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Abstract

In this paper we study the two-sample prob-
lem for inhomogeneous Erdős-Rényi (IER) ran-
dom graph models in the Lr norm, in the high-
dimensional regime where the number of sam-
ples is smaller or comparable to the size of the
graphs. Given two symmetric matrices P,Q ∈
[0, 1]n×n (with zeros on the diagonals), the two-
sample problem for IER graphs (with respect to
the Lr norm ‖ · ‖r) is to test the hypothesis
H0 : P = Q versus H1 : ‖P − Q‖r ≥ ε,
given a sample of m graphs from the respective
distributions. In this paper, we obtain the optimal
sample complexity for testing in the Lr norm, for
all integers r ≥ 1. We also derive the asymp-
totic distribution of the optimal tests under H0

and develop a method for consistently estimating
their variances. This allows us to efficiently im-
plement the optimal tests with precise asymptotic
level and establish their asymptotic consistency.
We validate our theoretical results by numerical
experiments for various natural IER models.

1 INTRODUCTION

A network consists of a set of distinct elements represented
by nodes (or vertices) and connections between the nodes
represented by links (or edges). These include social net-
works (where the nodes are individuals/organizations and
the edges between the nodes represent their social inter-
action), telecommunication networks (collection of termi-
nal nodes which are linked together to ensure communi-
cation between the terminals), biological networks (for ex-
ample, an ecosystem can be modeled as a network of in-
teracting species or a protein can be modeled as a network
of amino acids), among others. The amount of data col-
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lected from these networks have exploded in recent years,
presenting statisticians with unique challenges and exciting
new opportunities. Although network analysis has been
an area of active interest in statistics and machine learn-
ing, most classical approaches for graph testing are appli-
cable in the relatively low-dimensional setting, where the
sample size (number of graphs) is larger than the size of
the graphs (number of vertices). However, in the mod-
ern high-dimensional regime [19] the number of samples
could be potentially much smaller or comparable to the size
of the graph, such as in brain connectivity or protein in-
teraction networks. Consequently, inferential methods for
graph-valued data is an active and emerging discipline (see
[4, 6, 12, 22, 23, 28, 29, 37] and the references therein).

In this paper we study the 2-sample problem for network
data, where the goal is to test whether 2 network models
are equal or different, given samples from the respective
distributions. This problem arises naturally in a variety of
applications. For example, Zhang et al. [38] study the topo-
logical changes in gene regulatory networks for 2 different
treatments of breast cancer and Bassett et al. [5] study the
difference of anatomical brain structures between healthy
individuals and schizophrenic patients. Another important
field of application is functional neuroimaging data, where
the regions of interest in brain are considered as the ver-
tices of the network and functional connectivity between
two such regions are represented by the edges of the net-
work. Towards this, Ginestet et al. [16] considered the
problem of testing equality of Fréchet means of the graph
Laplacians based on i.i.d. samples of networks from 2 dis-
tributions. They derived a central limit theorem for the
sample Fréchet mean and proposed a Wald-type 2-sample
test for the problem. Recently, Maugis et al. [26] (see also
[7]) proposed 2-sample tests based on subgraph counts for
graphs generated from graphon models [25].

The aforementioned works assume that the size of the net-
works is fixed and the number of samples increase to infin-
ity. In this paper we are interested in the high-dimensional
regime, where the number of samples is much smaller or
comparable to the size of the graph. Specifically, we study
the two sample problem for inhomogeneous random graph
(IER) models in this regime.
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Definition 1.1. [3] Given a symmetric matrix P (n) ∈
[0, 1]n×n with zeroes on the diagonal, a graph G is said
to be an inhomogeneous Erdős-Rényi (IER) random graph
with edge probability P (n) = ((pij)) ∈ [0, 1]n×n, de-
noted as G ∼ IER(P (n)), if its symmetric adjacency ma-
trix A(G) = ((aij(G))) ∈ {0, 1}n×n have independent
entries satisfying:

aij(G) ∼ Ber(pij) for all 1 ≤ i < j ≤ n.

