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Abstract

We propose a new framework for efficiently sam-
pling from complex probability distributions us-
ing a combination of normalizing flows and el-
liptical slice sampling (Murray et al., 2010). The
central idea is to learn a diffeomorphism, through
normalizing flows, that maps the non-Gaussian
structure of the target distribution to an approxi-
mately Gaussian distribution. We then use the el-
liptical slice sampler, an efficient and tuning-free
Markov chain Monte Carlo (MCMC) algorithm,
to sample from the transformed distribution. The
samples are then pulled back using the inverse nor-
malizing flow, yielding samples that approximate
the stationary target distribution of interest. Our
transport elliptical slice sampler (TESS) is opti-
mized for modern computer architectures, where
its adaptation mechanism utilizes parallel cores to
rapidly run multiple Markov chains for a few itera-
tions. Numerical demonstrations show that TESS
produces Monte Carlo samples from the target
distribution with lower autocorrelation compared
to non-transformed samplers, and demonstrates
significant improvements in efficiency when com-
pared to gradient-based proposals designed for
parallel computer architectures, given a flexible
enough diffeomorphism.

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms enable sci-
entists to draw samples from complex distributions, which
are typically produced by models that aim to represent the
intricate details found in real-world datasets. The explo-
ration of these complex and high-dimensional distributions
is challenging, and to be efficient, practitioners use the local
pointwise information of the target distribution to create a
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Markov chain of dependent samples. The ideal outcome
would be to have independent samples, but the Markov
chain approach generates samples that are correlated se-
quentially. Therefore, a major focus in MCMC research
is to develop algorithms that reduce these correlations and
generate samples that approximate independence.

Designing efficient MCMC algorithms usually relies on us-
ing local gradient information from the target distribution;
by discretizing, for example, Hamiltonian (Duane et al.,
1987; Neal et al., 2011) or Langevin (Rossky et al., 1978;
Grenander and Miller, 1994) dynamics of a process station-
ary on our target distribution. Calculating gradients has
been automated (Linnainmaa, 1976) but optimizing these
algorithms to efficiently minimize both computations and
correlations between sequential samples requires algorith-
mic parameters to be manually tuned. Much work has been
dedicated to developing efficient, black-box methods to
tune these parameters, with notable examples including the
NUTS (Hoffman et al., 2014) algorithm which is widely
available in probabilistic programming languages (Salvatier
et al., 2016; Carpenter et al., 2017; Bingham et al., 2019;
Phan et al., 2019).

Within the machine learning community, variational infer-
ence (VI; Jordan et al., 1999) has grown in popularity as
an inexact but comparatively faster approach to solving the
same inferential problem. As such, MCMC has lost its
preferential status as the default approach for Bayesian in-
ference for prediction and uncertainty quantification in this
thriving community. Recent efforts (Hoffman et al., 2021;
Hoffman and Sountsov, 2022) have focused on speeding
up MCMC by focusing on widening instead of lengthen-
ing computations on modern computer architectures, e.g.
utilizing GPUs or TPUs, which allow for vast parallel com-
putations. Tuning parallel MCMC chains has proven to be
a somewhat different challenge from its sequential counter-
part (Radul et al., 2020) and parallel efforts need to consider
the lockstep necessity of gradient evaluations of parallel
chains on modern vector oriented libraries (Abadi et al.,
2016; Bradbury et al., 2018; Paszke et al., 2019).
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Figure 1: Illustration of Algorithm 1 using an exact transport map, i.e. equality in (2) holds: sampling from the Banana
density π(x1, x2) ∝ exp
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using the transport map T (u1, u2) = (
√

8u1, u2 + 2u2
1) starts by

transforming the target space to the reference space via a change of variables, drawing samples from an ellipsis on the
extended reference space (not pictured) and pushing samples back to the target space.

2 TRANSPORT ELLIPTICAL SLICE
SAMPLER

In this paper we assume that x ∈ X ⊂ Rd are model
parameters and D represents our data. Our goal is to then
approximate the posterior distribution, where by Bayes rule
the posterior density is given by π(x) ∝ L(D|x)π0(x), for
L(D|x) the likelihood function and π0(x) the prior density.
Our goal is to introduce a new MCMC algorithm which
leverages the tuning-free nature of elliptical slice sampling
with the efficient density transformation tools of normalising
flows, thus creating the transport elliptical slice sampler
(TESS); an adaptive mechanism that allows scientists to
perform fast parallel sampling from unnormalized densities.
An intuitive pictorial representation of our TESS algorithm
is given in Figure 1.

2.1 Elliptical slice sampling

Introduced by Murray et al. (2010) as a simple MCMC
algorithm with no tuning parameters, the elliptical slice
sampler builds on a Metropolis-Hasting sampler introduced
by Neal (1998), which is designed for situations where
the prior π0(x) is Gaussian. Without loss of generality,
we can assume that the prior is a standard Gaussian den-
sity π0(x) = φ(x)1. The algorithm of Neal (1998) pro-
ceeds by first proposing new state of the Markov chain,
x′ =

√
1− β2x + βv, where v ∈ Rd is an independent

momentum variable following a standard Gaussian distri-
bution. The proposal moves x along the half ellipse which
connects the points v and −v which pass thorough x, for
values β ∈ [−1, 1].

Elliptical slice sampling, instead, uses the proposal x′ =
x cos θ+ v sin θ which moves on the full ellipse connecting
x, −x, v and −v for θ ∈ [0, 2π]. Both proposals leave the
prior density invariant and elliptical slice sampling uses the
slice sampling algorithm (Neal, 2003) to choose a value θ

1shift and scale x if non-standard.

which ensures that the likelihood L(D|x) is invariant. Over-
all, this proposal scheme keeps the target posterior invariant
(Murray et al., 2010), details of which are presented in the
Supplementary material for completeness.

