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Abstract

Observational studies have recently received sig-

nificant attention from the machine learning

community due to the increasingly available non-

experimental observational data and the limita-

tions of the experimental studies, such as con-

siderable cost, impracticality, small and less rep-

resentative sample sizes, etc. In observational

studies, de-confounding is a fundamental prob-

lem of individualised treatment effects (ITE) esti-

mation. This paper proposes disentangled repre-

sentations with adversarial training to selectively

balance the confounders in the binary treatment

setting for the ITE estimation. The adversarial

training of treatment policy selectively encour-

ages treatment-agnostic balanced representations

for the confounders and helps to estimate the

ITE in the observational studies via counterfac-

tual inference. Empirical results on synthetic and

real-world datasets, with varying degrees of con-

founding, prove that our proposed approach im-

proves the state-of-the-art methods in achieving

lower error in the ITE estimation.

1 INTRODUCTION

Individualised treatment effects (ITE) estimation is a fun-

damental problem that is useful for making personalised

decisions and estimating their effects. For example, in

the intensive care unit (ICU), ITE can be used to decide

whether or not to give a medication to a patient, which can

be a question of life or death of the patient. The ITE estima-

tion learning requires answering counterfactual questions,

such as: “What would have been the outcome if alterna-

tive treatment had been given?”, i.e., it requires predicting
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potential outcomes of unexplored actions (Rubin (2005)).

Due to its importance, ITE estimation is studied widely

across diverse fields, like medicine, marketing, education

and policy-making, etc. (please refer to Bica et al. (2021)

for an overview).

Randomised controlled trial (RCT) experiments are the

gold standard to evaluate the effectiveness of treatments

(Pearl (2009)). However, they are expensive, time-

consuming, sometimes unethical and impractical, and have

small and less representative sample sizes, etc. On the other

hand, non-experimental observational studies are becom-

ing popular for evaluating the effectiveness of treatments

due to increasingly available observational data, like elec-

tronic health records, and overcoming limitations of the

RCT.

The ITE estimation from the observational studies

have, recently, received a great attention from the ma-

chine learning community, e.g., Shalit et al. (2017);

Shi et al. (2019); Hassanpour and Greiner (2019b);

Curth and van der Schaar (2021a,b); Wu et al. (2022) etc.,

and it is different from standard machine learning (Rubin

(2005); Pearl (2009); Wager and Athey (2018)). This is

because the observational data have outcomes available

only for the actions taken, i.e., for the selected treatments

(factual outcomes), but the outcomes for alternative

treatments are not available (counterfactual outcomes)

– which is called the fundamental problem of causal

learning (Holland (1986)). Moreover, the observational

data contain confounders, i.e., covariates which affect

outcomes as well as treatment assignment policy, and

hence have selection-bias (Imbens and Rubin (2015))

(i.e., p(T = 0|X = x) 6= p(T = 1|X = x), unlike

the RCT where treatments are assigned randomly and

has p(T = 0|X = x) = p(T = 1|X = x), where

p(T = t|X = x) is probability of treatment t for a given

patient x in a binary treatment setting). For example, in the

above ICU setting scenario, suppose choice of medication

is dependent on the age of the patient which also affects

the recovery rate.

ITE estimation from observational data is a challenging

problem and it involves a fundamental problem of de-
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confounding, i.e., removing selection-bias which otherwise

precludes direct comparison between different treatment

groups as they have different distributions. Without care-

ful handling of selection-bias, it could lead to biased es-

timates of causal effects (Zubizarreta (2015)). Recently,

several deep learning architectures and algorithms were

proposed to address the de-confounding, which borrow

ideas from representation learning (Bengio et al. (2013)),

domain adaptation (Johansson et al. (2016)) and disentan-

glement learning (Hassanpour and Greiner (2019b)).

Figure 1: Problem setting: We consider binary treatment

setting where the context X can be decomposed into five

(or three) subsets as covariates I which affect only the

treatment policy π, named instrument variables, covariates

{A0, A,A1} which affect only the treatment outcomes Y ,

where A0 affects only the control group outcomes µ0, A1
affects only the treatment group outcomes µ1, and A affects

both of the outcomes, collectively referred to as adjustment

variables and covariates C which affect both treatment pol-

icy as well as treatment outcomes.

Representation learning-based methods try to reduce

selection-bias by learning a shared representation for out-

come and treatment predictions (Johansson et al. (2016)).

Similarly, domain adaption-based methods try to learn

a common representation space and minimise the dis-

crepancy between control and treatment distributions

(Shalit et al. (2017)). Disentanglement learning-based

methods decompose the covariates into latent factors corre-

sponding to confounders (i.e., features affecting both treat-

ment and outcomes), instrument variables (i.e., features af-

fecting only treatment decision) and adjustment variables

(i.e., features affecting only outcome predictions) for coun-

terfactual interference (Hassanpour and Greiner (2019b)),

as shown in Fig. 1 which presents the problem setting.

This paper proposes novel disentangled representations

with adversarial training to selectively balance the con-

founders in the binary treatment setting for ITE estima-

tion. The disentanglement representation learning – us-

ing a specific deep learning architecture and constraining

orthogonality on each pair of representations – helps to

disentangle the latent factors, i.e., representations for the

confounders, instrument variables and adjustment variables

(refer to Fig.2). The adversarial training jointly optimises

the confounder representations to minimise the loss for the

potential outcome predictions and maximise the loss for the

treatment assignments. This learns a representation for the

confounders, which is treatment-agnostic. Our empirical

results on synthetic and real-world datasets, with varying

degrees of confounding, show that our proposed approach

improves the state-of-the-art methods in achieving lower

error in estimating the ITE.