Note that P (n) is a symmetric matrix with elements in [0, 1]
and zeros on the diagonal. The IER model includes several
popular network models, such as stochastic block models
[23], the β-model, the Chung-Lu model [10], [8], and ran-
dom dot product graphs [31].

Given independent samples G1, G2, . . . , Gm ∼
IER(P (n)) and H1, H2, . . . ,Hm ∼ IER(Q(n)), where
P (n) = ((pij)) and Q(n) = ((qij)), the two-sample
problem for IER graphs is to test the hypothesis

H0 : P = Q versus H1 : ‖P (n) −Q(n)‖r ≥ ε, (1)

where ‖ · ‖r is the Lr norm:

‖P (n) −Q(n)‖r =

 ∑
1≤i,j≤n

|pij − qij |r
1/r

.

This problem has been studied recently in a series of papers
by Ghoshdastidar et al. [13, 14, 15]. In [15] the authors ob-
tained non-asymptotic minimax rates for the testing prob-
lem (1) for the Frobenius (L2) norm and the operator norm,
among others. Practical implementations of the optimal
tests (for the L2 norm and the operator norm) using their
asymptotic distributions were derived in [15]. In [13] the
authors proposed tests for comparing 2 networks based on
network statistics, such as triangle counts and largest sin-
gular values. The related problem of goodness-of-fit testing
in the IER model was studied recently in [9, 11]. In partic-
ular, [9] derived local minimax rates for the goodness-of-fit
problem in the Lr norm, for 1 ≤ r ≤ 2.

In this paper, we study the 2-sample problem (1) for general
Lr norms, for r ≥ 1. Specifically, we obtain the optimal
sample complexity for 2-sample testing in the Lr norm, for
all integers r ≥ 1. The results adapt and extend the classi-
cal techniques of Ingster [20] Ingster and Suslina [21] for
Gaussian models to the case of IER graphs. We comple-
ment these minimax results by deriving the asymptotic null
distribution of the optimal tests and consistent estimates of
the null variances, for all integers r ≥ 2. Consequently,
we can implement the optimal test with exact asymptotic
level (probability of Type I error) which is agnostic to the
knowledge of the separation parameter ε. We summarize
our results below.

1.1 Summary of Results

1.1.1 Optimal Sample Complexities

Given i.i.d. samples G1, G2, . . . , Gm from
IER(P (n)), and H1, H2, . . . ,Hm from IER(Q(n)),
a test is a binary function φm,n : (Gm;Hm) :=
(G1, G2, . . . , Gm;H1, H2, . . . ,Hm) → {0, 1}, which is
1 when H0 is rejected and 0 otherwise. The worst-case
risk of a test function φm,n for the testing problem (1) is
defined as:

R(P (n),Q(n), φm,n) = PH0
(φm,n = 1)

+ sup
‖P (n)−Q(n)‖r≥ε

PH1
(φm,n = 0), (2)

which is the sum of the Type I error and the maximum pos-
sible Type II error of the test function φm,n. We are inter-
ested in the asymptotic regime where the risk (2) transitions
from 0 to 1. This is formalized in the following definition:

Definition 1.2. Given G1, G2, . . . , Gm i.i.d. samples from
IER(P (n)), and H1, H2, . . . ,Hm i.i.d. samples from
IER(Q(n)), where m = mn can depend on n, a se-
quence of test functions φm,n is said to be asymptoti-
cally powerless for (1), if there exists a sequence of sym-
metric matrices (P (n), Q(n)) ∈ [0, 1]n×n × [0, 1]n×n

such that limn→∞R(P (n), Q(n), φm,n) = 1. On the
other hand, a sequence of test functions φm,n is said
to be asymptotically powerful for (1), if for all sym-
metric matrices (P (n), Q(n)) ∈ [0, 1]n×n × [0, 1]n×n,
limn→∞R(P (n), Q(n), φm,n) = 0.

