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Abstract

We compute precise asymptotic expressions for
the learning curves of least squares random fea-
ture (RF) models with either a separable strongly
convex regularization or the ¢; regularization.
We propose a novel multi-level application of
the convex Gaussian min max theorem (CGMT)
to overcome the traditional difficulty of find-
ing computable expressions for random features
models with correlated data. Our result takes the
form of a computable 4-dimensional scalar op-
timization. In contrast to previous results, our
approach does not require solving an often in-
tractable proximal operator, which scales with
the number of model parameters. Furthermore,
we extend the universality results for the train-
ing and generalization errors for RF models to ¢4
regularization. In particular, we demonstrate that
under mild conditions, random feature models
with elastic net or 1 regularization are asymptot-
ically equivalent to a surrogate Gaussian model
with the same first and second moments. We
numerically demonstrate the predictive capacity
of our results, and show experimentally that the
predicted test error is accurate even in the non-
asymptotic regime.

1 INTRODUCTION

It has been recently understood that classical statistical the-
ory requires revisiting to describe the behavior of over-
parameterized models (Zhang et al., 2021} Belkin et al.|
2019). Since then, studying the asymptotic regime of a
machine learning (ML) model, in which the number of data
points and model parameters grow infinite at a constant ra-
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tio, has become a popular method of analysis (Belkin et al.}
2020; Hastie et al., |2019; Bartlett et al.l 2020a; Tsigler
and Bartlett, |2020). The asymptoptic analysis of regu-
larized Random Feature (RF) models (Rahimi and Recht,
2007) has been of particular interest as they can capture
a large range of other interesting models (Me1 and Mon-
tanari, [2019; |Goldt et al., 2020a; |d’Ascol1 et al.l [2020;
Dhifallah and Lul [2020). Despite remarkable progress in
the analysis of RF models, existing asymptotic results are
not directly computable for the majority of regularization
functions, and in this generic scenario, precise asymptotic
learning curves are still lacking. In this paper, we address
this limitation and provide a novel technique that provides
computable, exact asymptotic learning curves under a large
family of separable, strongly convex regularization, as well
as the ¢, regularization (also known as LASSO).

Similar to many recent papers, we make use of the con-
vex Gaussian Min Max theorem (CGMT) (Thrampoulidis
et al.,2014;|[Hastie et al.,|2019;Montanari et al., [2019; |Dhi-
fallah and Lu, 2020; [Goldt et al.l 2020b)), where there are
generally two steps. The RFs are non-Gaussian due to non-
linear activation functions, but it is shown that they can be
equivalently replaced by a surrogate Gaussian model with
matching first two statistical moments (Panahi and Hassibi|
2017; |Oymak and Troppl 2018; [Hu and Lu, [2020). Estab-
lishing this equivalence between the RF model and surro-
gate Gaussian model is generally referred to as universality
(Panahi and Hassibi, 2017; |(Oymak and Tropp} 2018} |Hu
and Lu, 2020). Next, the CGMT is applied, which pro-
vides an alternative optimization problem whose analysis
is provably tied to the original problem. This alternative
optimization formulation has been a great tool for comput-
ing precise asymptotic learning curves in the case of uncor-
related features. However, for the general RF formulation,
the surrogate features are inevitably heavily correlated. As
a result, the alternative optimization has been generally as
difficult to analyze as the original RF model. More pre-
cisely, solution of this alternative optimization typically in-
volves solving a proximal operator of a non separable m-
dimensional vector that scales with the number of model
parameters (Loureiro et al., |2021), even if the regulariza-
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tion function is separable. Only in the case of ridge (¢3)
regularization, where a specific rotational symmetry holds
true, can this difficulty be overcome (Chang et al., [2020;
Montanari et al., 2019; |d’ Ascoli et al., 2020).

Contributions: The first main contribution of this pa-
per is a novel multilevel application of the CGMT to the
correlated surrogate model that overcomes the difficulties
with the analysis of the alternative optimization and sub-
stantially simplifies the final results. With this method,
we provide a computable technique for obtaining learning
curves of surrogate Gaussian model with arbitrary separa-
ble, strongly convex; or ¢; regularization. Our next con-
tribution is to establish universality, i.e. to show that our
analysis also applies to the original, non-Gaussian random
features. This result has been previously established for
regularization functions that are thrice differentiable and
strongly convex (Hu and Lul 2020). We extend this result
in two steps. First we show that a wider variety of poten-
tially nondifferentiable, strongly convex functions satisfy
universality. In particular, we show that a combination of
/1 and 63, known as elastic net (Zou and Hastiel 2005),
is universal. Furthermore, under the assumptions that the
activation function is continuous and Lipschitz, and solu-
tion vector that is sufficiently sparse, we show that the 3
part of the elastic net regularization can be removed and
the universality of pure ¢; (which is not strongly convex) is
established.

2 RELATED WORKS

The asymptotic analysis of RF models is recently culmi-
nated in the study of the so-called double descent phe-
nomenon, where increasing the model size beyond the in-
terpolation threshold, surprisingly improves the learning
performance, leading to a learning curve with two descent
regions. The double descent phenomenon has a long his-
tory (Loog et al., [2020), but was first discussed in its mod-
ern form by (Belkin et al., [2019) (see also (Geiger et al.|
2020)). Overparameterized systems have since been stud-
ied extensively, for an incomplete list see (Tsigler and
Bartlett, [2020; Hastie et al.l 2019; Me1 and Montanari,
2019; [Bartlett et al., [2020b; Belkin et al., [2020; Muthuku-
mar et al., [2019; Kobak et al., 2020; Deng et al., 2019;
Taheri et al.,[2021} Lolas}[2020; Mignacco et al.,|2020; |Kini
and Thrampoulidis| 20205 Liang and Sur, 2020; Montanari
et al.| [2019; Taheri et al.| [2020; Salehi et al., [2019)

Gaussian comparison theorems have played a central role
in obtaining exact learning curves, which go back to (Gor-
donl 1985} [1988). They show an asymptotic equivalence
between certain optimization problems over Gaussian ran-
dom variables. (Thrampoulidis et al.,[2015; Thrampoulidis
et al., 2014) showed that in the presence of convexity, the
bounds provided by Gordon could be refined. The applica-
tions of comparison theorems to the study of the asymptotic

regime are numerous (Bosch et al., 2021} [Loureiro et al.|
2021; |Dhifallah and Lu, [2020; Thrampoulidis et al., 2016;
Chang et al.,|2020). A principal difficulty with the CGMT
is in the case of correlated covariates, as in the RF model.
This results in the alternative optimization problem of the
CGMT to be no more tractable than the original problem.
In the case of 3 regularization, rotational symmetry may
be applied to study correlated models. In the papers such
as (Chang et al.| [2020; Me1 and Montanari, [2019; |Dhifal-
lah and Lul [2020) this symmetry is exploited to derive an-
alytic expressions. We are not aware of any analytic ex-
pressions derived by means of the CGMT considering RFs
with more generic regularization. As a contribution of this
paper, we resolved the issue of correlated covariates with a
novel approach involving multiple applications of CGMT
and extend the analysis of regularized least squares into RF
features with a larger set of regularization functions.

The Gaussian Equivalence Principle (GEP) expresses that
there exists an asymptotic equivalence between RF mod-
els and Gaussian models with identical first and second
moments. This universality was shown for (regularized)
least squares by [Panahi and Hassibi| (2017), extended to
generic convex regularization by Hu and Lu|(2020) and for
generative models by |Goldt et al.[(2022). More recent re-
sults by [Montanari and Saeed| (2022) extends universality
to empirical risk minimization with regularization. Ba et al.
(2022) has also extended universality results to RF models
after a single step of gradient descent with small step sizes.
The results of Hu and Lul (2020) and Montanar1 and Saeed
(2022) however do not hold in the case of ¢ regularization,
while those of |Panahi and Hassibil (2017) do not apply to
the random features case. We extend the universality re-
sults of [Hu and Lul (2020) to the case of of /1 and elastic
net regularization. [Liang and Sur| (2020) also demonstrate
the universality of ¢; regularization but for a different setup
of max-margin classifiers. Their results cannot simply be
translated to that of ours. Firstly, they only consider univer-
sality of the objective value, while we additionally demon-
strate universality for strongly convex functions of the so-
lution vector. Secondarily they require that the activation
function is restricted to a compact set, which we do not
require here.

3 RANDOM FEATURES MODEL

We consider a dataset {(z;,y;) € R? x R}, and wish to
determine the relationship between the data vector z; and
the labels y; by means of a function of the following form:

1
vm
Here ¢ : R? — R™ is a fixed nonlinear feature map, whose

relation to the labels y; is characterized by a variable weight
vector 6. We determine 6 by the following optimization

f(zi;0,0) = —0"p(z;) 6€cR™. (1
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problem:

= arg mln Zl

(z::0,0),y:) +7(6), (2

where [(z,y) = 3(z — y)? is the square-loss function and
r(x) is a regularization function. We consider a wide-
range of regularization functions which are explained in
Section[d] We restrict ourselves to the feature map

o(z;) =0 (\}&Wzi> , 3)

where o : R — R is a non linear, odd activation function
applied element wise (eg. tanh(x)), and W € R™* g
a random weight matrix whose elements are i.i.d standard
Gaussians, independent of z;. We note that this choice of
the random feature map can be interpreted as a Neural Net-
work (NN) with one hidden layer. We let the matrix X be

given such that X;; = ¢,(z;) = o (ﬁwfzi), where w7

is the j™ row of W. We consider two metrics of the perfor-
mance of the solution 6 of , the training error, expressed
in matrix notation as

1 1 1
= —|ly - —X0|2+ —r(6 4
5y ol +-r(0) &)

5t7'ain (0) \/M

and the generalization error

1

5 (ynew -

Egen(0) =E 5

f(Znew; 0,90))%|, (5

where (Zyew, Ynew) 1S @ new sample pair independent of,
but identically distributed to the training data.

Analysis of this problem requires making assumptions on

the distribution of the the dataset. We assume that z; i
N(0,14) and that the labels y; are generated according to

1
Yi = ﬁO*Tcp(zi) + €, (6)

where 0* is a fixed weight vector that may be deterministic
or random and ¢; is i.i.d. noise with E[¢;] = 0, E[¢?] =
o2 and Ele}] < oo, and ¢ is given in (B). We note that
this method of label generation is different that that of [Hu
and Lu/ (2020), we note that their results still apply in this
context. For a discussion of this fact see remark 2] in the
appendix.

Under these assumptions, the main goal of this paper is to
predict the values of Egen(é), Etmm(é), where 0 is given
by (@). Further, we provide the asymptotic value of /(8)
where h is an arbitrary test function from a wide range of
choices, as we elaborate.

4 MAIN RESULTS

4.1 Overview of Main Results

Before delving into details, we provide an overview of our
main results. A more detailed and rigorous treatment is
provided in the subsequent sections.

The key optimization problem in (2)) can be written as

1 1
snlly = Z=X0l+ ro). )

Hence, the optimal solution of P; is given by (2). However
we consider a slightly more general problem of the follow-
ing form:

P, = min —
0

~ 1
Pi(ry,72) = min o~ HY*TXO‘E ()

*\T *
+E(9_0) R(6 -6 )+%h(0), ®)

where 71,72 are real numbers and h(e) is a test function
such that » + mh is convex. Moreover, R is the feature
covariance matrix E, [p(z)p(z)]. We refer to the solution
Of@ as 61(7'1,7'2).

We note that setting 71 = 79 = 0, we obtain the origi-
nal problem (@), i.e. Pi = Py(0,0) and 8; = 6,(0,0).
These addltlonal “r” are added to the problem definition to
prove the unlversahty of generalization error and of generic
strongly convex functions. We note that the 71 term corre-
sponds to a component of the generalization function and
T is attached to the generic function h(6). Taking the
derivative with respect to 7, or 7o allows these terms to
be recovered, this property is made use of in the proof of
the universality, see proof of theorem 4]

We analyze the problem in (8) by considering two alterna-
tive problem formulations, and demonstrating that they are
asymptotically equivalent to one another.

Consider the linear feature map

5(2) = PL
SO(Z)_\/g

where p; = E,[ac(a)] and p? = E,[02(a)] — p?, with
a ~ N(0,1), and g ~ N(0,1,,). This feature map is
obtained by means of a truncated Hermite polynomial ex-
pansion of the original feature map (3, as discussed in[Mei
and Montanari|(2019), and unlike the original feature maps
in () these feature are Gaussian (for fixed weights W).
Let (X)” = @j(zi) = \p/lgw z; + p«gij, where g;; are
i.i.d Gaussian, and consider the problem

Wz + p.g, )

~ 1 1 - 1
Py(r1, ) = min —|ly — —=X6|§ + —r(6)

Jm
1 *\T 1 * 72
-I-E(O—B )"R(6—0%) + Eh(G), (10)
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where y; = 0°73(z;) + ¢; and R = E,[¢(z)$(2)7]. The
optimal solution of P, (7'17 75) is referred to as O (71, 72).
In particular, we denote 65 = 65(0,0).

Now, we define ¥ (8, ¢, &, t, 1, T2) as follows
w(ﬂa q, 5: tv T1, 7—2) -

1 « CQ\/"?

B [Marenn (0= 5500

m
Gy &, Ba poi &8

4eq 2 2 2q 2tn
. B+ 27161)52 _ CIﬁz _ 572 (11)
2q 208 +2qm)n 27

where ./\/l

with the step size Tl (see supplement definition , o]
is a standard Gaussian vector, ¢; and ¢y are functions of

Bv q, 57 t7 T1,72 given by

(r4roh) is the Moreau envelope of r + 73h

(B+2119)%p (B + 2qm)p?
e = 2t % (12)
2
_ \/ (8 + zT;gPplf?n o a3

The expectation is taken with respect to ¢ and hence the
function v is not random. Accordingly, we define the key
alternative optimization problem, i.e. a four-dimensional
scalar optimization problem, in our development:

Ps(11,72) = maxmmmaxmlnw(ﬁ,q,f t,71,72). (14)

B>0 ¢>0 £>0 t>0

Let B,q f t be the optimal point of P; and let ¢ =
cl(ﬁ,q £,1) and &, = CQ(B,q 5) Accordingly, we define

0s3(71, 7o) as follows
C2\/Y
26, as
C1

where PIOX_1_(ryr, h) denotes the proximal operator of 7+

ég(T17T2) = prox 247 (r+72h) (9* -

Toh with the step size 5. Similar to the two previous cases,

we define 03 = 93(0, 0). The training and generalization
error corresponding to problem P are not given by (@) and
(@), instead we have that

- . P
= P(0.0) £ =024 Oy
87’1

gtrain

T1 =0
Now, we provide a summary of our main results:

Theorem 1. Informal statement of the main results
There exist symmetric intervals 71 € [—71,77] and 7o €
[—75, 73] with sufficiently small universal constants 7y, 75,
a wide family of strongly convex, separable functions r
and potentially non-convex, separable test functions h, for
which in the asymptotic limit,

Pi(11,72) = Po(m1,72), Pa(r1,m) ~ Ps(11,7) (17)

and hence ~ ~
Pl(Tl,TQ)W.»Pg(Tl,TQ). (18)

By the above result, we may conclude for such scenarios
that

5t7"a7in(él) ~ gtrain(éZ) ~ gtraina (19)
ggen(él) ~ 5gen(92) ~ ggenv (20)

and
h(0:) ~ h(6;) ~ h(Bs). 1)

The above result also holds for {1 regularization under
some considerations about the true model 0* and the ac-
tivation function.