2.2 Normalizing flows

Normalizing flows (NF; Rezende and Mohamed, 2015) are
a flexible class of transformations produced by the sequen-
tial composition of invertible and differentiable mappings.
Using NF involves choosing a simple reference density, for
example a standard Gaussian distribution φ(·), and a param-
eterized diffeomorphism Tψ , with optimized parameters ψ,
to transform the reference density to our target π(x) via a
change of variables. In other words, we want to find a map
Tψ such that for u ∼ φ and x = Tψ(u) we have x ∼ π.
Assuming this function exists, applying a change of variable
yields the following identities

π(x) = φ(T−1
ψ (x))|det∇T−1

ψ (x)| =: φ̂(x) (1)

φ(u) = π(Tψ(u))|det∇Tψ(u)| =: π̂(u), (2)

where∇Tψ and∇T−1
ψ are the Jacobian matrices of Tψ and

its inverse, respectively. In the context of VI, an approxima-
tion of φ̂(x) would serve as an approximation to our target
density when carrying-out inference, since this approxima-
tion is both normalized and trivial to sample from.

2.3 Fixed transport maps with elliptical slice
sampling

To fulfill our requirement for a simple and cost-effective
MCMC proposal, we begin by generalizing the dimension-
independent, gradient-free, and tuning-free elliptical slice
sampler. We will add tuning parameters to our generalized
elliptical slice sampler using NF. The diffeomorphism Tψ
will be responsible for efficiently exploring the posterior
target density by transforming the proposal’s dynamics and
tracing the contours of a standard Gaussian density to follow
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the contours of an approximation of the target. Following
previous works in the transport Monte Carlo field (as de-
scribed in Section 3), we present TESS as a two-step proce-
dure. Firstly, we learn the transport map between the target
and reference densities. Secondly, we utilize the transport
map within the elliptical slice sampler to generate samples
from the target density.

1. Map optimization To estimate the parameters ψ of our
NF map we minimize a divergence between our target den-
sity π(x) and the push-forward reference density φ̂(x) (1).
For our intended purpose, by the law of the unconscious
statistician, this is equivalent to minimizing the divergence
between the pull-back target density π̂(u) (2) and the refer-
ence density φ(u). The Kullback-Leibler divergence (KL;
Kullback and Leibler, 1951) is arguably the most widely
used and studied divergence, here presented in the context
of approximate Bayesian inference but also studied in other
branches of statistics and information theory (Joyce, 2011).
It not only has a tractable Monte Carlo estimate, it is directly
related to the foundation of VI and provides intuition into
the connection between maximizing the likelihood of obser-
vational data and minimizing the distance between target
and reference densities (Blei et al., 2017),

KL(π||φ̂) =

∫
log

π(x)

φ̂(x)
π(x)dx. (3)

The optimal transport map is found by optimizing the the pa-
rametersψ of the diffeomorphism Tψ such that the Kullback-
Leibler divergence between the target and reference densi-
ties is minimised, i.e.

ψ∗ = arg min
ψ∈Ψ

KL(π||φ̂). (4)

2. Sampling from the target Our proposed sampling
method generalizes the elliptical slice sampler by target-
ing the extended state space π(x)φ(v) for any posterior
density π(x), regardless of the choice of prior distribution.
The target density is preconditioned using a transform via a
normalizing flow to map to a standard Gaussian distribution.
That is, given a map Tψ∗ , with fixed parameters ψ∗, such
that π̂(u) ≈ φ(u) we proceed as follows: i) from an initial
state (x, v) = (T ∗ψ(u), v), ii) move around an ellipse con-
necting u and v and iii) accept the new state according to a
slice variable chosen uniformly on the interval [0, π̂(u)φ(v)].
One iteration of this method is detailed in Algorithm 1.

Proposition 1 The transition kernel of the Markov chain
derived from Algorithm 1 leaves the target density π(x)φ(v)
invariant.

The TESS algorithm is likely to be geometrically ergodic
under certain transformations, if those transformations lead
to nice tail properties on the pulled back target. A sketch
of this argument follows from three key components: (i)

Algorithm 1 Transport Elliptical Slice Sampler
Require: u, Tψ(·), π̂(·)

1: v ∼ N (0, Id)
2: w ∼ Uniform(0, 1)
3: log s← log π̂(u) + log φ(v) + logw
4: θ ∼ Uniform(0, 2π)
5: [θmin, θmax]← [θ − 2π, θ]
6: u′ ← u cos θ + v sin θ
7: v′ ← v cos θ − u sin θ
8: if log π̂(u′) + log φ(v′) > log s then
9: x′ ← Tψ(u′)

10: Return x′, u′
11: else
12: if θ < 0 then
13: θmin ← θ
14: else
15: θmax ← θ
16: end if
17: θ ∼ Uniform(θmin, θmax)
18: Go to 6.
19: end if

Natarovskii et al. (2021) show that the standard elliptical
slice sampler is geometrically ergodic if the target density
has tails which are rotationally invariant and monotonically
decreasing, e.g. exp(−c||x||) for c > 0. (ii) This implies
geometric ergodicity for TESS if for a target density π and
Markov transition kernel P (x, ·), with C > 0 and γ ∈
(0, 1), geometric ergodicity of the elliptical slice sampler
holds when

||Pn(x, ·)− π||TV ≤ C(1 + ||x||)γn, ∀n ∈ N,∀x ∈ Rd.

Then for P̃ (x, ·) the transition kernel of TESS we have,

||P̃n(u, ·)− π̂||TV = ||Pn(Tψ(u), ·)− π̂||TV
≤ C(1 + ||Tψ(u)||)γn,

which holds only if the transformation Tψ leads to nice tail
properties for π̂. (iii) Following from Theorems 2 and 3 of
Johnson and Geyer (2012), if there exists a diffeomorphism
which ensures that T pulls in the tails of the distribution
enough, then geometric ergodicity holds on the transformed
distribution. An open question is to determine the neces-
sary conditions on Tψ for this result to hold beyond simple
transformations.