As in the case for the Gaussian sequence model [21], the
optimal sample complexity depends on whether 1 ≤ r <
2 or r ≥ 2. Specifically, we obtain the following results
(asymptotic notations are as defined in Section 1.3):

• For any integer r ≥ 2, the optimal sample complexity
for the testing problem (1) is, n2/r/ε2. This means
that there is a (computationally efficient) test which is
asymptotically powerful for (1) when the sample size
m � n2/r/ε2. On the other hand, and all tests are
asymptotically powerless when the sample size m �
n2/r/ε2 (Theorem 2.1).

• For any 1 ≤ r < 2, the optimal sample complexity for
the testing problem (1) is n(4/r)−1/ε2 (Theorem 2.3).

• We also obtain the optimal sample complexity for test-
ing in the L∞ norm up to a logarithmic factor (Theo-
rem 2.4).

1.1.2 Asymptotic Distribution and Consistency

While optimality results provide mathematical insights on
the structure of the ‘best’ tests, the rejection regions of
the optimal tests often require knowledge of the separa-
tion parameter, and they can be conservative in practice.
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To handle this issue, in Section 3 we propose an implemen-
tation of the optimal test statistic using its asymptotic null
distribution. First, we show that for any integer r ≥ 2,
the optimal test statistic for the Lr norm when normal-
ized by its variance under H0 has a central limit theorem
(CLT) under H0 (Theorem 3.1). Moreover, we can consis-
tently estimate the null variance of the test statistic and,
consequently, obtain an asymptotically level α test. We
also derive conditions for consistency (power converging
to 1) for this test, which matches the minimax separation
rate in the worst case (Theorem 3.2). This improves and
extends the results in [14] where an upper bound on the
null variance of the optimal test was estimated for the L2

norm. We illustrate the finite-sample performances of the
proposed tests in simulations. Our experiments show that
asymptotic approximations are accurate even for moder-
ate sized networks and for a wide range of network spar-
sity (Section 4). The codes for all the experiments can
be found in the Github repository https://github.
com/sdan2/Lp-graph-testing.

1.2 Related Work on Testing Based on a Single
Observed Network

In this paper we study the 2-sample problem based on mul-
tiple i.i.d. networks from an IER model. There is paral-
lel line of work where one observes a single network from
the respective distributions and asymptotic properties are
derived as the size of the network grows. In this direc-
tion, Tang et al. [34, 35] considered testing whether or
not 2 random dot product graphs are generated from the
same latent positions (see also [1, 36] and the references
therein for more recent results); and Li and Li [24] pro-
posed a test for the equality of community memberships in
weighted stochastic block models. For general IER models
[14, 15] considered tests based on the operator norm of the
difference of the adjacency matrices of the observed net-
works. Recently, for graphon models, [33] proposed a test
for network 2-sample inference based on subgraph counts
and [32] proposed a test based on a novel graph-distance.

1.3 Asymptotic Notation

Throughout we will use the following standard asymp-
totic notations. For two positive sequences {an}n≥1 and
{bn}n≥1, an = O(bn) means an ≤ C1bn and an = Θ(bn)
means C2bn ≤ an ≤ C1bn, for positive constants C1, C2

and n large enough. Moreover, an = o(bn) will mean
an/bn → 0, as n → ∞. Similarly, an . bn means
an = O(bn); an � bn means an . bn . an; an � bn
means an = o(bn); and an � bn means bn = o(an).

1.4 Organization

The rest of the paper is organized as follows: The opti-
mal sample complexities for testing in the Lr norms are

discussed in Section 2. The asymptotic properties of the
test statistics are presented in Section 3. Empirical perfor-
mances of the tests are illustrated in Section 4. Proofs of
the results are given in the supplementary materials.