The rest of the paper is organized as: Section 2 presents

some related work, Section 3 defines the problem settings,

Section 4 describes the proposed methodology and Sec-

tion 5 presents experiments. Finally, the concluding re-

marks and future scope are discussed in Section 6.

2 RELATED WORK

The estimation of individualised treatment effects (ITE)

from the observational data has recently received grow-

ing attention from the machine learning community due

to the increasingly available observational data, like elec-

tronic health records, and overcoming limitations of ran-

domised controlled trials – the gold standard to estimate

treatment effects. ITE estimation from the observational

data faces a fundamental problem of de-confounding and

the corresponding selection-bias. As discussed below, sev-

eral techniques have been proposed for de-confounding,

such as weighting of outcomes, learning balanced repre-

sentations, and dis-entanglement learning.

Weighting techniques to address the confounders typ-

ically construct some weights to balance the co-

variates for the control and the treatment groups

(Rosenbaum and Rubin (1983)), e.g., inverse probability

weighting (IPW). In reality, it is difficult to estimate the

correct propensity score values, i.e., the probability of

treatment, so these methods are known to be unstable

(Hainmueller (2012)). To address this limitation, sev-

eral alternative weighting schemes are proposed, such as

truncated IPW (Crump et al. (2009)), matching weights

(Li et al. (2018)) and calculating weights using optimisa-

tion program (Li and Fu (2017)) etc. The weighting tech-

niques are known not to scale well to high dimensional

problems.

Balanced representation techniques learn a shared repre-

sentation, i.e., an embedding for the confounders, and force

the distributions of the control and treatment arms to be

similar. For example, Johansson et al. (2016); Shalit et al.

(2017) presented the pioneering work and borrowed the

idea of discrepancy from the domain adaptation to intro-

duce a form of regularisation to enforce similarity in the

representations for control and treatment groups. Rather

than balancing the global distributions for different treat-

ment groups, Yao et al. (2018) extended the idea of repre-

sentation learning by local similarity preserving technique.

The combination of weighting and representation tech-

niques is also explored in Hassanpour and Greiner (2019a),
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where authors estimated IPW from the representations to

re-weight the regression terms.

Like weighting techniques, representation learning tech-

niques focus on the confounders and balance the repre-

sentations for the whole context. Recently, VanderWeele

(2019); Kuang et al. (2019) highlighted the importance of

confounder separation for causal learning and argued that

by balancing the complete context, some variables, such as

instrument variables, lead to additional bias and variance.

Disentanglement representation techniques address the

above concerns of balanced representation learning tech-

niques. They learn to disentangle the context X
into latent factors for subsets of X . For example,

Hassanpour and Greiner (2019b) proposed disentangle-

ment learning algorithm to learn three latent factors

{C(X), I(X), A(X)} for confounders C, instrument vari-

ables I and adjustment variables A from the context X .

However, they didn’t guarantee the disentangled represen-

tations and used propensity scores for weighting, which

runs the risk of instability similar to weighting techniques.

The idea of disentanglement is further improved by differ-

ent researchers and is currently the state-of-the-art tech-

nique for ITE estimation. For example, Wu et al. (2022)

addressed the above limitations, removed the propensity

scores, and introduced orthogonality between each pair

of representations, ensuring that each variable in the con-

text X affects only one of the three representations, i.e.,

{I, C,A}. Recently, Curth and van der Schaar (2021b)

proposed to disentangle the context X into five latent fac-

tors {C(X), I(X), A0(X), A(X), A1(X)}, correspond-

ing to confounders, instrument variables, adjustment vari-

ables, where A0, A,A1 refer to adjustment variables which

affect the control group, control as well as treatment groups

and treatment group, respectively, and used orthogonality

to enforce that each variable in X affects only one of these

five factors.

In this paper, we proposed a novel disentangled represen-

tation with adversarial training to selectively balance the

confounders. The disentanglement learning helps to sep-

arate the confounds and adversarial training (Ganin et al.

(2016)) selectively learns balanced representations for the

confounders, unlike the balanced representation learning

methods which balance the whole context X and may lead

to additional bias and variance in counterfactual inference.

3 PROBLEM SETTING

We introduce the problem of ITE estimation for binary

treatments from the observational data using the poten-

tial outcomes framework (Rubin (2005)). Suppose, D =
{Ti, Xi, Yi}

m
i=1

is a sample of m units, say patients, of

the observational data, e.g., electronic health records, taken

i.i.d. from an unknown distribution P. Xi ∈ R
d is a d-

dimensional covariates, i.e., context, e.g., patient history.

Ti ∈ {0, 1} is a binary treatment variable, where Ti = 1
refers to a patient i receiving a treatment and Ti = 0 refers

to a patient not receiving the treatment. Yi ∈ R denotes the

patient’s outcome.

We use Neyman-Rubin potential outcomes framework

(Rubin (2005)) for the individualised treatment effects.

