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Abstract

Optimizing the misclassification risk is in general
NP-hard. Tractable solvers can be obtained by con-
sidering a surrogate regression problem. While
convergence to the regression function is typically
sublinear, the corresponding classification error
can decaymuch faster. Fast and super fast rates (up
to exponential) have been established for general
smooth losses on problems where a hard margin
is present between classes. This leaves out mod-
els based on non-smooth losses such as support
vector machines, and problems where there is no
hard margin, begging several questions. Are such
models incapable of fast convergence? Are they
therefore structurally inferior? Is the hard margin
condition really necessary to obtain exponential
convergence? Developing a new strategy, we pro-
vide an answer to these questions. In particular,
we show not only that support vector machines
can indeed converge exponentially fast, but also
that they can do so even without hard margin.

1 INTRODUCTION

To solve a problem with computer calculations, classical
computer science consists in handcrafting a set of rules. In
contrast, machine learning is based on the collection of a
vast amount of solved instances of this problem, and on the
automatic tuning of an algorithm that maps inputs defining
the problem to the desired outputs. Denote the inputs by
G ∈ X , the outputs by H ∈ Y , and the input/output mappings
by 5 : X → Y . To learn a mapping 5 ∗, it is customary
to introduce an explicit metric of error, and search for the
function that minimizes it. Define this metric through a
loss ℓ : Y × Y → R that quantifies how bad a prediction
5 (G) is when H is observed. Assuming the existence of a
distribution d over X × Y , that generates the instances of
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the problem meant to be solved, one aims to minimize the
average loss value

R( 5 ) = E(-,. )∼d [ℓ( 5 (-), . )] . (1)

In practice, this “risk” R can be evaluated approximately
with samples D= = (-8 , .8)8≤=, collected by the machine
learning scientist and assumed to have been drawn indepen-
dently accordingly to d.

This work focuses on the binary classification problemwhere
Y = {−1, 1}, and ℓ is the zero-one loss ℓ(H, I) = 1H≠I. In this
setting, the riskR( 5 ) captures the probability of mistakes
of a classifier 5 , and its minimizer is characterized by

5 ∗ = argmin
5 :X→Y

R( 5 ) = sign [, (2)

where [(G) = E [. | - = G] . (3)

Ideally, leveraging the dataset D=, one would like to find a
mapping 5D=

: X → Y that is close to be optimal, in the
sense that the excess of risk E ( 5D=

) = R( 5D=
) −R( 5 ∗) is as

small as it could be. Since this quantity is actually random,
inheriting from the randomness of the samples, statisticians
focus on controlling its average. While classification is often
the first problem described in introductory machine learning
classes, several recent works have shown that, when the
model is well-specified, as the number of samples grows, it
is possible to show that this average decays much faster than
what usual statistical learning theory suggests. This section
provides a brief historical review of related literature before
précising our contributions.

1.1 Statistical Learning Theory

The classical approach to minimize (1) without the knowl-
edge of d but with the sole access to samples D= ∼ d⊗= is
to restrict the search over functions in a class F , and look
for an empirical risk minimizer

5 ∗D=
∈ argmin

5 ∈F
RD=

, (4)

where RD=
( 5 ) = 1

=

=∑
8=1

ℓ( 5 (-8), .8).

If we denote by 5 ∗F the minimizer of R in F , using the
fact that RD=

( 5 ∗F ) ≥ RD=
( 5 ∗D=

), the excess of risk can be



bounded as

R( 5 ∗D=
) −R( 5 ∗) ≤ 2 sup

5 ∈F

��R( 5 ) −RD=
( 5 )

�� (estimation error)
+R( 5 ∗F ) −R( 5 ∗). (approximation error) (5)

This bound can be seen as highly suboptimal because it
bounds the deviation of a random function with the worst
deviation in the function class. However, for any class F ,
there exists an “adversarial” distribution d for which conver-
gence rates (of the excess of risk toward zero as a function
of the number of samples = ∈ N) derived through this bound
can not be improved beside lowering some multiplicative
constants (Vapnik, 1995). On the one hand, the estimation
error can be controlled with general tools to bound the
supremum of a random process (e.g., Dudley, 1967), and
will decrease as $ (=−1/2) with a multiplicative constant that
depends on the size of the class F . On the other hand, the
approximation error depends on assumptions of the problem,
and the bigger the size of the class F , the less restrictive it
will be to assume that 5 ∗ is not too different from 5 ∗F . Hence,
there is a clear trade-off between controlling both errors,
which should be balanced in order to optimize a bound on
the full excess of risk.

1.2 Surrogate Methods

In practice, due to the combinatorial nature of discrete-
valued functions, finding the empirical risk minimizer (4) is
often an intractable problem (e.g., Höffgen and Simon, 1992;
Arora et al., 1997). Therefore, people have approached the
original problem with other perspectives. A straightforward
approach is given by plug-in classifiers, i.e., classifiers of the
form sign [̂, for [̂ some estimator of [. For example, such
an estimator can be constructed as [̂(G) = ∑=

8=1 U8 (G).8 , for
U8 (G) some weights that specify how much the observation
.8 made at the point -8 should diffuse to the point G (see
Friedman, 1994, for an example). Another popular approach
to solve classification problems is provided by support vector
machines (SVM), which were introduced from geometric
considerations to maximize the margin between the classes
{G ∈ X | 5 ∗ (G) = H} for H ∈ {−1, 1} (Cortes and Vapnik,
1995).

These two approaches can be conjointly understood as in-
troducing a surrogate loss ! : R × Y → R and looking for
a continuous-valued function 6 : X → R that solves the
surrogate problem defined by ! before retrieving a solution
5 : X → Y of the original problem as

5 = sign 6, 6∗ ∈ argmin
6:X→R

R( (6), (6)

where R( (6) = E(-,. )∼d [! (6(-), . )] ,

where the notation ( stands for “surrogate”. To an estimate
6 : X → R of 6∗ we associate an estimate 5 : X → Y
of 5 ∗ through the decoding step 5 = sign 6. In particular,

using the variational characterization of the mean, [ can be
estimated through ! (I, H) = |I − H |2. Meanwhile, SVM are
related to the hinge loss, see Appendix B,

! (I, H) = (1 − IH)+ = max (0, 1 − IH) , (7)

Surrogate methods benefit from their relative easiness to
optimize and the quality of their practical results. Arguably,
they define the current state of the art in classification,
softmax regression being particularly popular to train neural
networks on classification tasks.

Surrogate methods were studied in depth by Zhang (2004);
Bartlett et al. (2006), who proposed a generic framework to
relate the excess of the original risk to the excess of surrogate
risk through calibration inequalities of the type

R( 5 ) −R( 5 ∗) ≤ k (R( (6) −R( (6∗)) , (8)

where 5 = sign 6 and k is a concave function, uniquely
defined from ! and verifying k(0) = 0. The use of a
concave function is motivated by Jensen inequality, allowing
to integrate an inequality derived pointwise (conditionally
on an input G).