2.4 Adaptive transport maps

There are two key components to TESS, the MCMC sam-
pling phase and the transformation function Tψ , which so far
we have treated as two independent procedures. However,
the function Tψ is parameterised by ψ and these parame-
ters must be learnt using samples from the target π(x). We
therefore propose an adaptive version of TESS which alter-
nates between optimizing ψ and sampling x to produce an
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accurate map between the reference measure and the target
distribution.

The parameters ψ are optimized by first running the TESS
sampling procedure (Alg. 1) using k parallel Monte Carlo
chains with an initial value of ψ, resulting in k approximate
samples from our target π(x). We then run m iterations of
a stochastic gradient descent algorithm on the loss function

KL(π(x)||φ̂(x)) ≈ 1

k

k∑
i=1

log
π(xi)

φ̂(xi)
. (5)

The warm-up stage of the sampler repeats this process for
h epochs with batches of size k, adjusting the inherited
parameters from the previous epoch and finally fixing the
parameters to then iterate N times Algorithm 1, generating
samples from our extended target space π(x)φ(v). This
adaptive sampling algorithm is detailed in Algorithm 2.

An important property of the Kullback-Leibler divergence
is that it is an asymmetric divergence, i.e. KL(π||φ̂) 6=
KL(φ̂||π). Minimizing KL(φ̂||π) forces π(x) to cover the
mass of φ̂(x) thus produces a poor approximation of the tails
of the posterior target density. Alternatively, minimizing
KL(π||φ̂) forces φ̂(x) to cover the mass of π(x), providing
an overconfident approximation to the target density that
can be corrected using a sampling method that leaves the
target distribution invariant.

Algorithm 2 Adaptive TESS

Require: u(0)
1:k, h,m,N,TESS . TESS applies Algorithm

1
1: Set initial parameters of Tψ and π̂.
2: for t← 1, . . . , h do . Warm-up
3: for i← 1, . . . , k do
4: x

(t)
i , u

(t)
i ← TESS(u

(t−1)
i , Tψ, π̂)

5: end for
6: Update ψ in Tψ by running m iterations of gradient

descent on (5) using samples x(t)
1:k.

7: end for
8: u(0)

1:k ← u
(h)
1:k

9: for t← 1, . . . , N do . Sampling
10: for i← 1, . . . , k do
11: x

(t)
i , u

(t)
i ← TESS(u

(t−1)
i , Tψ, π̂)

12: end for
13: end for
14: Return x(1)

1:k, . . . , x
(N)
1:k

We follow the approach of Hoffman et al. (2019) and ini-
tialize the parameters of the NF using an approximation
of the parameters that minimize KL(φ̂||π) via a stochastic
gradient descent scheme. In other words, minimizing the
Monte Carlo approximation

KL(φ(u)||π̂(u)) ≈ 1

M

M∑
i=1

log
φ(ui)

π̂(ui)
, ui

iid∼ φ. (6)

2.5 Choice of transport map

There is a wide class of linear and nonlinear functions which
can be used within our normalizing flow map. In this paper,
we focus on the coupling architecture for Tψ introduced
by Dinh et al. (2014). Consider the disjoint partition x =
(xA, xB) ∈ Rp × Rd−p and a coupling function t(·;ψ) :
Rp → Rp parameterized by some set of parameters ψ. Then,
one can define a transformation G : Rd → Rd by the
formula

xA = t(uA; Ψ(uB)) := eψ1 � uA + ψ2 (7)

xB = uB , (8)

given parameters Ψ : Rd−p → Rp × Rp learned only from
the extended input. Here we assume an affine bijection,
defined in (7), and make Ψ a dense feedforward neural net-
work, for further generalizations and variations see Kobyzev
et al. (2020). The main practical advantages of the coupling
architecture with affine transformations are that it is easily
inverted through a shift and scale of the transformed xA

with parameters given by the unchanged xB = uB , and that
the modulus determinant of its Jacobian matrix can be eas-
ily computed as |det∇G(x)| =

∏d
i=1(eψ1)i. Furthermore,

since the inverse of the transformation is of similar structure,
also its constant of volume change can be easily derived as
|det∇G−1(x)| =

∏d
i=1(e−ψ1)i. Both of these are using

parameters given by Ψ(uB) = Ψ(xB) and we drop the ab-
solute value from our computations since the values being
multiplied are non-negative. We allow for arbitrary complex-
ity of our NF by introducing a transformationD : Rd → Rd
with the same structure asG but with the roles of the random
variables reversed, i.e. xA = uA and xB = t(uB ; Ψ(uA)).
Hence making our final NF a sequential composition of
n ≥ 1 transformations Tψ = Dn ◦Gn ◦ · · · ◦D1 ◦G1.

3 RELATED WORK

Elliptical slice sampling The original elliptical slice sam-
pler paper (Murray et al., 2010) presented a simple algorithm
that worked well on scenarios of strong prior (Gaussian) in-
formation. Nishihara et al. (2014) were the first to explore
the idea of generalizing this algorithm to any target dis-
tribution, while trying to maintain a simple kernel. Their
proposal used a Student-t distribution to approximate the tar-
get, under the premise that this proposal would adequately
cover the tails of the target density. Their work also con-
sidered an adaptive mechanism using parallel computing
architectures, which accelerated the MCMC sampler by uti-
lizing multiple chains with fewer iterations per chain. Fagan
et al. (2016) also used a generalized elliptical slice sampling
proposal paired with a preconditioning step to alleviate com-
plex geometry on their target, in their case using expectation
propagation to learn correlation structures for subsets of the
parameter space. The main difference between previous
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elliptical slice sampling work and our methodology is the
use of normalizing flows to create a transport map between
a Gaussian density (for which the sampler works well) and
the target density of interest. As shown in Section 4, utiliz-
ing the richness of nonlinear transport maps produces a fast
and highly efficient MCMC algorithm.