Discussion of Main Result: By Theorem[T} the generaliza-
tion/training error and other properties of the original prob-
lem Py, represented by a test function h, can be found using
the solution of P3 = 153(7'1 = 0,72 = 0). See Theorem
for a precise statement. Note that Ps is scalar and since
r is separable, calculating E {./\/l s (0* — Cg‘fqb)}
straightforward (71, 2 are set to zero). Hence, P; is simple
to evaluate using standard computation techniques.

We note that Theorem (1| is, at first sight, similar to Theo-
rem 1 in Loureiro et al.| (2021)), which is also based on the
Moreau envelope and the proximal operator of the regular-
ization function. However, we note that the argument of
the Moreau envelope in their expression is more complex
and cannot be generally evaluated even if r is separable.
Hence, our result is novel and not the same as (Loureiro
et al.,|2021, Thm. 1) and allows significantly easier calcu-
lation of the generalization error compared to other existing
methods in the literature for the correlated RF model.

Our proof has two building blocks: Using a novel multi-
level application of CGMT, we show in Theorem [2} the
convergence of P, to the scalar optimization problem P;3
in the left hand side of . The universality result, i.e.
the asymptotic convergence between Py and P; in the right
hand side of is presented in Section f.4 The other
claims i.e (T9),(20) and are subsequently obtained by
an individual argument.

For strongly convex and thrice differentiable regulariza-
tion functions, the universality relation in the right hand
side of has already been demonstrated in Hu and Lu
(2020). Here, we extend these results to the case of a se-
quence of strongly convex, thrice differentiable functions
with bounded third derivatives that converge uniformly to
the regularization function (Theorem [). Such functions
may not be even differentiable. Moreover, while Hu and
Luf (2020) also shows the universality of the generaliza-
tion/test errors, we extend this result and show that the en-
tire discussion holds true for an arbitrary test function h
obtained as the uniform limit of a sequence of thrice dif-
ferentiable functions with bounded third derivatives. Exact
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assumptions will be shortly presented. The above approach
also allows us to extend the universality results to elastic
net (Corollary [I)) and ¢; regularization (Theorem|6), which
have not been provided in the literature before.

4.2 Assumptions

Below, we provide a list of all assumptions considered in
our study. The specific assumptions that are used for each
result is provided under the statement of the associated re-
sult.

Al The regularization function satisfies one of the below:

— Case A: For positive constants u, L > 0, there
exists a sequence of functions (¥) that are sepa-
rable, p-strongly convex and thrice differentiable
with L—uniformly bounded third derivative
The sequence r(*) converges uniformly in the
limit of & — oo to the regularization function
T.

— Case B: The regularization function is r(0) =
All6]]s.

Note that it is sufficient that one of these assumptions,
either Case A or Case B, holds true.

A2 For positive constants [, > 0, there exists
a sequence of thrice differentiable functions h(*)
with [—uniformly bounded second derivatives and
L—uniformly bounded third derivatives. The se-
quence h®) converges uniformly in the limit of k —
oo to the test function h.

A3 The noise vector € has elements ¢; which are i.i.d with
Ele;] = 0, E[€?] = 02 < 0o and E[e}] < oo.

A4 The dimensions n, m, d remain at constant ratio when

they are increased to infinity. These ratios are given
m

byy=.n=7%andd=yn="7

A5 The true model 6* is independent of X. We
assume that for some constants c¢,¢/,C > 0,
P (s max(IVr(6°) 2, [ Vh(67)2) > ) =
and P(max; |(Vh(0%))] >
Cvefc'(lognﬂ2

O’
clogm) <

A6 The activation function o (+) is odd, with bounded first,
second, and third derivatives.

Given the assumptions, we state the values of the bounds
on 71 and 7y:

_ /8
i1 +2V6)% + p3

"Note that for a generic multi-variable function, the deriva-
tives are tensors and we refer to their operator norm for bounds.
However, as the functions are separable, i.e. a scalar function is
applied element-wise, the bounds are simply on the derivatives of
the scalar function.

Il <7 Il <5 =45, 22

where the values of i and [ are given in A1 and A2, respec-
tively. Both of these bounds are chosen to ensure that the
sum of the regularization function and the two “r terms”
remains strongly convex with high probability.

4.3 Asymptotic Gaussian Results

In this section, we state our main result connecting P in
(1I0) and Ps in (T4).

Theorem 2. Let Assumptions A3-A5 hold and r + 2h is
£ —strongly convex for T, € [—715,75]. Then for all 71 €
[, 7] and 72 € [—75, 73],

7 L0 (23
n,m,d— oo

‘152(7'177'2) - P3(7'1,7'2)

Moreover,

A A 1 o
‘ <gt1“ain (02) ) gtrain (02 ) 5 E h(02))

T o (24)

n,m,d— oo

~ ~ 1 o
- (gtrain7 ggenv mh(03))

where 05 is the solution to problem (10) and 0 is the solu-
tion presented in (13)) associated with Pj in (T4).

This result makes the statement in the second equation of
(1"7) precise. Note that we do not need A6 and the assump-
tion for r, h is weaker than the combination of A1-Case A
and A2. A6, Al-Case A and A2 are required for the next
step concerning P;. The results for A1-Case B will be ob-
tained from the study of Al-Case A, in a suitable limit.
Note that for this result, p; and p* in (9) can be arbitrary,
but we will set them to the values discussed in text follow-
ing (9) for the subsequent results.

4.3.1 Proof Sketch of Theorem 2]

The proof of this statement makes use of the Convex Gaus-
sian Min Max Theorem (CGMT), which establishes an
asymptotic equivalence between a primary (P) and an al-
ternative (A) optimization problem of the following form:

P(A) = i TA 25
(A) min Mmax y+v(xy) (29
A(g,h) = mi T Th
(g, h) = min max|lyllx"g + [x|l2y
+i(x,y) (26)

Here, A € R™*" g € R™, h € R" have i.i.d standard
Gaussian elements, ¥ (x, y) is an arbitrary convex-concave
function, and S, C R™,S, C R" are compact and con-
vex sets. For more details, see supplement [Al To prove
Theorem [2} we first fix W and 6* and translate the origi-
nal minimization problem into a min-max problem of the
form in (23)) by suitable transformations and change of vari-
ables. Then, we invoke the CGMT which eliminates the
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randomness (in X ) due to the data set z E] and re-express
the problem in terms of (26). The resulting expression is
given in (Dhifallah and Lu, 2020} |[Loureiro et al., [2021),
but it is well-known to be intractable as it depends on the
covariance matrix of the Gaussian feature map. Here, we
introduce a key novel step. We show that assuming random
weights W, under further suitable, non-trivial transforma-
tions, the resulting equivalent form in (26) itself can be
transformed into the form of (23)) with a new random matrix
A representing the randomness of the weights. This allows
us to apply the CGMT again, resulting in the elimination of
the random matrix W. Finally, we simplify the expressions
obtained by the second CGMT application, which leads to
the results in Theorem 2] The full proof is given in the

Appendix [B]
4.4 Universality

Next, we demonstrate universality. Here we show that the
solution vectors problems P; given in (7)) and problem P,
given in (I0) result in asymptotically equivalent values, not
only in the training and generalization error, but also in a
wide family of other test functions h. We provide two novel
theorems, in this sections, that extend the existing results
for the universality of random feature models. For com-
pleteness we first state the existing results by Hu and Lu
2020).

Theorem 3 ((Hu and Lu}, 2020) Theorem 1, Proposition 1).
Let assumptions A3-A5 hold. Set 7o = 0 and let r(6) be
a regularization function that is strongly convex and thrice
differentiable with uniformly bounded third derivatives. Let

él, 05 be the optimal solution to the problems given in
and (10), respectively. Then for all Ty € [—1],7{],

Py(71,0) = Py(71,0) 27

As a result,

‘ (gtrain (él )s Egen (él))

- (gtrain(éQ)a ggen(é2)) L) 0 (28)

n,m,d—oo

Remark 1. The statement of the Theorem [3]is adapted to
the particular setup that we consider here. For complete-
ness the original theorem is given in appendix |[C|as Theo-

rem [0

We are now ready to present our contribution. Firstly, we
demonstrate the following theorem, relaxing the condition
on the regularizer in Theorem[3] to A1-Case A and extend-
ing the result to an arbitrary test function h:

Theorem 4. Let A2-A6 hold and the regularization func-
tion r satisfies Al-Case A. Then for all 1y € [—7{,7{] and

This means that the terms including the random matrix A in
P(A) will be removed and replaced by terms including random
vectors g, hin A(g, h).

T2 € [—7'5, 7-2*]’

‘151(7'1,7'2)—152(7177'2) —L o0 (29)

n,m,d— oo

As a result,

(Eran(01).800(01), 2101

T L0 @30

n,m,d— oo

(Birain(@a) Epnte). 100 )

The next result illustrates that universality can also be ap-
plied to elastic net regularization

Corollary 1. Let A2-AS5 hold. Let r(6) = \||0||; +
£1161|3. Then, the claims of Theoremhold true.

4.4.1 Proof Sketch of Theorem [d

The original proof given by Hu and Lu|(2020) is valid only
for regularization functions that are strongly convex and
thrice differentiable with uniformly bounded third deriva-
tives. We first extend these results to sequence of regular-
ization functions r(*) that converge uniformly to a function
7. Noting that this theorem holds for all r*) with k < oo
the proof consists of demonstrating that the relations hold
in the limit. Second, Hu and Lul (2020) does not consider
the term 72h(60). We adopt the original proof of Hu and Lu
(2020) and modify it to demonstrate that the results simi-
larly hold with a more generic test function /(). The proof
of these results are given in the Appendix [C.3]

For the specific case of elastic net, we construct a valid
sequence 7(¥) (0) that uniformly converges to the elastic net
regularization function, see Appendix

4.5 Random Features and Scalar Optimization
Problem

We now connect the original problem P; to the scalar op-
timization problem P; by combining the results in Sec-
tiond.3]and Section4.4] This leads to the following precise
statement of the main result in Theorem [T}

Theorem 5. Let Assumptions A2 - A6 and Al.Case A hold.
Then for all Ty € [—73,7{] and 7o € [—75,75],

P 0 @D

n,m,d— oo

‘151(71,72) — P3(11,72)

Moreover,

m

‘ (gtrain(él)v Etrain(01), 1h(é1))

~ 1 ~
(gtraina Egenv mh(03)> d

—— 0 32)

n,m,d— oo
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4.6 Results for ¢, regularization

We further extend these results to the case of ¢; regulariza-
tion. For this case, additional assumptions are needed. In
particular, we may only consider scenarios, where problem
(2) is sufficiently sparse. This is defined by the following:

My = %iPr (ém, £ o) 33)
=1

where 9@3 denotes the i™ element of 93 for the regular-
ization function r(0) = A||0]|;. We prove the following
theorem:

Theorem 6. Let Assumptions A2 - A6 hold and r(0) =
M|O||1. The exists a constant p only depending on the
activation function o and the parameters of the problem
(X, 02,7,n) such that for My < p, the results of Theorem
[| holds for v(8) = A||6]]1.

4.6.1 Proof Sketch of Theorem 6]

We adopt the proof in [Panahi and Hassibi| (2017, which
performs this procedure for i.i.d. sub-Gaussian features,
and modify it for the random feature model. Extending
the results for the ¢; regularization involves the results for
the elastic net optimization in corollary 1. In |Panahi and
Hassibi| (2017) (section 3.3 of supplement), it is shown
that for a small value of p in the elastic net regulariza-
tion All.[|1 + 4/ [|3, the 5 term can be removed and the
change of the solution is negligible, if the matrix X satisfies
a proper restricted isometry property (RIP). In |Panahi and
Hassibi| (2017) (Ilemma 8 in supplement), the RIP is shown
for i.i.d. sub-Gaussian features. We extend this result and
show that a similar RIP condition holds for random fea-
tures model. The condition on M ensures that the optimal
solution is sufficiently stable, which otherwise is not guar-
anteed with the lack of strong convexity. The full proof is
presented in Appendix [C.5]

5 Elastic Net Regularization

In this section, we apply our results to the case of elas-
tic net regularization, for which asymptotic learning curves
has not been previously proposed. We consider the regular-
ization function

(07
r(8) = N[0l + 5116113, (34)

where A and « are two regularization parameters. We note
that in the case of A = 0 we obtain ridge regularization and
in the case of o = 0 we obtain ¢; regularization (LASSO).
Due to the continuity of the asymptotic expressions, the
analysis of elastic net may be directly used for the study of
ridge or LASSO regression simply by setting either A = 0
or « = 0. Our interest in studying elastic net stems from

the sparsity-promoting effect of the ¢; regularizer on the
solution vector. When viewing the RF model as a shallow
neural network, the effect of a sparse solution is to disable
a number of nodes in the hidden layer. As a result, elastic
net finds a subnetwork of the original NN with a minimal
degradation in performance, in effect a form of network
compression. For similar attempts, see for example (Tang
et al., 2022} |Oyedotun et al., 2021} |Yu et al., 2014).

The asymptotic equivalent solution to the elastic net regu-
larized problem is given by

28,07 2 Wai A
R 2201139 (2021+a ¢’ - 201+a le < _Cli
(HB)Z = 206114-04 + (2021-&-1 (ZSL + 201+a (bl > CQi ’ (35)
0 - Clz S ¢7, S C21
in which (3; and (; are given by
A — 26107 A+ 26,07
Go= Q2200 RER0) g

VG2 VG2

and ¢1, ¢ are the constants described in Theorem [2} The
solution may also be expressed more succinctly by means
of a soft thresholding operator. A full derivation of this
solution may be found in the supplement section [D] We
note that in the limit of A — 0, we obtain —(y; = (o;
and the solution collapses into a single case, that being the
result for ridge regression.

According to theorem [5]and[6] the characteristics of the so-
lution vector 91, reflected by a suitable function h, asymp-
totically becomes close to that of 93 (the ¢4 case is un-
der sparsity condition). Here, we consider the sparsity of
the solution. For this reason, we take a separable function
he(@) = > hc(6;), where hc(f) is a positive C° bump

function such that h.(0) = 1 and h.(f) = O for |0] > .
Our results apply to this function and we note that

n0(8) < he(6) < n.(6), (37)

where n.(60) is the number of the elements 6; in 6 with
|0;| < e. In particular, ng is the number of zeros. We may
show that by theorem [5] and the law of large numbers, the
value of %he(H) converges in probability to a constant s

calculated by analyzing 5. We refer to s := lirr(l) S¢ as the
e—

“effective sparsity” of 0. Roughly speaking, s counts not
only the zero entries of 81, but also the vanishing entries as
the problem size grows.

