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Abstract

Clustering complex high-dimensional data is par-
ticularly challenging as the signal-to-noise ratio
in such data is significantly lower than their clas-
sical counterparts. This is mainly because most
of the features describing a data point have little
to no information about the natural grouping of
the data. Filtering such features is, thus, critical
in harnessing meaningful information from such
large-scale data. Many recent methods have at-
tempted to find feature importance in a centroid-
based clustering setting. Though empirically
successful in classical low-dimensional settings,
most perform poorly, especially on microarray
and single-cell RNA-seq data. This paper ex-
tends the merits of weighted center-based clus-
tering through the Ordered Weighted ℓ1 (OWL)
norm for better feature selection. Appealing
to the elegant properties of block coordinate-
descent and Frank-Wolf algorithms, we are not
only able to maintain computational efficiency
but also able to outperform the state-of-the-
art in high-dimensional settings. The proposal
also comes with finite sample theoretical guaran-
tees, including a rate of O

(√
k log p/n

)
, under

model-sparsity, bridging the gap between theory
and practice of weighted clustering.

1 Introduction

Clustering is one of the main concepts in unsupervised
machine learning, where one has data but no labels. The
goal is to partition the data points into subsets so that each
group’s data points share some typical pattern or charac-
teristics. The data points are usually represented using a
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vector of some measurement (commonly referred to as fea-
tures). Often in real-world data, the clusters only express
themselves in a handful of features in the entire feature
space. Finding out this subset of features is critical in un-
derstanding the natural grouping of the data.

Out of the plethora of methods used in clustering, perhaps
the most widely used ones fall under the category of center-
based hard clustering, where each cluster is represented by
its centroid. Even after 60 years of its inception, the classi-
cal k-means algorithm with Lloyd’d heuristic (Macqueen,
1967; Jain, 2010) is the most common approach for hard
center-based clustering mostly due to its fastness and inter-
pretability. Given a dataset, X = {x1, . . . ,xn}, k-means
tries to minimize the within-cluster variance of the data
points by minimizing the following objective function

fk−means(Θ) =

n∑
i=1

min
1≤j≤k

∥xi − θj∥22 (1)

where Θ = {θ1, . . . ,θk} is the set of the k centroids and
∥·∥2 is the usual ℓ2 norm. The objective function (1) can be
minimized using Lloyd’s algorithm (Lloyd, 1982), which
uses a two-step alternating minimization procedure. k-
measn have been further generalized to model-based clus-
tering from a statistical perspective mainly using a mixture
of distributions (McNicholas, 2016; Fraley and Raftery,
1998; McLachlan and Rathnayake, 2014) as well as from a
Bayesian viewpoint (Kulis and Jordan, 2011).

Technological advancements have made it simpler to ob-
tain enormous amounts of real-world data that are de-
scribed using thousands of attributes, thus giving rise to
high-dimensional data. For instance, photographs can have
billions of pixels, text, and web articles can have thousands
of words, and microarray datasets can have thousands of
genes’ expression levels. The term “curse of dimension-
ality” (Bellman, 2003) is frequently used to refer to some
fundamental issues with high-dimensional data, where p≫
n and the concept of the nearest neighbors fade out effec-
tively makes the standard Euclidean distance (Beyer et al.,
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1999) extremely ineffective. Additionally, many scholars
agree that, particularly for high-dimensional data, mean-
ingful clusters may only be present in select subspaces
constructed using a particular subset of the features avail-
able (Tsai and Chiu, 2008; Liu and Yu, 2005; Chen et al.,
2012). The challenge is exacerbated by the fact that vari-
ous features may show varying degrees of relevance to the
underlying groups. To handle this issue, machine learning
algorithms typically use a variety of ways to choose or ig-
nore features. When a significant number of features are
not relevant to some clusters, using all the features avail-
able can reduce the accuracy of the final clustering solu-
tions and even confound the learning algorithm used for the
cluster analysis (and generally for any pattern recognition
task) (Chan et al., 2004). It’s common to think of feature
weighting (Chan et al., 2004; DeSarbo et al., 1984; Li and
Yu, 2006) as a generalisation of the widely-used feature se-
lection techniques (Wettschereck et al., 1997; Modha and
Spangler, 2003; de Amorim, 2016). Recently, the concepts
of feature-weighting and feature-ranking have been suc-
cessfully used to tackle this curse of dimensionality both
for classical and high-dimensional data. For examples, see
the works of Witten and Tibshirani (2010); Chakraborty
and Das (2020); Chakraborty et al. (2020); Zhang et al.
(2020).

From a practical viewpoint, we ask, (Q1)“Does equal fea-
ture importance (in revealing the cluster structure) imply
equal feature weight?” In particular, we want to know if
correlated features give rise to similar feature weights. For
all the above methods, the answer is no. Though unimpor-
tant features will often get a zero feature weight, especially
if one uses some sort of weight penalization as used by Wit-
ten and Tibshirani (2010) or Chakraborty and Das (2020),
the feature weights will often not be the same for essential
features, even if the features are equally important and have
identical distributions.

The second question we must ask is that Q2“What are the
theoretical advantages of using such feature weighting?”.
In the classical regression literature, it is well known (for
a rigorous treatment, see chapter 7 of Wainwright (2019))
that using an ℓ1 penalization greatly depletes the excess risk

fromO
(√

p
n

)
toO

(√
log p
n

)
under model sparsity. In the

clustering literature, such a guarantee is not yet known.

To solve the first question, inspired by the recent success-
ful application of Ordered Weighted ℓ1 (OWL) norm in
linear regressions (Bogdan et al., 2015; Bao et al., 2020)
to address regression problem with correlated covariates.
The OWL norm can be viewed as a generalization of the
ℓ1 norm and has intriguing properties to facilitate fea-
ture selection and also has applications in multiple test-
ing problems. Our objective function uses the OWL norm
as a penalty term to encourage correlated features to give
equal importance when the dissimilarity is measured in

a weighted distance. The resulting objective function is
solved through an alternating combination of Frank-Wolf
(Frank and Wolfe, 1956) and coordinate descent for weight
and centroid updates, respectively. From a statistical view-
point, we analyze the finite-sample properties of the pro-
posal. We show that one can indeed give an affirmative
answer to Q2, thus making the clustering guarantees at par
as its regression counterpart.