Suppose Yi(1) and Yi(1) refer to potential outcomes when

patient i receives a treatment, i.e., Ti = 1 and did not

receive the treatment, i.e., Ti = 0, respectively. How-

ever, due to the fundamental problem of the causal infer-

ence, we observe only factuals, i.e., the outcome for the

selected treatment for a given patient, and not the coun-

terfactuals, i.e., the outcome for the non-selected treat-

ment, as the outcome of the patient is defined as Yi =
TiYi(1)−(1−Ti)Yi(0). The ITE is the conditional average

treatment effect, also known as CATE1, as given below.

e(x) = EP [Y (1)− Y (0)|X = x] . (1)

Our work is based on standard assumptions of treatment

effects estimation (Imbens and Rubin (2015)), which are

given below.

Assumption 1 (Stable Unit Treatment Value:) The dis-

tribution of a patient’s outcome depends on the treatment

given to it and is independent of the treatment given to

other patients.

Assumption 2 (Ignorability: Rosenbaum and Rubin

(1983)) The treatment assignment policy is independent of

the potential outcomes when given the context of a patient,

{Y (0), Y (1)} ⊥ T |X. (2)

Assumption 2 is also known as unconfoundedness because

it holds if there are no hidden confounders and if these sat-

isfy additional conditions.

Assumption 3 (Overlap: Imbens (2004)) The treatment

assignment policy is stochastic, i.e., each patient has a cer-

tain probability of receiving any treatment, i.e.,

0 < π(x) < 1, ∀x ∈ X, (3)

where π(x) is probability of receiving treatment T = 1 of

patient x.

The Assumptions 2 and 3 together are called strong ignor-

ability assumptions (Imbens and Wooldridge (2009)).

Under the above assumptions, expected potential outcomes

and the conditional average treatment effect are identifiable

as given below.

µt(x) = EP [Y |X = x, T = t] , (4)

1in machine learning literature, ITE and CATE are inter-
changeably used to refer to CATE, and is different from ITEi =
Yi(1) − Yi(0) in causal inference literature (Johansson et al.
(2022))
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e(x) = EP [Y (1)− Y (0)|X = x] ,

= EP [Y |X = x, T = 1]− EP [Y |X = x, T = 0] ,

= µ1(x)− µ0(x).

(5)

It is well-known that the above assumptions are fundamen-

tally untestable from given observational data for ITE es-

timation (Pearl (2009)), so domain knowledge is neces-

sary to access the validity of these assumptions (Bica et al.

(2021)). Moreover, richer datasets can also cover more of

the confounding variables.

4 METHODOLOGY

The individualised treatment effects can be estimated from

the observational data, D = {Ti, Xi, Yi}
m
i=1

, containing

context Xi ∈ R
d, treatment assignments Ti ∈ {0, 1}

and outcomes Yi ∈ R for the patients i = 1, 2, ...,m
by training supervised machine learning model for poten-

tial outcome regressions µt(x) = EP [Y |X = x, T = t]
and using plug-in approach as e(x) = µ1(x) −
µ0(x). However, it needs to address the confounders

(i.e., features affecting the treatment policy as well as

treatment outcomes) and the resulting selection-bias in

the treatment assignment policy (Pearl (2009)). To

address the selection-bias caused by the confounders,

we separate the confounders using the disentanglement

representation learning (Hassanpour and Greiner (2019b);

Curth and van der Schaar (2021b); Wu et al. (2022)) and

selectively learn balanced confounder representations us-

ing the adversarial training (Ganin et al. (2016)) of ex-

pected outcome predictions against the propensity score

(i.e., probability of treatment) predictions.

4.1 Disentangled Representations

Suppose the context X can be decomposed into five la-

tent factors {I(X), C(X), A0(X), A(X), A1(X)} for in-

strument variables I (variables which affect only the treat-

ment policy), adjustment variables A,A0 and A1 that af-

fect both the potential outcome regressions µ0 and µ1, only

µ0 and only µ1, respectively, and confounder variables C
(variables affecting the treatment policy as well as the out-

comes). To implement the disentanglement representation

learning, it requires a deep learning architecture that has

five multi-layer perceptrons (MLP) and takes context X as

an input to generate latent representations, i.e., embedding

for each of the five factors, I, A,A0, A1 and C, as well as

orthogonality Curth and van der Schaar (2021b); Wu et al.

(2022) between each pair of the representations to ensure

each variable in X contributes to only one of the five fac-

tors. We present the deep learning architecture to support

disentanglement in Fig. 2 and the idea of orthogonality is

given below.

The architecture-based representations of

Figure 2: SNet+: proposed disentanglement represen-

tation based adversarially balanced architecture. The

context X is disentangled into five latent factors

{I(X), C(X), A0(X), A1(X), A(X)}. The treatment

classifier is adversarially trained by using a gradient re-

versal layer between confounder representations C(X) and

the treatment classifier to get balanced representations for

the confounders.

{I, A,A0, A1, C} are insufficient to guarantee dis-

entanglement as data-driven neural networks over-

fit the training. So, similar to Kuang et al. (2017);

Curth and van der Schaar (2021b); Wu et al. (2022),

we use orthogonality to enforce variable decom-

positions among the five representation networks

{I(X), A(X), A0(X), A1(X), C(X)} corresponding

to {I, A,A0, A1, C}, respectively. Let’s take an example

of a representation network for confounders C(X) and

suppose it takes l layers and weights of the kth layer are

denoted by matrix Wk. Then, the contribution of each

variable in X on each dimension of representation C(X)
can be approximated by computing W1 × W2 × ... × Wl

which can be denoted as WC ∈ R
d×n, where d is the

dimension of X and n is the dimension of C(X). We

take the average along the rows of WC to represent the

average contribution of variables in X on representations

C(X), denoted as W̄C . Similarly, we approximate the

contributions of each variable in X on representations

of I(X), A(X), A0(X), A1(X) as W̄I , W̄A, W̄A0, W̄A1,

respectively. Assuming all representation networks have

the same structure, the hard decomposition can be enforced

by constraining orthogonality on each pair of them. It

can be achieved by adding the following loss term to the
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objective function.