2 OPTIMAL SAMPLE COMPLEXITIES

In this section, we obtain the optimal sample complexities
for the two-sample problem (1) for the norms described
above. Throughout we will assume that the sample size m
is divisible by r. In particular, suppose that m = Kr, for
some L ≥ 1 and partition the set [m] := {1, 2, . . . ,m} into
r disjoint sets B1, B2, . . . , Br each with K consecutive el-
ements, that is,B` := {K(`−1)+1,K(`−1)+2, . . . ,K`},
for 1 ≤ ` ≤ r. Denoting the adjacency matrices of the
graphs Gs and Hs by A(Gs) = ((aij(Gs))), B(Hs) =
((bij(Hs))), respectively, define

∆(`)
m,n,r(i, j) :=

∑
s∈B`

(aij(Gs)− bij(Hs))

=

K∑̀
s=K(`−1)+1

(aij(Gs)− bij(Hs)),

for 1 ≤ ` ≤ r. To test separation in the Lr norm we
consider the following statistic:

Tm,n,r :=
∑

1≤i<j≤n

r∏
`=1

∆(`)
m,n,r(i, j), (3)

when r is even, and

Tm,n,r :=
∑

1≤i<j≤n

(
r−1∏
`=1

∆(`)
m,n,r(i, j)

)∣∣∣∆(r)
m,n,r(i, j)

∣∣∣ ,
(3)

when r is odd. Note that

E(∆(`)
m,n,r(i, j)) = K(pij − qij)

and {∆(`)
m,n,r(i, j)}1≤`≤r is a collection of independent

random variables. Hence, when r is even,

E(Tm,n,r) = Kr
∑

1≤i<j≤n

(pij − qij)r

=
Kr

2
‖P (n) −Q(n)‖rr, (4)

that is, Tm,n,r is an unbiased estimate of Kr

2 ‖P
(n) −

Q(n)‖rr. In particular, this implies, EH0(Tm,n,r) = 0
when P (n) = Q(n), and EH1(Tm,n,r) ≥ Krεr

2 when
‖P (n) − Q(n)‖r ≥ ε. In case r is odd, because of parity
issues Tm,n,r is no longer unbiased for K

r

2 ‖P
(n)−Q(n)‖rr.

Nevertheless, since

E(Tm,n,r)
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= Kr
∑

1≤i<j≤n

(pij − qij)r−1E
∣∣∣∆(r)

m,n,r(i, j)
∣∣∣ , (5)

we still get EH0
(Tm,n,r) = 0 when P (n) = Q(n), and

EH1
(Tm,n,r) ≥ Kr

∑
1≤i<j≤n

|pij − qij |r−1
∣∣∣E(∆(r)

m,n,r(i, j))
∣∣∣

=
Kr

2
‖P (n) −Q(n)‖rr ≥

Krεr

2
,

when ‖P (n) − Q(n)‖r ≥ ε. Therefore, a natural test for
detecting separation in the Lr norm would be to reject H0

for ‘large’ values of the statistic Tm,n,r. In following the-
orem we show that such a test attains the optimal sample
complexity for the testing problem (1) when r ≥ 2.

Theorem 2.1. Fix an integer r ≥ 2 and consider the test-
ing problem (1) under the Lr norm. Then the following
hold:

(a) The test φm,n,r = 1{Tm,n,r ≥ 1
4

(
mε
r

)r}, where
Tm,n,r is as defined in (3) above, is asymptotically
powerful for (1), whenever m� n2/r/ε2.

(b) On the other hand, all tests are asymptotically power-
less for (1), whenever m� n2/r/ε2.

The proof of the above result is given in Section 1 of
the supplementary materials. The upper bound (Theorem
2.1 (a)) proceeds by a variance calculation which shows
that Tm,n,r concentrates about its expected value (both un-
der H0 and H1 as in (1)), hence, φm,n,r can detect dif-
ferences in the Lr norm, whenever m � n2/r/ε2. For
the lower bound (which entails finding ‘hard’ instances of
P (n) and Q(n) satisfying (1)), we choose Q(n) = ((qij))
to be the matrix corresponding to the Erdős-Rényi graph
ER(n, 1/2), that is, qij = 1

2 , for all 1 ≤ i 6= j ≤ n and
P (n) = ((pij)) to be 1

2 + δ in O(n) locations and 1
2 in

the remaining locations, where the parameter δ is chosen
(depending on n, r, and ε) such that the Lr norm between
P (n) and Q(n) is ε. Then a second-moment calculation of
the likelihood ratio shows that detecting these distributions
is impossible when m� n2/r/ε2.