When k(G) ∝ G and ED=
R( (6D=

) −R( (6∗) is controlled as
$ (=−1/2) for 6D=

the minimizer of the empirical surrogate
risk, one can controlED=

R(sign 6D=
) −R( 5 ∗) as$ (=−1/2).

Because of minimax optimality of VC theory, those rates
in =−1/2 are wildly regarded as optimal. Yet, a closer look
reveals that examples to show minimax optimality are based
on degenerated data distributions. Those worst cases are
unlikely to appear in practice. Indeed, some works have
shown that under relatively mild low-noise conditions, much
faster rates can be derived.

1.3 Exponential Convergence Rates

On the one hand, calibration inequalities (8) are appealing,
as they allow casting directly rates derived on the surrogate
problem to rates on the original problem. On the other
hand, because k has to be concave, rates in $ (=−A ) on the
surrogate problem can not be cast as better rates on the
original problem, corresponding to the optimal inequalities
where k(G) = 2G for some 2 > 0, Yet, one can find cases
where the sign of [ can be estimated much faster than [ itself,
even when this sign is estimated with surrogate methods.

Most works that prove faster convergence rates are based on
a specific derivation, which consists in relating the classi-
fication excess of risk with some power of the supremum
norm. More specifically, Mammen and Tsybakov (1999) (see
also Massart and Nédélec, 2006) introduced the following
condition.
Assumption 1 (Hard low-noise condition). The binary
classification problem defined through the distribution d is
said to verify the hard low-noise (or hard Tsybakov margin1)

1Note that the wordingmargin here refers to a form of separation



condition if the conditional mean [ is bounded away from
zero, i.e.,

∃ [0 > 0; |[(-) | > [0 a.s., (9)

where the notation a.s. stands for almost surely. Equivalently,
|[ |−1 ∈ !∞ (dX ).

Under Assumption 1, we know that |6(G) − [(G) | < |[(G) |
implies sign 6(G) = sign [(G) = 5 ∗ (G), thus R(sign 6) −
R( 5 ∗) ≤ P- (sign 6(-) ≠ 5 ∗ (-)) ≤ 1‖6−[ ‖∞≥[0 . Hence,
we get for any estimate 6D=

: X → R computed from the
dataset D=,

ED=
[R(sign 6D=

)] −R( 5 ∗) ≤ PD=

(6D=
− [


!∞ > [0

)
.

As a consequence, an exponential concentration inequality
on the !∞ distance between 6D=

and [ directly translates
to exponential convergence rates on the average excess of
risk. In particular, estimation methods for [ based on Hölder
classes of functions, such as local polynomials, are known
to be well-behaved with respect to the !∞ norm (see, e.g.,
the construction of covering number by Kolmogorov and
Tikhomirov, 1959). This was leveraged by Audibert and
Tsybakov (2007) in a seminal paper that shows how better
rates can be achieved on the classification problem under
Assumption 1 and a variety of weaker conditions (described
later in Assumption 2).

Surprisingly, such an approach has remained somehow less
popular than approaches based on calibration inequalities,
and we are missing a framework to fully apprehend fast
rates phenomena. Some results for logistic regression were
achieved by Koltchinskii and Beznosova (2005). Recently,
Cabannes et al. (2021b) showed that this result generalizes
to any discrete output learning problem, and that approaches
that naturally lead to concentration in !2 could be turned into
fast rates based on interpolation inequalities that relate the !2
norm with the !∞ one (notably reusing the work of Fischer
and Steinwart (2020) on interpolation spaces). Exploiting
the work of Marteau-Ferey et al. (2019), this can be general-
ized to any self-concordant loss (using self-concordance to
reduce the problem to a least-squares problem); and, through
the work of Lin et al. (2020), to any spectral filtering tech-
nique (beyond Tikhonov regularization), such as stochastic
gradient descent, which was actually shown earlier for binary
classification by Pillaud-Vivien et al. (2018) and Nitanda and
Suzuki (2019). In the same stream of research, Vigogna et al.
(2022) proposed a general framework to study exponential
rates for smooth losses in multiclass classification beyond
least-squares. However, we believe that there is a bigger
picture to be uncovered.

in the output space, and not to the usual margin of SVM that
describes separation between classes in the input space.

1.4 Contribution

The proofs of exponential convergence in the works quoted
above are all based on the basic mechanism outlined in
Audibert and Tsybakov (2007), which, in substance, consists
in relating the excess of classification risk with concentration
on the supremum norm as, with notations of Assumption 2,

R(sign 6) −R(sign 6∗) ≤ 2 ‖6 − 6∗‖?+1∞ ,

Unfortunately, such a mechanism relies on !∞ concentration,
and does not easily extend to the hinge loss. Does this
mean that support vector machines do not exhibit superfast
rates, and thus they are inferior to other surrogate methods?
The practice seems to answer negatively. In this paper,
we give a firm theoretical answer to this question. In
particular, we show not only that support vector machines
do achieve exponential rates, but also that they can do so
even without assuming the hard low-noise condition. Our
main contribution is to introduce a general framework to
prove exponential convergence rates, and show how this
framework can be applied to the hinge loss while only
considering classical assumptions. Stated otherwise, our
goal is to show fast rates for a non-smooth loss, which we
will do for the hinge loss formalization of kernelized SVM.

Outline. Our general strategy is illustrated on Figure 1
and consists in first finding a relation

R( (6\) −R( (6\∗ ) ≥ ‖\ − \∗‖ ,

for some natural parameter \ in a Banach spaceΘ parametriz-
ing a class of functions 6\ ∈ F , and then show that
sign 6\ = sign 6\∗ when ‖\ − \∗‖ is small enough, that
is,

∃ Y > 0; ‖\ − \∗‖ ≤ Y ⇒ sign 6\ = sign 6\∗ .

Assuming that sign 6\∗ = 5 ∗, we deduce that

ED=
[R(sign 6\= )] −R( 5 ∗)

=ED=
[R(sign 6\= ) −R(sign 6\∗ )]

≤ED=
[1sign 6\=≠(sign 6\∗ ) ]

≤ED=
[1‖\=−\∗ ‖≥Y]

≤ PD=
(‖\= − \∗‖ ≥ Y)

≤ PD=
(R( (6\= ) −R( (6\∗ ) ≥ Y).

where 6\= is an estimate of 6\ based on the samples D=.
Finally, we conclude with an exponential concentration
inequality that controls the deviation of the excess of risk
based on classical statistical learning theory.