By direct calculation, we shown in the supplement section

Dl that
o N E[(8) 0] @

where ¢; and (ég) ~are defined in (33). We note that for

pure /1 regularizatioln this formula may still be used by set-
ting @ = 0, although we can theoretically support it for
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small values of sparsity. In this case, s = 1 — M, where
My is given in (33). Experimental results for effective spar-
sity maybe be found in the supplement [E. ]

6 EXPERIMENTS

6.1 Experimental setup

Using the expressions derived in the previous section, we
examine the case of elastic net regularization experimen-
tally. We choose the tanh activation for the non linear-
ity of the feature map. We consider a deterministic vector
0* that consists of half ones and half zeros, . We set the
noise power 02 = 0.1 and let § = 1. We consider multiple
cases, where for each case we solve the problem P; (equa-
tion (T4)) using an iterative refining grid search algorithm.
We compare the results to an experimental simulation in
which n + m = 1000, with the relative ratio varied for dif-
ferent values of v = m/n. Each empirical data point was
averaged over 100 random realizations of the weights W,
and the data z. More details maybe found in appendix [E]

6.2 Elastic net model

We compare the experimental and theoretically derived val-
ues for training and generalization error of the elastic net
model for two cases. Firstly we vary the ratio v = 7 for
fixed values of the regularization parameters, and secondly
we vary the regularization parameter A for all other param-
eters being fixed.

The case of varying ~ is shown in figure [I| Here, we fix
A = 1073 and choose several values of « including 0, the
case of pure /; regularization. Our expressions accurately
predict the expected behavior of a network, the small devi-
ation explained by the fact that n, m are finite. However,
the discrepancy is only notable in a small range near the in-
terpolation peak, suggesting the validity of our expressions
in a wide range of networks of a non asymptotic size. We
observe that small values of « result in a spike in the gener-
alization error at the interpolation threshold, which in this
model, is slightly more than v = 1. We note that as the
regularization parameter increases in strength, the interpo-
lation peak diminishes. This is consistent with other results
on the study of the double descent phenomenon (d’ Ascoli
et al.| 12020).

In figure |2l we choose o = 1072 and vary the value of
the regularization parameter A at constant -y. We note that
that the generalization error suggests that at each ratio of
~ = 7 there is an optimal value of A that minimizes the
expected error.

7 CONCLUSION

We derived expressions to determine the exact asymptotic
learning curves for square loss random feature models, sub-
ject to strongly convex regularization, or ¢; regularization.
These expressions consist of a 4-dimensional scalar opti-
mization with two min-max pairs that is computable us-
ing standard techniques. We proved in two steps that these
expressions coincide with the asymptotic learning curves:
First, we demonstate that the scalar optimization is asymp-
totically equivalent to a surrogate Gaussian model whose
first two moments match that of the RF models. For this,
we proposed a novel multi-stage application of the CGMT.
Then, we extended the results of the universality of RF
models to a broader family, including elastic net and /¢4
regularization, thereby demonstrating an asymptotic equiv-
alence between the Gaussian model and the non linear RF

: L
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(b) Generalization Error

Figure 1: Theoretically predicted (solid line) and numeri-
cally determined (markers) values of the training error (a)
and generalization error (b) for the random features model
with /1 + ¢ regularization as a function of v = *, for
varying values of regularization strengths of « at constant
value of A = 1073,
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Figure 2: Theoretically predicted (solid line) and numeri-
cally determined (markers) values of the training error (a)
and generalization error (b) for the random features model
with /1 + ¢ regularization as a function of the regulariza-
tion parameter A, for varying values of the ratio v = ¢
constant value of o = 1073,

model. Our results for universality hold not only for the
cases of training and generalization error, but also for test
functions & from a wide family.

There are several potential directions to extend our study.
A particularly interesting direction is to use our methodol-
ogy to obtain refined expressions for a more generic loss
functions, extending the existing studies, e.g|Loureiro et al.
(2021).
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A Gaussian Min Max Theorems

We make use of the Gaussian Min max theorem as well as the Convex Gaussian min max theorem in the proof of theorem
1. The Gaussian min max theorem was originally proven by Gordon (Gordon,|1985],1988). The CGMT was developed by
(Thrampoulidis et al., |2014)), we state the theorem here for completeness.

The Gaussian Min Max theorem states the following:

Theorem 7. Let A € R™*" g € R, g € R™ and h € R"™ be independent of each other and have entries distributed i.i.d
according to N'(0,1). Let S; C R™ and 8o C R™ be nonempty compact sets. Let f(-,-) we a continuous function on
Sy X 8. We define

Pi(A):= min maxyTAx—l—ngH llyllz + f(x,¥), 39)
x€S; YES
Py(g h) == min max|lx|l:g”y + [lyll2h"x + f(x,¥). (40)
Then for any c € R:

The Convex Gaussian Min Max theorem extends these results to the following:

Theorem 8. Let A € R"™*" g € R™ and h € R" be independent of each other and have entries distributed i.i.d
according to N'(0,1). Let S; C R™ and 8o C R™ be nonempty compact sets. Let f(-,-) we a continuous function on
81 X 8. We define

o T
Pi(A) = min maxyTAX + f(x,y), 42)
Py(g,h) = min m: maXIIXHzg y +llyll2h"x+ f(x,y). (43)

Then for any c; € R we have that
P(Pi(A) < c1) < 2P(P2(g,h) < 1), (44)
Under the further assumptions that S and Sy are convex sets and [ is concave-convex on S1 X Ss then for all co € R

P(Pl(A) > CQ) < 2]P)(P2(g, h) > 02). 45)

We note that if in the limit of n, m — oo the value of P (g, h) concentrates on a value a then similarly P;(A) converges
to the same value.

B Proof of Theorem

To prove, theorem [2] we shall apply the CGMT (supplement theorem [§) to obtain an alternative problem formulation for
(T0). Subsequently, we will simplify the alternative problem, and then express it once again in the form that is suitable for
a second CGMT application. Applying the CGMT for a second time, we obtain a second alternative problem. After sim-
plifying this second alternative problem, we will demonstrate the results in Theorem 2] To begin with the first application
of the CGMT, we fix W and change the variable 6 in (10) to e = § — 0* to obtain

1 1 - 1 -
Py(r1,72) = min —|je — —Xe|[2 + —r(e + 07) + ~eTRe + 2h(e + 0%), (46)
e 2n m m m

v m
~ ~ 2

note that the rows x; of X are i.i.d, centered and Gaussian with the covariance matrix R = %WTW + pEI . Hence, we

may write X = UR? where U has i.i.d. standard Gaussian entries. Next, using the Legendre transform of the square

function, we may write (T0) as

1 1 - 1 1 1 -1
Py(71,72) = min max 5>\Te — m>\TURl/2e — %Wg +—r(e+67)+ ETleTRe +—mh(e+6) (47
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In here 71 € R and 75 € R are constants and by the assumption, r(e + 6*) + mh(e + 6*) is 5 —strongly convex. We
require that 71 is chosen sufficiently small, to ensure that the entire optimization problem remains strongly convex in e. In
particular, we ensure that the term B(e) := r(e + %) + 11e’ Re + 1oh(e + 6*) is &-strongly convex. First, we show that

1/8
p(1+2V5)2 + p?

In| <7 =

(48)

will satisfy this condition with high probabilityﬂ For this reason, we introduce the following lemma:

2
Lemma 1. Define Cy = pi (1 + 2\/5) + p2. For a random matrix W with i.i.d. standard Gaussian entries and
R= %WWT + p21, the following relation holds:

i [HRHQ > cﬁ] < 2e~em 49)
for a universal constant ¢ > 0, where || - ||2 denotes the spectral norm.
Proof. We note that by the definition of R, we have that

2
IR~ | Gww? | < 2w+ 2 (50)

2

The elements of W € R™>? are i.i.d normally distributed. From a standard result in matrix theory (Papaspiliopoulos)
2020)[Corollary 7.3.3] we obtain

1
P(—||W]|y > 1+ /m/d +t) < 2e~". (51)
Vd
Choosing t = y/m/d yields
1
P(—||W]||s > 1+ 2V03) < 2e°™, (52)
( \/EH |I2 )
where we recall that § = 7. This provides the desired result. O

According to lemma , the term eTReis 2CR —smooth, and hence for 7; < 2C , the term B is ” ’4" = Z —convex. This

is the same as the condition in (@8)). Hence, in the rest of this proof we assume that B is strongly convex.

Next, we note that applying the CGMT requires that both A and e are in compact feasibility sets. Here we employ a
similar strategy to (Thrampoulidis et al., 2016 [Dhifallah and Luj 2020; [Loureiro et al., 2021} by showing that with high
probability, the solutions of both the original problem and the alternative problem can be bound in fixed compact sets,
hence restricting the optimizations to these sets will not affect the result. As a result, we may apply the CGMT.

Lemma 2. Consider the following two optimization problems that correspond to the primary optimization and to the first
alternative optimization in CGMT.

1

. 1
P, = mi “Ae— ATXe — —||A B 53
21 =minmax —A"e n\ﬁ H H2+m (e) (53)

. , 1 1 - 1

Py = melnmf,xﬁ)\Te — m||R1/2e||2>\T \ﬁ||,\|\ 2h"R/%e — n\|>\\|§ + —B(e) (54)

In these equations g, h are standard normal vectors of size n, m, respectively. Denote by € 1, €3 o the optimal solutions
of 152,1 and ]3272, respectively. Furthermore, respectively denote by 5\1(e), A2 (e) the solution of their inner optimization
(over A) for a given vector e. Let B be strongly convex with constant & and max {||Vr(0*)||,||VAh(0*)||} = O(y/m).
Then, there exist positive constants Co, C'x only depending on u such that the following hold true:

3Throughout this paper, the term “high probability” means a probability converging to 1 as the problem size grows.
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* The solutions ey ; for i = 1,2 satisfy

Jim P (ma ][l [82.]l2) < Cov/m) (59)
e It also holds that
lim P sup max{|\5\1(e)||,||5\2(e)|\} <Onm | =1 (56)
M \ellle| <Cevm
Proof. We note that B is 4 strongly convex. Solving for A in both optimization, we may write the optimization over e as
min Fj(e) i=1,2 (57)
Where F;(e) is the optimal value over A. We note that setting A = 0 in both optimizations, we obtain that F(e) > L B(e).
Then we see that
Ble) > B(0) +d"e+ L lel3 (58)
where d = VB(0) = Vr(0*) + 72 Vh(0*) and by the assumption ||d|| = O(/m).
For optimization P;, we note that
F(0)= - B(0) + 5 el (59)
= — — |l€]|5 -
m 2n 2
This implies that for the optimal solution é we have
1 1 2 - 1 L7 Ho= )2
—B(0) + — =F(0)>F > —B(0)+ —d — 60
—B(0) + 5 [lell; = F(0) > F(&1) > —B(0) + —d"& + &[5, (60)
which yields
M 1?1 1
e+ =d| < —|lel]z + —]/d]|3. 61
o |[E < gl + g lal (61
Then, we obtain
1 2m 1
&1 gng‘ +\/62+d2. (62)
el 29, WH 13 NQH 113

From the standard matrix theory (Papaspiliopoulos} 2020)[Theorem 2.8.1] we know that ||€||3 < cn for some ¢, with high
probability. We observe that there must exist some constant Ce, such that

im P([[e]]2 > Ce,v/m) = 0. (63)
Now we consider (34). Our strategy is similar to the previous case. We note that if we let 3 = ||A||2 we can solve the
optimization over A to obtain:
B L g2 B raip, B2 1
F(e) = Elle - R - h"R'?e — = + —B(e). 64
(e) 2o n || \/TTLH |8 ny/m " wmtm (e) ©4)

The optimization is limited to 8 > 0. Hence, its optimal value will be increased when the constant is lifted, leading to a
quadratic optimization and the following result

1 1 1, - B 2
F(e)< —B — (|le - —=|IR'? — —h"RY/? 65
< (e)+2n< €= Tml e”Qg‘ N ) ©
and in particular
F(0) < —B(0) + o—lel3 (66)
~m on '
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By applying the same inequality as in we obtain that

. 1 2m 1
leall < 1ol + /22 el + Sz 67

As such, we obtain

hm P(||&2]| > Ce,v/m) = 0. (68)

Now, let Ce = max(Ce,, Ce, ), and use this to define the set Ao = {e € R™||le||2 < Cer/m}.

Next, we note from the optimality condition of the inner optimization in Eq. (33) that

Ai(e) =€e— %URI/QQ (69)

As such, for all e € A, we have

Aa(@)lls < llells + H fURW IR el 10)

lellz < llells + \

We note from lemma |I| that |R!/?||5 is bounded, and we make use of standard random matrix theory to conclude
||ﬁU||2 < C' with high probability. Then, making use of the same arguments as before we can see that there must
exist a constant C'y, such that for alle € A,

i P (sup A1 (e)] > Ca, Vi) =0 an
n—oo ee e
Finally we note that the optimality condition over 3 of problem[54] gives that for all e € A,
R - 1 = 1 =
B =)z = |l - =|R'?e|>g| ——=R'?h
vm i vm
< lella + —=l1glls IR llells + ——=[RY2]ls[1]s (72)
vm W

We note that with high probability | €|l2 < Cv/n, ||g]l2 < Cv/n and ||h||2 < C'v/m. From this we can see that there exists
a constant C', such that

lim P (sup [ A2(€)|]2 > CAZ\/E) =0 (73)
n—oo ecAe
Taking C\ = max(Cy,, Cx,) completes the proof. O

We use the definition of the sets A = {e € R™| |le||2 < Cey/m} and Ax = {X € R"| ||A||]2 < Cxy/n} in the rest of
this study. By the lemma above, we can with high probability, restrict ourselves to the following problem

eCAc AEAN T n\/m

1 ~ 1 1
P2 1(T1,72) = min max f/\Te - \/>)\TUR1/2e - %H)\H% + EB(Q)’ (74)

and be certain that the solution vector and the optimal value to the problem P, will be equal to those of the problem 162”1.
We now make use of the CGMT, (Thm. [8)). From which we obtain the following optimization problem

1 - 1 _ 1 1
_ T, 1/2 Ty - T™Rl/2,  — 2 -
B ,= min max nA € nm||R ell2g” A n\/mHAHzlﬂl R%e — o [[All; + —DBle) (75)

In which g ~ N(0,1,,) and h ~ N(0, I,,). Note that by lemma (2}, ]52/71 is also identical to 152,2. We now let 5 =
ﬁHAHQ We further note that 0 < 5 < [Sj,4 in Which 3,4, can be arbitrarily larger than Cy. We can solve the
optimization over A to obtain

2

- 1

As; = min  max ||R1/2eH2g - \/ﬁihTRl/Qe - % + —B(e) (76)
nm m

1
b H v \/

We now note that the first term of this problem concetrates. We prove this in the following lemma
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Lemma 3. Consider the term

1 1 ~ I} ~ B2 1
F = 3| —e - —|R'2 -~ —~———h"RY?%e-"— 4+ =B 77
(0.) = B | Tz~ = IR el ~ —ZTRYe— -+ p(e) )
and let I be given by
- L= B o rerp, B 1
F(e, ) = B\/az — —|R2e|f — ——h"R'e — T-+ —I(e) (78)
Then there exist positive constants C, c such that for any € > 0.
P ( sup |F(e, ) — F(e, )| > 6) <Ce ™ (719)
€€Ae,0<8<Bmaa

Proof. We see that F' can be expressed as

1 1= 1 -
F= ﬂ\/n|6§ + ——[R2e|3gll3 ~ mllRl/QellzeTg

g 5 g1
7\/ﬁhTR1/2e — ? + EB(G)

(80)

Or equivalently

1 2 2 2 1 R1/2a](2 1 2 1 R1/2a|2 2 R1/2 €'g
F =B\ —llelz =02 ) + 02+ —|R2e[3 | —[lgllz =1 ) + —[[R"/?e[[; — —=[R'/?e]|;
n m n m vm n

2
- 1
_ B prRize BTy —B(e)
nm 2 m

<F+BVE <F o+ BraaVd 81)

in which

1 1, =~ 1 2 - el'g
3= (el - 2) + IR el (Sl - 1) - TR el B

1 1 €'g| def <
< (nllelé - o?) +CeCr (anI% - 1) +2y/CrCe | =8| 5 (82)

We know that C; and Cj are universal constants. It is also clear that the probability that P(|5| > €) < Ce™“"¢ for some
constants C, ¢ > 0. From this we can see that

P < sup |F'(e, B) — F(e,ﬁ)\ > 6) <P ( Sup |68] > 6) <P (‘ﬂmax(ﬂ > 6) <Ce™ ™ (83)

e€Ae,0<B8<Bmax e€Ae,0<B<Bmax

For some constants C, ¢ > 0.