Although Theorem 2.1 assumes r ≥ 2 is an integer, it will
be evident from the proof that the lower bound holds for all
r ≥ 2 (see Proposition 1.1). In other words, for any r ≥
2, all tests are asymptotically powerless for (1), whenever
m � n2/r/ε2. To get an upper bound for a non-integer
r ≥ 2, note that by Hölder’s inequality,

‖P (n) −Q(n)‖r ≤ n(2/r)−(2/dre)‖P (n) −Q(n)‖dre.

Therefore, ‖P (n) − Q(n)‖r ≥ ε implies that ‖P (n) −
Q(n)‖dre ≥ ε/n(2/r)−(2/dre). Consequently, by Theorem
2.1 (a), the test which rejects H0 when

Tm,n,dre ≥
1

4

(
mε̂

r

)r
, where ε̂ := ε/n(2/r)−(2/dre),

is asymptotically powerful whenever m � n2/r/ε̂2 =
n(4/r)−(2/dre)/ε2. We summarize this result in the follow-
ing corollary:

Corollary 2.2. Fix r ≥ 2 not an integer and consider the
testing problem (1). Then the following hold:

(a) The test φm,n,r = 1{Tm,n,dre ≥ 1
4

(
mε̂
r

)r}, where
ε̂ := ε/n(2/r)−(2/dre), is asymptotically powerful for
(1), whenever m� n(4/r)−(2/dre)/ε2.

(b) On the other hand, all tests are asymptotically power-
less for (1), whenever m� n2/r/ε2.

Remark 2.1. By fixing m and varying the separation pa-
rameter ε, the above results can be restated in terms of
the minimax separation radius. In particular, Theorem 2.1
shows that for testing in the Lr norm the minimax separa-
tion radius is n1/r/

√
m, that is, if ε � n1/r/

√
m the test

φm,n,r is asymptotically powerful. On the other hand, if
ε � n1/r/

√
m all tests are asymptotically powerless. For

example, if r = 2 the minimax separation radius is
√
n/m,

which also follows from the results in [15].

Next, we consider testing separation in the Lr norm for
1 ≤ r < 2. Note that by Hölder’s inequality,

‖P (n) −Q(n)‖r ≤ n(2/r)−1‖P (n) −Q(n)‖2. (6)

Therefore, ‖P (n) − Q(n)‖r ≥ ε implies that ‖P (n) −
Q(n)‖2 ≥ ε/n(2/r)−1. Consequently, by Theorem 2.1 (a),
the test which rejects H0 when

Tm,n,2 ≥
1

4

(
mε̃

r

)r
, where ε̃ := ε/n(2/r)−1, (7)

is asymptotically powerful whenever m � n2/r/ε̃2 =
n(4/r)−1/ε2. The following theorem shows that this sam-
ple complexity is indeed optimal in the regime 1 ≤ r < 2.
In this case the lower bound is attained by a 2-sided pertur-
bation. Specifically, for 1 ≤ i < j ≤ n, we choose qij = 1

2
and pij = qij + γijδ, where {γij} are i.i.d. ±1 with proba-
bility 1

2 and δ (depending on n, r, and ε) is such that the Lr
norm between P (n) and Q(n) is ε. A second-moment cal-
culation of the likelihood ratio shows that detecting these
distributions is impossible when m � n(4/r)−1/ε2 and
1 ≤ r < 2. The proof of this result is given in Section 2 of
the supplementary materials.

Theorem 2.3. Fix 1 ≤ r < 2 and consider the testing
problem (1). Then the following hold:

(a) The test φm,n,r = 1{Tm,n,2 ≥ 1
4

(
mε̃
r

)r}, where
ε̃ := ε/n(2/r)−1, is asymptotically powerful for (1),
whenever m� n(4/r)−1/ε2.

(b) On the other hand, all tests are asymptotically power-
less for (1), whenever m� n(4/r)−1/ε2.
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Next, we consider the problem of testing in the L∞ norm.
In this case we have the following result:

Theorem 2.4. Consider the testing problem (1) under the
L∞ norm. Then the following hold:

(a) There exists an asymptotically powerful test for (1),
whenever m� log n/ε2.