LO = W̄I
T
.W̄A + W̄I

T
.W̄A0 + W̄I

T
.W̄A1 + W̄I

T
.W̄C

+ W̄A
T
.W̄A0 + W̄A

T
.W̄A1 + W̄A

T
.W̄C + W̄A0

T
.W̄A1

+ W̄A0

T
.W̄C + W̄A1

T
.W̄C .

(6)

This loss term can lead to the result W̄ k
I = W̄ k

A = W̄ k
A0

=
W̄ k

A1
= W̄ k

C = 0. So, to avoid this, following regulariser

as a soft constraint is used, which make the sum of each of

W̄I , W̄A, W̄A0, W̄A1, W̄C to 1, as given below.

RO =
∑

r∈{I,A,A0,A1,C}

(

d
∑

i=1

W̄ i
r − 1

)2

. (7)

The representation networks for the five latent factors,

{I(X), A(X), A0(X), A1(X), C(X)}, and the above loss

term and the regulariser help to learn disentangled rep-

resentations for separating the confounders from the in-

put context X . Similarly, the context can be decomposed

into three latents {I(X), A(X), C(X)} corresponding to

{I, A,C}, respectively, and referred to as DRCFR+.

4.2 Adversarial De-confounding

Domain adaptation is the task of building a predic-

tor/classifier model on the source domain while being in-

variant to the shifts in the target domain, where the source

and target domains have similar but different distributions.

Johansson et al. (2016); Shalit et al. (2017) presented pio-

neering work to formulate the ITE estimation problem as

domain adaptation and learnt shared representations, i.e.,

embedding φ(X), and used integral probability metrics to

minimise the distance between control and treatment dis-

tributions in the embedding space, thus leading to learning

balanced representations to get rid off the selection-bias.

However, later VanderWeele (2019); Kuang et al. (2019)

pointed out that learning such balanced representations for

the context X can lead to additional bias and variance in

the predictions.

Here, we adopt another popular idea of adversarial train-

ing (Ganin et al. (2016)) from the domain adaptation which

is widely adapted in different problem settings, e.g.,

Bica et al. (2020); Guan and Liu (2021). The main idea of

domain adaptation is to obtain invariance between source

and target distributions. In our setting, we want invariance

of potential outcome regressions µt against the treatment

policy π, which is also different than the Johansson et al.

(2016); Shalit et al. (2017) who didn’t consider treatment

policy for reducing the selection-bias. Adversarial training

helps to learn representations for the confounders such that

the representations are discriminative of the potential out-

come regressions µt but invariant to the treatment policy

π. This results in balanced representations for control and

treatment groups, which also avoids the risk of additional

bias and variance, as pointed out in VanderWeele (2019);

Kuang et al. (2019) from balancing the entire context X .

The balanced representations are achieved by jointly opti-

mising the underlying representations as well as a predictor

and a classifier on these representations: (i) potential out-

come predictor which is used during the training and test

times, and (ii) treatment policy classifier which is used dur-

ing the training time only. The parameters of the predictor

and classifier {Wµ0
,Wµ1

,Wt} (refer to figure Fig. 2) are

optimised to reduce the training error and parameters of

the confounder representation WC are optimised to be bet-

ter predictive of potential outcomes, i.e., to minimise the

potential outcome loss, and to be invariant to the treatment

policy, i.e., maximise the loss of the treatment classifier and

hence push the treatments to be similar to the randomised

controlled trials. Thus, the later update works adversarially

to the treatment classifier, and enforces treatment-invariant

balanced representations to the confounders C.

To implement the adversarial training to get the balanced

representations for the confounders, a gradient reversal

layer is placed between the confounder representations

C(X) and the treatment classifier, as shown in Fig. 2. Dur-

ing the forward pass, the layer acts as an identity, but dur-

ing the backward pass, the layer reverses the direction of

the gradient, as the layer’s name suggests. A domain adap-

tation hyperparameter λ is used to control the balancing

effect of the gradient reversal layer and is defined as fol-

lows.

λ = λ0

(

2

1 + exp(−10× epoch/γ)
− 1

)

, (8)

where epoch is the epoch number, γ controls the variations

of λ during the training, and it can take values from one to

the total number of epochs. λ can vary from 0 to a large

number, which has to be tuned as per the dataset. The con-

stant factor λ0 is one unless we need λ to be more than one.

We observe that the estimator is sensitive to the choice of

λ, which controls the balancing effect. Since synthetic and

semi-synthetic datasets come with different variants which

differ in their outcome surfaces, e.g., the IHDP dataset has

100 variations, it is difficult to find a common value for all

the variants which affect the performance of the proposed

estimators.

The objective function for the proposed ITE estimator is as

given below.

1

m

m
∑

i=1

[

Ly(yi, µ̂
i
t(x)) + Lt(t, π̂(x))

]

+ λ1R2

+λ2(LO +RO),

(9)

where Ly is loss for potential outcomes, Lt is propensity

score, R2 is l2-regulariser, and λ1 and λ2 are constants.
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5 EXPERIMENTS

This section, discusses the experimental settings, metrics,

baselines and results on synthetic and real datasets.