Our main contributions can be summarized as follows:

• After going over some necessary concepts in Sec-
tion 2, we provide a straightforward sparse cluster-
ing framework based on feature weighting called Or-
dered Weighted ℓ1-k-means (OWL-k-means) cluster-
ing, where an owl penalty is explicitly applied to the
feature weights, in Section 3.

• We employ an alternative block-coordinate descent
and Frank-Wolfe algorithm (Frank and Wolfe, 1956)
in section 3 to minimize the proposed objective func-
tion. Closed-form updates are produced by the pro-
cess, which keeps the simplicity of Lloyd’s algo-
rithm Lloyd (1982).

• The theoretical finite-sample properties of the (global)
solutions the objective is thoroughly analyzed in Sec-
tion 4 through the aid of tools in learning theory such
as Rademacher complexities. We analytically show
that the excess risk scales as O

(√
k log p/n

)
under

model sparsity. Such logarithmic rates in the dimen-
sions have not previously been observed in the clus-
tering literature.

• The efficacy of OWL-k-means is thoroughly demon-
strated through simulations and in-depth experiments
on microarray gene expression and single-cell RNA
sequence data in Sections 5 and 6, followed by con-
cluding remarks in Section 7.

A Motivating Example As a motivating example, we
present a case study on synthetic data with three distinct
levels of feature importance. We generate a data set with
n = 200 observation in two clusters, where the first five
features are most important, and the next five are relatively
less important. The last three are completely unrelated
to the cluster structure of the data. On this example we
run different feature-weighting-based methods such as En-
tropy Weighted Power k-means (EWP) (Chakraborty et al.,
2020), Lasso Weighted k-means (LWK) (Chakraborty and
Das, 2020), Weighted k-means (Huang et al., 2005), Sparse
k-means (Witten and Tibshirani, 2010) alongside our pro-
posal. In Fig. 1, we plot the different feature weights ob-
tained by the algorithms. All the methods except sparse k-
means can reflect the feature importance of the correlated
features; only OWL-k-means can infer that the correlated
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(a) EWP (b) LWK (c) Weighted-k-means (d) Sparse-k-means (e) OWL-k-means (ours)

Figure 1: Feature weights obtained by the peer algorithms with three different levels of feature variances. OWL-k-means
properly identifies that correlated features have equal feature importance.

features effectively carry the same level of cluster informa-
tion.

2 Background and Preliminaries

Notations Rp
≥0 denotes the set of all non-negative real

vectors of length p. For any vector w ∈ Rp
≥0, ∥x∥2w =∑p

ℓ=1 wℓx
2
ℓ , for any vector x ∈ Rp. For any m ∈ N,

[m] = {1, . . . ,m}. For any vector, w ∈ Rp, wβ :=

(wβ
1 , . . . , w

β
p ). For any vector a, (a)ℓ denotes the ℓ-th co-

ordinate of a.

Weighted k-means Huang et al. (2005) developed the
Weighted k-means (W-k-means) clustering as a minimiza-
tion of the following objective function to include feature
weighting in the k-means type clustering:

fW−k−means(Θ,w) =

n∑
i=1

min
1≤j≤k

∥xi − θj∥2wβ (2)

where, w = (w1, . . . , wp) ∈ Rp
≥0 is the feature weight

vector, under the constraint
∑p

l=1 wl = 1. The hyper-
parameter, β > 1, is provided by the user. A block-
coordinate descent heuristic is employed to locally min-
imize the objective function (2). The technique main-
tains Lloyd’s k-means version’s computational simplicity.
Some noteworthy extensions of W -k-means can be found
in the works of Jing et al. (2007); Huang et al. (2007);
De Amorim and Mirkin (2012); Chakraborty et al. (2020)
among many others.

Ordered Weighted ℓ1 (OWL) norm Bogdan et al.
(2015) developed an ordered weighted ℓ1 norm, a gener-
alization of the ℓ1 norm, which they have used for sparse
regression and variable selection, inspired by ideas in mul-
tiple testing of the linear regression estimator. The OWL
norm of w is defined as,

Ωλ(w) =

p∑
i=1

λi|w|(i), (3)

where, 0 ≤ λ1 ≤ · · · ≤ λp and |w|(1) ≤ · · · ≤ |w|(p)
are the increasing sequence of the absolute value of the
w vector. If all the λi’s are identical, then we get the

usual ℓ1 norm. The OSCAR regularizer proposed by Bon-
dell and Reich (2008) is a special case of OWL. There are
many choices of the λi’s, but one popular choice suggested
by Bogdan et al. (2015) is

λp−i+1 = Φ−1(1− qi), qi = i
q

2p
, q ∈ (0, 1) (4)

Here q is a parameter that must be provided by the user.
Here, the Φ is the CDF of the standard normal distribution
function. The above choice has amicable relations with
BH-testing (Benjamini and Hochberg, 1995) as shown in
Bogdan et al. (2015).

Frank-Wolf Algorithm Frank-Wolfe algorithm (Frank
and Wolfe, 1956) is a celebrated technique for constrained
convex optimization. Consider the problem

min
x∈C

g(x) (5)

where C is a convex set. Under some preferable assump-
tions, the Frank-Wolfe algorithm solves this problem by
considering a linear approximation of the objective func-
tion. Using an auxiliary variable, the method approaches a
minimizer of this linear function. This algorithm guaran-
tees the convergence to the minimizer at a sublinear rate.
Some special variants of the Frank-Wolfe can be found in
the works of Lacoste-Julien and Jaggi (2015); Kunisch and
Walter (2021); Cristofari et al. (2017) among many others.