O
Because of this we can with high probability, examine instead the problem
Py = min max f(y/o2+ i||15L1/2e\|2 - LhTRl/2e _& + lB(e) (84)
27 e€Ae 0<B< fman € m 2 nm 2 m
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We now note that the optimization problem is convex in e and concave in /3, and both optimizations are over convex sets,
as such we can interchange the order of min and max

. - B rare. B 1
_ CIR1/2al2 — X WTRY2 _F | —
P, pmpax errelhn 6] m”R ell5 Mh R“e 5 + mB(e) (85)

We now note that for any scalar value a, we can express /a = mingso 2 + ;—q. Making use of this ”square root trick” we
can obtain the problem

5 . . Bq s 24 B 1/2 412 B TH1/2 B 1
P2 N OSénSaE)fnaz 361}411 (Iminrgrlqlg(hnam 7 + 270-6 2 HR e|| \ nmh R ¢ 7 + EB(G) (86)
We note also that ¢ can be bounded between ¢,,,;, = ¢, Which is obtained when e = 0 and ¢pax = /02 + CRC’G?. We
can also swap the order of the two mins obtaining
2
_ - ~ 1
P, = min min b + s o2+ iHRl/QeHg - LhTRl/Qe _& + —B(e) (87)
0<B<ﬁmm Gmin<q<qmax €€EAe 2 2q 2gm vnm 2 m

At this point we will consider only the inner optimization problem over e and consider /3 and g to be fixed. We shall return
to the outer optimization later, and instead only consider

Ba B o B s1a 2 B rh g* 1
Dy =D = G ——|RY2¢|2 - ——h"RY?e - — 4+ =B
2 Q(ﬂaq) enel,IAHQ 9 + 2qge + 2qm|| e||2 \/m e 9 + m (e) (88)
We now make use of the definition of R. We note specifically that
~ ~ ~ p2
RY?h=h~ N(0,R = iWWT + p?T) (89)
Which by the additivity of Gaussians can be expressed as
- P1
h=-—7Wa¢, + p.¢> (90)

Vd

In which ¢ ~ N(0, 1) and ¢o ~ N(0, I,,,), we also pull the relevant factor of e"Re out of B(e). We make a new
definition B(e) = r(e+6*)+72h(e+60*), we remind that B(e) is by assumption 4 strongly convex. Making the relevant
substitutions we obtain

_ Bq B 59% T 112 ﬂﬂ*
Dy = mip G4 0?5 Pl W34 el -
Bpr 1 Bos 1 B2 TPt om0 PR o L
Wo, — - — 4+ —||W —B 91
\/me ¢1 M(er 9 + md H eH2+ - ||e||2+m (e) ( )
We complete the square over the terms that contain W7 e, obtaining:
2
2 2
+ 2qT1 vmd
D, = min pi(f 1 2qm) W'e — e 1 i 112
ecAe  2gmd p1(B + 2gmTi)v/n 2n(B8 + 2gaq)
Ba , B (5 + 2qu) Bps 52
— 4+ — T - — B 2
ty g+l lell3 = SE=gFe - -+ (e ©2)
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We now introduce another maximization over p as the convex conjugate of the £3 norm. We obtain

2
o Pi(B+2qm1) 1ot Bpr v, pIB+ 2(]71)
Dy = min mgx qnd P W e —p $ Sqmd P 12
B%q B p2(B + 2qm1) 2 Bp« Te 52
s el + 5+ ot A e - TP gt - T ) ©3)

Our goal now is to apply the CGMT again to this problem. We note that the problem in convex in e and concave in p.
However we need to show that e and p can be bound to compact and convex sets, and that the optimal points of both
optimizations fall within these sets. We prove this in the following lemma

Lemma 4. Consider the following two optimization problems that correspond to the first alternative and second alternative
optimization by the CGMT

2 2 2 2
Dy = min maxﬂ1(5+ qu)pTWTe Bp1 pT oy —MH ||§

ecAe P qmd W Sqmid
Mﬁﬁqu”|¢1l|2++§ +M|| 2 \5”;& ,Ez+ Lo o
%:@“W%;W%p'%“‘ﬂximbbf@‘ﬁﬁ%“%ﬁgmw@
MI¢1II2++5 +M|| 2 - j”;w _EQJF Lo o9

where ¢3 and ¢4 are standard normals of dimension m,d respectively. Denote é-,€3 as optimal points of Dy and

D3 respectively and pz(e), ps(e) as their inner optimization solution for a fixed e. Let B be § strongly convex and

max {||Vr(0) |, [VR(O)||} = O(/m). Then there exist positive constants Ce, Cy, only depending on (i such that

liin P(||&]]2 < Cevm) =1 i=2,3 (96)
and
lim P sup ||pi(e)|ls < Cpvmd| =1 i=2,3 7
mee \elllel|<Ce

Proof. We know that C,, exists from the fact that in D5 e is already in a bounded set. For both optimizations, we solve
the optimization over p, and write this optimization over e as

min F;(e) i=2,3, (98)
where F;(e) is the optimal value over p. We note that setting p = 0 in both optimizations we obtain that
1 B%q B p2(B + 2qm1) Bpe o B2 1
Fe)> —T(e):=——5—"—— +—+— +7 e— — + B 99
(€) > . T(e) = g sl . el = JEdfe G+ L Ble) ©9)

On the other hand, by taking the second derivative, we observe that T'(e) is v = 5= *’6 + & strongly convex with respect to
e. As such, we find that

T(e) > T(0) +dTe + gueug, (100)

where d = VT'(0). We note that by the assumption, d = O(y/m). For the optimization D3, we let £ = ||p||2 and solve
the optimization over p to obtain that

ax P3(B +2qm )€ o
£>0 qmd

p(B + 2qm)
qmd

bor o | - pi(B + 2qm)&
vnmd ! 9 2gmd

We note that dropping the constraint over £ will not decrease the optimal value, as such

Fs(e) = ¢s3+¢& lell2a — + %T(e) (101)

2 2 2 2 2 2 1
Fs(e) < max 7p1(5;mqul)£eT¢3 +¢ 7p1(ﬁq;dq71)”e”2¢4 - f%;d(ﬁl T —pl(ﬁ;;m(gl)g +—T(e) (102)
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From which we see that

§Bp1 pi(B+2qm)E% 1
F3(0) < —_—— 4+ —T(0
3( )_mgxm\|¢1||2 2gmd —1(0)
d 1
__oVmidlgnla 1 s
2y/np1(B+2qm)?  m
From this we obtain that
Bvmdy||$1 |2 1 . 1 1 .7 v 9
—T(0) > F(0) > F. > —T(0 —d — 104
2y/np1(B + 2q71)? +m (0) = F(0) = Fy(e) = m ( )+m e+2m\|e\|2, (104)
and hence
v 1P 1 Bvmdq|| 1|2
Zdll < —=11d|12 105
2m et vy T Um” 2+ 2y/np1(B + 2q71)? (105)
or
1 2 mBvmdq||p1]|2
< Z|d —|d||2 106
lell2 < 111 |2+\/V2|| I+ o, (106)

Noting that with high probability ||¢||s < C'/d and recalling that n, m, d all grow at constant ratios, we can see that there
must exist a constant Cg, such that

P(|és]] > Ceyv/m) — 0 (107)

We then let Cp = max(Co,, Ce, ) and define the set A, = {e € R™|||e||2 < Cer/m}. Then from the optimality condition
over p for eq (94) we know that

. Bvmd
e)=Wle - (108)
p2(e) pl(ﬂ+2qmﬁ)\/ﬁ¢l
and as such for all e € A, we must have that
R Bvmd
< 109
B2(©)ll < [1WIkllell2 + -~ ol (109)

We know as a standard result that |[W||y < Cv/d and that ||¢; ||o < C/d with high probability. As such the constant Cp,
must exist.

Finally examining the optimality condition over £ of problem (95) we find that for all e € A, we have that

qB8V'md
p1(B +2qm1)vn

qBvV'md
p1(B +2qm)vn

&= |ps(e)ll2 = e"p3 + | [le]|l2¢ps — |1

2

< |le[l2l|#sll2 + llel|2|l@all2 + llp1]]2 (110)

We note that with high probability ||¢:|l2 < VdC, ||¢4ll2 < VdC and ||¢3||2 < /mC. Recalling that m, d grow at
constant ratio we see that the constant Cp, exists. O

We can therefore define the constants Ce := max(Ce,) from i = 1,2, 3 and C, = max(Clp,, Cp, ), and by doing so define

the sets A. = {e € R™| ||e[|s < Cey/m} and Ay = {p € R| ||p|]> < Cpv'md}. From this we can see that with high
probability the optimal value of the optimization P, will be equal to that of
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2 2
. P1(B+2q11) gt _Bp1 p” p1(B + 2q71) 2
Do = s 7 W PN - =472
2 gelgl ;I)Ié%lx qmd p e vnmd 1= 2gmd Il
B*q B pi(B+2qm1) o Bpe 7 B2
__pra PG P2 PP T 2N AN 11
st + 5 oz O g B e B e i

We now apply the CGMT to the problem D5 for fixed values of 3, ¢, we obtain the following problem

. 2(B+2 +2 2(3 492
D3:£££i}iw”p”2€T¢3+M” 12 T¢4_\/i%pT¢l_pl(ﬂ2qm;ﬁ)HpH§
B%q B o 2B +2qm) Bps« To 8?
W”%Hﬁfuf e+7ll 13— Teeie T L) 12

Let & = \/’% l|lp| \.2 and solve the optimization over p. We note that £ > 0 and that £ < &4, = \/’ﬁ Suppea, |[P|l2-
From this we obtain the problem,

2 2 2 2
D3 = min  max pi(B+24m) el g +§Hp1 B+ qu)H ||2¢4_£¢, _ (B+2qm)¢
T e€A.0<E<bmar  qv/mid vl 2q
5q s *(,6’+2q71 Bps g 1=
—_— e —B 113
(B + 2qr )H¢1||2+ +2 2+ 2qm lle|lz — \/—ﬁbz 5 T (e) (113)
We now show that this term concentrates in the following lemma
Lemma 5. Let F(e, &) be given by
pL(B+2qm) 7 le ﬁ+2qu) B (8 +2q71)€?
Fle,§) = —F+~— + || == _ AT AHTLS
(0.8) = Ty 1 6 lellsg — |~
B%q B p*(5+2qﬁ) 2 Bp r. B 1g
- i = - - —+ —B 114
s el + 5+ ot + P e - TP gTe - e (114)
and let F'(e,§)
- pr(B+2qm) 1 PRB+2qm)* o B2 (B4 2q7)€?
F(eé) = "—F7—— + & | ——le|ls+ — - ——FF—
(0.6) = T e gy 4 6y [P el + o
B%qd Ba B (ﬁ+ 2q1) Bps r B 1~
—_——+ —= 4+ — = - - -—+—B 115
2n(B +2qm) 2 + 2(]06 +- lefl3 - \/nm¢2e 2 + m (e) (115)
Then
]P’( sup |F(e, &) — F(e, &) >e> —F 0 (116)
e€Ae,0<E<Emaxn m,d—oo
Proof. The lemma is proven in the same manner as lemma|[3] O

By this lemma we can with high probability consider the following problem instead:

D3 = min  max p1(5+2q7'1)eT¢3+§\/p1(ﬁ;—2q7'1)|| ||2 ﬁd M

0€Ae0<E<Emar  qv/md 24
8%qd Ba . B </3+2qn) Bp g 1g
S s S T sk T Lt AV S8 A —B 117
Bty " 2 —|—2q05—|— lle|l3 — F% 5 +m (e) (117)

We now interchange the order of the min and max. As the problem is clearly convex in e and concave in £ and the problem
is over convex sets this interchange is admissible.
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D3 = i P8+ 29m) o pi(B+2qm) [3 d (B+2qm)€
Ds= o B od © ¢3+§\/|l B+~
B*qd Ba B 5, pAB+2qm), .. Bps g2 1
“2n(B + 2qm) 7*2*0'6**” ol ~ Tes®ie— 5 T8 (118)

We now make use of the square root trick one more time, introducing new parameter ¢, we note that ¢ can be bounded by

2 2 2 )
i = 222 and g = \/¥ + AABrmel oy

- _ . p(B2m) o, ER(B+2gm)? o BPEd (B +2qm)ER
D3 N Ogg%%}r(naz tminrﬁntlgtmaw eng}gle q\/ md ¢ ¢3 + 2t 2 HeH2 + Qtn 2q
B2qd & Bqg B , (ﬁ+2qﬁ) Bp* B 14
Y ST LIl S AP T AT ~B 119
om(B+2qm1) | 2 2 +2q‘7€Jr lell3 - Jnm $re— 5+ -Ble) (119

Where we have changed the order of the two min operations. We can now define the constants,