Monte Carlo transport maps Our work draws inspiration
and is closely related to several threads of work that ap-
proach the problem of simulation by simplifying the struc-
ture of the target density through a preconditioning step. For
general MCMC proposals, Parno and Marzouk (2018) intro-
duced the idea of learning a diffeomorphism using samples
from an MCMC algorithm to approximate (3). Their work
built on El Moselhy and Marzouk (2012)’s proposal for
approximate inference, adding an MCMC kernel that cor-
rects the approximation and provides asymptotically exact
samples. Their work showed that a relatively simple trans-
formation can provide valuable information about the global
structure of the target density, thus improving the efficiency
of MCMC algorithms that use local gradient information on
certain, especially degenerate, test cases.

MCMC with normalizing flows The NeuTra Hamiltonian
Monte Carlo (HMC) algorithm introduced in Hoffman et al.
(2019) combines neural transport maps with the HMC al-
gorithm. This builds on the earlier work of Marzouk et al.
(2016), who frame the approximate inference problem as
solving a two-step process, where firstly an optimization
problem is solved to find a preconditioned diffeomorphism
which minimizes (6), and then the preconditioned target
is sampled from using a HMC algorithm. The NeuTra al-
gorithm relies on gradient-based proposals to explore the
target density. A key difference from the transport elliptical
slice sampler is that gradients of the target density are not re-
quired, this makes the algorithm faster than gradient-based
MCMC algorithms, and as illustrated in Section 4, this is
achieved without sacrificing sampling accuracy due to the
transport mapping. Additionally, TESS can be applied in
settings where it is either infeasible to calculate target gradi-
ents, or they may be unstable (e.g the Neal’s funnel density
(Gorinova et al., 2020)).

4 EXPERIMENTS

In this section we compare the performance of the adaptive
form of TESS (Alg. 2) with the performance of several
state-of-the-art MCMC algorithms designed for parallel
computer architectures. Specifically, MEADS (Hoffman
and Sountsov, 2022), ChEES-HMC (Hoffman et al., 2021),
and the popular NUTS algorithm (Hoffman et al., 2014)
where an adaptive step size is tuned such that the aver-
age cross-chain harmonic-mean acceptance rate is approxi-
mately 0.8. We also precondition the latter NUTS method,
using the same NF as in TESS, which leads to the NeuTra

https://github.com/albcab/TESS

algorithm (Hoffman et al., 2019). We compare the effect of
TESS’s overfitted adapted transformation against an under-
fitted transformation (i.e. reversing the KL) which, unlike
TESS, is done independently and a priori to the sampling
process. Each experiment runs all algorithms on 128 parallel
chains for 400 warm-up iterations per chain, during which
hyperparameters are tuned, followed by 100 iterations used
to produce posterior samples, with fixed hyperparameters.
MEADS separates the 128 chains into 4 batches of 32 chains
each and tunes parameters during all 500 iterations but only
the last 100 are used as posterior samples.

The transform map used in all experiments uses n = 2 trans-
formations of a ψ-parameterized dense feedforward neural
network with two hidden layers of the same dimension as
the input (see Sec. 2.5 for details). The Adam (Kingma
and Ba, 2014) method is used to estimate ψ, with a learning
rate that decays exponentially over 400 iterations at a rate
of 0.1 using a different initial learning rate for each experi-
ment. For the adaptive TESS algorithm, we set m = 1 on
all experiments.

We compare the experimental results of each algorithm
based on their Monte Carlo sample efficiency, as indicated
by the maximum integrated autocorrelation time (τmax)
with standard deviation (στ ). Additionally, we present the
effective sample size (ESS) in terms of the median worst
case integrated autocorrelation time, both for individual
chains and when all chains are grouped together. A more
efficient algorithm is indicated by lower autocorrelations
and higher ESS, as this indicates that samples are closer to
being independent. To demonstrate the impact of compu-
tational cost on each algorithm, we normalize the ESS by
the run time in seconds. ESS/sec considers the time spent
adapting and sampling, therefore provides a fair comparison
between algorithms. To assess the accuracy of the posterior
approximation for each algorithm, we use the kernelized
Stein discrepancy with U- and V-statistics, as described in
(Gorham and Mackey, 2017). Lower values of U- and V-
statistics indicate a better approximation of the target poste-
rior. Further information on these diagnostics can be found
in the Supplementary Material.

4.1 Biochemical oxygen demand model

We start with an experiment from (Parno and Marzouk,
2018) designed to undermine gradient methods because of
its rapidly changing posterior correlation structure, which
is challenging for standard samplers to explore. Gradient
methods capture local geometry, but the local geometry in
this example is not representative of the global geometry
of the target and thus provides insufficient information for
efficient sampling. On the other hand, the non-linear trans-
formation of the target space with a NF-based approach
captures the global, non-Gaussian structure of the target
density.

https://github.com/albcab/TESS
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Algorithm τmax στ ESS ESS/chain ESS/sec Stein U-stat. Stein V-stat.
TESS 0.555 1.485 11523 90 1129.199 4.269e+02 4.570e+02
MEADS 9.959 1.468 643 5 208.613 1.476e+15 1.486e+15
ChEES-HMC 6.406 2.228 999 8 224.290 1.505e+16 1.510e+16
NUTS 9.579 1.427 668 5 19.625 1.187e+15 1.192e+15
NeuTra 9.553 1.502 670 5 15.579 1.082e+15 1.087e+15

Table 1: Biochemical oxygen demand model. Algorithm diagnostics where τmax is the maximum integrated autocorrelation
time over all dimensions; ESS is the corresponding minimum effective sample size. Results are averaged over multiple
chains of each sampler, and στ is the empirical standard deviation of τmax over these runs.

Figure 2: Samples from the target density π(θ) of the Bio-
chemical oxygen demand model acquired by the TESS
algorithm, mapped to φ̂(θ) (1), with diffeomorphism Tψ
learned from the warm-up procedure of Algorithm 2. With
an approximation that overestimates the real variance (right)
of our target (left) we are able to capture its global, non-
Gaussian structure and explore it using a dimension inde-
pendent and gradient-free method.