3 OWL-k-means

Let X ∈ Rn×p be the data matrix, where p is the number
of features, n is the number of data points and xi denote the
i-th data point (i.e the i-th row of X). Let Θ ∈ Rk×p be
the matrix of centroids, where θj denote the i-th centroid
(i.e. the j-th row of Θ). Here, k ∈ N is the number of
clusters, which is assumed to be known to the user. The
OWL-k-means objective is defined as,

f(Θ,w) =

n∑
i=1

min
1≤j≤k

∥xi − θj∥2wβ +Ωλ(w). (6)

This objective is minimized subject to wi ≥ 0, wT1 = 1.
Here, λ1 ≤ λ2 ≤ · · · ≤ λp. The variable w ∈ Rp is in-
terpreted as the vector of feature weights. The first term
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of the equation (6),
∑n

i=1 min1≤j≤k ∥xi − θj∥2wβ mea-
sures the fit of the cluster centroids in the ∥ · ∥wβ -norm.
For instance say wℓ ∝ 1, then the first term reduces to a
scalar multiple of

∑n
i=1 min1≤j≤k ∥xi−θj∥22, which is the

objective function of the classical k-means algorithm, and
is equivalent to the within-cluster variance. If we remove
the constraint of wi ∝ 1, then we are applying weights to
each feature, and the centroid is chosen depending on these
weighted within-cluster variances. This fit term thus guides
the cluster centroids to find a good clustering in terms of the
weighted distance that reflects the feature importance. The
feature weight w enables us to learn which features are sig-
nificantly helpful for distinguishing these clusters. Instead
of associating a linear weighting framework (i.e., ∥ · ∥w
as used by Chakraborty et al. (2020)) to the within-cluster
variance, we have incorporated a power of weights to gen-
eralize the problem further.

The second term of the equation (6) is the penalty term ap-
plied to the feature weights. This penalty term encourages
features with similar within-cluster variances i.e., Dℓ =∑k

j=1

∑
i∈Cj

(xiℓ − θjl)
2 to have equal feature weight and

noisy features which have a typical large within-cluster
sum of squares to give rise to a zero weight. Here, Cj

denotes the j-the cluster. We have used this owl norm to
generalize the concept of using an ℓ1 norm like Witten and
Tibshirani (2010); Chakraborty and Das (2020). This norm
penalizes features with a higher variance that is a higher
Dl value, which is why the weight corresponding to l-th
feature is associated with a higher λ term to penalize that
feature further.

Optimization The objective function (6) can be reformu-
lated as

f(U,Θ,w) =

n∑
i=1

k∑
j=1

uij∥xi − θj∥2wβ +

p∑
ℓ=1

λℓw(ℓ) (7)

such that,

uij ∈ [0, 1], for all i = 1, . . . , n; j = 1, . . . , k,

k∑
j=1

uij = 1, for all i = 1, . . . , n.

w ∈ Rp
≥0 and w⊤1 = 1.

We solve the above problem by appealing to a block coor-
dinate descent as,

• Problem P1: Fix Θ = Θ0, w = w0, minimize
f(U,Θ0,w0) w.r.t U .

• Problem P2: Fix U = U0, w = w0, minimize
f(U0,Θ,w0) w.r.t Θ.

• Problem P3: Fix U = U0, Θ = Θ0, minimize
f(U0,Θ0,w) w.r.t w , subject to wT1 = 1, wi ≥ 0.

Problem, P1, can be easily solved by assigning

uij =

1, j = argmin
1≤j≤k

∥xi − θj∥2wβ

0, otherwise

Problem P2 can be easily solved by assigning, θj =∑n
i=1 uijxi∑n
i=1 uij

.

Problem P3 can be solved using the Frank-Wolfe algorithm
(Frank and Wolfe, 1956). Before proceeding further, let
us formally write the problem as solving minw∈C g(w).
Here, g(w) =

∑p
ℓ=1 w

β
ℓ Dℓ + Ωλ(w) and {w : wT1 =

1,w ≥ 0}. It is easy to observe that both g(·) and the set
C are convex. Though g is not differentiable, it is differen-
tiable almost surely, and a sub-derivative of g can be taken
as

∇g(w) = βwβ−1Dℓ + (λπ(1), . . . , λπ(p))
⊤.

Here π is the permutation which finds the increasing or-
der of w, i.e. π is such that wπ(ℓ) = w(ℓ). The math-
ematical simplicity of finding the argmins∈C⟨s,∇g(w)⟩
makes it appropriate to use the algorithm as one can sim-
ply observe that as ∇g(w) ∈ Rp

≥0, mins∈C⟨s,∇g(w)⟩ =
minℓ∈[p]∇(g(w))ℓ. Note that for the Frank-Wolfe method,
one needs to compute s, which is ek, where k =
argminℓ∈[p]∇(g(w))ℓ, and ek is the i-th coordinate vec-
tor. The inner loop in Algorithm 1 highlights the Frank-
Wolf steps for this particular problem. The results derived
by Jaggi (2013) guarantee that the method converges in lin-
ear time (i.e., the estimates take at most O(1/ϵ) for the so-
lutions to reach an ϵ accuracy).

Note that the solution of the P3 often lies in the bound-
ary of the constraint set, to be precise at the corner of the
convex bounded constraint set. When the solution of the
Frank-Wolfe algorithm lies in the boundary, the algorithm
guarantees its convergence at least at a linear rate. The
convergence of the Frank-Wolfe algorithm thus determines
the convergence of this clustering framework as each of the
problems P1 and P2 are smooth and are solved by finding
the critical values. If one runs the Frank-Wolfe until conver-
gence, the cost function decreases monotonically. Hence
the cost function, which is a function of three parameters,
decreases monotonically and thus, converges by a simple
application of the Bolzano–Weierstrass theorem as the cost
is bounded below by 0.