2 EXPONENTIAL CONVERGENCE OF
SVM

This section is devoted to the proof of exponential conver-
gence rates for the hinge loss. We shall fix the notationR(
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level lines ofR(sign 6\= )
path {\_;_ > 0}
region {\; ‖\ − \_‖ < 1}
certified value ofR(6\= ) when ‖\= − \_‖ < 1

Figure 1: Our convergence analysis consists in relating natural concentration given by surrogate methods to the original excess of risk
without passing by the surrogate excess of risk. We denote by \_ the regularized surrogate risk minimizer argminR( (6\ ) + _ ‖\‖2.
As the drawing shows, concentration in parameter space Θ can be cast as deviation on the original excess of risk. Yet, such a casting
relation depends on the geometry of this picture, which itself depends on what surrogate is used, what is the function to learn, how a
regularized estimator approached it, and how our empirical estimate concentrates around the regularized estimator. Note that this
figure illustrates an abstract mechanism that generalizes the simpler mechanism we use to derive exponential convergence rates. It
contrasts with usual statistical learning theory that combines approximation and estimation error in an additive fashion.

as the surrogate risk associated with (7). All the proofs are
collected in Appendix A.

2.1 Refined Calibration for the Hinge Loss

We start by introducing the classical weak low-noise condi-
tion (Mammen and Tsybakov, 1999).
Assumption 2 (Weak low-noise condition). The binary
classification problem defined through the distribution d is
said to verify the ?-low-noise condition, with ? ∈ (0,∞), if
there exists a constant 2 > 0 such that

PdX (0 < |[(-) | < C) ≤ 2C ? , (10)

where the notation dX denotes the marginal of d over X .

Assumption 2 is equivalent to asking for the inverse of
the conditional mean |[ |−1 (with the convention 0−1 = 0)
to belong to the Lorentz space !?,∞ (dX ) (also known as
weak-!? space), which is the Banach space endowed with
the norm (quasi-norm and quasi-Banach if ? < 1)

‖ 5 ‖?,∞ = sup
C>0

C PdX ( 5 (-) > C)
1
? , (11)

where the dX denotes the marginal of d with respect to X .
This definition can be extended to the case ? = ∞ by setting
!?,∞ (dX ) = !∞ (dX ), which characterizes the hard low-
noise condition in Assumption 1. We will also use ‖·‖? , for
? ∈ [1,∞], to denote the !?-norm on X endowed with dX .

We now relate the excess of risk on the hinge loss to the
deviation in these spaces.
Lemma 1 (Weak-!@ concentration due to the hinge loss).
For any functions 61, 62 : X → [−1, 1],

R( (62) −R( (61) = EdX [−[(-) (62 (-) − 61 (-))] . (12)

In particular, under Assumption 1, for any 6 : X → R,

R( (6) −R( (6∗) ≥
|[ |−1−1∞ ‖c(6) − 6∗‖1 . (13)

where 6∗ = sign [ is a minimizer ofR( and c is the projection
of R on [−1, 1], defined as mapping C ∈ R to c(C) =

sign(C)min{|C |, 1}. Similarly, under Assumption 2, with
@ = ?/? + 1,

R( (6) −R( (6∗) ≥ 2−1
|[ |−1−1

?,∞ ‖c(6) − 6∗‖@,∞ . (14)

Lemma 1 shows that we can set the minimizer 6∗ = 5 ∗ ∈
{−1, 1}X . This is a useful fact as it implies that the excess of
the original risk is zero as soon as ‖6 − 6∗‖∞ < 1. In essence,
the only piece missing in order to prove fast convergence
rates is an interpolation inequality between !@,∞ and !∞.
In the following, we will leverage Lemma 1 more subtly
by considering a class of functions G and assumptions on
the distribution dX such that, if an estimate 6 ∈ G has not
the same sign almost everywhere as the estimand 6∗, then
‖6 − 6∗‖@,∞ is bounded away from zero. By contraposition,
if 6 ∈ G presents a small excess of surrogate risk, then
sign 6 = sign 6∗. When X is a metric space, one way to
proceed is to assume that 6 is Lipschitz-continuous, together
with some minimal mass assumptions. Let us begin with
the minimal mass assumption. We first need the following
definition.
Definition 1 (Well-behaved sets). A set * ⊂ X is said to
be well-behaved with respect to d if there exist constants
2, A > 0 and an exponent 3 > 0 such that, for any G ∈ *,

∀ Y ∈ [0, A]; dX (* ∩ B(G, Y)) ≥ 2Y3 , (15)

and B(G, Y) the ball in X of center G and radius Y.

The following examples show that the coefficient 3 that
appears in (15) results from the dimension of the ambient
space, the regularity of singularities of the border of the set,
and the decay of the density when approaching the frontier
of the set.
Example 1. The set [0, 1] ? is well-behaved with coefficients
A = 1, 3 = ? and 2 = 2−3 vol(S3−1) with respect to the
Lebesgue measure in R3 .



Example 2. The set
{
(G, H) ∈ R2

�� G ∈ [0, 1], H ∈ [0, G=−1]
}

is well-behaved with coefficient A = 1, 3 = = and 2 = =−1

with respect to the Lebesgue measure. Reciprocally, the
set [0, 1] is well-behaved with coefficient A = 1, 3 = = and
2 = =−1 with respect to the measure whose density equals
?(G) = G=−1.
Assumption 3 (Minimal mass assumption). The classifica-
tion problem is said to verify the 3-minimal mass assumption
if the decision regions XH = {G ∈ supp dX | H[(G) > 0} for
H ∈ {−1, 1} are both well-behaved with exponent 3.

Assumption 3 is a weakening of an assumption that is
commonly found in the statistical learning literature. More
precisely, it is often assumed that d is absolutely continuous
according to the Lebesgue measure _ on X (assumed to be a
Euclidean space), that its density is bounded away from zero
on its support, and that its support has smooth boundary, so
that _(supp dX ∩ B(G, Y)) > 2′_(B(G, Y)) (see the strong
density assumption in Audibert and Tsybakov, 2007).

The minimal mass requirement allows relating misclassifi-
cation events to !@,∞ deviation.
Lemma 2. Under Assumption 3, there exists a constant 20
such that if 6 is �-Lipschitz-continuous for � > A−1, for any
@ ∈ (0, 1]

∃ G ∈ supp dX , |6(G) − 6∗ (G) | ≥ 1

⇒ ‖6 − 6∗‖@,∞ ≥ 20�
− 3

@ .
(16)

Putting together Lemmas 1 and 2, we obtain the following
refined calibration.
Proposition 1. Under Assumptions 2 and 3, if 6 is �-
Lipschitz-continuous with � > A−1, we have

R( (6) −R( (6∗) ≤ 2−1
|[ |−1−1

?,∞ 20�
− 3 (?+1)

?

⇒ R(sign 6) = R( 5 ∗).
(17)

2.2 Trade-off between Estimation and Approximation
Errors

We are now left with the research of 6D=
inside a class of

Lipschitz-continuous functions such thatR( (6D=
) −R( (6∗)

is sub-Gaussian (its randomness being inherited from the
datasetD= fromwhich 6D=

is built). To do so, let us consider
a linear (a.k.a. kernelized) class of functions

G",f =
{
G ↦→

〈
\, i(f−1G)

〉 �� \ ∈ H, ‖\‖H ≤ "
}
, (18)

where H is a separable Hilbert space, i : X → H is a
�i-Lipschitz-continuous mapping, and f > 0 is a scaling
(or bandwidth) parameter. Such a class of functions can be
entirely described from the kernel : (G, G ′) = 〈i(G), i(G ′)〉
(see Scholkopf and Smola, 2001, for a primer on kernel
methods). An example for G is given by the Gaussian kernel,
a.k.a. radial basis function, : (G, G ′) = exp(−3 (G, G ′)2).