The simple biochemical oxygen demand model is given
by B(t) = θ0(1 − exp(−θ1t)) for times t < 5. In this
synthetic data experiment, we set the parameters θ0 = 1 and
θ1 = 0.1 and simulate y(ti) observations at times ti evenly
spaced in [0, 5) for i = 1, . . . , 20 such that y(ti) = θ0(1−
exp(−θ1ti))+εi, where εi ∼ N (0, σ2

y) and fixed σ2
y = 2×

10−4. The target posterior density is given by the likelihood
L(y|θ0, θ1) =

∏
iN (y(ti);B(ti; θ0, θ1), σ2

y) and flat prior
π0(θ0, θ1) ∝ 1. The numerical results are shown in Table
1 and Figure 2 plots the Monte Carlo approximation of the
posterior for the original and transformed densities.

It is clear from the results that local gradient information is
insufficient to efficiently sample from the rapidly changing
local correlation structure of the target density. On the
other hand, the learned transport map from the warm-up
procedure of TESS provides a mass-covering approximation
of the global structure of the target, demonstrated in Figure
2 by φ̂(u), which allows the algorithm to move farther away
from its initial position, exploring efficiently the entire target
space, and yielding not only shorter autocorrelation times,
but also the correct posterior estimates of the parameter
space. In this specific case, gradient-based algorithms are
forced to take very small steps while still encountering large

rejection probabilities, thus being inefficient at producing
samples from the posterior.

4.2 Sparse logistic regression

Next, we consider a sparse logistic regression model with
hierarchies. Regression parameters of the logistic likelihood
are given a horseshoe prior (Carvalho et al., 2009) which
induces sparsity on the regressors, i.e. variable selection.
These types of hierarchies on the prior scale of a parameter
create funnel geometries that are hard to efficiently explore
without local or global structure of the target.

Algorithms are run on the non-centered parametriza-
tion (Papaspiliopoulos et al., 2007) of our model
using the numerical version of the German credit
dataset. The target posterior is defined by the likelihood
L(y|β,λ, τ) =

∏
i Bernoulli(yi;σ((τλ � β)TXi)),

with sigmoid function σ(·), and prior π0(β,λ, τ) =
Gamma(τ ; 1/2, 1/2)

∏
j N (βj ; 0, 1) Gamma(λj ; 1/2, 1/2).

Numerical results for each MCMC algorithm are shown in
Table 2. Notice how NUTS and NeuTra provide the best
results but long sampling times reflect their inefficiency
when running in parallel: every iteration takes as long as
the longest chain takes to iterate. Waiting for all chains
to catch up severely slows down sampling time, the same
effect can be observed in all experiments.

As the dimension of the parameter space grows (d = 51
in this example), TESS will require more samples, i.e.
more chains, for a low variance estimate of (6). In ad-
dition, a more complicated NF is required to capture the
non-Gaussian structure of the high-dimensional target space.
When either of these fail, and the diffeomorphism T is un-
able to capture the structure of the target space, the simple
sampling procedure inherited from the elliptical slice sam-
pler will struggle to sample from the target space, even if
producing uncorrelated samples. We purposely illustrate
the effect of a deficient transformation on a high dimen-
sional problem in order for the practitioner to understand the
caveats of our method. Studying ways to lower the variance
of (6), using control variates (Lemieux, 2014) and similar
methods (Botev and Ridder, 2017), as well as alternative

https://archive.ics.uci.edu/ml/datasets/
statlog+\(german+credit+data)

https://archive.ics.uci.edu/ml/datasets/statlog+\(german+credit+data)
https://archive.ics.uci.edu/ml/datasets/statlog+\(german+credit+data)
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Algorithm τmax στ ESS ESS/chain ESS/sec Stein U-stat. Stein V-stat.
TESS 5.182 0.352 1235 10 34.744 1.591e+00 1.693e+00
MEADS 7.105 0.413 901 7 49.453 9.408e-01 1.079e+00
ChEES-HMC 5.666 0.380 1130 9 81.588 1.193e+00 1.312e+00
NUTS 4.734 0.833 1352 11 0.379 1.004e+00 1.138e+00
NeuTra 2.482 1.949 2579 20 0.401 3.618e-01 4.971e-01

Table 2: Sparse logistic regression. Algorithm diagnostics where τmax is the maximum integrated autocorrelation time over
all dimensions; ESS is the corresponding minimum effective sample size. Results are averaged over multiple chains of each
sampler, and στ is the empirical standard deviation of τmax over these runs.

NF schemes is left to future work.

4.3 Regime switching Hidden Markov model

A important use of inference and uncertainty quantifica-
tion is on time series data. In this example, we analyze
financial time series, specifically the daily difference in log
price data of Google’s stock, referred to as returns rt, for
t = 1, . . . , 431. We shall assume that at any given time
t the stock’s returns will follow one of two regimes: an
independent random walk regime rt ∼ N (α1, σ

2
1), or an au-

toregressive regime rt ∼ N (α2 +ρrt−1, σ
2
2). We define the

two regimes as st ∈ {0, 1} and the probability of switching
between, or remaining within a regime at time t will depend
on the regime at t − 1, i.e. pst−1,st for st−1, st ∈ {0, 1}.
The transition probabilities p1,1 and p2,2, and their comple-
mentary probabilities p1,2 = 1−p1,1 and p2,1 = 1−p2,2 are
treated as model parameters. Since the regime at any time
is unobserved, we instead carry over time the probability of
belonging to either regime as ξ1t + ξ2t = 1. Finally, we de-
fine the initial values, both for returns r0 and the probability
of belonging to one of the two regimes ξ10.

The regime switching model is defined by the likelihood

L(r|α, ρ,σ2,p, r0, ξ10) =
∏
t

ξ1tη1t + (1− ξ1t)η2t,

(9)

where ξ1t =
ξ1t−1η1t

ξ1t−1η1t + (1− ξ1t−1)η2t
,

and ηjt = pj,1N (rt;α1, σ
2
1) + pj,2N (rt;α2 + ρrt−1, σ

2
2)

for j ∈ {0, 1}. The prior distributions for the parameters
are

α1, α2, r0 ∼ N (0, 1), ρ ∼ N 0(1, 0.1), (10)

σ1, σ2 ∼ C+(1), (11)
p1,1, p2,2 ∼ Beta(10, 2), ξ10 ∼ Beta(2, 2), (12)

where N 0 indicates a Gaussian distribution which is trun-
cated at zero and C+ is the half-Cauchy distribution. Nu-
merical results are shown in Table 3.