4 Theoretical properties

In this section, we show that the convergence rates for
the proposed OWL-k-means are significantly faster than its
classical counterparts i.e., k-means and its variants. The
complete proof of the result can be found in the supple-
ment. We make the following standard assumption (Paul
et al., 2021) on the data generation process.
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Algorithm 1 OWL-k-means

Input: X = {x1, . . . ,xn} ∈ Rn×p, β, k
Output: U,Θ,w

Initialization: Randomly pick k data points
{θ1, . . . ,θk} from {x1, . . . ,xn}
while Objective (7) does not converge do

Step 1: Update U by

u
(t)
ij =

1, j = argmin
1≤j≤k

∥xi − θ
(t−1)
j ∥2wβ

0, otherwise

Step 2: Update Θ by θ
(t)
j ←

∑n
i=1 u

(t)
ij xi∑n

i=1 u
(t)
ij

Step 3: Update w by Frank-Wolfe method
Set v(0) ← w(t−1)

while ∥v(τ) − v(τ+1)∥2/∥v(τ)∥2 ≥ ϵ do
Find π is such that vπ(ℓ) = v(ℓ) by sorting.

m← argmin
ℓ∈[p]

β(v
(τ−1)
ℓ )β−1Dℓ + λπ(ℓ)

Set s(τ−1) ← em
Update v(τ) ← (1− ηt)v

(τ−1) + ηts
(τ−1)

end while
Set w(t) ← v(τ)

end while

Assumption 1. X1, . . . ,Xn are independent and identi-
cally distributed (i.i.d.) according to the distribution µ.
Moreover, µ(B(M)) = 1.

The assumption ensures that the data are i.i.d. and bounded
within the closed ball B(M). For a fixed λ (after a scaling),
the objective (6) can be cast as the following dual problem,

min
Θ∈Rk×p

1

n

n∑
i=1

min
θ∈Θ
∥xi − θ∥2wβ , s.t.


Ωλ(w) ≤ s

wℓ ≥ 0∀ℓ ∈ [p]

w⊤1 = 1.

For simplicity of notations, let Ws = {w ∈ [0, 1]p :
Ωλ(w) ≤ s and w⊤1 = 1.}. For notational simplicity,
let µ̂n denote the empirical distribution of the data and
φΘ,w(x) = minθ∈Θ ∥x − θ∥2wβ . Thus the objective is
to solve the following problem,

min
Θ∈Rk×p,w∈Ws

∫
φΘ,w(x)dµ̂n. (8)

Let the solutions to the above empirical problem be,(
Θ̂, ŵ

)
, i.e.(
Θ̂, ŵ

)
= argmin

Θ∈Rk×p,w∈Ws

∫
φΘ,w(x)dµ̂n

Also let (Θ∗,w∗) be the solution to the population prob-
lem, i.e.

(Θ∗,w∗) = argmin
Θ∈Rk×p,w∈Ws

∫
φΘ,w(x)dµ

Our goal is to determine how close the solutions to the em-
pirical problem are to the population problem by measuring
the excess risk,

R(Θ̂, ŵ) =

∫
φΘ̂,ŵ(x)dµ− inf

Θ∈Rk×p,w∈Ws

∫
φΘ,w(x)dµ

=

∫
φΘ̂,ŵ(x)dµ−

∫
φΘ∗,w∗(x)dµ

To bound this excess risk with high probability, we first
observe that both Θ̂ and Θ∗ lies in B(M). This is formally
stated in the following lemma.

Lemma 1. Under Assumption 1, Θ̂,Θ∗ ∈ B(M)k.

Thus, it is enough to restrict the search space to B(M). We
define the following function class

F = {φΘ,w(·) : Θ ∈ B(M)k, w ∈ Ws}.

By appealing to Lemma 1, note that the excess
risk can be bounded by the uniform concentration,
supf∈F

∣∣∫ fdµ̂n −
∫
fdµ

∣∣ as follows.

R(Θ̂, ŵ) =

∫
φΘ̂,ŵ(x)dµ−

∫
φΘ∗,w∗(x)dµ

≤2 sup
f∈F

∣∣∣∣∫ fdµ̂n −
∫

fdµ

∣∣∣∣ .
To bound this uniform deviation with high probability, we
resort to finding suitable bounds on the Rademacher com-
plexity of the function class F , which is defined as follows:

Definition 1. The population Rademacher complexity of a
function class F is defined as follows,

Rn(F ) =
1

n
E sup

f∈F

n∑
i=1

ϵif(Xi).

Here, ϵi’s are i.i.d. Rademacher random variables, i.e.
P(ϵi = 1) = P(ϵi = −1) = 1

2 .

The following theorem derives a bound on the complexity
of the function class F . The notation ≲ hides all constants
independent of n, p, k and s.

Theorem 1. Under Assumption 1,

Rn(F) ≲ (s/λ̄ ∨ 1)

√
k log p

n
.

If one closely looks at the proof of the result, one would
observe that we do not need to use Dudley’s chaining to
bind the Rademacher complexity as opposed to Paul et al.
(2021). We also show that the function class F is bounded.
The following lemma asserts this claim.

Lemma 2. Under Assumption 1, supf∈F ∥f∥∞ ≤ 4M2.
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(a) EWP (b) LWK (c) Weighted-k-means (d) Sparse-k-means (e) OWL-k-means (ours)

Figure 2: The boxplot feature weights computed by our proposed algorithm and the peer algorithms over 30 simulations
demonstrate the stability and efficacy of OWL-k-means.

Thus, appealing to Theorem 26.5 of Shalev-Shwartz
and Ben-David (2014), we get the following bound on
the excess risk by bounding the uniform concentration,
supf∈F

∣∣∫ fdµ̂n −
∫
fdµ

∣∣.
Theorem 2. Grant Assumption 1. With probability at least
1− δ,

R(Θ̂, ŵ) ≲ (s/λ̄ ∨ 1)

√
k log p

n
+

√
log(2/δ)

n
.

It is easily observed that ER(Θ̂, ŵ) ≲ (s/λ̄ ∨ 1)
√

k log p
n ,

which is much faster than the parametric rate of
√

kp
n

(Bartlett et al., 1998) and also can be obtained from the
results of Paul et al. (2021) under our assumption. Thus,
under the additional assumption of sparsity, i.e., assuming
that the optimal solution for the unconstrained problem lies
inWs, the expected excess risk scales as

√
log p instead of√

p. The change in the rate is similar to that of the differ-
ences in rates for OLS and Lasso, where the latter’s conver-
gence rate is similar to the derived rate for OWL-k-means.
This theoretically establishes the superior performance of
the proposal on single-cell RNA-seq or microarray data,
where model sparsity is believed to hold. Also note that
in a classical setting, when p is fixed, then the excess risk
is OP (1/

√
n), recovering the classical parametric guaran-

tees. The result is stated in the following corollary.