C1 =

2 2 2 2 2 2 2 2
§p1(B + 2qm1) + pi (B +2q71) Cy = Pi(B +2qm1)*n + p232 (120)
2tq2 2q q2

and we note that by the additivity of Gaussians we have that

C2 p1(B +2q71) Bp«
= - 121
qu omd @3 MQE (121)
We obtain
2 2
N — & v, B*d  (B+2qm1)§
= B, | min el + ogTe S 2
62qd &t Bg B pg* 1
-+ =4+ —+ —0.——+—B 122
2n(6+2q71)+2+2+2 3 T b (122)
Completing the square over e we find
_ 2 2 d 2 2
D3 = max min min a e 02\/ﬁ¢ 55 (6—’_ q71)§
0<E<Eman tmin<t<tmas €EAc M 2ciy/n ||, 2q
B2qd 5 Bq 6 B* 14
-+ -+ =+ —0.—-—+—B 123
2n(ﬁ+2q7'1)+2+2+2q 3 t B (123)

Finally noting that in the aysmptotic limit ||¢||3 concentrates to m with high probability, and then recognizing the Moreau
envelope over e (see definition[I]below) we obtain the problem

_ 1 2 d 2 2
Ds = max min —M ;1 5 cgym /5 §d  (B+2qm)¢
0<€<&maz tmin <t<tmaz T 2eq 201\/7 461’/7, 2tn 2q
B2qd &t Bq B o 52
T Al T 5 T 5 T 50 124
m(B+2m) 22 207 3 (124)

We can recall that B(e) = r(e + 6*) + k(e + 6*), and letting @ = e + 0*, we obtain

2 2 2
N — . GVm Bid (B +2qm)¢
T 0<E<Emas tmmr<nt12tmm mM (r+72h) (9 2¢14/n > 4c1n = 2tn 2q
2 d t 2
Faod &, Pa, B B (125)

om(B+2qm) 2 2 T2 ¢ 2
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Finally we show in Lemma [§]that the Moreau envelope will concentrate in the asymptotic limit on its expected value. As
such we finally obtain:

_ c3/m 62§d (B + 2q71)€2
Ds = i —]E *_ 2
3 Oggéag):uzz tm,ingltlgtm,am m M (T+T2h (0 261\/5 ) 461“ + 2tn 2(]
B2qd & Bg, B 5 B
T 126
mB+2g) 2 2 "% 3 (126)

We know by the properties of the CGMT that for any fixed choice of 3, ¢ that D3(3, ¢) converges pointwise to Do (8, q).
However to determine the properties that we are interested in we require uniform convergence. For this, we simply show
that Do (8, q), D3(3, ¢) are Lipschitz continuous for 5 € [0, SBmax] and ¢ € [¢min, gmax]-

Lemma 6. The problem Dy as given in (88)) and problem D3 as given in equations and are C-Lipschitz
on the compact set K = [0, Bmaz] X [@mins @maz] for some constant C' < oo, with high probability.

Proof. We first consider problem Dy given in equation (38).

Bq BU B 51/2..012 B TH 62 PR 1 -
Dy = — ——|IRY — —h"Re - — + —eR —B 127
Hfllln 2 t o 2q +2qm|| ellz vnm © 2 +me e+m (e) (127)

We note that the objective D((, g, e) is strongly convex, the solution is hence unique, and D, is continuously differentiable
on the compact set K. We simply bound its gradient, which is given by

0Dy 0D\ a0 L mip ! WRe—
aﬁ - aﬁ |e=e* 92 2q + 2qm||R ||2 Mh Re B (128)
2
0Ds _ oD o é . Pog . B ||R1/2AH2 (129)

dq  9q lo=e= 2 2¢2  2¢°m

where é€ is the optimal solution. Noting that € € A and 3, ¢ are bounded, we obtain the result for D.

For problem D3 we make use of the same strategy by calculating the gradient. Defining é,f as the optimal solution of
(117) , we observe that

2 2.2
c_ [ PTa2 Fetd 130
é ¢MJME+“B+MHW1 (130)
Further, we define
2 2 2
. +2 . d
q*m n

Finally we examine the partial derivatives of problem D3 with respect to 3 and ¢,

87[)3 — P1 eT¢3+gp%(ﬂ+2q7-1)||e”2+@_g_ 5qd + BQQd
opB gvmd tg*m 27 in 2g n(B+2qm) 2n(B+2q7m)?
2 2
q  oc | Py Bp-
+2 + 20 " 2qm e[|z — \/—(ﬁz =B (132)

D3 pi(B+2qm)

T §P1(ﬂ + 2(]7'1) 2, 50%7'1(5 +2qT1) 2 (B + 2q7‘1)€2 27'152
= e ¢3— g llella + 5 = llell2 + 5 -
dq vmd tg3m 2tg*m 2q 2q
2d 2 d 2 2 2
L = NIRRTV e
(B +2qm) n(Bf+2qm)? 2 2¢? 2¢°m qm

Noting the boundedness of the involved terms, we conclude the result. O
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We have established that both Dy and Ds are Lipschitz, we now create a rectangular € net A/ on the set [0, Brnaz] %
[¢mins @max) consisting of k = w points. We can then see that

|D2(B,q) — D3(B,q)| < |D2(8,q9) — D2(Br, qr)| + | D2(Br, qr) — D3(Br, a)| + | D3(Br, ar) — D3(5,q)|
< CeV2+ |Da(Br, qr) — Ds(Br. qx)| + Cev2,  (134)

Bk, qr, 18 the closes element of the e-net to 3, g. The second inequality is due to the fact that both D5 and D3 are C-Lipschitz
with respect to both /3 and ¢ and the distance of between 3, ¢ and S}, ¢, cannot be more than /2. From this we can see
that

sup |Da2(B,q) — Ds(B, )| <2Cev2+ sup |Ds(B,q) — Ds(B,q)| (135)
0<B<Bmazqmin <q<qmaz B,qu
As aresult,
P < sup |D2(8,q) — D3(B,q)| > 406\/5> <P ( sup |D2(B,q) — D3(B,q)| > 206\@> (136)
0<B<Bmaz qmin <q<qmax B,qeEN

For a fixed and k, the right hand side goes to zero by the union bound and the second CGMT. Therefore the convergence is
uniform in the sense that

P ( sup |D2(8,9) — D3(8,9)| > 5) -0 (137)
0<B<Bmaz,qmin <q<qmax
for any § > 0. Finally we can obtain the following optimization problem:
- 1 2
P; = max min max min E—M 1 (,4r,n) (0* _ Czﬁ(b)
0<B<Bmas Gmin <q<qmas 0<SE<Emax tmin <t<tmas M  2¢1 2h 2¢14/n

Com, 2 d +9 2 2 d t 2
_em | Ped (B+2m)e  Bed & Pg B P (138)

deyn - 2tn 2q (B +2qm) 2 2 2 2

We have now demonstrated that Py converges in probability to P,, which subsequently converges to Py. This establishes
the first part of Theorem 2, about the optimal values. We show the asymptotic equivalence of the generalization error and
test functions by following lemma

Lemma 7. Let 05(71, 72) be the solution of Py (I0) and let O5(71, 72) be the solution of Py as given in (I38), then

P ~

Egen(02(0,0)) ——— Egen (139)
1. 4 1 .
—h(62(0,0)) ﬁ —h(63(0.0)) (140)

Proof. We note that for any optimization P(7) = min F'(e) + 7G(e) with optimal solution e it holds that

P(1) < F(ep) + 7G(ep) (141)

Applying this observation to our problem with 7, = 7 and 7» = 0, we obtain

(6 —6*)TR(6 — 6*)

PQ(T, O) < PQ(O,O) +7 (142)
From which we obtain that
P o D px\TR(OA _ O*
»(7,0) — P2(0,0) < (0 —6*)"R(0 —6%) 50
T m
D p\TR(A _ O* .

m T
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Take an arbitrary 6 > 0. For sufficiently small values of 7 and from the convergence of the optimal value we have that

N \TP (A * P P
P((a-@) R(0-0") _ Py(7,0) = P5(0,0) 5)_”)7 >0 (144)

m - *t3

. ((é_e*)Tf{(é—e*) N P3(0,0) — P3(,0) &

—2> T<0—=0 (145)

Where this relationship follows form the fact that Py(7y,75) converges to Ps(7y, ) for all 7y € [—7f, 7] and 75 €
[—75,75]. We also know that for sufficiently small values of |7| we have that

Py(7,0) — P5(0,0)  9Ps(71,0) _9d (146)
T on -2
T1:0
The uniqueness of the solutions £, é .4, B guarantees that the derivatives exist. We then obtain that
0 p\TR(A _ 0* p
IP( (0-6")R(6-6") 3(671’0) > 5) =0 (147)
Tl 7'1:0
from which we finally obtain that
6—60")TR(0 — 6" P3(11,0
( )" R( ) njm 3&;1, ) (148)
1 71=0
This provides the first result, but we can also compute that
D 2 2 2
B(n,0) _lg ‘ 0" — czﬂﬁb — Prox _i_ (9* - Czﬁd)) -
on - m 2¢14/n Zeq 2¢14/n 5 0T
T
+ 0* _ C%\/E(ﬁi Prox 1 0* _ cg\/m(p C%m% _ CQ\/E% ¢
2c14/n Zey 2¢14/n c1y/n 0T Vn omn o
. G2d
e 1 (149)

where c¢; and ¢, are evaluated at B .4, é ,tand 7, = 0,75 = 0. In this computation we have made use of the following rules
for the derivatives of Moreau envelopes

1
VieMrp(x) = ;(X — prox, ;(x)) (150)

0 1 2
EMTJC(X) =53 |lx— profo(x)H2 (151)

Using the same symmetric logic for the case of 72 we find that

h6(0,0)2) p  OP3(0,7) (152)
m n—00 8’7'2
T2:0
where we find that
dP;(0, Yy
SO hoy(B.a.é. ) (153)
7—2 T2:0

From this we see that

E%h(ég(0,0)) — Eih(ég(o,o)) (154)
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Finally to demonstrate the generalization error we note that

) 1 N2 ) ) 2
59@7;(02) =K (ynew - = (Znew)TQQ) =K (fnew - So(znew)T(OQ - 9*)) (155)

1
V¥ NG
in which we have made use of the definition of ¥,,c,, = \/—%gé(znew)e* + €new. We recall that E[3(Zpew)P(Znew)] = R.
As such we obtain that

Egen(B2) = 0L + - (156)
By the calculation above we see that
; dP3(71,0 .
gqenw?) - g + 3(7—17 ) = ggen (157)
’ 87'1
T1 =0
0

B.1 Non Deterministic True Vector

In the previous analysis we have assumed that the true vector 8* has been deterministic. In the case of 8* being random,
we can freeze its value by conditioning on 8*. The proof holds for a random 6* with high probability, according to the
assumptions. This shows that the results hold for a suitable random 6*.

B.2 Moreau Envelopes

We remind the reader of the definition of the Moreau Envelope and the proximal operator.

Definition 1. Let f : X — (—o0, o0] be a proper, lower semi-continuous function on a Hilbert space X'. Then the Moreau
envelope with step size T of the function is given by

_ 1
M (y) = min f(x) + o~ x -yl (158)

The proximal operator of the function f with step size 7 is given by
1
= i —||lx - 159
prox. (y) = arg min f(x) + o— [lx — | (159)

Here we give a lemma concerning the concentration of Moreau envelopes.

Lemma 8 (Gaussian Concentration of Moreau Envelopes, extension of (Loureiro et al.| (2021), lemma 5)). Consider a
proper convex function f : R™ — R. Furthermore, let g € R™ be a standard Gaussian random vector and a € R™ a
constant vector with finitely bounded norm. Then for any parameter T > 0 and for any € > 0, there exists a constant c
such that

PQiA@Aa+g}4EFA@Aa+QHZe>S ‘ (160)

n nr2e?
The original lemma as given by (Loureiro et al.| 2021 does not have the constant vector a and instead only considers a
Moreau envelope over a Gaussian. We give a proof here for this case but note that the original proof may be applied by
instead considering the shifted function f(-) = f(- — a). We give the proof here for completeness.

Proof. First, we show that the Moreau envelope of a convex proper function f is integrable with respect to the Gaussian

measure. By making use of the convexity of the optimization problem that defines the Moreau envelope, and because f is
proper, there exists a zg € R™ and finite constant x such that

1
<kt —|z0—g—al’ (161)
nTt
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The second line is integrable with respect to a Gaussian measure. By means of the Gaussian Poincare inequality (see for
example, (Boucheron et al., 2013)).

2
(162)

1 c c 1
Var [ L2+ 8)] < B [IVeMos(a+ )] = e |1 (e+a - prox, (g -+a)

n

2

From (Bauschke et al., 201 1)[Proposition 12.28 and Proposition 4.4], the function f(g+a) = z — prox, ;(g+a) is firmly
non-expansive and

lg +a— prox, (g +a)ll3 < (g +alg — prox,;(g + a)) (163)

which implies that
lg +a— prox, ;(g +a)l3 < ||g +al3 (164)
by means of the Cauchy Swarchz inequality. O

This implies that

Cc

: c(n+ ||la 2 C
var [n/\/lrf(a-&-g)} < nQTz]EH||g+a||§” _ c(n+lall3) _C

2

(165)

n272 ~nr

in which we have used the fact that the norm of a is bounded. By making use of Chebyshev’s inequality we obtain that

P <’;M7f(a+g) -E [:LMTf(aﬂLg)H > €> < s (166)

nrle?
C Analysis of Universality

We recall the definition of the perturbed optimization problem as a function of the feature map

2

1 1 1 1 1
Plnom) =ming |- JmXe|, t mrlet 0+ pneRet mhle+67) (o7
and
Pry,m2) = min — LI 2+1 (e+6) + reRe+ ~mhe+6") (168)
TLT2) = W e vm eg m' \C m 1ERe T e ’

where X, X are respectively generated by the following two alternative feature maps

p(z)=0 (%Wz) (169)
b(2) = %Wz +p.g, (170)
which lead to the following two covariance matrices
R = E,[p(z)pT (z)] = E, [a (1Wz> ol <1Wz>} (171)
d Vd
R =E,[¢(z)p" (2)] = %%WWT + il (172)

Now recall the function B(e) = r(e + 6*) + 1.eRe + m2h(e + 0*). We recall that r is assumed to be p-strongly convex.
The values 7y € [—77, 7] and 72 € [—75, 73], with the bounds 75 and 75 chosen to be sufficiently small such that B
remains 4-strongly convex

We can now state a theorem concerning Universality that is an extension of Theorem 1 in|[Hu and Lu|(2020)
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Theorem 9 (Extension of Hu and Lul (2020)). Assume that assumptions A3-A6 hold. Fix 71 € [—717,77] and 7o €
[—75, 73] Finally assume that the regularization function r(0) is strongly convex, thrice differentiable with bounded third
derivative.