The marginal unimodality and somewhat independent cor-
relation structure of the parameters makes this posterior

distribution easy to sample from, diagnostic results show
the best performance for all algorithms with respect to other
models. TESS’s learned flexible transformation of the tar-
get density, allowing it to propose uncorrelated sequential
samples, is fundamental for its superior diagnostics. ChEES-
HMC outputs the samples with the lowest Stein discrepancy,
but since it uses the same step size for all target dimensions
it struggles to mix well on the worst-case dimension. On
the other hand, a flexible transport map is able to capture
the covariance structure of the target, allowing fast mixing
even on the worst-case dimension. Pair density plots can be
found in the Supplementary Material.

4.4 Predator-prey system

We consider a likelihood defined as a solution of an ODE
system, specifically, the predator-prey system defined by the
Lotka-Volterra equations (Goel et al., 1971),

dp

dt
= αp− βpq, and

dq

dt
= −γq + δpq, (13)

where p and q are the prey and predator populations, re-
spectively. We can solve the ODE system of equations
numerically and account for measurement error by mod-
elling the observations as log pt ∼ N (log p(t), σ2

p) and
log qt ∼ N (log q(t), σ2

q ) for all t > 0. Furthermore, p(0)
and q(0) are the initial values. Since we cannot analytically
solve the system of equations, we approximate its solution
using the Runge–Kutta method, adding an approximation
error to our likelihood function. Data for the Hudson’s Bay
historical lynx-hare population are used as observations in
the model. The likelihood is defined as

L(p,q|θ) =
∏
t

N
((

log pt
log qt

)
;

(
log p(t)
log q(t)

)
,

(
σ2
p 0

0 σ2
q

))

where θ = (α, β, γ, δ, σ2
p, σ

2
q , p(0), q(0)) and

{p(t), q(t)}t>0 are approximate solutions to the Lotka-
Volterra system of equations initialized at (p(0), q(0)).

http://people.whitman.edu/~hundledr/
courses/M250F03/LynxHare.txt

http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt
http://people.whitman.edu/~hundledr/courses/M250F03/LynxHare.txt
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Algorithm τmax στ ESS ESS/chain ESS/sec Stein U-stat. Stein V-stat.
TESS 0.267 0.893 23985 187 985.969 5.120e-02 1.301e-01
MEADS 1.382 1.197 4631 36 319.949 3.066e-01 3.867e-01
ChEES-HMC 3.451 1.825 1855 14 121.756 -8.203e-03 7.073e-02
NUTS 0.282 0.403 22672 177 182.255 2.222e-02 1.009e-01
NeuTra 0.441 1.020 14530 114 209.069 1.092e-01 1.880e-01

Table 3: Regime switching Hidden Markov model. Algorithm diagnostics where τmax is the maximum integrated auto-
correlation time over all dimensions; ESS is the corresponding minimum effective sample size. Results are averaged over
multiple chains of each sampler, and στ is the empirical standard deviation of τmax over these runs.

Prior distributions for parameters are

α, γ ∼ N 0(1, 1/2), β, δ ∼ N 0(1/20, 1/20), (14)
log σp, log σq ∼ N (−1, 1), (15)

log p(0), log q(0) ∼ N (log 10, 1), (16)

where N 0 is a Gaussian distribution truncated at zero.

This experiment exhibits a situation similar to Section 4.1:
gradient methods, without global information on the struc-
ture of our target, lack enough information to move effi-
ciently around its rapidly changing correlation structure. On
the other hand, TESS captures the global structure of the
target using a NF and is able to move purposely around it
when sampling. Figure 3 illustrates the contrast: MEADS
is unable to converge towards a sensible solution, explor-
ing a region of the target space with large error variance
and insignificant initial positions, both for the predator and
the prey populations; on the other hand, TESS is able to
converge towards reasonable initial populations and concen-
trate sampling around small error variance. Samples from
the other gradient methods give similar results to MEADS.
Gradient methods need a learned correlation matrix that cap-
tures the global correlation structure of the target and use
gradient information to propose large steps locally, while
TESS is able to capture both the global correlation and local
structure by learning an overconfident transport map, then
using this information on a cheap and gradient-free method
for sampling.

5 DISCUSSION

In this paper we proposed TESS, an MCMC algorithm that
performs dimension independent and gradient-free sampling
from any unnormalized target density. We also proposed an
adaptive version of our algorithm that learns a non-Gaussian
approximation to the target, helping the algorithm explore
complex geometries efficiently. TESS is also able to utilize
parallel computer architectures to accelerate sampling from
posterior distributions. We believe that this will allow practi-
tioners to perform uncertainty quantification of their models
with parallel computational resources and little time.

We found that our algorithm is able to outperform gradient-
based competitors in a variety of models. However, it is im-

TESS MEADS

Figure 3: Density plots of the approximate posterior distri-
bution for the initial values and scale parameters from the
predator-prey system model, drawn with transport elliptical
slice sampling on the left and MEADS on the right.

portant to develop flexible transport maps and low-variance
Monte Carlo approximations of the KL divergence, specially
for high-dimensional models. Future work will explore the
role of the transport map on the algorithm’s efficiency, its ef-
ficacy in capturing issues in Bayesian posterior geometries,
and develop flexible transport maps for high-dimensional
models.

Acknowledgements

The authors would like to thank the anonymous reviewers
for their helpful feedback which has significantly improved
the quality of the paper. CN gratefully acknowledges the
support of EPSRC grants EP/V022636/1, EP/S00159X/1
and EP/R01860X/1.