Corollary 1. Suppose p and k are kept fixed, and Assump-
tion 1 holds. Then, R(Θ̂, ŵ) = OP (1/

√
n).

5 A Simulation Study on Feature Weights

To demonstrate the feature weighting and feature selection
characteristic of our proposed algorithm, we use a simula-
tion procedure where the generated datasets contain noisy
features and features with varying variances. On each of
the datasets, we run the proposal along with the peer meth-
ods and inspect the feature weight vector to analyze the
capability of the algorithms to identify features with high
variance and eliminate the noisy features. Intuitively, we
choose such a simulation design where the cluster centroids
are close to the cluster means for regular clusters. Thus, the
Fisher information of each feature in this mixture model

is inversely proportional to the within-cluster variance for
the corresponding feature. The goal is to understand if this
phenomenon is reflected in the feature weights.

Each data is generated with 200 data points, with 100 in
each cluster, and each point has 13 features. Let Xi =

(X
(i)
1 , . . . , X

(i)
13 ) be a random point in the i-th cluster,

where i = {1, 2}. The data is simulated as follows

• X
(1)
j are i.i.d from N (0, 10), ∀j ∈ {1, . . . , 5}

• X
(1)
j are i.i.d from N (0, 50), ∀j ∈ {6, . . . , 10}

• X
(2)
j are i.i.d from N (100, 10), ∀j ∈ {1, . . . , 5}

• X
(2)
j are i.i.d from N (100, 50), ∀j ∈ {6, . . . , 10}

• X
(i)
j are i.i.d from N (0, 1), ∀j ∈ {11, . . . , 13}, i ∈
{1, 2}. These random variables are independent of the
above random variables.

We compute the feature weights produced by the algo-
rithms over 30 runs and display them as boxplots in Fig. 2
for better comparison. It can be clearly seen that the
noisy feature indexed from 11 to 13 are getting zero fea-
ture weights by OWL-k-means for most iterations by the
OWL norm that penalizes the feature weights with a higher
within-cluster sum of squares. Note that this is not the
case for Sparse-k-means, Weighted-k-means, and EWP.
Again, we can see that the features with higher variance
are also penalized compared to the features with lower vari-
ance since the features with higher variance do not provide
much helpful information for clustering the data. The fea-
ture weight vector has high values corresponding to fea-
tures with lower variance consistently over 30 runs when
treated by our proposed algorithm, compared to the feature
weight vector produced by the Sparse-k-means, Weighted-
k-means, and EWP-k-means. Also, we can see that the
feature weight produced by the LW-k-means has a high in-
terquartile range compared to OWL-k-means. These simu-
lated datasets provide a brief and good picture of the abil-
ity to perform critical characteristics like feature weighting
and feature selection by OWL-k-means in comparison to
the state-of-the-art.
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Table 1: Information regarding the datasets. Here, n is the
number of data points, k denotes the number of clusters and
p is the number of features.

Data Source n p k

Leukemia Gordon et al. (2002) 72 3571 2
Lymphoma Alizadeh et al. (2000) 62 4026 3
Brain Pomeroy et al. (2002) 42 5597 5
Lung Bhattacharjee et al. (2001) 203 12600 2
NCI9 ASU 60 9712 9

6 Real Data Experiments

We now study the experimental performance of OWL-k-
means against the state-of-the-art on a suite of real-world
data. For comparing the performance of various algo-
rithms on the same dataset, we use the Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985) and the Normal-
ized Mutual Information (Vinh et al., 2009) between the
ground truth and the partition returned by the clustering al-
gorithms. For both ARI and NMI, a value of 1 represents no
mismatch and a value of 0 indicates a complete mismatch
from the ground truth

As competitors, we consider some of the most effec-
tive feature-weight-based clustering method such as LW-
k-means (Chakraborty and Das, 2020), k-means (Mac-
Queen, 1967), W-k-means (Huang et al., 2005), IF-HCT-
PCA (Jin and Wang, 2016), Sparse-k- means (Witten and
Tibshirani, 2010) and Entropy Weighted Power k-means
(EWP) (Chakraborty et al., 2020). To make sure that
each method is on an equal footing, each algorithm is
started with the same set of randomly chosen centroids,
and for each dataset, iterations are carried out until con-
vergence. The average performance index (i.e., ARI and
NMI) between the ground truth and the obtained partitions
are reported for 20 independent reruns. All the methods
are tuned according to their original papers or to the best
ARI/NMI values when not available. For OWL-k-means,
we choose λ according to equation (4) and take q = 0.1, as
suggested by Bogdan et al. (2015).

Ideal instances of high-dimensional data, where p ≫ n,
are microarray gene-expression datasets. In a typical mi-
croarray dataset, there are thousands of different gene-
expression levels but very few samples, making it very
challenging to analyze the clustering of the data. Such data
have a meager signal-to-noise ratio, and is notoriously dif-
ficult to find a proper clustering of these data. The details
of these data sets are given in Table 1. The average per-
formance in terms of ARI for the peer methods is reported
in Table 5 along with its standard error. It can be easily
seen that OWL-k-means consistently performs better than
the state-of-the-art despite hardly any tuning.

6.1 Test of Statistical Significance

We have conducted the Wilcoxon Rank Sum
test (Wilcoxon, 1992), a non-parametric alternative to
the two-sample t-test, to test the statistical significance of
the performances of our method over the others. For this
test, we have considered 20 ARI and NMI values, corre-
sponding to each rerun, for each data, and for each method.
We test for the null hypothesis: average ARI (NMI) of our
method = average ARI (NMI) of the competing method,
against the alternative that they are unequal. We record the
p-value for the significance, whether it is less than 5%. If
the p-value is significant, we conclude that there is enough
evidence against the null. For each of the datasets, we
record if the peer algorithms perform significantly better,
worse or more or less the same compared to our proposal.
The total number of times that they perform better (L),
worse (W) or same (T) is reported at the end of each table.
It can be easily seen that our method performs significantly
better than the peers on most of the datasets.

