ

2c1 + α
ϕi

)))
i

]
(330)

where in the last inequality we have made use of steins lemma, and T ′ is the derivative of the soft thresholding operator
defined in (324). We note that the derivative of the soft thresholding operator is the value of s that we are looking for. In
symbols

1{θ̂i ̸=0}T = T ′ (331)
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From this we note that

1

m
E[eTϕ] = −

c2
√
γ

2c1 + α

s

m
(332)

The value of 1
mE[eTϕ] may also be computed directly from definition of θ̂ (equation (323)). Combining these expressions

the value of s may be computed.

E Numerical Simulation Detail

We implement the optimization problem P3 (14) by making use of the explicitly computed Moreau envelope for the case
of elastic net (327). The optimization is solved using a standard iterative approach in which the inner optimizations are
solved at constant values of the outer optimizations. This is repeated iteratively until all parameters are determined. Zeroth
order gradient methods were attempted, but were highly dependent on the starting choices of the parameters β, q, ξ, t, and
frequently failed to converge.

The experimental verification was completed using synthetic data, in which the data points zi and the weight matrix W
was drawn from standard normal distributions. The elastic net optimization was solved using the python package cvxpy.
The values of n and m were chosen such that n +m = 1000 and that m/n ≈ γ, for a chosen ratio γ. Each sample was
averaged 100 times to account for the randomness in both the input data z and the weights W.

E.1 Effective Sparsity

In this section, we plot the effective sparsity s for elastic net as a function of the regularization strength λ for a number of
values of γ = m

n . Recall that s gives the number of nonzero elements in the solution vector θ̂. The plots for the ratios s
m

and s
n may be seen in figure 3. The ℓ22 regularization strength was fixed with parameter α = 0.001. The solid lines are the

theoretical predictions while the dots are determined experimentally. For the experimental values the solution vector θ̂ was
determined using a solver, then each element of the solution vector, it was determined to be “zero” (i.e. sparse) if its value
was less than 0.01√

m
.

We can see from the figures that for all values of γ the sparsity is similar at both large and small values of regularization.
As the number of model parameters increases relative to the number of data points, i.e. as γ grows larger, the regularization
strength required to induce a sparse solution drops. Recalling that true solution was half zeros, the value of regularization
strength at which s

m = 0.5 matches well with the regularization strength that minimizes the generalization error in figure
2(b).
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Figure 3: The effective sparsity s as a ratio to the number of model parameters m or the number of data points n for elastic
net regularization for varying strengths of the regularization parameter λ. The ℓ2 regularization term was fixed to 0.001.
Multiple values of γ = m

n are considered. Solid line is the theoretical prediction, and the dots are experimental values.
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