Using Cauchy-Schwarz, it is easy to show that any function
in G",f is "�if

−1-Lipschitz-continuous.

In order to find a function 6D=
that is likely to minimize

R( without accessing the distribution d, but only i.i.d.
samples D= = (-8 , .8)8≤= ∼ d⊗=, it is classical to consider
the empirical risk minimizer

6D=
∈ argmin

6∈G",f

1
=

=∑
8=1

! (6(-8), .8). (19)

This problem is convex with respect to \ parametrizing
6 ∈ G",f , and is easily optimized with duality. We refer
the curious reader to the extensive literature on kernelized
SVM (see Cristianini and Shawe-Taylor, 2000; Scholkopf
and Smola, 2001; Steinwart and Christmann, 2008, for books
on the matter).

In order to show thatR( (6D=
) is close toR( (6∗), one can

apply classical results from statistical learning theory, and
in particular (5). The estimation error can be bounded using
the extensive literature on Rademacher complexity for linear
classes of functions on Lipschitz-continuous losses (Bartlett
and Mendelson, 2002). To bound the approximation error,
one needs to make additional assumptions on the problem.
We refer to Steinwart and Scovel (2007); Blaschzyk and
Steinwart (2018) for advanced considerations on the matter.
In view of our calibration result (17), the following additional
assumption suffices to prove exponential convergence of
SVM.
Assumption 4 ((20, ?, 3)-Source condition). There exist
", f and a function 6 ∈ G",f such that R( (6) −R( (6∗) ≤
4−1‖ |[ |−1 ‖−1?,∞20"−A�−A

i fA with A = 3 (? + 1)/?.

It should be noted that, because of Proposition 1, the function
6 in Assumption 4 is a perfect classifier. This implies that the
decision frontier X−1 ∩ X1 (the bar notation corresponding
to space closure) inherits from the regularity of 6, since it is
included in the set {G ∈ X | 6(G) = 0}. In particular, if G",f

is included in C< , this frontier would be in C< . Hence, for
Assumptions 4 to hold, the boundary frontier should match
the regularity implicitly defined by G",f .

We are finally ready to state our main result, establishing
exponential convergence rates for SVM.
Theorem 1 (Exponential convergence rates for SVM). Un-
der Assumptions 2, 3 and 4, there exists a constant 2 > 0
such that the empirical minimizer 6D=

defined by (19) verifies

ED=
R(sign 6D=

) −R( 5 ∗) ≤ 2 exp(−2=). (20)

While this result is achieved for constrained SVM, the same
result can be achieved with regularized SVM, which is used
in practice.
Corollary 1. Under Assumptions 2, 3 and 4, there exist
_ ≥ 0 and a constant 2 > 0 such that 6D= ,_ verifies

ED=
R(sign 6D= ,_) −R( 5 ∗) ≤ 2 exp(−2=).
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Figure 2: SVM generalization error as a function of the number of samples (left) for a problem where - is uniform on
[−1, . − 1] ∪ [.1, 1] and [(G) = sign(G) |G |? (right). We observe exponential convergence rates on the blue and orange curve. The
green and red curves showcase regimes where exponential convergence rates have not been reached yet, one would need more
samples to observe them.

where

6D= ,_ = argmin
6\ ;\∈H

=∑
8=1

! (6\ (-8), .8) + _ ‖\‖2H .

2.3 Relaxing Assumptions

Exponential convergence rates rely on strong assumptions
in order to set the approximation error to zero. In particular,
it is customary to assume that the surrogate function to learn
lies in the model we have chosen, that is, in our notation,
6∗ ∈ G",f . In our case this would be a strong assumption,
since 6∗ is piecewise constant while G",f is a smooth space
of functions. It turns out that the assumption 6∗ ∈ G",f is
not necessary, and what we actually need is the ability to
reach a sufficiently small risk within the class G",f . How
small is enough is quantified by the statement of Proposition
1 and Assumption 4. In particular, this assumption is verified
when the function class G",f is rich enough and classes are
separated by a margin in the input space as specified by the
following assumption.
Assumption 5 (Cluster Assumption). The classes X1 =

( 5 ∗)−1 (1) := {G ∈ supp dX | [(G) > 0} and X−1 =

( 5 ∗)−1 (−1) are separated by a margin, in the sense that the
distance between any two points in each set is bounded away
from zero. Formally,

∃ X0 > 0; ∀ (G, G ′) ∈ X1×X−1, 3 (G, G ′) ≥ X0. (21)

Proposition 2 (Source condition example). Assumption 5
implies Assumption 4 for any (20, ?, 3), as long as X is a
Euclidean space and : is taken as the exponential kernel
: (G, H) = exp(−f−1 ‖G − H‖) for any f > 0.

In terms of practical applications, the cluster assumption
says that no one can continuously modify an input to go
from a region of the space linked with one class to a region
linked with another class without going through inputs that
will never exist. This is typically true for well-curated
image datasets such as CIFAR10: one can not continuously

transform an image of a truck into an image of a horse
without going through images that will never appear in
the CIFAR10 dataset (Krizhevsky, 2009). As stated in the
seminal work of Seeger (2001), “the ‘cluster assumption’ is
a very general and weak assumption, therefore applicable
as prior assumption to many unsupervised tasks”. It has
been popular in unsupervised, weakly-supervised and semi-
supervised learning (see Rigollet, 2007; Cabannes et al.,
2021a, for exponential convergence rates in those settings).

To deepen the study of the approximation error, one could
leverage the following geometrical characterization of the
risk of misclassification. For 5 : X → {−1, 1}, we have

R( 5 ) −R( 5 ∗) = E[|[(-) | 1 5 (G)≠ 5 ∗ (-) ]

≤ P( 5 (-) ≠ 5 ∗ (-)) = dX

(
5 −1 ({1}) 4X1

)
,

(22)

where4 denotes the symmetric difference of sets, i.e. �4� =

(� ∪ �) \ (� ∩ �). In particular, under Assumption 5 the
minimizer 6G",f

of the surrogate risk in G",f verifies

dX

(
(sign 6G",f

)−1 ({1}) 4X1
)
≤ k(", f), (23)

for k a function that vanishes for sufficiently large " and
small f.