5.1 Experimental Setting

Following Curth and van der Schaar (2021b), we fix com-

mon hyperparameters for all the ITE estimators. We take

a mini-batch of 100, Adam as optimiser, the learning rate

of 0.0001, and l2-regulariser coefficient of 0.0001. We use

early stopping with patience of 50 as stopping criteria (for

more details of the hyperparameters and implementation

details, please refer to supplementary material). All the

experiments are implemented in Pytorch, executed on an

Ubuntu machine (64GB RAM, 1 NVIDIA GeForce GPU),

and averaged over 10 runs. The code is released and

verified at https://codeocean.com/capsule/1529546. For

baselines, we use the following ITE estimators.

FlexTENet (Curth and van der Schaar (2021a)): It has

a flexible architecture that allows flexibility to share

information at different layers between potential outcomes

for factual and counterfactuals. Moreover, the authors

also introduced regularisation-based schemes to encourage

similarity between the two outcomes.

SNet (Curth and van der Schaar (2021b)): It decomposes

the context X into five latent factors and uses orthogonality

to encourage each variable of X to contribute to one of the

five latent factors.

DRCRF (Hassanpour and Greiner (2019a); Wu et al.

(2022)): It decomposes the context X into three latent

factors and uses orthogonality to encourage each variable

of X to contribute to one of the three latent factors.

TARNet, CFRNet (Johansson et al. (2016); Shalit et al.

(2017)): This pioneering work introduced representation

learning and domain adaptation ideas for minimising the

distance between control and treatment representations.

TARNet, has two heads for the potential outcome regres-

sions, while CFRNet also adds a discrepancy regulariser to

TARNet for minimising the distribution distance.

DragonNet, DragnonNetTR (Shi et al. (2019)): They

used third head for propensity score, in addition to po-

tential outcome regressions (referred to as DragonNet),

and introduced targeted regularisation (referred to as

DragonNetTR).

SLearner, TLearner (Künzel et al. (2019)): These are

basic baselines where the S(single)Learner augments

the feature space with the treatment policy and has the

advantage of using the whole data, unlike others which

use data in potential outcome regression heads as per

the treatment group. Similarly, T(two)Learner uses two

separate networks for each treatment group and so each

network utilises data related to that treatment group only.

TEDVAE (Zhang et al. (2021)): This uses disentangled

latent factors in the variational autoencoder.

Moreover, the proposed disentangled representations

with adversarial training algorithms are referred to as

SNet+ and DRCFR+ due to some similarities with corre-

sponding SNet and DRCFR algorithms. In addition, we

also present extensions of DragonNet and DragonNetTR

using adversarial training, referred to as DragonNet+,

DragonNetTR+. However, adversarial training of the rest

of the baselines is not possible and that’s why they don’t

have plus-variants.

To assess the performance of the ITE estimators, since we

have both factual and counterfactual outcomes in the syn-

thetic and semi-synthetic datasets, we use Precision in the

Estimation of Heterogeneous Effects (PEHE) as a metric,

as given below.

PEHE =

√

√

√

√

1

m

m
∑

i=1

(êi − ei)
2
, (10)

where êi = µ̂i
1
− µ̂i

0
is the predicted ITE and ei = µi

1
− µi

0

is the true ITE.

5.2 Synthetic Experiments

We evaluate the performance of different ITE estimators

on simulated data with different sizes and with different

number of confounding features. Our data generation is in-

spired from Curth and van der Schaar (2021b). In all cases,

we take d = 25 normally distributed covariates, subsets of

which decide the potential outcomes µt(x) and the treat-

ments π(x). X is generated in disjoint subsets Xs of size

ds, according to Xs ∼ N (0, 1). Suppose, context X
is made of covariates XC , XO, XT , Xτ which affect both

µt(x) and π(x), affect only µt(x), only the treatments π(x)
and model the treatment effect e(x), respectively. The po-

tential outcomes µt(x) and the treatments π(x) are mod-

elled as given below.

µ0(x) = 1
TX2

CO, (11)

µ1(x) = 1
TX2

CO + 1
TX2

τ , (12)

π(x) = expit

(

ξ

(

1

dCT

1
TX2

CT − ω

))

, (13)

where 1 is a vector of ones, XCO = [XC , XO] , XCT =
[XC , XT ], ξ controls the selection-bias (in our experi-

ments, it is set to three), and ω = median(
1

dCT

1
TX2

CT ).

In Table 1, we present results on synthetic data, which have

25 covariates of which five, five and, ten covariates affect

the outcome, propensity and both, and the rest model the

treatment effect, respectively. The dataset has 3000 data

points, 30% of which are taken as a test set, and 30% of

the remaining are used as a validation set for hyperparame-

ter tuning. The table shows that among the baselines, SNet
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Table 1: Comparative study of different ITE estimators on

a synthetic dataset. Bold values represent the best values

between the extension and the corresponding baselines and

PEHE-in and -out refer to PEHE on training data and on

the hold-out test dataset. The results are averaged over 10

runs, and the standard error is presented in parentheses.