(b) On the other hand, all tests are asymptotically power-
less for (1), whenever m� 1/ε2.

For testing in the L∞ norm a natural test statistic is:

Tm,n,∞ := sup
1≤i<j≤n

∣∣∣∣∣
m∑
s=1

(aij(Gs)− bij(Hs))

∣∣∣∣∣ . (8)

The test which rejectsH0 for large values of Tm,n,∞ attains
the optimal sample complexity in the L∞ norm up to a log-
factor. The proof is given in Section 3 of the supplementary
materials.

Remark 2.2. The results above give the optimal sample
complexity for testing in the Lr norm for all integers r ≥ 1.
In fact, combining Theorems 2.1 and 2.3, the optimal sam-
ple complexity for all integers r ≥ 1 can expressed as
Θ(nλ(r)/ε2), where λ(r) = max{4/r − 1, 2/r}. More-
over, limr→∞ λ(r) = 0, which matches the sample com-
plexity of testing in the L∞ norm up to a log factor. We
conjecture that Θ(nλ(r)/ε2) is, in fact, the optimal sample
complexity for all r ≥ 1 (not necessarily an integer). How-
ever, our current upper and lower bounds for non-integers
r ≥ 2 (Corollary 2.2) do not match by a factor depending
on fractional part of r in the exponent.

3 ASYMPTOTIC PROPERTIES

In this section we derive the asymptotic properties of the
test statistic Tm,n,r as the size of the graphs n→∞, where
the sample size m > 1 is also allowed to depend on n. We
begin with the distribution of Tm,n,r under H0.

Theorem 3.1. Fix an integer r ≥ 2 and sup-
pose the sequence of matrices {P (n)}n≥1 satisfies
limn→∞ ‖P (n)‖r = ∞ and supn≥1 ‖P (n)‖∞ < 1. Then
under H0, as n→∞.

Zm,n,r :=
Tm,n,r√

VarH0(Tm,n,r)

D→ N(0, 1), (9)

where VarH0
(Tm,n,r) denotes the variance of Tm,n,r under

H0.

The proof of the above result is given in Section 4 of the
supplementary materials. The proof uses the Berry-Esseen
theorem to establish the following quantitative bound:

sup
x∈R
|PH0(Zm,n,r ≤ x)− Φ(x)| . 1√

‖P (n)‖rr
, (10)

where Φ(x) is the distribution function of N(0, 1). Since
limn→∞ ‖P (n)‖r = ∞ by assumption, (10) implies the
result in (9).

In order to use Theorem 3.1 to construct a test for (1), we
need to consistently estimate VarH0

(Tm,n,r). To this end,
a direct computation shows that (see (4.3) in the supple-
mentary materials)

σ2
m,n,r := VarH0(Tm,n,r)

=

(
2m

r

)r ∑
1≤i<j≤n

prij(1− pij)r. (11)

To estimate the variance we split the sample into 2r parts
and use the first r parts to estimate prij and the last r parts to
estimate (1 − pij)r and then take their product. Formally,
suppose m = 2rC, for some C ≥ 1, and define

P̂
(`)
ij =

1

C

C∑̀
s=C(`−1)+1

aij(Gs), (12)

for 1 ≤ ` ≤ 2r. Then we can estimate σ2
m,n,r as follows:

σ̂2
m,n,r =

(
2m

r

)r ∑
1≤i<j≤n

{
r∏
`=1

P̂
(`)
ij

2r∏
`=r+1

(1− P̂ (`)
ij )

}
.

(13)

Note that EH0(σ̂2
m,n,r) = σ2

m,n,r, that is, σ̂2
m,n,r is an un-

biased estimate of σ2
m,n,r. The following result shows that

σ̂2
m,n,r consistently estimates σ2

m,n,r and, consequently, the
test which rejects H0 when |Tm,n,r| > zα

2
σ̂m,n,r is an

asymptotically level α test.