On the one hand, one could control the approximation error
by assuming or deriving inequalities akin to (22) and (23),
with different profiles of k. We conjecture that this can
be done by assuming low-noise conditions that are well
adapted to the geometric nature of SVM, such as the one
proposed by Steinwart and Scovel (2007) (see also Gentile
and Warmuth, 1999; Cristianini and Shawe-Taylor, 2000).
On the other hand, the estimation error can be controlled by
extending the ideas presented in this paper to study the worst
value of the estimation errorR(sign 6D=

) −R(sign 6G",f
)

under the knowledge of R( (6D=
) −R( (6G",f

). Fitting "
and f to trade estimation and approximation errors, such
derivations would open the way to fast polynomial rates
under less restrictive assumptions.
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Figure 3: Study of the level lines of 6_,f when [−1 (0) ∈ C∞ (top) and [−1 (0) ∈ C0 \ C1 (bottom). The function 6∗ takes values
−1 below the optimal decision frontier plotted in red and +1 above, independently of the noise. We observe that the bias error
R(sign 6_,f) − R( 5 ∗), which is bounded by the volume between the level lines

{
G ∈ X

�� 6_,f (G) = 0} and {G ∈ X | [(G) = 0}
(plotted in red), depends on both the regularity of the latter, and on the noise level. Here, f is taken to be of the order of 15% of the
diameter of the domain, which explains the regularity of the observed level lines. The noiseless cases on the right correspond to the
situations where E[. |-] = sign [(-) for [ plotted on the left.

2.4 Prior Assumptions

In this section, we discuss the mildness of our assumptions
in comparison to existing proofs of exponential convergence
rates. Those proofs are based on the combination of the
hard low-noise condition together with the existence of a
regular function close to [, which implies Assumption 5. In
contrast, the cluster assumption is both stronger than our
assumptions and weaker than the existing assumptions to
prove exponential convergence rates.

To our knowledge, Audibert and Tsybakov (2007) first proves
exponential convergence rates. They did so by assuming
the regression function [ to be Hölder-continuous, together
with the hard Tsybakov condition (see Proposition 3.7 and
the class P). Under the hard Tsybakov condition, X1 =

[−1 ([[0, +∞)), hence, for G ∈ X1 and G ′ ∈ X−1, if [ is
(!, U)-Hölder

2[0 ≤ ‖[(G) − [(G ′)‖ ≤ ! ‖G − G ′‖U .

It follows that

3 (X1,X−1) ≥
(
2[0
!

)1/U
.

In other terms, those two assumptions implies the cluster
assumption 5. Similarly, Rigollet (2007) proved exponential
convergence rates under the cluster assumption for semi-
supervised learning.

More recently, a renewed interest was triggered by results
for SGD achieved by Pillaud-Vivien et al. (2018). Once

again, the authors assumed both the hard Tsybakov margin
condition (A1) and the existence of a perfect classifier that
is in the linear space of functions considered (implied by
A4). They discuss the fact that their assumptions are met
under the cluster assumption (A5) plus some regularity
of [ (see Proposition 3). Indeed, the cluster assumptions
is a necessary condition for (A1+A4) to hold when the
considered space of functions is included in the class of
Hölder functions (which is true for all classical reproducing
kernel Hilbert space). This can be proven with the same
derivations as the one above (replacing [ by 6_ and [0 by X/2
with their notations). In contrast, we do not need regularity
of [, which we show in practice on Figure 4.

3 NUMERICAL ANALYSIS

In this section, we provide experiments to illustrate and
validate our theoretical findings. In order to be inline
with the current practice of machine learning, instead of
considering the hard constraint ‖\‖ ≤ " when minimizing
a risk functional, we add a penalty _ ‖\‖2 to the risk to
be minimized. Going from a constrained to a penalized
framework does not change the nature of the statistical
analysis, and one might loosely think of _ as 1/" (see, for
example, Bach, 2023). All experiments are made with the
Gaussian kernel. Precise details of the different settings are
provided in Appendix C.

First, we observe that the regime described in this paper
kicks in when the error is already pretty small. On many



real-world problems, we do not expect the generalization
error as a function of the number of data used for training
to exhibit a clear exponential behavior until an unusually
big number of samples is used. This fact is illustrated on
Figure 2, where for hard problems, the exponential behaviors
still do not kick in after a thousand of samples.

Second, this paper shows that, in order to get exponential
convergence rates for SVM, one needs the minimizer 6",f

of the surrogate risk over the selected class of functions to
be a perfect classifier, i.e. its sign equals the sign of 6∗.
While this is not constraining under the cluster assumption,
we inspect divergences from this condition on Figure 3. We
observe that, even if 6∗ does not depend on the noise, 6",f

does. We also observe that the regularity of the decision
boundary {G ∈ X | [(G) = 0} should match the regularity
defined implicitly by the kernel : and the scale parameter f.

Experimental comparisons of different classification ap-
proaches have been done by many people, and our goal
is not to showcase the superiority of the SVM over least-
squares, which might be considered as general wisdom that
led to the golden age of SVM in the pre-deep-learning area
(see Joachims, 1998, for example). In comparison with pre-
vious works based on calibration inequalities (Rosasco et al.,
2004; Steinwart, 2007), our analysis proves the robustness
of SVM to noise far away from the decision boundary, in the
sense that one does not need [ to be bounded away from zero.
This is a distinctive aspect of SVM compared to smooth sur-
rogate methods (Nowak-Vila et al., 2020), such as softmax
regression, that implicitly estimate conditional probabilities
and whose performance depends on the regularity of [. We
illustrate this fact graphically on Figure 4.

4 LIMITATIONS

Are Surrogate Methods Only a Proxy for Classification?
From a theoretical perspective, if we are only interested
in the optimal mapping 5 : X → Y , learning surrogate
quantities can be seen as a waste of resources. In essence,
this waste of resources is similar to the one occurring when
we learn the full probability function (?(H))H∈Y for some
probability distribution ? on Y , while we only care about its
mode. Yet, in practice, what we call a “surrogate” problem
might actually be a problem of prime interest when we do
not only want to predict 5 ∗ (G), but we would also like to
know how much we can confidently discard other potential
outputs for an input G. Furthermore, assuming that a problem
is exactly defined through an “original” loss that defines a
clear and unique measure of error can be questioned when
some practitioners evaluate methods with several metrics of
performance (e.g. Chowdhery et al., 2022).

Do PAC-Mounds Provide Confidence Levels? Since the
parameters in Assumptions 2 and 3 are hard to estimate in
practice, it would be difficult to directly plug our bounds

into a practical problem to derive confidence levels on how
much error one might expect when deploying a model in
production. Less ambitiously, we see theorems akin to The-
orem 1 as providing theoretical indications that a learning
method or a set of hyperparameters is sound. This is a
generic downfall of probably approximately correct (PAC)
generalization bounds (Valiant, 2013), which might explain
why practitioners often prefer to derive error indications
from test samples (see, e.g., Géron, 2017). Along this line,
research on conformal prediction provides interesting con-
siderations to obtain useful confidence information from test
samples (Vovk and Shafer, 2008). Finally, all these statistical
methods to get confidence intervals assume representative
(if not i.i.d.) data, an assumption sometimes hard to meet
in practice, which is a problem that has found echoes in the
civil society (e.g. Benjamin, 2019).