Then for every € € (0, 1) and every finite constant c, we have that

polylogm

B(P(n, ) el 2 2) < B(P(rm) —c| 2 ) + P28 (173)
and
- olylogm
P(|P(r1,72) — ¢| > 2€) < P(|{P(r1,72) — | > €) + % (174)
form > E%, in which polylogm is a function that grows no faster than a polynomial of log m. Consequently,
P(ri,m) ———— ¢ iff P(r,m) ——¢ (175)

n,m,d—o0 n,m,d—oo

This theorem is different than the one presented by (Hu and Lu} |2020) in two ways. Firstly we have restricted ourselves
to the square loss function which simplifies this analysis, we discuss this difference in remark 2] Secondarily, the term
associated with 7 is different. We consider generic test functions h(6) satisfying assumptions A2, (Hu and Lul 2020) only
consider one particular case of h(0) = %gTwe in which £ is their teacher vector. The changes required to their proof
to apply to generic test functions are minimal, and we give an outline in proof sketch below.

Remark 2. We note that the conditions considered by [Hu and Lu| (2020) are slightly different than the case considered
here. However the proof is sufficiently generic that it applies to the case considered here. Specifically, (Hu and Lu, |[2020)
consider a generic strongly convex and thrice differentiable loss function l(ﬁg@(zi)o, y;) for a particular data element

1. For the labels y;, (Hu and Lu, 2020) consider a function wteach(z?{:) in which & is a teacher vector and Yseqch 1S @
differentiable function (except at a finite number of points) and is bounded by
Ve €R  reaen(z) < C(1+ |z|F) (176)

for some constants C' > 0 and positive integer K. They then prove their results for the joint distribution (\/% v(z)10;27¢),
which is jointly Gaussian through the variable z. In the case considered in this paper, we consider y; = ﬁgo(zi)G* + €

for some known vector 8* and noise ¢;, and specifically choose the square loss. This allows for the definition of the error
vector e = @ — 0*, and allows us to instead consider the distribution (ﬁcp(z)e; €;) which simplifies the analysis in this
case.

C.1 Proof sketch

Here we discuss how to extend the results of |[Hu and Lu|(2020) to the case of generic test function h(0), instead of their
particular choice of %SW& The structure and details of the entire proof remain almost unchanged, except for the
following set of minor changes, where the equation numbers refers toHu and Lu| (2020):

* Inequation 172 step (a) and in the proof of (Hu and Lu, 2020) lemma 19, the property that [\; > 51T, where

k—1 n
1 1 1 1
Hyo=— Y I"(—=¢(z:),8)p(z:)@" (z:) 1 — "(—=wp(zi)e)p(z:) " (z;
= ;:0 (mw(z ), @) (2:)p (2i)+ — i:§k+1 (ﬁw(z e)p(zi)p” (z:)
+diag{r’ (e + 0*)} + V*(r.e’ Re + mh(e + 6%)), (177)
where € is the optimal solution to the problem given in|[Hu and Lu| (2020) (equation 32), [ is the loss function and {”

its second derivative, in our case the square loss. For the case of for our choice of 72 € [—75, 73] and assumptions
A2, and recalling that r is p strongly convex, this property holds.

* Similarly they require that R\; given in equation 187, defined as
1 T T
R\ (0) = ;l(\/mcp(zi) 0) +j§::1r(0) + 710TRO + 121 () (178)

to be £-strongly convex. Which obviously holds with our restrictions on h.
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* In equation 210 they require that that G(e) = r(e + 6*) + 11" Re + 72h(e + 0*) is & strongly convex and that
IVG(0)]] < CVim (179)
Which is clearly satisfied by assumption A2 and assumption A5 (see errata for updated assumption AS5).

* Finally in equation 252 they require that ¢, ¢/, C > 0
P (max [(Vh(0%));| > clog m) < Ce~¢ (logm)” (180)
This boundedness is satisfied by assumption AS5.

As these are the only changes necessary to prove (Hu and Lu, [2020) results for more generic test functions we do not
reproduce the proof here in full.

C.2 Universality of Generalization Error and Test functions h

In this section we demonstrate that the universality of generalization error holds for strongly convex and thrice differentiable
regularization functions, making use of the perturbation that we defined above in problem We prove the following
result based on results from [Hu and Lu|(2020). For this theorem we require the following definition

Definition 2. In Thegrem we showed that P(11,7) i Py(71,72). Let the partial derivatives of P(7y,73) at 7y = 75 =
0 be denoted by 52-P5(0,0) = & and 7% P5(0,0) = 7.
Note that derivatives may be readily computed as done in lemma[7] We now state the following result

Theorem 10 (Universality of Generalization Error). Assume the same assumptions hold as in theorem[9 and let & and 7
be given in definition 2] Take the Generalization error for a given feature map as

2
ggen(ev (P) =E (ynew - (P(Znew)T9> 5 (181)

1
vm
where Zpew, ~ N(0, 1) and ypew = \/%Lp(znew)TO* + €new, Where €y, is noise. Then

Egen(01,0) = b and  Egen(02,8) = Elery (182)

in which

Eron =02+ i (183)
Proof. We let 7o = 0 and let Let Zpe,, ~ N(0,1,,) be a new Gaussian vector that is independent of all other training
samples, and let Y, = ﬁ@*Tcp(z) + €new. We can then express the generalization errors as

2
. 1 . 1, .
Egen(01,0) = Ec,y znens [enew - \/m‘io(znew)el] =02+ EelRel (184)
. 1 2 1 -
5gen(927 SZ’) = Eenew,znew l:enew - W@(Z7Lew)é2:| = 0'3 + EéQRéZ (185)

Let ko = %négRéQ, from which we see that g, (p) = 02 + Ko. We start by noting that by lemmathat Egen(ég, p2) =
02 + ko — 02 + &, which proves the second claim. Now, we consider the value of x; = L&l Ré;. By the definition of

the optimization problem we have
P(Tl,TQ :O) S P(0,0) +T1é2R1é2 (186)
For any 7;. From this it follows that for any 7 > 0 we have

P(r,0) = P(0,0) _ _ P(=7,0)= P(0,0)

(187)
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We choose an € > 0. By deﬁnitionthe limit function Ps (71, T2) is differentiable at the origin and we know from theorem
@andthat P(11,72) L, 153(7'1, T9).On the other hand there exists some § > 0 such that

P - P
0 3
Substituting this into the first inequality of equation [I87]above and letting 7 = § we obtain
P - P
]P’(/il—fi<—€)§P((670)5(070)—,‘%<—6)
< P(|P(5,0) — P3(8,0)| > b¢/3) + P(|P(0,0) — P5(0,0))[ > b¢/3) (189)

Now by assumption we have that P(d,0) i P5(8,0) and P(0,0) R P5(0,0). 1t then follows from Eq that
lim, . P(k1 — & < —e) = 0. The exact same reasoning may be applied to second inequality to obtain that

. . P
lim,, oo P(k1 — & > €) = 0 as such k1 — &.

O

We now prove the universality of the test functions h(8).
Theorem 11 (Universality of Test Functions). Assume that the same assumptions hold as in theorem[9)and let T be given
in definition[2] Then

Lh@) 55 and ~n(6y) = # (190)

m m

Proof. Our proof takes a similar form to the proof of theorem|[I0] We let 71 = 0. Then we note that by the definition of the
optimization problems

P(m = 0,72) < P(0,0) + 72h(61) (191)
for any 9. It follows that for any 7 > 0 we have that

P(0,7) — P(0,0) < h(él) < P(0,0) — P(0,—7)

T -7

(192)

We choose € > 0. By definition the limit function Ps (71, T2) is differentiable at the origin. Therefore there exists some J
such that

P. ~ P
5(0,0) ~ P5(0,0) _ | € (193)
) 3
we substitute this into the first inequality of equation above and let 7 = §. We obtain
P(ih(él) — < —€) <P (P(O’é) —POO) _ ;o e)
m ]
< P(|P(0,8) = P5(0,6)| > d¢/3) + P(IP(0,0) — P5(0,0)| > d¢/3) (194)

Because of the universality laws given in theorem (9) and Theorem |2} we know that P (71, 72) Ei Py(7y,75). It then
follows that lim,, P(%h(él) — 7 < —¢) = 0. The exact same reasoning may be applied to the second inequality of
to obtain that lim,, o, P(%h(él) — 7t > €) = 0. As such we conclude that ih(él) — 7. Similar argument proves
the result for ég. O
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C.3 Proof of Theorem[d

We now consider our theorem 4] We first show that the thrice differentiability condition of r(8) can be lifted in the case
that there exist a sequence of function that are differentiable and converge to r.

Lemma9. Ler (F) (0) be a sequence of functions that are each thrice differentiable and strongly convex. Assume further
that r(*) (0) converge uniformly to the regularization function r(0) in the limit of k — oc. Then, the results of theorem@]
hold for this regularization function r(0).

Proof. We define P*) (1, 75), P%) (11, 75) to be the optimal cost for the regularization function r(*) respectively with
feature map ¢, ¢. We choose k to be sufficently large such that |r(*)(8) — 7(8)| < me for every §. This implies that
|P®) (11, 75) — P(11,72)| < €and |P¥) (1, 75) — P(11,72)| < €. Furthermore, by theorem 9} we have

B(IP® (ry, ) — o] > 4e) < P(P(ry, m) — ¢| > 2¢) + ‘”ylfj(”” (195)

and hence
PP(r,m) =l > 50 < P(IP(r, ) —l > o + PEZE (19)
The other case is similarly proven. O

We note that this proof hold analogously for r(8)+72h(8) for a test function k() that satisfies the conditions of assumption
A2. This completes the proof of theorem ]

C.4 Proof of Corollary/l]

We now consider elastic net regularization
€
r(0) = Allell: + ;161 (197)

The following lemma demonstrates that can construct a sequence of regularization function that uniformly converges to
Eq. This result together with Theorem [4] shows that for all € > 0 universality is established.

Lemma 10. There exists a sequence of function r*) (0) that are separable, strongly convex and thrice differentiable that
converge uniformly to the elastic net regularization function given in Eq.

Proof. Define h*)(z) as

V2 vk

in which erf is the error function. It is simple to verify that h(¥) (z) is thrice differentiable and has bounded third derivative.

The maximum difference between |z| and h(¥)(z) is at # = 0 and is \/ 7%= A such in the limit of k& — oo, R ()

2,527
W) () = x erf (ﬂx) + \/;e (198)

converges uniformly to the absolute value function. We choose

m

€
r0(0) = S ll6l3 + > hM ;) (199)

This regularization function statisfies the conditions of the lemma. O

C.5 Proof of Theorem[6]

First consider the universality with elastic net which is proven in Section[C.4] To demonstrate universality with respect to
the ¢; norm, we take the case of elastic net in (197)) with a sufficiently small € drop the quadratic part of (). We note that
for any € > 0, Theorem[d holds. Our goal will be to show that for very small values of e removing e does not substantially
change the value of the training and testing error. We first make the following definitions

Definition 3. Consider an m x n matrix A.
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1. For any k € N such that £ < n, the RIP constant ¢ (A) is the smallest number §, such that for any index subset
Icl,2,...,nwith|I| <k

1-6<o2, (A}) <o, (A;)<1+6 (200)

min ( max (

in which ;,,;,, and 7,4, are the minimum and maximum singular values.

2. Let 0;,(A) for any k& < n/2 be the smallest number 6 such that for any disjoint subsets I,I’ C {1,2,...n} with
|I], |I’| < kit holds that
Umam(A}ﬂ/AI) S 6 (201)

In which 0,4, (X) is the maximum singular value of a matrix X. It is known that 0, < day.

3. We define the admissible sparsity M4, (A) as

(202)
in which [-] represents the positive part.

This admissible sparsity Mga, is the constant p given in Theorem[6] Provided that My, the effective sparsity given in (33)),

is strictly less than M4, the theorem holds.

For our proof we require the following lemma. The original lemma is given in [Panahi and Hassibi| (2017) but we have
extended it here to a slightly more general setup.

Lemma 11 (Extension of |Panahi and Hassibi (2017) lemma 8). Suppose that o is 1—Lipschitz. For the feature matrix
X = (a (ﬁw}jzi))lj and A = \/TWX there exist constants o, B > 0 and 1 > € > 0 such that

i P(Jan(A) + ban(A) > 1—€) =0 (203)
lim P(0mar(A) > B) =0 (204)

Proof. Consider an arbitrary subset I C [m] with |I| = k. Let u € S*~!, where S*~! is the surface of the unit sphere in
R*. We note given W that y = A ju is an i.i.d, centered vector and defining

flx) = m Z < ) i (205)
we have y; = % f(x;). We observe that
Vix) = WWV (206)
where v = <J’ (w\}'TEx) uj> - Note that by Lipschitz continuity ||v||2 < 1 and hence
J
IV < mllw\\z (207)
Hence, by the standard random matrix results, f is u’ = MM —Lipschitz, where p := \/#T%)’ with high probabil-

ity. Hence, y; is L\/ﬁ —sub-Gaussian. The rest of the argument is conditioned on the event that ||W |2 is bounded and hence
leads to 1/ —Sub-Gaussian variables. Define

k
o? := nVar(y;) = p* Z ujuj Ry, (208)
5.3’
where R = (Rj;/) is the exact covariance matrix of the features. It has been shown in the previous works e.g. [Hu and Lu

(2020),that exists a constant ¢ such that

P(lo—1>e) <

1
- 777,(,‘62 (209)
C
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Now, since y; are y—sub-Gaussian, it is standard to show that (Honorio and Jaakkola| (2014))

16M’4A2

E {ek(yff%fﬂ) \w} <t (210)

n

A A
WA: N <

and hence, conditioned on W (which satisfies u' —sub-Gaussianity) we have

1 )\i(?—%zﬂ) 16/4 22
P(ly||3 >0 +¢) =P (Z(yf = e) < min (E ¢ T ] e)‘) < min e w7 211)

n 0<A< 25

Hence, for sufficiently small €, we may choose A = Jﬁ and obtain
P(|lyll3 > 0% +¢) < e~ 212)

where c is a suitable constant that may grow in each appearance. We conclude that for a random W we have

2

P(|lyl|3 > 1+2¢) <P(|lyllz >0*+€) +P(o? > 1+¢) < —e™ "¢ (213)

ol

We may repeat the above Chernoff bound on the event ||y||? < o — ¢, to conclude that

P (|llyl3 — 1| > 2¢) < —e~on¢’ (214)

ol

The rest of the proof is similar to Panahi and Hassibi| (2017). We note that for every A > 0 there exists a set G}, C S¥~!