6.2 Case Study on the Lymphoma dataset

We evaluate the lymphoma dataset (Alizadeh et al., 2000),
which consists of measurements of 4026 gene-expression
levels, gathered across 62 samples. Out of the 62 sam-
ples, 42 are Diffuse Large B-Cell Lymphoma (DLBCL),
9 are Follicular Lymphoma (FL), and 11 are Chronic Lym-
phocytic Leukemia (CLL) cell samples. We compare the
OWL-k- means to other baseline and cutting-edge cluster-
ing methods using this dataset to demonstrate its efficacy.
We follow the same experimental protocols as before. Ta-
ble 5 already suggests that OWL-k-means performs better
than baseline k-means, W-k-means, and cutting-edge LW-
k-means, Sparse-k-means and IF-HCT-PCA clustering al-
gorithms. To better visualize the performance of different
methods, we use t-SNE (Van der Maaten and Hinton, 2008)
to reduce the dataset to two dimensions. From Fig. 3 it
is evident that OWL-k-means resembles the ground truth
compared to the state-of-the-art and further contributes to
demonstrating its efficacy.

6.3 Single cell RNA-seq data

Understanding complex biological systems require analysis
of expressions and regulations within each cell. With bulk
analyses, gene expression is averaged across cells, whereas
single-cell sequencing reveals the gene expressions by in-
dividual cells, providing a much deeper view of cell-to-cell
variation. We use the OWL-k-means framework to treat the
challenging single-cell RNA-seq data clustering problem.
These datasets have a huge number of gene expressions
compared to a minimal number of cells due to the limited
and expensive nature of such sequencing and the low qual-
ity of cells/genes. There is also an issue of huge sparsity
among single-cell objects. We test our clustering method’s

https://jundongl.github.io/scikit-feature/datasets.html
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Table 2: Average ARIs values for different algorithms on microarray gene expression datasets.(W/T/L : Win/ Tie/ Loss, †:
results are significantly different as a result of Wilcoxon Rank-Sum test, ≈: results are statistically comparable as a result
of Wilcoxon Rank-Sum test)

Dataset Algorithms

k-means W-k-means Sparse-k-means LW-k-means EWP IF-PCA-HCT BP-k-means WBMS OWL-k-means

Leukemia 0.53± 0.38† 0.18± 0.00† 0.73± 0.00† 0.67± 0.39† 0.21± 0.00† 0.74± 0.00† 0.84± 0.00† 0.01± 0.00† 0.89± 0.00
Lymphoma 0.53± 0.23† 0.55± 0.22† 0.41± 0.00† 0.74± 0.27† 0.52± 0.17† 0.82± 0.06† 0.94± 0.00† 0.94± 0.00† 0.95± 0.00
Brain 0.26± 0.07† 0.45± 0.02† 0.47± 0.06† 0.32± 0.10† 0.12± 0.00† 0.48± 0.03† 0.52± 0.00≈ 0.34± 0.00† 0.52± 0.08
Lung 0.17± 0.04† 0.01± 0.00† 0.18± 0.00† 0.25± 0.00≈ 0.00± 0.00† 0.25± 0.00≈ 0.01± 0.00† 0.01± 0.00† 0.25± 0.00
NCI9 0.11± 0.03† 0.16± 0.03† 0.13± 0.03† 0.11± 0.04† 0.01± 0.00† 0.04± 0.01† 0.15± 0.00† 0.10± 0.00† 0.18± 0.01

W/T/L 5/0/0 5/0/0 5/0/0 4/1/0 5/0/0 4/1/0 4/1/0 5/0/0

(a) Ground truth (b) OWL-k-means (c) EWP-k-means (d) LW-k-means

(e) k-means (f) W-k-means (g) Sparse-k-means (h) IF-PCA-HCT

Figure 3: t-SNE plots for the Lymphoma dataset, showing the performance of OWL-k-means compared to other peer
algorithms.

feature selection and weighting characteristics against spe-
cialized methods for clustering such datasets. Till now, the
SC3 (Kiselev et al., 2017) clustering framework has, by far,
been the most tested and well-performing algorithm that
works best against these challenging single-cell datasets.
We compare our algorithm against the clustering methods
which are specially designed to tackle single-cell RNA-seq
datasets, like, k-means-stable (Peyvandipour et al., 2020),
Seuratv4 (Hao et al., 2021), RaceID3 (Grün, 2020), Mon-
ocle2 (Qiu et al., 2017), SC3 (Kiselev et al., 2017) and
SOUP (Zhu et al., 2019). We use two such datasets: Bi-
ase (Biase et al., 2014) and Mouse Pancreas (Baron et al.,
2016), to demonstrate the characteristic properties of our
proposed clustering method. At first, we filtered the data
by removing those genes expressed in less than 3 cells and
then denoised the data using Deep Count Autoencoders
(DCA) (Eraslan et al., 2019). After data cleaning, we fol-
low the same experimental protocol as the previous sec-

tions to perform clustering, and the results in terms of the
ARI values are tabulated in Table 3.

As we can see, the Biase dataset with 56 cells and 25737
genes gives a mean ARI 0.97, while testing the same for the
Mouse pancreas data which contains 1886 cells and 14878
genes, the mean ARI 0.606 is the highest when compared
with the state-of-the-art algorithms. Hence, Table 3 for av-
erage ARI values shows that our proposed algorithm per-
forms significantly better over the peer algorithms. Com-
parative results in terms of the average NMI and t-SNE
plots for visualization is included in the supplement for
space economy.