Societal Impact The theoretical nature of the present work
prevents us to discuss its potential negative social impact
without questioning the impact of the whole field of machine
learning, which is out of scope of the current paper.

5 CONCLUSIONS

In this work, we were keen to illustrate a simple mecha-
nism to get exponential convergence rates for support vector
machines. Our proof relates the misclassification to the
surrogate risk through a sort of !? − !@ interpolation in-
equality. Thanks to this new strategy, we were able to deal
with a non-smooth loss such as the hinge loss, which is quite
popular and whose understanding can not be easily reduced
to previous work. Remarkably, our assumptions are strictly
weaker than all the existing assumptions we are aware of
used to prove exponential convergence rates. In particular,
we showed that the hard low-noise condition is not crucial in
order to derive exponential convergence rates for the SVM.

This provides a crucial step to better understand convergence
rates on classification problems. An extension to generic
discrete output problems could be made by considering
polyhedral losses, and deriving variants of Lemma 1 (see
Frongillo and Waggoner, 2021, for calibration inequalities
for such losses). An important follow-up would be to provide
a more global picture of fast polynomial rates for SVM under
relaxations of Assumptions 3 and 4.

Finally, Chizat and Bach (2020) have made a link between
two-layer wide neural networks in the interpolation regime
(which implies Assumption 1 with [0 = 1) and max-margin
classifiers over specific linear classes of functions. As a
consequence, we could directly plug in our analysis to prove
exponential convergence rates for those small neural net-
works in this noiseless setting. Studying rates, constants and
hyperparameter tuning in this setting would be of particular
interest if it was to provide practical guidelines to deep
learning practitioners in the spirit of Yang et al. (2021).
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A PROOFS

In this section we provide the proofs of Lemma 1, Lemma 2, Proposition 1, Theorem 1 and Proposition 2.

A.1 Proof of Lemma 1

The first part follows by integration of a pointwise result. Consider the function ℎ? : R → R; @ ↦→ ?(1−@)++ (1− ?) (1+@)+,
where ? ∈ (0, 1) represents P(. = 1|-) and @ represents 6(G). The function ℎ? has a slope equal to −? for @ < −1, then
slope 1 − 2? for @ ∈ (−1, 1), and 1 − ? for @ > 1. Therefore, when @1, @2 ∈ (−1, 1), we have

ℎ? (@2) − ℎ? (@1) = (1 − 2?) (@2 − @1).

Taking ? = P(. = 1|-), @2 = 62 (-) and @1 = 61 (-), we get 1 − 2? = −E[. |-] = −[(-). By integration, we obtain the
claim. From the previous slope considerations, it also follows that ℎ? is minimized by @ = sign(2? − 1), meaning that one
can take 6∗ (-) = sign [(-).

More exactly, the slopes reasoning shows that: for G ∉ supp dX , 6∗ (G) and 5 ∗ (G) can be arbitrarily chosen; for G ∈ supp dX
such that [(G) = 0, 6∗ (G) and 5 ∗ (G) can be arbitrarily chosen in [−1, 1] and {−1, 1}; for G ∈ supp dX with [(G) = 1,
5 ∗ (G) = 1 and 6∗ (G) can be arbitrarily chosen in [1, +∞); finally, for G ∈ supp dX and [(G) ∈ (0, 1), 6∗ (G) = 5 ∗ (G) = 1.

The second part follows from the fact that projecting on [−1, 1] can only reduce the value of the hinge loss, that
[(G) (c(6) (G) − 6∗ (G)) is always negative, and the reverse Hölder inequality:

R( (6) −R(6∗) ≥ R( (c(6)) −R(6∗) = ‖[(c(6) − 6∗)‖1 ≥ ‖c(6) − 6∗‖@
|[ |−1−1

?
.

A Hölder inequality also holds for weak Lebesgue spaces (see Castillo and Rafeiro, 2016, Theorem 5.23), whence

R( (6) −R(6∗) ≥ ‖[(c(6) − 6∗)‖1 ≥ ‖[(c(6) − 6∗)‖1,∞ ≥ 1
2

|[ |−1−1
?,∞ ‖c(6) − 6∗‖ ?

?+1 ,∞ .

This completes the proof.

A.2 Proof of Lemma 2

Assume without restrictions that there exists G ∈ X1 such that |6∗ (G) − 6(G) | ≥ 1. For any event � = �(-), by the law of
total probability we have

P(�) = dX (X1) P (� | - ∈ X1) + dX (X−1) P (� | - ∈ X−1) ≥ dX (X1) P (� | - ∈ X1) .

Hence, since 6∗ (X1) = {1},

‖6 − 6∗‖@@,∞ = sup
C>0

C@ P(|6(-) − 6∗ (-) | > C) ≥ sup
C>0

C@ P ( |6(-) − 1| > C | - ∈ X1) dX (X1).

Using the triangular inequality, the �-Lipschitz continuity of 6, and the definition of G, we have that, for any G ′ ∈ X ,

|6(G ′) − 1| ≥ |6(G) − 1| − |6(G ′) − 6(G) | ≥ 1 − �3 (G, G ′).

As a consequence,

P ( |6(-) − 1| > C | - ∈ X1) ≥ P
(
- ∈ B

(
G,
1 − C

�

)
| - ∈ X1

)
=

dX

(
X1 ∩ B

(
G, 1−C

�

))
dX (X1)

.

Combined with the previous facts, we get

‖6 − 6∗‖@@,∞ ≥ sup
C>0

C@dX

(
X1 ∩ B

(
G,
1 − C

�

))
.

Thanks to Assumption 3, there exists (2, A, 3) such that (15) holds for X1. Hence, when �−1 < A , we get the following lower
bound:

‖6 − 6∗‖@@,∞ ≥ 2�−3 sup
C∈[0,1]

C@ (1 − C)3 = 2�−3 @@33

(3 + @)3+@
.

This proves the statement in the lemma.



A.3 Proof of Proposition 1

SupposeR(sign 6) > R( 5 ∗). Then, observing that sign(c(C)) = sign(C) for all C ∈ R, and taking 6∗ = 5 ∗, we know there
must be G ∈ supp dX such that |c(6(G)) − 6∗ (G) | ≥ 1. Hence, by Lemma 2, we get ‖c(6) − 6∗‖@,∞ ≥ 20�

− 3
@ , and therefore,

by Lemma 1,R( (6) −R( (6∗) ≥ 2−120�− 3
@

|[ |−1−1
?,∞ . Thus, the proposition is proved.

A.4 Proof of Theorem 1

From Proposition 1 and Assumption 4, we get, with !̃ = max
{
"�if

−1, A−1
}
and @ = ?/? + 1, and 6",f the minimizer ofR(

insider �",f ,

ED=
[R(sign 6D=

)] −R( 5 ∗) ≤ PD=

(
R( (c ◦ 6D=

) −R( (6∗) ≥ 2−1
|[ |−1−1

?,∞ 20 !̃
− 3

@

)
≤ PD=

(
R( (c ◦ 6D=

) −R( (6",f) ≥ 4−1
|[ |−1−1

?,∞ 20 !̃
− 3

@

)
.