References

Iain Murray, Ryan Adams, and David MacKay. Elliptical
slice sampling. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statistics,



Alberto Cabezas, Christopher Nemeth

pages 541–548. JMLR Workshop and Conference Pro-
ceedings, 2010.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and
Duncan Roweth. Hybrid monte carlo. Physics letters B,
195(2):216–222, 1987.

Radford M Neal et al. Mcmc using hamiltonian dynamics.
Handbook of Markov Chain Monte Carlo, 2(11):2, 2011.

Peter J Rossky, Jimmie D Doll, and Harold L Friedman.
Brownian dynamics as smart monte carlo simulation. The
Journal of Chemical Physics, 69(10):4628–4633, 1978.

Ulf Grenander and Michael I Miller. Representations of
knowledge in complex systems. Journal of the Royal
Statistical Society: Series B (Methodological), 56(4):549–
581, 1994.

Seppo Linnainmaa. Taylor expansion of the accumulated
rounding error. BIT Numerical Mathematics, 16(2):146–
160, 1976.

Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn
sampler: adaptively setting path lengths in hamiltonian
monte carlo. J. Mach. Learn. Res., 15(1):1593–1623,
2014.

John Salvatier, Thomas V Wiecki, and Christopher Fonnes-
beck. Probabilistic programming in python using pymc3.
PeerJ Computer Science, 2:e55, 2016.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman,
Daniel Lee, Ben Goodrich, Michael Betancourt, Mar-
cus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
Stan: A probabilistic programming language. Journal of
statistical software, 76(1), 2017.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Good-
man. Pyro: Deep universal probabilistic programming. J.
Mach. Learn. Res., 20:28:1–28:6, 2019.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. Compos-
able effects for flexible and accelerated probabilistic pro-
gramming in numpyro. arXiv preprint arXiv:1912.11554,
2019.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola,
and Lawrence K Saul. An introduction to variational
methods for graphical models. Machine learning, 37(2):
183–233, 1999.

Matthew Hoffman, Alexey Radul, and Pavel Sountsov. An
adaptive-mcmc scheme for setting trajectory lengths in
hamiltonian monte carlo. In International Conference
on Artificial Intelligence and Statistics, pages 3907–3915.
PMLR, 2021.

Matthew D Hoffman and Pavel Sountsov. Tuning-free gen-
eralized hamiltonian monte carlo. In International Con-
ference on Artificial Intelligence and Statistics, pages
7799–7813. PMLR, 2022.

Alexey Radul, Brian Patton, Dougal Maclaurin, Matthew
Hoffman, and Rif A Saurous. Automatically batching
control-intensive programs for modern accelerators. Pro-
ceedings of Machine Learning and Systems, 2:390–399,
2020.

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Ten-
sorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467,
2016.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.,
2019.

R. Neal. Regression and classification using gaussian pro-
cess priors. In Bayesian statistics, volume 6, page 475.
1998.

Radford M Neal. Slice sampling. The annals of statistics,
31(3):705–767, 2003.

Danilo Rezende and Shakir Mohamed. Variational inference
with normalizing flows. In International conference on
machine learning, pages 1530–1538. PMLR, 2015.

Solomon Kullback and Richard A Leibler. On information
and sufficiency. The annals of mathematical statistics, 22
(1):79–86, 1951.

James M. Joyce. Kullback-Leibler Divergence, pages
720–722. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011. ISBN 978-3-642-04898-2. doi: 10.1007/
978-3-642-04898-2_327.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Vari-
ational inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Viacheslav Natarovskii, Daniel Rudolf, and Björn Sprungk.
Geometric convergence of elliptical slice sampling. In
International Conference on Machine Learning, pages
7969–7978. PMLR, 2021.



Transport Elliptical Slice Sampling

Leif T Johnson and Charles J Geyer. Variable transforma-
tion to obtain geometric ergodicity in the random-walk
metropolis algorithm. The Annals of Statistics, pages
3050–3076, 2012.

Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian
Langmore, Dustin Tran, and Srinivas Vasudevan. Neutra-
lizing bad geometry in hamiltonian monte carlo using
neural transport. arXiv preprint arXiv:1903.03704, 2019.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker.
Normalizing flows: An introduction and review of current
methods. IEEE transactions on pattern analysis and
machine intelligence, 43(11):3964–3979, 2020.

Robert Nishihara, Iain Murray, and Ryan P Adams. Parallel
mcmc with generalized elliptical slice sampling. The
Journal of Machine Learning Research, 15(1):2087–2112,
2014.

Francois Fagan, Jalaj Bhandari, and John P Cunningham.
Elliptical slice sampling with expectation propagation. In
UAI, 2016.

Matthew D Parno and Youssef M Marzouk. Transport map
accelerated markov chain monte carlo. SIAM/ASA Jour-
nal on Uncertainty Quantification, 6(2):645–682, 2018.

Tarek A El Moselhy and Youssef M Marzouk. Bayesian
inference with optimal maps. Journal of Computational
Physics, 231(23):7815–7850, 2012.

Youssef Marzouk, Tarek Moselhy, Matthew Parno, and
Alessio Spantini. An introduction to sampling via mea-
sure transport. arXiv preprint arXiv:1602.05023, 2016.

Maria Gorinova, Dave Moore, and Matthew Hoffman. Au-
tomatic reparameterisation of probabilistic programs. In
International Conference on Machine Learning, pages
3648–3657. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Jackson Gorham and Lester Mackey. Measuring sample
quality with kernels. In International Conference on
Machine Learning, pages 1292–1301. PMLR, 2017.

Carlos M Carvalho, Nicholas G Polson, and James G Scott.
Handling sparsity via the horseshoe. In Artificial Intelli-
gence and Statistics, pages 73–80. PMLR, 2009.

Omiros Papaspiliopoulos, Gareth O Roberts, and Martin
Sköld. A general framework for the parametrization of
hierarchical models. Statistical Science, pages 59–73,
2007.

Christiane Lemieux. Control variates. Wiley StatsRef: Statis-
tics Reference Online, pages 1–8, 2014.