Theorem 3.2. Fix an integer r ≥ 2 and sup-
pose the sequence of matrices {P (n)}n≥1 satisfies
limn→∞ ‖P (n)‖r =∞ and supn≥1 ‖P (n)‖∞ < 1. Then

σ̂2
m,n,r

σ2
m,n,r

P→ 1, (14)

As a consequence, Ẑm,n,r :=
Tm,n,r
σ̂m,n,r

D→ N(0, 1) under

H0 and the test which rejects H0 when |Ẑm,n,r| > zα
2

is
asymptotically level α, that is,

lim
n→∞

PH0(|Ẑm,n,r| > zα
2

) = α. (15)

Moreover, if {P (n)}n≥1 and {Q(n)}n≥1 is such that
‖P (n) −Q(n)‖2r � 1

m

(
‖P (n)‖r + ‖Q(n)‖r

)
, then

lim
n→∞

PH1
(|Ẑm,n,r| > zα

2
) = 1. (16)

The proof of Theorem 3.2 is given in Section 5 of the sup-
plementary materials. The results show that the statistic
Tm,n,r, which attain the optimal sample complexity for the
Lr norm, can be rescaled to obtain a CLT under H0 and
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the null varaince can be consistently estimated. One of the
advantages of the variance estimation is that it allows us
to choose a cut-off for which the probability of Type I er-
ror is equal to α. This is in contrast to the result in [14,
Theorem 1] where an upper bound on the variance is es-
timated for the L2 statistic Tm,n,2, leading to a test which
is a conservative, that is, the probability of Type I error is
asymptotically bounded above by α, instead of being equal
to α. Moreover, (16) shows that the test based on Ẑm,n,r is
consistent whenever the ‘normalized signal strength’:

‖P (n) −Q(n)‖2r
‖P (n)‖r + ‖Q(n)‖r

� 1

m
.

In particular, if ‖P (n) −Q(n)‖r = ε, then this implies that
the test based on Ẑm,n,r is asymptotically powerful when-
ever

m� ‖P
(n)‖r + ‖Q(n)‖r

ε2
,

which matches the minimax sample complexity ob-
tained in Theorem 2.1 in the worst case, since
max{‖P (n)‖r, ‖Q(n)‖r} ≤ n2/r. Therefore, we have a
practical test for detecting separation in the Lr norm which
attains the optimal sample complexity and does not re-
quire knowledge of the separation parameter, for any in-
teger r ≥ 2.

4 NUMERICAL RESULTS

In this section we implement the tests described above for
various common IER models. Specifically, we will con-
sider the following 3 models:

• Erdős-Rényi Model: This is the basic random graph
model where every edge is present independently with
probability p ∈ [0, 1]. We denote this model by
ER(n, p).

• Planted Bisection Model: In this case the edge-
probability matrix P = ((pij)) has a 2-block struc-
ture:

pij :=


a if 1 ≤ i 6= j ≤ n

2 or n2 < i 6= j ≤ n,
b if 1 ≤ i ≤ n

2 and n
2 < j ≤ n or

n
2 < i ≤ n and 1 ≤ j ≤ n

2
0 if i = j,

where a, b ∈ [0, 1]. We denote a random graph on
n vertices from this model as PB(n, a, b). This is a
special case of the well-known stochastic block model
[27], where the vertex set is divided into two equal-
sized communities and the edges are added indepen-
dently depending on the community membership.

• β-Model: This is another popular IER model [8,
17, 28, 30], where the edge-probability matrix P =

((pij)) is given by

pij =
eβi+βj

1 + eβi+βj
,

for 1 ≤ i 6= j ≤ n, where β = (β1, β2, . . . , βn) is
an n-dimensional parameter vector. The β-model is
a simple version of a collection of exponential mod-
els actively used for analyzing network data, and is a
close analogue to the Bradley-Terry model for rank-
ings [18].