To deal with this last quantity, we proceed by using the fact that

R(,D=
(c ◦ 6D=

) ≤ R(,D=
(6D=

) ≤ R(,D=
(6",f),

whereR(,D=
denotes the empirical surrogate risk, to deduce that

R( (c ◦ 6D=
) −R( (6",f) ≤ R( (c ◦ 6D=

) −R(,D=
(c ◦ 6D=

) +R(,D=
(6",f) +R( (6",f).

Hence, we get the following union bound

ED=
[R(sign 6D=

)] −R( 5 ∗) ≤ PD=

(
R( (c ◦ 6D=

) −R(,D=
(c ◦ 6D=

) ≥ 8−1
|[ |−1−1

?,∞ 20 !̃
− 3

@

)
+ PD=

(
R( (6",f) −R(,D=

(6",f) ≥ 8−1
|[ |−1−1

?,∞ 20 !̃
− 3

@

)
.

Regarding the first term, we can reuse the literature on Rademacher complexity for linear models on convex risks (Bartlett
and Mendelson, 2002), as well as the contraction principle in order to add c which is 1-Lipschitz Maurer (2016), which
ensures that

ED=

[
sup

6∈G",f

��R( (c ◦ 6) −R(,D=
(c ◦ 6)

��] ≤ " ‖i‖∞ =−1/2.

Note that Assumption 3 implies that supp dX is compact, hence, if i is Lipschitz-continuous, it is bounded on supp dX .
This allows us to use McDiarmid inequality to get the same type of bound on the deviation ofR( (6D=

) around its mean. Let
� (D=) = sup6∈G",f

R( (c ◦ 6) −RD=
(c ◦ 6). Let us decompose D= = ((G1, H1), · · · , (G=, H=)). We would like to show that

if D′
= is equal to D= for each datapoint but for (G8 , H8) that becomes (G ′8 , H′8 ) then � (D=) − � (D′

=) is bounded. We have

� (D=) − � (D′
=) = sup

6∈G",f

R( (c ◦ 6) −R(,D=
(c ◦ 6) − sup

6′∈G",f

R( (c ◦ 6′) −R(,D′
=
(c ◦ 6′)

≤ sup
6∈G",f

R(,D=
(c ◦ 6) −R(,D′

=
(c ◦ 6)

= =−1 sup
6∈G",f

! (c ◦ 6(G ′8 ), H′8 ) − ! (c ◦ 6(G8), H8) ≤ =−1

Using McDiarmid’s inequality, we get

P(� (D=) − E[� (D=)] ≥ C) ≤ exp(−2=C2).

In other terms, when adding the control we have on the expectation, we get

PD=

(
sup

6∈G",f

R( (c ◦ 6) −R(,D=
(c ◦ 6) > C + " ‖i‖∞ =−1/2

)
≤ exp

(
−2=C2

)
. (24)

When 8−1
|[ |−1−1

?,∞ 20 !̃
− 3

@ ≥ ‖i‖∞ "=−1/2, this leads to

PD=

(
R( (c ◦ 6D=

) −R(,D=
(6D=

) ≥ 8−1
|[ |−1−1

?,∞ 20 !̃
− 3

@

)



≤ exp
(
−=

8

(
8−1

|[ |−1−1
?,∞ 20 !̃

− 3
@ − " ‖i‖∞ =−1/2

)2)
≤ exp

©«−
220f

23 (?+1)
?

512
|[ |−12

?,∞ ("�i)
23 (?+1)

?

· = + 20 ‖i‖∞

32
|[ |−1

?,∞ "
3 (?+1)

?
−1
�

3 (?+1)
?

i

· =−1/2 − "2 ‖i‖2∞
8

ª®®¬ .
Regarding the second term, we can use the classical concentration of RD=

(6",f) around its mean. For example, using
the fact that Assumption 3 implies that dX is compact, and using the fact that ! and 6f," are Lipschitz, we deduce that
! (6f," , . ) is bounded, hence one can applies Hoeffding’s inequality to get the same type of exponential control on this term.

The result follows from those concentration inequalities and the fact that R is bounded by one, since any function
ℎ : N∗ → R; = → min(1, 0 exp(−1=)) given two constants 0, 1 > 0 can be bounded by ℎ′ : N∗ → R; = → 2 exp(−2=) for a
constant 2 > 0.

A.5 Proof of Proposition 2

Since the Hinge loss is 1-Lipschitz from the proof of Lemma 1, we have that, for any function 6 : X → R,

R( (6) −R( (6∗) ≤ ‖6 − 6∗‖!1 (dX ) ≤ ‖6 − 6∗‖!2 (dX ) .

To verifies Assumption 4, it is sufficient to prove that there exists a f > 0 such that for any 2, A > 0, there exists a " > 0 and
a function 6 ∈ G",f such that ‖6 − 6∗‖1 ≤ 2"−A .

Under Assumption 5, 6∗ can be taken as a non-analytic smooth function, e.g.

6∗ (G) = exp(−3 (G,X−1)) − exp(−3 (G,X1)
exp(−3 (G,X−1)) + exp(−3 (G,X1)

.

In particular, it can be taken as belonging to any Sobolev space. On the one hand, any kernel that can be written as
: (G, H) = i(‖G − H‖2) for some function i : R → R only contains analytic functions in the resulting function space
G = ∪",fG",f (Sun and Zhou, 2008), hence some extra work is needed to show that 6∗ can be approximated well enough
from those spaces: more précisely, we need to show that the approximation error within G",f decays faster than "−A . On
the other hand, as soon as < ≥ (3 + 1)/2, the Sobolev space �< (R3) = ,<,2 (R3) is a reproducing kernel Hilbert space. In
particular, the case < = (3 + 1)/2 is associated with the exponential kernel : (G, H) = exp(− ‖G − H‖) (see section 7.3.3 in
Bach, 2023, for example), hence one can consider 6∗ ∈ G".f for " big enough, which trivially implies Assumption 4.

A.6 Proof of Corollary 1

This theorem is a direct application of strong duality. Because \ → R(6\) is convex and ‖\‖ ≤ " has a non-empty relative
interior, strong duality holds and

inf
\;‖\ ‖≤"

R( (6\) = sup
_≥0
inf
\
R( (6\) + _(‖\‖2 − "2)

= R( (6\∗ ) + _∗ (‖\∗‖2 − "2)
= inf

\
R( (6\) + _∗ ‖\‖2 − _∗"2.

where (\∗, _∗) is the solution of the Lagrangian problem. In other terms, for any " > 0, there exists a _ ≥ 0 such that
\_ = \" , where \_ is the minimizer of the regularized problem, and \" is the minimizer of the constrained problem.

Similarly to the proof of Theorem 1, one can prove concentration inequality onR( (6D= ,_) −R( (6\_ ), which can then be
translated into exponential convergence rates on the original problem.