Zdravko Botev and Ad Ridder. Variance reduction. Wiley
statsRef: Statistics reference online, pages 1–6, 2017.

Narendra S Goel, Samaresh C Maitra, and Elliott W Mon-
troll. On the volterra and other nonlinear models of in-
teracting populations. Reviews of modern physics, 43(2):
231, 1971.

Ulli Wolff, Alpha Collaboration, et al. Monte carlo errors
with less errors. Computer Physics Communications, 156
(2):143–153, 2004.

Qiang Liu, Jason Lee, and Michael Jordan. A kernelized
stein discrepancy for goodness-of-fit tests. In Interna-
tional conference on machine learning, pages 276–284.
PMLR, 2016.

Charles Stein, Persi Diaconis, Susan Holmes, and Gesine
Reinert. Use of exchangeable pairs in the analysis of
simulations. Lecture Notes-Monograph Series, pages
1–26, 2004.



Alberto Cabezas, Christopher Nemeth

A ELLIPTICAL SLICE SAMPLING ALGORITHM

Algorithm 3 Elliptical slice sampler (Murray et al., 2010)
Require: x, L(D|·)

1: v ∼ N (0, Id)
2: w ∼ Uniform(0, 1)
3: log s← logL(D|x) + logw
4: θ ∼ Uniform(0, 2π)
5: [θmin, θmax]← [θ − 2π, θ]
6: x′ ← x cos θ + v sin θ
7: if logL(D|x′) > log s then
8: Return x′

9: else
10: if θ < 0 then
11: θmin ← θ
12: else
13: θmax ← θ
14: end if
15: θ ∼ Uniform(θmin, θmax)
16: Go to 6.
17: end if

B PROOF

B.1 Proof of Proposition 1

As established in Murray et al. (2010) and Nishihara et al. (2014), the elliptical slice sampler and generalized elliptical
sampler target the correct stationary distribution as the algorithm is reversible and produces an irreducible, aperiodic Markov
chain.

The same result holds for the TESS algorithm from initial state u = T−1
ψ (x) and where (u, v) and (u′, v′) represent the

initial and accepted transformed parameters of the sampler (steps 1 and 6-7), with s the slice variable (step 3) and {θk}Kk=1

the parameters representing points in the slice expressed in radians until acceptance at K (steps 4 and 17). Let

θ′k =

{
θk − θK , if k < K

−θK if k = K
, (17)

then by the properties of the elliptical slice sampler, the transformation (u, v, s, {θk}Kk=1) 7→ (u′, v′, s, {θ′k}Kk=1) is bijective,
preserves volume and p({θk}Kk=1|u, v, s) = p({θ′k}Kk=1|u′, v′, s). Using the uniform density of the slice variable s it is easy
to see that p(u′, v′, {θk}Kk=1, s|u, v)π̂(u)φ(v) = p(u, v, {θ′k}Kk=1, s|u′, v′)π̂(u′)φ(v′), and so if (u, v) ∼ π̂(u)φ(v) then
(u′, v′) ∼ π̂(u′)φ(v′). Finally, as x = Tψ(u) we have (x′, v′) ∼ π(Tψ(u′))|det∇Tψ(u′)|φ(v′) = π(x′)φ(v′).

C DIAGNOSTIC TOOLS CALCULATION DETAILS

Here we describe the calculation of the maximum integrated autocorrelation time τmax and Kernelized Stein discrepancy
U- and V- statistics used throughout our results. Assume we have as output from chain c a sequence of N samples from
our target xc,1, . . . ,xc,N , where each sample is on a d−dimensional parameter space. Then, compute the integrated
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autocorrelation time for dimension j = 1, . . . , d on chain c as

τc,j =
1

2
+ 2

N−1∑
t=1

(
1− t

N

)
Ĉ(t)

2Ĉ(0)
(18)

Ĉ(t) =
∑

0<i<N−t
(xc,i,j − x̄c,·,j)(xc,i+t,j − x̄c,·,j) (19)

x̄c,·,j =
1

N

N∑
i=1

xc,i,j . (20)

The value Ĉ(t) for all t = 1, . . . , N − 1 is computed by applying the Fourier transform method from Wolff et al. (2004).
We then define τmax and ESS as

τmax = max
j=1,...,d

[
median
c=1,...,C

τc,j

]
(21)

ESS = min
j=1,...,d

[
median
c=1,...,C

N

2τc,j

]
. (22)

The Kernelized Stein discrepancy’s U- and V-statistics are calculated using the inverse multi-quadratic kernel k(x, x′) =
(1 + (x− x′)T (x− x′))β with β = −1/2 on all experiments as

U-stat =
1

CN(CN − 1)

∑
c,i

∑
c′ 6=c,i′ 6=i

AπA′πK(xc,i,xc′,i′) (23)

V-stat =
1

C2N2

∑
c,i

∑
c′,i′

AπA′πK(xc,i,xc′,i′) (24)

AπA′πK(x, x′) = ∇x · ∇x′k(x, x′) +∇xk(x, x′) · ∇x′ log π(x′)

+∇x′k(x, x′) · ∇x log π(x) + k(x, x′)∇x log π(x) · ∇x′ log π(x). (25)

It can be shown that the U-statistic is an unbiased estimate of Ex,x′∼π∗ [AπA′πK(x, x′)] for process π∗ generating the sam-
ples, while the V-statistic is biased but always non-negative (Liu et al., 2016). If π = π∗ then Ex,x′∼π∗ [AπA′πK(x, x′)] = 0
by Stein’s identity (Stein et al., 2004).
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D PLOTS

D.1 Regime switching Hidden Markov model pair plots

Samples from TESS Samples from MEADS

Figure 4: Posterior density pair plots for the regime switching hidden Markov model using samples drawn with transport
elliptical slice sampling on the left and MEADS (Hoffman and Sountsov, 2022) on the right. Parameters ρ, σ1 and σ2 are
log transformed and parameters p1,1, p2,2 and ξ10 are sigmoid function transformed.
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