Name PEHE-in PEHE-out

TLearner 2.2822 (0.0041) 2.5233 (0.0130)

SLearner 0.4750 (0.0022) 0.4772 (0.0022)

TARNet 0.5950 (0.0041) 0.5847 (0.0038)

CFRNet 0.5950 (0.0041) 0.5846 (0.0041)

FlexTENet 1.7150 (0.0054) 1.7103 (0.0060)

DragonNet 0.5361 (0.0057) 0.5251 (0.0057)

DragonNet+ 0.5414 (0.0066) 0.5220 (0.0063)

DragonNetTR 1.2161 (0.0145) 1.2027 (0.0145)

DragonNetTR+ 1.0149 (0.0044) 0.9976 (0.0044)

DRCFR 0.4785 (0.0076) 0.4745 (0.0085)

DRCFR+ 0.4742 (0.0063) 0.4688 (0.0076)

SNet 0.4264 (0.0070) 0.4116 (0.0063)

SNet+ 0.4147 (0.0066) 0.4008 (0.0073)

and TLearner are the best and worst performers, respec-

tively. This is expected as SNet is one of the recent tech-

niques with a mechanism to separate confounders. On the

other hand, TLearner uses two different networks without

sharing information and lacks any mechanism to control

confounding. Moreover, each of the two neural networks

in TLearner also utilises less data as each receives data

corresponding to that treatment group only. Interestingly,

SLearner performs better than expected. This is likely be-

cause of sharing a single network for potential outcomes,

which cancels the noise effect and can utilise the entire data

for the predictions, unlike the other estimators where each

potential outcome predictor utilises the data corresponding

to that outcome. Although, SLearner is known to perform

poorly in high-dimensional settings.

From the table, it is also clear that adversarial training im-

proves the error in the ITE estimation (see SNet+). It is

also observed that the estimators using disentanglement

learning (i.e., DRCFR, SNet, and their extensions) per-

form comparatively better than the other baselines as they

have a mechanism to separate the confounders. Moreover,

shared representation-based estimators also perform better

than the other, i.e., TLearner, which does not share any in-

formation between potential outcome predictions.

Fig. 3 compares the performance of different ITE estima-

tors against the scale of the data at 2,000, 3,000, 5,000, and

7,000 data points. For clarity, we removed the ITE esti-

mators with large values, like TLearner, to avoid crowd-

ing in the figure (for a detailed comparison, please refer to

the supplementary material). From the figure, it is clear

that as the data size increases, in general, the error goes
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Figure 3: PEHE for different ITE estimators by dataset

sizes (shaded area presents one standard deviation).

down. Moreover, the proposed SNet+ is always the best

performer, and all the extensions are better than their base-

lines. It is observed that TARNet and CFRNet perform bet-

ter than DragonNet and DragonNetTR with small datasets,

but as the dataset size increases, they lag behind. More-

over, SNet/SNet+ improve with dataset size compared with

the rest of the baselines.
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Figure 4: PEHE for different ITE estimators by different

number of confounding covariates in the context X (shaded

area presents one standard deviation).

Fig. 4 presents the performance of the ITE estima-

tors for an increasing number of confounding features

{10, 11, 12, 13} with a dataset of 3000 points. All these

datasets share the same covariates, i.e., X is the same, al-

though the outcomes and treatment assignment policy are

calculated per the data generating process discussed earlier.

From the figure, it is clear that, in general, the error in-

creases as the number of confounding covariates increases;

however, some estimators decrease at the beginning. More-

over, the proposed SNet+ and other extensions of the base-

lines maintain their performance and show better results.

SNet+ is also the best estimator throughout and TARNet

is the worst performer. As observed earlier, SLearner per-

forms well in these settings, although it is not suited for



Adversarial De-confounding in Individualised Treatment Effects Estimation

high-dimensional settings. Once again, the disentangle-

ment learning-based estimators perform better than other

baselines.

5.3 Semi-synthetic Benchmark: IHDP

The Infant Health and Development Program (IHDP) Hill

(2011) is a semi-simulated benchmark dataset for causal

inference for binary treatment problems, where the covari-

ates are real, but outcomes are simulated. It consists of

747 units (139 treated and 608 untreated) and 25 covari-

ates measuring aspects of mother and child. The dataset

was prepared from a randomized control trial from the In-

fant Health and Development Program, which studies the

effect of high-quality child care/specialist home visits on

future cognitive test scores of the child. A biased set of

treated units is removed to make the dataset imbalanced.

The dataset provides noiseless true values for both the treat-

ments, i.e., treatment and control, so it can be used to calcu-

late the true ITE. We take IHDP1002 with 100 simulation

settings from Shalit et al. (2017) for our study. We have

used a validation set as 20% of the train set. For more de-

tails on hyperparameters, please refer to the supplementary

material.

Table 2: Comparative study of different ITE estimators on

IHDP dataset. Bold values represent the best values be-

tween the extension and the corresponding baselines and

PEHE-in, and -out refer to PEHE on training data and on

hold-out test dataset. The results are averaged over 10 runs

and the standard error presented in parentheses.