B ADDITIONAL CONTEXT ON SVM

In this section, we review the geometrical motivation behind support vector machines, as well as their hinge loss
characterization. Suppose that we are given data (G8 , H8)8≤=. We would like to find a linear separating hyperplane in the



features spaceH ⊃ i(X ) between the points {i(G8) | H8 = 1} and {i(G8) | H8 = −1}. This can be formulated as

find \

s.t. H8\
>i(G8) > 0 ∀ 8 ≤ =.

For a feasible \ such that ‖\‖ = 1, one can compute the margin that separates the positive and negative labeled points along
the \-axis. It reads minH8=1,H 9=−1 \> (i(G8) − i(G 9 )). One can also compute the minimal displacement that would make a
point change of assigned label according to the classification rule induced by \, it reads min H8\>i(G8). Hence, among the
feasible \, the most robust to point displacement, is defined through the maximization of the margin between points and the
origin along the \-axis.

max 2

s.t. H8\
>i(G8) > 2 ‖\‖ ∀ 8 ≤ =.

Of course, as soon as there is noise, or if the model is not well-specified, this maximization problem is infeasible. One way
to overcome this is to introduce slack variables that act as budget for points that are too close, or on the wrong side of the
separating hyperplane,

max
∑

8≤= b8
s.t. b8 < 0 ∀ 8 ≤ =

H8\
>i(G8) > 1 + b8 ∀ 8 ≤ =.

This maximization problem can be rewritten as the minimization problem

argmin
\

∑
8≤=
max

{
0, 1 − H8\

>i(G8)
}
.

This is exactly the empirical risk minimization of the hinge with the linear class of function considered in this paper. Indeed,
our work completely forgets about the geometrical point of view of SVM, it uses the classical framework of statistical
learning, where a variational objective is provided by a loss ℓ and the minimization is done over functions from inputs
to outputs. Interestingly, the maximum margin principle, which was crucial in the introduction of SVM (Vapnik, 1995),
reappears in Assumption 5 under a weaker form: we do not ask for a clear margin between points that have different labels,
but for a margin between points where the optimal classifier should be positive and the ones where it should be negative.
The subtle difference resides in the fact that we allow for labeling noise. In particular, we allow for much more labeling noise
than previous works that have only shown exponential convergence rates under the hard low-noise condition.

C EXPERIMENTAL DETAILS

In our experiments, we used the SVM implementation of Chang and Lin (2011) through its Scikit-learn wrapper (Pedregosa
et al., 2011) in Python. We used Numpy (Harris et al., 2020) to reduce our work to high-level array instructions, and
Matplotlib for visualization (Hunter, 2007). Randomness in experiments was controlled with the random seed provided by
Numpy, which we initialized at zero.
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Figure 5: (Left) Similar setting as Figure 2 but with - uniform on [−1, 1]. The behavior of the excess of risk is quite different
without the separation in X : no exponential convergence rate is kicking in after a thousand of samples. (Right) Similar setting as
Figure 2, using kernel ridge regression with the least-squares surrogate. Exponential convergence rates are observed with a slight
delay compared to the hinge loss, and are explained by the hard low-noise condition 1.

Figures 2 and 5 are derived by averaging 100 trials of the following procedure. We draw uniformly at random = independent
samples uniformly distributed on X ∈ {[−1, 1], [−1,−.1] ∪ [.1, 1]}. We draw randomly one output H8 for each input G8 ,



according to [(G8). We consider the Gaussian kernel : (G, G ′) = exp(− ‖G − G ′‖2 /2f2) for f = .2, and solve the empirical
risk minimization associated to the hinge loss with the penalization _ ‖\‖2 (rather than the hard constraint ‖\‖ < ") for
_ = 10−4. The generalization error is measured through the formula E[‖[(G)‖ 1 5 (G)≠ 5 ∗ (G) ], with an empirical approximation
of this sum with the points (G8)8≤= chosen such that dX ( [G8 , G8+1]) = 1/= and dX ( [G=, +∞)) = 1/=, with = = 104 (which
makes sure that the exponential behavior observed is not due to the lack of testing samples). For each G, the height of each
dark part corresponds to one standard deviation of the generalization error computed from the 100 trials, and the solid line
corresponds to the empirical average. The fact that the dark parts are not centered around the averages is due to the fact that
we have drawn log-plots but centered the interval for linearly-scaled plots.

Figure 3 is obtained by considering X = [0, 1]2 with uniform input distribution, the Gaussian kernel with f = .2, and the
penalty parameter _ = 10−3 (instead of a hard constraint leading to a parameter " as in the main text derivations). We take
= = 104 = 1002 points uniformly spread out on X (on the regular lattice 1√

=
· Z2 ∩ X ) to approximate 6_,f with empirical

risk minimization on this curated dataset. We consider [(G) = c [−1,1] (2G2 − .5 sin(2cG1) − 1), and assign to each G in the
dataset a sample (G, 1) weighted by P (. = 1 | - = G) = ([(G) − 1)/2, and a sample (G,−1), weighted by P (. = −1 | - = G).
The “noiseless” setting denotes the setting where (. | -) is deterministic, but with the same decision frontier between the
classes X1 and X−1 characterized by {(G, .5 + .25 sin(2cG)) | G ∈ [0, 1]}. Once we fit the support vector machine with this
dataset, we test it with = = 2.5 · 105 = 5002 data points uniformly spread out on X , and use Matplotlib to automatically draw
level lines.
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Figure 6: Same setting as Figure 4, with f = .2 and _ = 10−6 (top), and with f = 1 and _ = 10−3 (bottom).

Figures 4 and 6 correspond to X = [0, 3] with the input distribution uniform on [0, 1] ∪ [2, 3]. Figure 4 is obtained with
f = .1 and _ = 10−6. We derive it by considering = = 100 points uniformly spread out on the domain of [, solving the
equivalent curated empirical risk minimization, that approximates both

6_,f = argmin
6:X→R

Ed [(1 − .

〈
\, i

( G
f

)〉
)+] + _ ‖\‖2 , (25)

6(LS) = argmin
6:X→R

Ed [
〈\, i ( G

f

)〉
− .

2] + _ ‖\‖2 . (26)

The robustness of SVM might be understood from its geometrical definition: when trying to find the maximum separating
margin, infinitesimal modifications that change the regularity properties of [ do not really matter. The picture is different for
the least-squares surrogate with kernel methods, where from few point evaluations, the system reconstructs a function by
assuming regularity and inferring information on high-order derivatives. This is similar to the Runge phenomenon with



Hermite interpolation. More precisely, the Gaussian kernel is linked to a space of functions with rapidly decreasing Fourier
coefficients (see, for example, Bach, 2023, for a more precise link). The function [ that needs to be approximated on Figure 4
is similar to the Heaviside function, whose Fourier coefficients are of the form ( 1

8c:
):∈N∗ and do not decrease fast enough to

be all reconstructed. This leads to some high-frequency oscillations missing in the reconstruction as it appears on Figure 4.
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