Figure 1 shows the histogram of the L4 statistic Ẑm,n,4
and limiting normal density (as in Theorem 3.2) under
H0 with n = 100 and m = 32 for the Erdős-Rényi
model ER(n, 12 ) (Figure 1(a)), the (sparse) planted bisec-
tion model PB(n, 8/n, 2/n) (Figure 1 (b)), and the β-
model, for a uniformly chosen unit vector β ∈ Rn (Fig-
ure 1 (c)). In all the 3 cases, the histograms closely follow
the limiting normal distributions, showing that the asymp-
totic approximations are accurate even for moderate sized
networks and relatively small sample sizes. Moreover, the
asymptotic approximations are valid for wide range of spar-
sity, from dense graphs with Θ(n2) edges (as in ER(n, 12 )
and the β-model) to sparse graphs with Θ(n) edges (as in
PB(n, 8/n, 2/n)).

Note that Theorem 2.1 shows that given a separation pa-
rameter ε, the sample complexity for testing in the Lr norm
decreases with r. In other words, for a fixed sample size m
the optimal test for the Lr norm has a smaller minimax
separation radius for larger r. For example, the minimax
separation radius for the L2 norm is

√
n/m whereas for

the L4 norm it is n1/4/
√
m. To illustrate this we consider

the following 3 simulation settings:

• We consider G1, G2, . . . , Gm i.i.d. from ER(n, 0.2)
andH1, H2, . . . ,Hm i.i.d. from ER(n, 0.2+ε/n2/r).
This ensures the separation in the Lr norm is � ε.

• We consider G1, G2, . . . , Gm i.i.d. from
PBM(n, a/n2/r, b/n2/r) and H1, H2, . . . ,Hm i.i.d.
from PBM(n, a/n2/r + ε/n2/r, b/n2/r − ε/n2/r)
(with probabilities truncated to be within [0, 1] if
required).

• We consider G1, G2, . . . , Gm i.i.d. from the β-
model with β1, β2, . . . , βn i.i.d. N(0, 1) and
H1, H2, . . . ,Hm from the β-model with βi + ε/n2/r,
for 1 ≤ i ≤ n.

Figure 2 shows the empirical power (over 100 iterations)
for the test based on Ẑm,n,r for the above 3 cases with
n = 50 and m = 48 over a grid of 10 values of ε for
r ∈ {2, 4, 6}. In all the 3 cases, we observe that the test for
the L6 norm has power reaching 1 faster than the test for
the L4 norm which, in turn, reaches power 1 faster than the
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Histogram of L4 Statistic in the PBM

Ẑm,n,4

D
en
si
ty

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

(b)

Histogram of L4 Statistic in the β-Model
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Figure 1: Histogram of the L4 statistic Ẑm,n,4 with m = 32 and n = 100 and the asymptotic normal density (in blue) for (a) the
Erdős-Rényi model ER(n, 1

2
), (b) the (sparse) planted bisection model PB(n, 8/n, 2/n) and (c) the β-model with ‖β‖2 = 1.
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Figure 2: Power of tests based on Ẑm,n,r as a function of the separation ε with n = 50 and m = 48 for (a) the Erdős-Rényi model, (b)
the planted bisection model, and (c) the β-model.

test for the L2 norm, as expected from the result in Theo-
rem 2.1.

It is also natural to wonder under what kinds of alternatives
does the test for the Lr norm have more power than the
tests based on the other norms. The proof of Theorem 2.1
reveals that tests for higher norms are powerful when the
matrices P (n) and Q(n) differ on a ‘small’ of set of coor-
dinates. For example, in the extreme case where P (n) and
Q(n) differ on 1 (or a very small number) of coordinates the
test for the L∞ norm is likely to be powerful. On the other
hand, if P (n) and Q(n) differ on a positive fraction of the
coordinates, the test based on the L2 norm will tend to per-
form better. To illustrate this we consider G1, G2, . . . , Gm
i.i.d. from ER(n, 0.2) and H1, H2, . . . ,Hm i.i.d. from
IER(Q(n)) where the elements of Q(n) equal 0.2 + ε in
only 10 locations and 0.2 in the remaining locations. In
this setting, Figure 3 shows the power of the tests for the
L2, L4, and L∞ norms (with cut-off chosen using the per-
mutation method) with n = 100 and m = 36. Clearly, in
this case the L∞ norm test outperforms the L4 test which
outperforms the L2 norm test, as the separation increases.
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