. ko . . .
of maximally (32)" points such that for any u € S¥~! there exists a point uy € Gy, such that [ju — uy || < A. We denote
B = maxyeg, ||Arullz and A = 0. (Ar) = max,cgh-1 ||Aullz with its maximum being at ug. From this we see that

A= ||A[U0H2 < HA[U.1||2 + ||AI(U1 — 11())”2 < B+ AA (215)
in which u; is the point in G, closest to ug. If A < 1 we obtain

A
max [[Arulls

Omaz (A1) A (216)
This argument may be repeated for the minimum singular value to obtain
Umin(AI) Z mgl HAIUHQ - Umar(AI)A (217)
uecGy,
From equation 216 we see that g = § — A — Ad > 0, we have
, 1 e (3)F
P(omae(Ar) >1406) <P min [|[Aulls > (1—-A)146) ) < P eneo A (218)
and
P(omin(Ar) <1—190) <P(minyeg, |[Aulla <1 =04+ (1 +0)A) +P(0maz(Ar) > 146) <
2 k
Zegmeneo (3) (219)

Choose k =n, A =1, e > l(’%ﬁ and § = 14 2¢y. We observe that P04, (A1) > 14 ) — 0, which proves the second

part. For the first part, note that‘by the union bound

P(5,(A) > §) < Se—cned 3\ 220)
wamr>a 58w (3) () <

Take for example A = £, § = 1, hence o = £. Furthermore, for k = 2an, we have () ~ e"(2®) where H(p) =

—plogp — (1 — p)log(1 — p) is the entropy function. Choosing o small enough such that H (2a) + 2alog 15 < ce2 will
lead to P (0x(A) > §) — 0. We conclude the first result by noting that §,., + 0an < 20240

O
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We note that the feature matrix X satisfies this lemma for most practical choices of the activation function. tanh and the
error function are both odd activation functions that satisfy the assumptions A6 and produce a suitable matrix X.

By the above lemma, we conclude Theorem E] as the rest of the proof in [Panahi and Hassibi (2017) will hold true. For the
sake of completeness we repeat these proofs in full.

Theorem 12. Let assumptions A2-A6 hold and let () = \||0||1. Denote
: 1 2 A *
Py = min —|le + Xel|5 + —||e + 0|1 (221)
e 2n m

Furthermore assume that there exist constants o, 3, €, such that

lim P(0on(X) + 0an(X) > 1 —¢€) =0 (222)
lim P(0mae(X) > ) =0 (223)

Then , R
P)\ _— P3,)\(B,qa§?r) (224)

n,m,d—oo

In which Py y is P3 as given in Eq. (I38) for the case that (8) = \||0]|,
Proof. Let &) be the minimal point of the optimization
Py =min 5-lle + Xell; + lle + 6711 + 5~ lell3 (225)

We know that from Lemma [2] and [4| that there exists a number C, such that for every u < 1, |[&(?]|3 < C2m with high
probability. We define

1 A .
p(e) = 3lle —Xell3 + Z{le + 67, (226)
From the KKT conditions we know that .
— e € ap(e™) (227)
where O represents the subdifferential. We define ((©) = —pué(®). We let K = an and select k entries of &(©) with the

largest absolute values and collect their indices in I. We set ag = 0 € R¥ and let ¢ = 0. We now perform the subsequent
iterative algorithm.

1. Define Ay = Xy, andleth; = € + Xjfé(ltc) and solve
1 N
min o [[by + Aywl[3 + A||0, + wl[1 - af' w (228)

define its cost function and optimal point by p;(w) and w; respectively

2. Find k elements in I with largest absolute values in XITtC Xy, (wy — egi)). We denote the indices by ;1. We set

agy1 = C}f)“
3. We construct e**1) and ¢(*+1) such that egfiﬂ) = wy, egfl) = eg?, dfﬂ) = a, and Cgfl) = Q}? + X7 X (Wi —
()
)

4. welett < t+ 1 and return to step 1.

In Lemmabelow we show that this iterative process results in a point e(*) with subgradient ((*) € 9p(e(*)), such
that

1

m

C, de
(o0) _ A(0) < HCe :f 229
e e[z < A, pCy (229)

0 de
CON m Tk def 2
1€ oo < pCe (\/k +1_5k_9k> e (230)
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We note that e(>°) is the optimal point of the optimization

1
P = min o [|e — Xel[3 + A[|6" + ef|; + T 231)

We shall let the subscripts \, i denote that a particular value of ((>) or €(®) are computed for particular values of \, .
We now note that e ¢() < ||e|]1]|¢()||o < pC1lle]|1, and as such

Pur < Paiop (232)
Or equivalently we can express this as
P\ > pur—ciu (233)
We also note that
My = glle+ XeOB 4 AJel) — 67|, + eI ¢)
> mPy, + £TX (e —e®) — )|[e(>) — @], 4 el>T¢ (=)
> mPay — (X2 + Av/m)|[e>) — e[y —[[e[|2][¢>]]

> mPs i — (Omaa(X)[[E]]2 + AWm)pCoyv/m — v/muCy e ||
> mPy ;= (Omaz (X)& + X)uCom — mpuCi(Ce + Caopr) (234)

in which f = € — Xe(?), x is a proper bound that is independent of all other parameters, such that ||€||o < \/m with high
probability. This holds by the law of large numbers, and we note that ||f||2 < ||€||2. From this we find htat

Pu,\ > P)\,u - (O—max(X)T + )\)/1402 - ,uCl(Ce + CQ/L) (235)

Noting that by Theorem 4| that Py , — 153,\,”(67 q,&,7). We note that by the continuity of 133/\,u at u = 0, and for any
€ > 0, we can select a value of 1 small enough such that

P(|Py — Psy o] > €) ———0 (236)

n,m,d—oo

We also note that for any sufficiently small value of § we see that

Pr=Pys 116111 < Pro =Py

237
1) m ) @37
From this we see that )
el » P
238
m n,m,d—oo o\ ( )
O
Lemma 12. The iterative process defined in Theorem 12| produces a point €(>) with subgradient ¢(*) that are bounded
as
1 C def
—le(®) — g0, < —He def 239
—|le e ||2_1—6k_9k pCa (239)
0 de
CN|oo < pCo (/24— )% 0 240
16 < 1o ({5 + g ) 010)

Proof. Firstly we show that ¢; € dp(e()). We prove this by means of induction. We note that by definition ¢y € dp(e(?).
For the iteration step we assume that {; € 8p(e(t)). We note that by the KKT conditions of the problem we see that

(Ces1)1, = & € XT (e + Xe"D) +9]|07, + e+ D1 || (241)

Furthermore we have that
(Crs € X (e +Xe®) + 0|10}, + e[ (242)
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From which we can see that

(Cean)rs € —XT(e+Xel*D) + 9107, +efe™|1y (243)
This shows that ¢; 1 € dp(e(*+1)). This completes the induction.
Next we will show by induction that
1 C. o \'
et _ o)), « _Hle k 244
\/TTLHe € ||2_1_6k¢ <1_5k ( )
G =¢Y (245)
t+1
(t+1) 0. /m
||C(ItUIt+1)E C(ItUIt+1)C oo < ple <1 — 5k> k (246)
To prove this we first note that Eq holds, as by definition ¢;, (t=1) =¢y, (1) = a;. We then note that
1 0 10 m
S e = min )| < uCe [ 47)
We further note that C}g) € op(w = eg )) Therefore by lemma we see that
(0)
1 (0) ||CID H2 MCE
_ < 248
vl = ) S e 24
We now note that at ¢ = 0, by construction
50) =0 (249)
¢ = (0 4 XT A (wo - el?)
and that p; = C}?). From this we see that
(0) O (0) O uCe
I =], < 7 o - ol < 725 @50
From which we obtain
. OpuCe |m
Xy XXy (wo — )| < min [XT, X (wo — ef))| < 222 S (251)
Finally noting that for ¢ = 0 we have that ||e(") — e©||, = ||wo — e Io) ||2. From this we see that the base case of the

induction is satisfied.

We now assume that equations - hold for all ¢ < t we now prove that they will hold for ¢ + 1. We consider the

optimizationat step ¢, we also showed above that () € dp(e(®)). From this we see that
C(t) —a; € 0py (eIi))

From this we see that
(t— (t)

X X'If 1(Wt 1—€r_, )Gap (eIf)
By Lemma|I3|below we see that

1 t -1
—lwe — e |l2 < XXy (Wi = e )lle

1
Vvm (1= 0k)vm

<O wy e
S T-avm

t 1)||2

e —
(1—6k>f”

_ O uCe 0\ uCe 0, \"
T 1—=06,1—6;, \1—56 71:5}@ 1—6

(252)

(253)

(254)
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This proves Eq[245] We also see that

(g () 0 < OnCe (O '
ﬁ”xltﬂxh(wt —ep )l < Okllwe —ej ]2 < 1—6p \1— 0 (259)
Therefore
t+1 t i
||C((Itul)t+1 C((It)UIt-I-l)CHOO = ng}tUIHl)CXL (W o egt))||oo
< min|XI X, (Wi — egt) )< \/7||XI,+1X11 eg?)HQ
— 0, \'
<] =uC, 256
- \/;’u (1 — 5k> (220
This proves Eq[246]

We now see in eqthat if 0, + 5 < 1, then the sequence of e(*) is absolutely convergent. Furthermore, from and
[246] in addition to the relation

1 t+1 0y t+l
S = il = IXE X, o o0l < e (1255 ) @57
From this we obtain

t+1 t t+1 t t+1 t
1) O]y = 1D — Ol + 16D — ¢ B+ 1S e = ¢ lB

ﬁ”(

t—1 t t+1 t t+1 t
= I = O+ 1D — ¢ 1+ 1) =Pl

9k 2t 0]@ 2t4-2 m 9[9 2t+2
vl (125 ) ez (22w -0 (125) 258)

As such we see that the sequence ¢(*) is absolutely convergent. We denote the limits of ¢(*) and v(*) as ¢(°°) and e(°®)
respectively.

We have that

1 o0 [e%e] C 9 t
= 11e(® _ o], < (t+1) _ o) <Z He k
Tl e <) lle © "2—t:01—5k 1-on

t=0
pCe

- 2
1— 0, — 0y (259)

Finally we show that ||¢(°) || is bounded as well. We consider an index i and denote by t; < ¢, < ... as the iterations
of t for which i € I;. In the case that i ¢ Iy by equation 245 we see that

(oo) C(0 Z C(t+1 _t _ Z C (t+1) C(t (260)

t|i€(ltult+1)

As such we obtain

0o m ek
CN<c?+ 3 Y =P < pCey [T+ uCe Z( ) leqnCe (\/ T 1og, —0k> 26D
tlie (It Uli41)° ’
For any 7 € Iy we have hta
-V = > @ (262)

t21|ie(ltult+1)c

By recalling that C};) = 0 we obtain

) t 2
)| < e, ( 05 ) _ pCeb;, 263
|C1 | S ; 1— 0 (1—5k*0k)(1*5k) ( :
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Combining the results in total we obtain

0
() < m,_ % 264
1S Ioo_uCe(\/kﬂ_ék_ek) (264)

Finally we note that because for each ¢, (V) € 9p(e®)) we see that ((*) € Ip(e(>))

C.6 Universality of Generalization Error and Test Functions for /; regularization

We first demonstrate the universality of the Generalization error. We demonstrate that the 2-norm of the solution vector
of the /1 regularized case is asymptotically equivalent to the case of the elastic net regularized case for small values of /3
regularization. We have already demonstrated that the generalization error for the elastic net case is universal, by showing
that the ¢; is asymptotically equivalent we prove universality for that case as well.

Lemma 13. Denote by 0™ as the optimal point of
1 €
Py =min —|ly — X0||3 + \||0 =613 265
e = min =Ly — X613 + All6]]: + /613 (269)

Under the conditions assumed in theorem@ Soreachn) > 0, there exists €, p such that for 0 < € < nand |p| < ), such that

b <|éA+p,e _ 6 0

n

2
B > n) -0 (266)

Proof. We first note that with a high degree of probability we have that

(1 —6(X))

Mo+0 <
2n

(267)

in which M) is the effective sparsity given in equation f > 0 1is a fixed number and | < n is natural number such that
0; < 1. From this we see that (1 — &;) > 2(My + 60) and I[/n > 2(My + 6). We let 0 < o < min(4My, 26), and let
K = My+6—a/2and k = -1 — 1. We note that K > M and

l

k= 1> ——-1>1 268
n(Mo+6 — «a/2) n(Mo + 6) (268)
Furthermore,
a l(1-6X) l[1l-a-§X) « a 1 [l-a-§6(X)
= B Qe S S’ A e S W) B g e A Sl
K=Mo+b-3 < 2 T on 5o 2|7 2%% 2-a (269)
from which we can see that L1 b 116(X
o< Pl (E+DuX) (270)
k
We define a function M, ,, in which r is the regularization function and ¢ are both functions given by:
Mr,w(ﬂaqafar) =E (Q/} (ér(ﬂ,qag,r))) (271)
In which 6, (8, q,&,t) is the optimal value of Py given in (138)) with regularization function r. We now define
MM = M)\‘x|+§m2712 NM = MMX|+§=\I| (272)

Now let § > 0. We cansee that there exist value p, € such that 0 < € < 4, |p| < & such that 0 < N**7:¢ — N0 < §. Then
let v > 0 be defined such that
2 < NATPe — NMO (273)

We define h = 60 — 9> +7:¢. We denote the objective function in Eqas Py <(0). We have that
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A A 1 /e ~
Pripe(0™7) = Pro(0™°) + — (§||49k’0||2 pl16*]11

)
< Pro(@7) + = (S16*°18 - 16> )
J

J . 1 /7€, A A €, A .
= Pripc(077) 4 — (511070113 = pl|0*1]s — 511074713 = pu|0>+7<| 3
n \2 2
A~ € h h A €
< Py (@ )+ SIE L B2 0 (groy, — greve,)

From theorem [ and part one of Theorem [6| we know that

A +p.e]|2 HYA+p, HA,0

H0 +p6”2 ﬂ)MA+p’6 ||0 tee |1 &N)\ﬁ»p,e ||0 ||1 £>M)\,0
n n n

Choosing a value of M > v/ M>+r:¢ we obtain

P, (é)\,O) <Py (é)\+p,€) + EHhH% +M€||h||2 _|_p6
tone = S At 2 n vn

We now define the following index sets
A\ +p,€ A\ +p,e
S={kl6;"" 1= pn}  L={kl0< ;7" <ul}
We also define
A€
Ku *MA|x\+ex2/2,XR\(,u’“)
In which x 4 is the indicator function on the set A. By theorem 4] we have that

IS| P

n

K)\+p €

we also see that

lim K, = M,
(,p,6)=0

Therefore, for small values of § we know that K :)er ¢ < K and as such with high probability

S
S _ g
We also know from equation [275]that with high probability
é)\+p,e
19>l o
n n

This can equivalently be expressed as

Ao, AN, AN, AN,
1105 |11 N 107" 1 - 105" + hs|lx N 1077 + hyllx N |hSy

+ 2u
n n n n n
9 el — ||h hy||— |07 0P +h h¢
16240l — sl | (all = 163, 162 +hull B0l
n n n n
By definition ||0A£+p “|]; < p. As such with high probability we obtain

[Ihs[li = [[hse|[x

(274)

(275)

(276)

277)

(278)

(279)

(280)

(281)

(282)

(283)

(284)

We now define z = y — X0 712 We wish to decompose the vector hge into block T, T3, . . .. We let hyp, be the k|S|
elements of hge with largest absolute value, hr, are the next k|S| largest absolute values and so on. Let U = SUT;. With

that we have

N 1 A+p)
NPy, (0M0) = §HZ — Xh|3 + 5

1027 + ||y + |62 + h| 3
2y

(285)
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We note that 60 = @+ 1 h which is the minimal point of the function Py (8). As such we have
X" (z — Xh) = X" (y — X0°) € \||6*°|,