Name PEHE-in PEHE-out

TLearner 1.1007 (0.0234) 1.3686 (0.0211)

SLearner 2.5331 (0.0120) 2.8332 (0.0101)

TARNet 0.7837 (0.0114) 1.0935 (0.0095)

CFRNet 0.8165 (0.0019) 1.1277 (0.0038)

FlexTENet 1.1238 (0.0130) 1.3954 (0.0123)

TEDVAE 1.5004 (0.0060) 1.6018 (0.0085)

DragonNet 0.8026 (0.0054) 1.1097 (0.0041)

DragonNet+ 0.7924 (0.0104) 1.1125 (0.0111)

DragonNetTR 1.9190 (0.0262) 2.1935 (0.0256)

DragonNetTR+ 1.7087 (0.0322) 1.9744 (0.0338)

DRCFR 0.8680 (0.0190) 1.1908 (0.0155)

DRCFR+ 0.8616 (0.0142) 1.1897 (0.0095)

SNet 1.0586 (0.0066) 1.4030 (0.0060)

SNet+ 1.0459 (0.0082) 1.3839 (0.0057)

Table 2 presents experiments with the semi-simulated

IHDP dataset. From the table, it is clear that all the ex-

tensions of different ITE estimators with adversarial train-

ing improve the baseline results. However, disentangle-

ment representation-based estimators are no longer the

2http://www.fredjo.com/

best performer. This is in line with earlier observations

Curth and van der Schaar (2021b) that the simple estima-

tors perform better than the complex estimators on the

IHDP dataset, as it is a very small dataset and the over-

lap assumption holds only partially. TARNet and SLearner

are the best and the worst performers, respectively.

The computational cost for the proposed approach is sim-

ilar to the existing baselines, as the gradient reversal layer

acts as an identity in the forward pass and only reverses

the gradient during the backward pass by a factor called

domain adaptation parameter. So, the proposed approach

does not add any additional computational cost.

6 CONCLUSION

This paper proposes disentangled representations with ad-

versarial training to selectively balance the confounders in

the binary treatment setting. We also extended the ITE esti-

mators having confounder representations using adversar-

ial training to balance the confounders. Using synthetic and

semi-synthetic benchmarks, we showed that the proposed

idea improves the error in the ITE estimation. One limita-

tion of the proposed approach is that it introduces an ad-

ditional hyperparameter, called domain adaptation param-

eter, which has to be tuned as per the dataset to control the

balancing of confounders. However, it can be tuned on the

validation dataset along with other machine learning hyper-

parameters. In this paper, in line with some of the literature,

we studied the proposed idea in the plug-in setting for the

ITE estimation. Furthermore, it would be interesting to ex-

plore this concept in the two-step meta-learners’ setting.
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A ADDITIONAL EXPERIMENTS

A.1 Scale and Confounding Comparison for In-distributions

In the main part of the paper, we presented results for scale and confounding feature comparisons for out-distributions only.

Here, we presents results for in-distributions, and for the sake of clarity, we have also presented out-distributions results

side-by-side to in-distributions. From the Figs. 5 and 6, it is clear that in- and out-distribution results are similar and have

same observations, as discussed earlier.

10 11 12 13

#Confounding Features

0.40

0.45

0.50

0.55

0.60

0.65

P
E
H

E

CFRNet

10 11 12 13

#Confounding Features

0.40

0.45

0.50

0.55

0.60

0.65

P
E
H

E

CFRNet

Figure 5: Comparative study for in-distribution (left) and out-distribution (right) PEHE against number of confounding

features.
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Figure 6: Comparative study for in-distribution (left) and out-distribution (right) PEHE against dataset size.

A.2 Results with coefficients

In the literature, either no coefficients are used to balance the potential outcome loss LO and the propensity score loss LT

or coefficients are always one for the both. Although, we observed that by putting coefficients around the the two loss terms

can help reduce the ITE estimation error. So, in this Subsection, we present results for IHDP dataset using the coefficients.

To find the coefficients, we use manual tuning as follows.

L = αLO + (1− α)LT + other terms. (14)

We start with a value of 0.5 for α and reduce/increase by 0.1 as long as it keeps improving, in the direction of improvement,

and if it reaches 0.1 then to further decrease the value, we divide by 10, but if it reaches 0.9, we add extra digit 9. Table 3

presents results on IHDP dataset with coefficients and the values of α are 0.6, 0.6, 0.99 and 0.99 for SNet/+, DRCFR/+,

DragonNet/+ and DragonNetTR/+, respectively. For some of the baselines, there is no difference in the performance

because they don’t have propensity loss term so no coefficients are used for them. This is especially noted for TARNet
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which was earlier the best performer but with coefficients DragonNet+ performs the best. Although, the results still

follow the observation from the literature that the simple ITE estimators perform better on IHDP dataset than the complex

estimators. Moreover, the proposed extensions are, as observed earlier, always improve the baselines. Following the results

with coefficients for IHDP dataset, we used coefficients for reporting results with synthetic data also. Although, to save

the overhead to tune the coefficient, we have tuned the coefficients for setting with 3,000 data points only as they are not

expected to vary much with change in data points, and values of α are used as 0.2, 0.5, 0.1 and 0.7 for SNet/+, DRCFR/+,

DragonNet/+ and DragonNetTR/+, respectively.

Table 3: Comparative study of different ITE estimators with coefficients on IHDP dataset. Bold values represent the best

values between the extension and the corresponding baselines and PEHE-in, and -out refer to PEHE on training data and

on hold-out test dataset. The results are averaged over 10 runs and the standard error presented in parentheses.