7 Conclusions

This paper utilizes the power of OWL norms to lead to a
novel clustering framework that draws good intuition from
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Table 3: Average ARIs values for different algorithms on single-cell RNA-seq datasets.(W/T/L : Win/ Tie/ Loss, †: results
are significantly different as a result of Wilcoxon Rank-Sum test, ≈: results are statistically comparable as a result of
Wilcoxon Rank-Sum test)

Dataset Algorithms

k-means-stable Seuratv4∗ RaceID3∗ Monocle2∗ SC3 SOUP OWL-k-means (Ours)

Biase 0.87± 0.22† 0.59† 0.76† 0.69† 0.94± 0.00† 0.86± 0.00† 0.97± 0.02
Mouse Pancreas 0.42± 0.03† 0.57† 0.32† 0.41† 0.43± 0.02† 0.48± 0.06† 0.606± 0.091

W/T/L 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0

∗ : These algorithms are deterministic. Thus, their performance does not change over the runs.

classic and recent developments both in clustering and re-
gression literature. The proposed objective promotes fea-
ture selection in an interpretable way in a center-based clus-
tering framework with feature weighting. With an empha-
sis on simple updates, we derive an elegant combination
of block-coordinate descent and the Frank-Wolfe algorithm
to (locally) minimize the proposed objective. The paper
also bridges the gap between the theory and practice of
high-dimensional clustering by proving that the proposed
OWL-k-means can achieve a Lasso-like fast error rate of
O
(√

k log p/n
)

under model sparsity, that was previously
not observed in clustering literature. Our empirical stud-
ies show that OWL-k-means consistently outperforms its
comparable variants. At the same time, its efficacy is thor-
oughly verified on a suite of high-dimensional microarray
gene expression and single-cell RNA-seq data.

Several important research directions, however, remain
open. A thorough theoretical analysis of the optimization
scheme is lacking, and the model-selection properties of
such estimates are yet unknown. Future work may explore
this direction to seek explicit connections between the pro-
posed method and its regression counterparts in a centroid-
based setting and other clustering frameworks, such as con-
vex or hierarchical clustering scenarios.

Code Availability

All the codes are available at: https://github.com/
sayanpaul123/OWL_K_Means/.
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Appendix

A Proofs from Section 4

Lemma 3. Let a, b ∈ Rp. Then, min1≤j≤p aj −
min1≤j≤p bj ≤ ∥a− b∥2.

Proof. Suppose j∗ ∈ argmin bj . Then,

min
1≤j≤p

aj − min
1≤j≤p

bj = min
1≤j≤p

aj − bj∗

≤aj∗ − bj∗ ≤ ∥a− b∥2.

A.1 Proof of Lemma 1

Proof. Let ProjwB(M)(a) denote the projection of a onto
B(M) w.r.t. the ∥ · ∥w-norm. For any v ∈ B(M), using
the obtuse angle property, we obtain, ⟨θ−ProjwB(M)(θ),v−
ProjwB(M)(θ)⟩w ≤ 0 due to the convexity of B(M). Let,
x ∈ B(M), then,

∥x− θ∥2w
=∥x− ProjwB(M)(θ)∥2w + ∥ProjwB(M)(θ)− θ∥2w
− 2⟨θ − ProjwB(M)(θ),x− ProjwB(M)(θ)⟩w
≥∥x− ProjwB(M)(θ)∥2w + ∥ProjwB(M)(θ)− ProjwB(M)∥2w
≥∥x− ProjwB(M)(θ)∥2w

Thus,∫
min
θ∈Θ
∥x−θ∥2wdP (x) ≥

∫
∥x−ProjwB(M)(θ)∥2wdP (x).

This further implies that, minΘ∈Rk×p,w

∫
minθ∈Θ ∥x −

θ∥2wdP (x) ≥ minΘ∈B(M)k,w

∫
∥x − θ∥2wdP (x), from

which, we conclude that Θ∗(P ) ∈ B(M).

A.2 Proof of Theorem 1

Proof. Suppose ξΘ,w(x) = (∥x−θ1∥2w, . . . , ∥x−θk∥2w).
Suppose {ϵi}i∈[n] and {σij}i,j∈[n] be two sets of indepen-
dent Rademacher random variables. Note that,

φΘ,w(x)− φΘ,w(y) = min
j∈[k]

(ξΘ,w(x))j − min
j∈[k]

(ξΘ,w(y))j

≤∥ξΘ,w(x)− ξΘ,w(y)∥2

Here the last inequality follows from Lemma 3. Thus ap-
pealing to inequality (1) of Maurer (2016), we get,

E sup
Θ∈B(M)k,w∈W

n∑
i=1

ϵiφΘ,w(Xi)

≤
√
2E sup

Θ∈B(M)k,w∈W

n∑
i=1

k∑
j=1

σij(ξΘ,w(Xj))j

=
√
2E sup

Θ∈B(M)k,w∈W

n∑
i=1

k∑
j=1

σij∥Xi − θj∥2wβ

≤
√
2E sup

w∈W

n∑
i=1

k∑
j=1

σij∥Xi∥2wβ (9)

+ 2
√
2E sup

Θ∈B(M)k,w∈W

n∑
i=1

k∑
j=1

σij⟨Xi,θj ◦wβ⟩

(10)

+
√
2E sup

Θ∈B(M)k,w∈W

n∑
i=1

k∑
j=1

σij∥θj∥2wβ (11)

We bound the terms individually as follows.

First term

E sup
w∈W

n∑
i=1

k∑
j=1

σij⟨wβ ,X2
i ⟩ ≤M2E

∣∣∣∣∣∣
n∑

i=1

k∑
j=1

σij

∣∣∣∣∣∣ ≤M2
√
kn.

Here the last inequality can be seen as a simple application
of Jensen’s inequality.

Second term

E sup
Θ∈B(M)k,w∈W

n∑
i=1

k∑
j=1

σij⟨Xi,θj ◦wβ⟩

≤E sup
Θ∈B(M)k,w∈W

k∑
j=1

⟨
n∑

i=1

σijXi,θj ◦wβ⟩

≤E sup
Θ∈B(M)k,w∈W

k∑
j=1

∥
n∑

i=1

σijXi∥∞∥θj ◦wβ∥1

≤kE sup
Θ∈B(M)k,w∈W

∥
n∑

i=1

σijXi∥∞∥θj ◦wβ∥1

≤kM(s/λ̄ ∨ 1)E∥
n∑

i=1

ϵiXi∥∞

≤kM(s/λ̄ ∨ 1)E∥
n∑

i=1

ϵiXi∥∞

=kM(s/λ̄ ∨ 1)E sup
ℓ∈[p]

|
n∑

i=1

ϵiXil|

≤
√
2 log pkM(s/λ̄ ∨ 1)E|

n∑
i=1

ϵiXil|

≤
√
2 log pkM2(s/λ̄ ∨ 1)

√
n

Third term One can bound the third term by following
the recipe of bounding the first terms.