Therefore
|XFe(z — Xh)||oo < A= —h{.X{e(z — Xh) > —||hye||;

From which we obtain
—hl.XT.(z — Xphy) > —M|hye||; — |[Xpehye|[3

and as such

1 1 1 1 1
511z =Xhll3 = S|z — Xuhy[3 = b XEe + S ||Avhoe[[5 > 1z = Xoho |3 = Albwe|h + 5 [[Xoeho|[3

From which we obtain

~ 1 1 N €
mPyipe(0™7) > Sllz = Xuhyl5 = Alhuelli + 5[ Xpehye[3 + (A + P65 + byl +

AN+ € € AA+p,e € AN+p,e€
A+ )10+ huelli + 1165 + hull; + 116577 + hoe[ 3
We note that w = 0 is the minimum point of the function
1
311z = Xuwll + (3 +p)]|0N 7+ wils + 5 H9””7 +wlf3
Therefore from lemma[T6| we get that

1 . € Arro
Sz = Xuho|3+ O+ p)lI037 + horll + £16)7 +

maz(XU) 1 %) € €ip €
> Tnee X0 3 L) 4 (04 1020y + 1162043

Substituing this in above we get that

nP)Hrp,e(é)\’O) - nPAer,é(éM_p’e)

07277,(17" XU 1 2 € N €
> Tinas X0 12 N = bl O IR bl = O I
10X+ SN e
O-%LG’L'(XU) 1 € €
> Zus KONy 12 4 o]y = 21K geboe I — 200+ 18377y — 201637 ol b
mam(XU) h 2 5 h 71 X;rch 2 A - h
> s XU) 124 /ol — S IX0eBoel |3 — 20+ p)np — 2yl g |

Where we have made use of the fact that

pllhyells > —d|[hye|ly > =d[lhy|li > —dv/n|[hy]|2

and in (Candes et al., [2006)(equation 11) it is proven that

h hy||?
|L|II ull3 = H ullz

[[hye||r <

Also in (Candes et al.,|2006) (equation 12) it is shown that

S 1 4 dg)5(X)
Kool < /1 0 (0 libol = =

(286)

(287)

(288)

(289)

(290)

(291)

(292)

(293)

(294)

(295)

(296)
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As such

TLP,\_;,_p,e(é)\’O) — nP,\+p76(9AA+p’E)
1-85151(X)

1-9 (X) - 1
e E— by} — (1 = —=)aV/nl[hulle — (A + p)nd (297)
2 vk
Noting that |S| < Kn. By equation[270}
14 015/(X 14946 X 14 6(X
ar =1 —0@4m)5/(X) — %() > 1= 0pa4nx(X) — %() >1-0(X)— % >a (298)
from which we obtain
A - « 1
nPyp,e(0M7) = Py (077) = Zlhyl[5 — (1 - ﬁ)&/ﬁllhvllz — (A +0)né (299)
combining this with equation X above
«@ 1 1)
gllhu\lg -(1- ﬁ)5\/ﬁ||hU||2 —(A+p)nd < §|IhUII§ + Mdv/n|[hl]s +nd” (300)
We see that
1
][5 < (1 + k) 13 (301)
From this we see that
@ 2 1+ ﬁ 0 2
s /b2 — dv/n|fhlls — (A +0)nd < S|[hllz + Mov/n|[hl[2 +nd (302)

Since we know that £ > 1, we can see that for any choice of 1 > 0 the value of § can be made sufficently small to ensure
that equation implies that the lemma holds. O

We can now show the universality of the generalization error, we note that for the two cases, the term:

(6’\70 . 0*)TR(0)\,0 — 6% _ (ax,o _ g tpc 4 gAtoc _ 9*)TR(9,\,0 — @ P 4 grtoe _ %)
— (QA,O _ 9>\+p’6)TR(9)\,0 _ 0)\+p,6) + 2(0/\,0 _ 0)\+p,e)R(0>\+p,e _ 0*)
H(O P — 0F)TR(O) P — 07)
< 020 — 0P[R ]2 + 2/ (070 — 022 ) T2 | R[]0 7 — 67
H(@ M — 6*)TR(OM 0 — %)
= (O P — 9\ TR(O TP — 6%) (303)

Where the final step is by the lemma above showing the asymptotic equivalence of the two norm. By symmetry the
argument may be repeated to show that

(0/\+p,e o 0*)TR(0)\+,0,6 o 0*) < (0)\,0 o 0*)TR(0)\,0 o 0*) (304)

In the asymptotic limit. This fact, in conjunction with Theorem |10 proves the universality of the generalization error.
Finally we show that the universality of the test functions h(8).

Lemma 14. For a function h have that with high probability that

h(éA,O)
n

lim
n— o0

- M>\|x\,h =0 (305)

in which M is the function given in (271).
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Proof. We denote 6*€ as the minimal solution of
1 €
Pixe = 5-lly = X6|[5 + M[6]L + 51613 (306)

Because of the results of the lemma[C.6]above we know that

% n A A0 n A n A €
h(6*9) Y i e ) u (X R(OM) S (@)
n Alz|,h = n Az|,h = n n
Sop h(OMPe)
+ (n — Mxgp)lal+ea2/2,h | + (Magp)|al+ea?/2,g — Mjz|,n) (307)

Letting M0 — p= 6*+7<. Then a taylor expansion gives us

S h(OM) ST ROMe) SR (O )ps 4 B (mi)p} /2

n n n

(308)

for some 7). Using the Cauchy-Schwartz inequality and using the fact that h” < L for some value of L we get that

n 7 AN0 N1 AApe n N2 AAHPE n._ 2 n_ 2
SEREN) SR ) 42 P [EIE | LT 500

n n
As b < L we note that |h/(z)| < L|z| + C for some constant C. As such

np N2 (ATPE o gA+p,e)2

nAA+p,e\2
Where C'; is another positive constant. From theoremthe term W

such there exists a constant R > 0 such that

n 1 N2 pAtps€E

converges in probability to some value. As

n

For an arbitrary choice of § > 0. We choose 1, > 0 such that R,/n1 + ¢1m1/2 < ¢/3. Furthermore we can verify that we
can choose an 72 such that for every 0 < € < 72, |p| < 12 that

(312)

b
IM(x+p)lal+enz/2,n = Majznl < 5

letting 7 = min(n,72). Assume that Lemma |16 holds with a proper choice of € and p for this 7. This leads to the
following holding true with high probability
> P
n

S<n<m (313)

From which we find

"h é)\,O "h é)x-‘rp.,e 5
2 MO7T) 2 h ) SRy +eam/2< g (314
n n 3
Finally we note from theorem 4] that
" é)\Jrﬂ,e 5
P <’2:l(n) — M()\+p)‘m|+€mz/27h > 3) —0 (315)
Combining all of the bounds we get with high probability that
(OO
6>) Myjz)n| <6 (316)
n

Since we can choose delta to be arbitrarily small this leads to the desired results. O
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C.7 Auxiliary lemmas for proving Theorem [6]

Lemma 15 (Panahi and Hassibi/(2017) lemma 9). Consider the function p(e) = ||h + Ae||3 + A||e + 0*||; + aTe and
suppose that it is minimized at €*. At an arbitary point e and q € Op(e), then

1
—eflls < —+— 317
lle — e[|z < Ufmn(A)HqHQ (317)
Lemma 16 (Panahi and Hassibi (2017) lemma 10). Consider the function p(e) = 1||h + Pe|[3 + X||0* + e||; + £||e||3
and suppose that it is minimized at €*. Let e be an arbitrary point, then

ple) = ple*) = = [le —e’|l3 (318)
Proof. Letw = ﬁ and f(v) = p(e* + vw). Notice that p(e) = f(||le — e*||2) and f is minimized at 0. A direct
calculation shows that f can be written as f = faw? + g(v), where g is convex and a = [|[Pw||3 + €/2 > 0,in(P)%

Then by lemmal(l7|this reuslts in

o) — ple”) = f(lle — be*lla) — £(0) > Tfle — 7[5 = TP o e G19)

O

Lemma 17 (Panahi and Hassibi| (2017) lemma 11). Suppose g(v) is a convex function on R and v* is a minimum point of
the function f(v) = %1/2 + g(v). Then for any v € R,

(v —v*)? (320)
Proof. From the optimality of v*, we have that —av* € dg(v*). Therefore,

g(v) > g(v*) —av*(v —v") (321)

Hence,
F0) = 17) = av* (v =) + S =2 4 g(v) — o) = S(v = v7)?

O
D Example Case : Elastic Net Regularization
We consider the case of Elastic Net Regularization, the case that
Qa2
r(0) = All6]: + 5”‘9”2 (322)
A simple computation gives us that
2(:19; CQf 2(:10 C2f
N Cgﬁ 22(:1 Jg*a - 2c1\+fa ¢Z 2c1+a 22c145a 201:/#9 ¢l 2c1+a
- * AV ! - @b 2 ) €10, c2 Lo A
0; = (prOX2i1r(0 2, ¢))Z ) 2c1ta 2c1+a ¢l + 2cl+a 2c§+a + 201+\af¢1 < 201—;\-05 (323)
cy co
0 ||2c1+a 201+a¢i|| < 2ci1+a

We note that this can equivalently be expressed in the form of a soft thresholding operator

~ 2¢10F C2\f
03); = L — i 324
( 3) 7—2€1>\+a (261 + o 2c1 + Oz(b ) ( )

Substituting the value of the proximal operator in to the Moreau envelope we find that
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72/\4 0" Cg\f ®) =

281

1 1
(ac1(9;“)2 + 201007 — A7 + C”d" + acy/y90; + /\cgqu) Ligi<—cii)

2c1 + « 2
T T a <acl(a;)2 —20;00F — %v %217 — aca\/700; + /\02f¢>) 1ig50or)
(Cl(a )? + 62V¢2 — ca\/70;] ¢z> 1ic,<6i<Cai} (325)
in which 1 4 is the characteristic function on the set A, and
Cii = (/\?/;Zo:) Coi = w (326)

Taking the expectation of the envelope with respect to ¢ and making use of Steins lemma one can obtain

7EZM *_C;f )

2611+ _ (am(@f)? . 217 + 201 N0 — /\2> Q(Ci) + \/%(211 o (C%;chu +acs 70"+ )\C2ﬁ) o—Ci/2
20114_ - <a61(0;)2 + 021070217 —2c10\0; — ;V) Q(¢2) + \/5(2101 o (OéCEZfQi ~aca 70 + ACzﬁ) o C3:/2
(e + ) (1= Q(6u) — QUGu)) - BYTE (2 = enhr2) 1 B (o2 — G2
In which Q(-) is the Q-function. Defined to be
Q(z) = E/m (328)

This expression may be implemented in code and simply evaluated for any choice of the parameters.

D.1 Sparsity
The effect of the ¢ regularization term is to promote sparsity in the solution vector. Let s denote the number of elements

of @ that are non-zero. We see that

m

S=EY 1g,0=> 1P = E:L— —(u < ¢ < Goi) = Y Q) + Q) (329)

%

We further consider the term %éﬂb and consider what this concentrates on

AT 02\/> 1 2610;< CQI
¢ = Z]Eez¢z = Z]E 0i¢i] = 201+Oém [(TW ((201+Oé 2c1 + o >)>7,:| (330

where in the last inequality we have made use of steins lemma, and 7~ is the derivative of the soft thresholding operator
defined in (324). We note that the derivative of the soft thresholding operator is the value of s that we are looking for. In
symbols

Loz 7 =T (331)
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From this we note that

1 Cg\ﬁ S
—EleT¢)| = ——¥Y_ =2 2
m [ ¢] 2ci +am (332)

The value of %E[eT(]ﬁ] may also be computed directly from definition of 6 (equation (323))). Combining these expressions
the value of s may be computed.

E Numerical Simulation Detail

We implement the optimization problem P; (14) by making use of the explicitly computed Moreau envelope for the case
of elastic net (327). The optimization is solved using a standard iterative approach in which the inner optimizations are
solved at constant values of the outer optimizations. This is repeated iteratively until all parameters are determined. Zeroth
order gradient methods were attempted, but were highly dependent on the starting choices of the parameters 3, ¢, ¢, ¢, and
frequently failed to converge.

The experimental verification was completed using synthetic data, in which the data points z; and the weight matrix W
was drawn from standard normal distributions. The elastic net optimization was solved using the python package cvxpy.
The values of n and m were chosen such that n 4+ m = 1000 and that m/n = -, for a chosen ratio . Each sample was
averaged 100 times to account for the randomness in both the input data z and the weights W.

E.1 Effective Sparsity

In this section, we plot the effective sparsity s for elastic net as a function of the regularization strength A for a number of
values of v = 7. Recall that s gives the number of nonzero elements in the solution vector 6. The plots for the ratios =
and & may be seen in ﬁgure The ¢2 regularization strength was fixed with parameter o = 0.001. The solid lines are the

theoretical predictions while the dots are determined experimentally. For the experimental values the solution vector 0 was
determined using a solver, then each element of the solution vector, it was determined to be “zero” (i.e. sparse) if its value

was less than 2:9L

NG
We can see from the figures that for all values of ~y the sparsity is similar at both large and small values of regularization.
As the number of model parameters increases relative to the number of data points, i.e. as vy grows larger, the regularization
strength required to induce a sparse solution drops. Recalling that true solution was half zeros, the value of regularization
strength at which > = 0.5 matches well with the regularization strength that minimizes the generalization error in figure
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Figure 3: The effective sparsity s as a ratio to the number of model parameters m or the number of data points n for elastic
net regularization for varying strengths of the regularization parameter A. The /5 regularization term was fixed to 0.001.
Multiple values of v = “* are considered. Solid line is the theoretical prediction, and the dots are experimental values.



	INTRODUCTION
	RELATED WORKS
	RANDOM FEATURES MODEL
	MAIN RESULTS
	Overview of Main Results
	Assumptions
	Asymptotic Gaussian Results
	Proof Sketch of Theorem 2

	Universality
	Proof Sketch of Theorem 4

	Random Features and Scalar Optimization Problem
	Results for 1 regularization
	Proof Sketch of Theorem 6


	Elastic Net Regularization
	EXPERIMENTS
	Experimental setup
	Elastic net model

	CONCLUSION
	Gaussian Min Max Theorems
	Proof of Theorem 2
	Non Deterministic True Vector
	Moreau Envelopes

	Analysis of Universality
	Proof sketch
	Universality of Generalization Error and Test functions h
	Proof of Theorem 4
	Proof of Corollary 1
	Proof of Theorem 6
	Universality of Generalization Error and Test Functions for 1 regularization
	Auxiliary lemmas for proving Theorem 6

	Example Case : Elastic Net Regularization
	Sparsity

	Numerical Simulation Detail
	Effective Sparsity