Name PEHE-in PEHE-out

TLearner 1.1007 (0.0234) 1.3686 (0.0212)

SLearner 2.5331 (0.0120) 2.8332 (0.0101)

TARNet 0.7837 (0.0114) 1.0935 (0.0095)

CFRNet 0.8165 (0.0019) 1.1277 (0.0038)

FlexTENet 1.1238 (0.0130) 1.3954 (0.0123)

DragonNet 0.7314 (0.0076) 1.0563 (0.0070)

DragonNet+ 0.7269 (0.0092) 1.0478 (0.0111)

DragonNetTR 1.8887 (0.0152) 2.1403 (0.0256)

DragonNetTR+ 1.6696 (0.0174) 1.9452 (0.0123)

DRCFR 0.8654 (0.0171) 1.190 (0.0136)

DRCFR+ 0.8418 (0.0158) 1.179 (0.0114)

SNet 0.99 (0.0133) 1.30 (0.0107)

SNet+ 0.99 (0.0044) 1.29 (0.0107)

A.3 Comparison of Treatment Distributions

Here, we take a random example from synthetic data, to compare the treatment distributions of SNet and SNet+, and

a simple baseline of DragonNet. From the Fig. 7, we can infer two points: first that DragonNet performs too much

balancing which affects the predictive performance. This is due to the existence of a trade-off in balancing and predictive

performance, and balancing the whole context X as pointed out in VanderWeele (2019); Kuang et al. (2019). Secondly,

SNet+ improves the treatment probabilities and the density is slightly narrower than the SNet.

Figure 7: Distribution of treatment classification on synthetic data for DragonNet, SNet and SNet+, with PEHE-out as

0.6066, 0.5728 and 0.5677, respectively.
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B IMPLEMENTATION DETAILS

In our implementation, for fair comparison, we use components similar to Curth and van der Schaar (2021b). We set

common hyperparameters for all the ITE estimators. We take a mini-batch of 100, Adam as optimiser, the learning rate

of 0.0001, and l2-regulariser coefficient (λ1) of 0.0001. Each experiment is run for a maximum of 1000 epochs. We use

exponential linear units (ELU) as the activation function for the dense layers and early stopping based on 30% validation

(20% for IHDP dataset due to its small size) dataset with patience of 50 as stopping criteria. For Slearner, We have used

five layers with 200, 200, 200, 100 and 100 neurons, in addition to the final output layer. For TLearner, we have used

five layers with 100, 100, 100, 50 and 50 neurons, in each of the two networks, in addition to the final output layers. For

TARNet, CFRNet (maximum mean discrepancy), DragonNet/DragonNet+ and DragonNetTR/DragonNetTR+, we have

used five layers with 200, 200 and 200 neurons in the common representation layers and 100, 100 in the potential outcome

heads, in addition to the final output layer. For DRCFR/DRCFR+, we have used three representation layers with 150, 50

and 50 neurons for latent factor representations of confounder, outcome and propensity, and two layers of 100 neurons in

the output heads, in addition to the final output layer. For FlexTENet, we have used two layers with 100 neurons and two

layers of 50 neurons in the outcome heads, in addition to the output layer. Moreover, as suggested in the paper, we have set

the λ1 = 0.0001, λ2 = 0.01 and λo = 0.1. For SNet/SNet+, we have used 100, 100, 50, 50 and 50 neurons in the latent

factor representation layers for confounder, treatment, outcome, treatment outcome and control outcome, respectively, and

two layers in the outcome heads, in addition to the final output layers. We have set λ2 = 0 for IHDP and λ2 = 0.01
for DRCFR/DRCFR+ and SNet/SNet+. Out implementations are based on Curth and van der Schaar (2021b,a) which are

available online3 in JAX as well as Pytorch. For TEDVAE, we have used the official implementation and the settings from

the paper (Zhang et al. (2021)).

Table 4: Domain adaptation parameter settings – λ0, γ (where w5-c10-o5-3K means 5, 10 and 5 covariates determine

treatment, confounders and potential outcomes with dataset size of 3000 data points. IHDP-coeff refers to IHDP dataset

with coefficients for the loss terms.)

Dataset SNet+ DRCFR+ DragonNet+ DragonNetTR+

IHDP 18, 1 1.2, 1 0.2, 600 0.001, 1

IHDP-coeff 1, 1 1, 1 0.001, 1 0.001, 1

w5-c10-o5-2K 1.4, 1 1.8, 10 1.5, 1 0.2, 600

w5-c10-o5-3K 1.7, 1 1.8, 1 4, 1 1, 600

w5-c10-o5-5K 1.7, 1 8, 1 4, 1 1, 600

w5-c10-o5-7K 1.7, 1 15, 1 4, 1 1.5, 600

w5-c11-o5-3K 1.7, 1 4, 1 3, 1 1.5, 1

w5-c12-o5-3K 5, 400 1, 300 3, 1 2, 300

w5-c13-o5-3K 0.6, 600 5, 1 3, 1 0.8, 600

The domain adaptation parameter λ for the adversarial trained ITE estimators is also tuned manually. This re-

quires setting the constant factor λ0 and the parameter controlling the rate of growth γ. We vary γ between

{1, 10, 100, 200, 300, 400, 600, 700} and λ0 is varied between 0.1 to 25, where large values force stronger balancing of

the confounder variables. The final selected values for these parameters are presented in the Table 4. We observed that,

the training is sensitive to λ, which has to be tuned to each dataset, because large values of λ can lead to divergence of

the learning algorithm. Since the datasets have multiple variants, e.g., IHDP has 100 so it was difficult to find a common

setting for all the 100 variants because some parameters were working for variant but not for others. So, tuning of λ for

each variant on the validation dataset can give even better results at the expense of extra overhead to tune λ. Moreover,

we observed that DragonNetTR+ was more sensitive to λ and at sometimes the learning algorithm diverged so we have

removed those variants from the evaluations – including for the DragonNetTR. However, we can use gradient clipping to

solve this issue of unstable learning.

3https://github.com/AliciaCurth/CATENets