E sup
Θ∈B(M)k,w∈W

n∑
i=1

k∑
j=1

σij∥θj∥2wβ ≤M2(s/λ̄∨1)
√
kn.
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Using the above bounds in equation (11), we get the desired
result.

Lemma 2 supΘ∈B(M)k×p,w∈[0,1]p ∥φΘ,w∥∞ ≤ 4M2.

Proof. We observe that, for any x, Θ ∈ B(M)k, w ∈
[0, 1]p,

0 ≤ φΘ,w(x) ≤∥x− θ1∥2w2

≤2
(
∥x∥2w2 + ∥θ1∥2w2

)
≤2∥w∥∞

(
∥x∥22 + ∥θ1∥22

)
≤ 4M2.

A.3 Proof of Theorem 2

Proof. We note that

R(Θ̂, ŵ)

=

∫
φΘ̂,ŵ(x)dµ−

∫
φΘ∗,w∗(x)dµ

=

∫
φΘ̂,ŵ(x)dµ−

∫
φΘ̂,ŵ(x)dµ̂n

+

∫
φΘ̂,ŵ(x)dµ̂n −

∫
φΘ∗,w∗(x)dµ̂n

+

∫
φΘ∗,w∗(x)dµ̂n

∫
φΘ∗,w∗(x)dµ

≤2 sup
f∈F

∣∣∣∣∫ fdµ̂n −
∫

fdµ

∣∣∣∣ .
The theorem now follows from appealing to Theorem 1.

Corollary 1

Proof. We note from Theorem 2 that, with probability at
least 1 − δ, R(Θ̂, ŵ) ≲ 1√

n
. Thus, for any fixed δ,

√
nR(Θ̂, ŵ) ≲ 1, which implies that

√
nR(Θ̂, ŵ) is

tight.

B Tables and Plots for section 6

C Social Impact

Our work focuses on algorithmic and theoretical contribu-
tions to unsupervised learning of high-dimensional data.
There are no immediate privacy or ethical concerns, but
by addressing the persistent problem of presence of a huge
number of noisy features, broader impacts extend beyond
methodological contributions when the interpretation of
pattern discoveries from the output of unsupervised learn-
ing methods have wider implications. Clustering has been
used for countless applications, including community de-
tection, drug discovery, and gene identification for cancers

and other diseases. In such settings where the interpreta-
tions and decisions based on clustering solutions have sig-
nificant scientific and societal bearing, it is critical that the
outliers are not mistaken as original data while solving for
optimal solutions or baseline truth.

That said, we have been careful not to overstate our claims.
While theoretical and empirical evidence supports that we
can significantly reduce the effect of noisy features, users
should not view our method as a panacea for the prob-
lem. Our algorithm provides only a partial remedy to a
long-standing challenge faced by clustering methods, and
we emphasize it may eliminate some but not all biases that
may affect interpretations and decisions based on solutions
output by unsupervised algorithms.
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Table 4: Average NMIs values for different algorithms on single-cell RNA-seq datasets.(W/T/L : Win/ Tie/ Loss, †: results
are significantly different as a result of Wilcoxon Rank-Sum test, ≈: results are statistically comparable as a result of
Wilcoxon Rank-Sum test)

Dataset Algorithms

k-means-stable Seuratv4∗ RaceID3∗ Monocle2∗ SC3 SOUP OWL-k-means (Ours)

Biase 0.89± 0.16† 0.69† 0.82† 0.79† 0.93± 0.00† 0.85± 0.00† 0.97± 0.02
Mouse Pancreas 0.54± 0.07† 0.75† 0.62† 0.70† 0.73± 0.01† 0.71± 0.01† 0.76± 0.02

W/T/L 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0 2/0/0

∗ : These algorithms are deterministic. Thus, their performance does not change over the runs.

Table 5: Average NMIs values for different algorithms on microarray gene expression datasets.(W/T/L : Win/ Tie/ Loss, †:
results are significantly different as a result of Wilcoxon Rank-Sum test, ≈: results are statistically comparable as a result
of Wilcoxon Rank-Sum test)

Dataset Algorithms

k-means W-k-means Sparse-k-means LW-k-means EWP IF-PCA-HCT BP-k-means WBMS OWL-k-means

Leukemia 0.53± 0.30† 0.46± 0.00† 0.62± 0.00† 0.63± 0.33† 0.22± 0.00† 0.67± 0.00† 0.74± 0.00† 0.05± 0.00† 0.81± 0.00
Lymphoma 0.66± 0.15† 0.39± 0.22† 0.58± 0.00† 0.80± 0.17† 0.60± 0.03† 0.72± 0.06† 0.92± 0.00† 0.91± 0.00† 0.93± 0.00
Brain 0.43± 0.05† 0.58± 0.06† 0.59± 0.03† 0.49± 0.07† 0.19± 0.00† 0.55± 0.03† 0.64± 0.00† 0.47± 0.00† 0.64± 0.07
Lung 0.11± 0.08† 0.01± 0.00† 0.20± 0.00† 0.27± 0.00≈ 0.01± 0.00† 0.27± 0.00≈ 0.00± 0.00† 0.02± 0.00† 0.27± 0.00
NCI9 0.38± 0.02† 0.39± 0.12† 0.40± 0.03† 0.41± 0.04† 0.05± 0.00† 0.37± 0.03† 0.44± 0.00† 0.36± 0.00† 0.46± 0.02

W/T/L 5/0/0 5/0/0 5/0/0 4/1/0 5/0/0 4/1/0 5/0/0 5/0/0

(a) Ground truth (b) OWL-k-means (c) SC3 (d) k-means-stable

(e) SOUP (f) Seurat (g) RaceID3

Figure 4: t-SNE plots for the Biase dataset, showing the performance of OWL-k-means compared to other peer algorithms
for the single-cell RNA seq data.
Note: The t-SNE plot for Monocle cannot be procured due to the internal issues of the Monocle package which was
updated recently, we can assure to reproduce the same at the time of submission if accepted.
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